-
Notifications
You must be signed in to change notification settings - Fork 5
/
dataset_train_patch.py
50 lines (40 loc) · 1.9 KB
/
dataset_train_patch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
from sklearn.model_selection import KFold
from torch.utils.data import Dataset
import numpy as np
import glob
def default_transform(x):
return x
class COPD_dataset(Dataset):
def __init__(self, stage, args, transforms=default_transform):
self.args = args
self.root_dir = args.root_dir
self.transforms = transforms
self.patch_idx = 0
self.patch_data = np.load(self.args.root_dir+"grouped_patch/patch_loc_"+str(self.patch_idx)+".npy")
self.sid_list = []
for item in glob.glob(self.args.root_dir+"patch/"+"*_patch.npy"):
self.sid_list.append(item.split('/')[-1][:-10])
self.sid_list.sort()
assert len(self.sid_list) == self.patch_data.shape[0]
# point to your patch location file
self.patch_loc = np.load("/pghbio/dbmi/batmanlab/lisun/copd/gnn_shared/data/patch_data_32_6_reg/19676E_INSP_STD_JHU_COPD_BSpline_Iso1_patch_loc.npy")
self.patch_loc = self.patch_loc / self.patch_loc.max(0)
print("Fold: full")
self.sid_list = np.asarray(self.sid_list)
self.sid_list_len = len(self.sid_list)
print(stage+" dataset size:", self.sid_list_len)
def set_patch_idx(self, idx):
self.patch_idx = idx
self.patch_data = np.load(self.args.root_dir+"grouped_patch/patch_loc_"+str(idx)+".npy")
def __len__(self):
return self.sid_list_len*self.args.num_patch
def __getitem__(self, idx):
idx = idx % self.sid_list_len
img = self.patch_data[idx,:,:,:]
img = img + 1024.
img = self.transforms(img[None,:,:,:])
img[0] = img[0]/632.-1 # Normalize to [-1,1], 632=(1024+240)/2
img[1] = img[1]/632.-1 # Normalize to [-1,1], 632=(1024+240)/2
patch_loc_idx = self.patch_loc[self.patch_idx,:] # patch location
adj = np.array([]) # adj matrix not needed for patch-level training
return img, patch_loc_idx, adj