-
Notifications
You must be signed in to change notification settings - Fork 0
/
day17.py
239 lines (208 loc) · 7.66 KB
/
day17.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
from rich import print
import streamlit as st
import os
from utils import *
# Define which function to apply to parse the input data, from the text file or the text areas
# file_to_lines, file_to_ints, line_to_ints, line_to_str
basic_transform = file_to_lines
answer = None
st.session_state.file_exists = os.path.exists(get_filename())
with st.sidebar:
select1 = st.selectbox("Part 1", ['examples', 'data'], key='select1')
select2 = st.selectbox("Part 2", ['examples', 'data'], key='select2')
Location2D = namedtuple('Location2D', 'x y')
class Graph(BaseGraph):
def __init__(self, grid, bounds):
self.grid = grid
self.width = bounds[0]
self.height = bounds[1]
def in_bounds(self, node):
return 0 <= node.x < self.width and 0 <= node.y < self.height
def neighbors(self, node, direction):
x, y = node
dx, dy = direction
neighbors = []
if dx > 0:
if dx < 3:
neighbors.append(Location2D(x+1, y))
neighbors.extend([Location2D(x, y+1), Location2D(x, y-1)])
elif dx < 0:
if dx > -3:
neighbors.append(Location2D(x-1, y))
neighbors.extend([Location2D(x, y+1), Location2D(x, y-1)])
elif dy > 0:
if dy < 3:
neighbors.append(Location2D(x, y+1))
neighbors.extend([Location2D(x+1, y), Location2D(x-1, y)])
elif dy < 0:
if dy > -3:
neighbors.append(Location2D(x, y-1))
neighbors.extend([Location2D(x+1, y), Location2D(x-1, y)])
else:
neighbors.extend([Location2D(1, 0), Location2D(0, 1)])
results = filter(self.in_bounds, neighbors)
return results
def cost(self, node):
return self.grid[node]
class UltraGraph(BaseGraph):
def __init__(self, grid, bounds):
self.grid = grid
self.width = bounds[0]
self.height = bounds[1]
def in_bounds(self, node):
return 0 <= node.x < self.width and 0 <= node.y < self.height
def neighbors(self, node, direction):
x, y = node
dx, dy = direction
neighbors = []
if dx > 0:
if dx < 10:
neighbors.append(Location2D(x+1, y))
if dx > 3:
neighbors.extend([Location2D(x, y+1), Location2D(x, y-1)])
elif dx < 0:
if dx > -10:
neighbors.append(Location2D(x-1, y))
if dx < -3:
neighbors.extend([Location2D(x, y+1), Location2D(x, y-1)])
elif dy > 0:
if dy < 10:
neighbors.append(Location2D(x, y+1))
if dy > 3:
neighbors.extend([Location2D(x+1, y), Location2D(x-1, y)])
elif dy < 0:
if dy > -10:
neighbors.append(Location2D(x, y-1))
if dy < -3:
neighbors.extend([Location2D(x+1, y), Location2D(x-1, y)])
else:
neighbors.extend([Location2D(1, 0), Location2D(0, 1)])
results = filter(self.in_bounds, neighbors)
return results
def cost(self, node):
return self.grid[node]
def heuristic(a, b):
return abs(a.x-b.x)+abs(a.y-b.y)
# heuristic is a function that takes two arguments, returns a value to estimate the distance to the goal
def a_star_search(graph , start, goal, heuristic):
frontier = PriorityQueue()
frontier.put((start, (0, 0)), 0)
came_from = {}
cost_so_far = {}
came_from[start] = {start: None}
cost_so_far[start] = {start: 0}
while not frontier.empty():
current, direction = frontier.get()
if current == goal:
break
for next in graph.neighbors(current, direction):
new_direction = (next.x-current.x, next.y-current.y)
if direction[0]*new_direction[0] != 0 or direction[1]*new_direction[1] != 0:
new_direction = (direction[0]+new_direction[0], direction[1]+new_direction[1])
new_cost = cost_so_far[current][direction] + graph.cost(next)
if next not in cost_so_far or new_direction not in cost_so_far[next]: # or new_cost < max(cost_so_far[next].values()):
if next not in cost_so_far:
cost_so_far[next] = {}
cost_so_far[next][new_direction] = new_cost
priority = new_cost + heuristic(next, goal)
frontier.put((next, new_direction), priority)
if next not in came_from:
came_from[next] = {}
came_from[next][current] = new_direction
return came_from, cost_so_far
def sol1(data):
grid = {}
display = []
for y, line in enumerate(data):
display_line = []
for x, char in enumerate(line):
loc = Location2D(x, y)
display_line.append(char)
grid[loc] = int(char)
display.append(display_line)
bounds = (len(data[0]), len(data))
graph = Graph(grid, bounds)
start, goal = Location2D(0, 0), Location2D(bounds[0]-1, bounds[1]-1)
came_from, cost_so_far = a_star_search(graph, start, goal, heuristic)
return min(cost_so_far[goal].values())
def sol2(data):
grid = {}
display = []
for y, line in enumerate(data):
display_line = []
for x, char in enumerate(line):
loc = Location2D(x, y)
display_line.append(char)
grid[loc] = int(char)
display.append(display_line)
bounds = (len(data[0]), len(data))
graph = UltraGraph(grid, bounds)
start, goal = Location2D(0, 0), Location2D(bounds[0]-1, bounds[1]-1)
came_from, cost_so_far = a_star_search(graph, start, goal, heuristic)
return min(cost_so_far[goal].values())
if not st.session_state.file_exists:
data = st.text_area("input text from site")
if data:
write_to_file(data)
st.rerun()
st.markdown("This should disappear after execution")
st.divider()
else:
data = load()
if not data:
st.stop()
data = basic_transform(data)
data_bk = data.copy()
st.markdown("### Part 1")
if select1 == 'data':
st.markdown("#### Final answer")
else:
st.markdown("#### Example")
c1, c2 = st.columns(2)
with c1:
value = st.session_state.get("example1_data", "")
data = st.text_area('example 1', value=value)
if data:
st.session_state["example1_data"] = data
data = basic_transform(data)
with c2:
value = st.session_state.get("example1_answer", "")
answer = st.text_input('answer 1', value=value)
if answer:
st.session_state["example1_answer"] = answer
if data:
if answer:
answer = int(answer)
if sol1(data) != answer:
st.markdown(f"**:red[Example failing: {sol1(data)=} != {answer}]**")
else:
st.markdown("**:green[All good]**")
st.markdown(f"{sol1(data)=}")
st.divider()
st.markdown("### Part 2")
answer = None
data = data_bk
if select2 == 'data':
st.markdown("#### Final answer")
else:
st.markdown("#### Example")
c1, c2 = st.columns(2)
with c1:
value = st.session_state.get("example2_data", "")
data = st.text_area('example 2', value=value)
if data:
st.session_state["example2_data"] = data
data = basic_transform(data)
with c2:
value = st.session_state.get("example2_answer", "")
answer = st.text_input('answer 2', value=value)
if answer:
st.session_state["example2_answer"] = answer
if data:
if answer:
answer = int(answer)
if sol2(data) != answer:
st.markdown(f"**:red[Example failing: {sol2(data)=} != {answer}]**")
else:
st.markdown(":green[All good]")
st.markdown(f"{sol2(data)=}")