diff --git a/predicators/cogman.py b/predicators/cogman.py index d2e5af69e..c9c96528f 100644 --- a/predicators/cogman.py +++ b/predicators/cogman.py @@ -84,34 +84,34 @@ def step(self, observation: Observation) -> Optional[Action]: self._exec_monitor.env_task = self._current_env_task if self._exec_monitor.step(state): logging.info("[CogMan] Replanning triggered.") - import jellyfish - def map_goal_to_state(goal_predicates, state_data): - goal_to_state_mapping = {} - state_usage_count = {state_obj: 0 for state_obj in state_data.keys()} - for pred in goal_predicates: - for goal_obj in pred.objects: - goal_obj_name = str(goal_obj) - closest_state_obj = None - min_distance = float('inf') - for state_obj in state_data.keys(): - state_obj_name = str(state_obj) - distance = jellyfish.levenshtein_distance(goal_obj_name, state_obj_name) - if distance < min_distance: - min_distance = distance - closest_state_obj = state_obj - if state_usage_count[closest_state_obj] > 0: - virtual_obj = Object(f"{closest_state_obj}_{state_usage_count[closest_state_obj]}", closest_state_obj.type) - goal_to_state_mapping[goal_obj] = virtual_obj - else: - goal_to_state_mapping[goal_obj] = closest_state_obj - state_usage_count[closest_state_obj] += 1 - return goal_to_state_mapping - mapping = map_goal_to_state(self._exec_monitor._curr_goal, state.data) - new_goal = set() - for pred in self._exec_monitor._curr_goal: - new_goal.add(GroundAtom(pred.predicate, [mapping[obj] for obj in pred.objects])) - import ipdb; ipdb.set_trace() - self._current_goal = new_goal + # import jellyfish + # def map_goal_to_state(goal_predicates, state_data): + # goal_to_state_mapping = {} + # state_usage_count = {state_obj: 0 for state_obj in state_data.keys()} + # for pred in goal_predicates: + # for goal_obj in pred.objects: + # goal_obj_name = str(goal_obj) + # closest_state_obj = None + # min_distance = float('inf') + # for state_obj in state_data.keys(): + # state_obj_name = str(state_obj) + # distance = jellyfish.levenshtein_distance(goal_obj_name, state_obj_name) + # if distance < min_distance: + # min_distance = distance + # closest_state_obj = state_obj + # if state_usage_count[closest_state_obj] > 0: + # virtual_obj = Object(f"{closest_state_obj}_{state_usage_count[closest_state_obj]}", closest_state_obj.type) + # goal_to_state_mapping[goal_obj] = virtual_obj + # else: + # goal_to_state_mapping[goal_obj] = closest_state_obj + # state_usage_count[closest_state_obj] += 1 + # return goal_to_state_mapping + # mapping = map_goal_to_state(self._exec_monitor._curr_goal, state.data) + # new_goal = set() + # for pred in self._exec_monitor._curr_goal: + # new_goal.add(GroundAtom(pred.predicate, [mapping[obj] for obj in pred.objects])) + # import ipdb; ipdb.set_trace() + # self._current_goal = new_goal assert self._current_goal is not None task = Task(state, self._current_goal) self._reset_policy(task) diff --git a/predicators/perception/spot_perceiver.py b/predicators/perception/spot_perceiver.py index 4658e4b61..922de2c40 100644 --- a/predicators/perception/spot_perceiver.py +++ b/predicators/perception/spot_perceiver.py @@ -566,9 +566,9 @@ def _create_goal(self, state: State, Inside = pred_name_to_pred["Inside"] if state.data == {}: return { - #GroundAtom(ContainingFoodKnown, [cup]), - #GroundAtom(NotContainingFood, [cup]), - GroundAtom(Inside, [cup, plastic_bin]), + GroundAtom(ContainingFoodKnown, [cup]), + GroundAtom(NotContainingFood, [cup]), + #GroundAtom(Inside, [cup, plastic_bin]), } object_name_to_object = {} return self._parse_vlm_goal_from_state(state, goal_description, object_name_to_object)