-
Notifications
You must be signed in to change notification settings - Fork 35
/
main.py
75 lines (63 loc) · 2.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import numpy as np
import tensorflow as tf
from trainer import Trainer
from config import get_config
from data_loader import *
from utils import prepare_dirs_and_logger, save_config
def main(config):
#if config.train_renderer:
# config.task = "{}_{}".format(config.task, 'ren')
#if config.train_regressor:
# config.task = "{}_{}".format(config.task, 'reg')
# if config.pretrain_generator:
# config.task = "{}_{}".format(config.task, 'pregen')
if config.train_generator:
config.task = "{}_{}".format(config.task, 'gen')
prepare_dirs_and_logger(config)
rng = np.random.RandomState(config.random_seed)
tf.set_random_seed(config.random_seed)
if config.is_train:
data_path = config.data_path
batch_size = config.batch_size
do_shuffle = True
else:
setattr(config, 'batch_size', 64)
if config.test_data_path is None:
data_path = config.data_path
else:
data_path = config.test_data_path
batch_size = config.sample_per_image
do_shuffle = False
with tf.device('/cpu:0'):
data_loader = get_loader(
data_path, config.batch_size*config.num_gpu, config.input_scale_size,
config.data_format, config)
syn_image, syn_label, config.n_id = get_syn_loader(
config.syn_data_dir, config.batch_size*config.num_gpu, config.syn_scale_size,
config.data_format, config)
image_3dmm, annot_3dmm = get_3dmm_loader(
config.dataset_3dmm_dir, config.batch_size*config.num_gpu, config.syn_scale_size,
config.data_format, config)
#image_3dmm_test, annot_3dmm_test, latent_3dmm_test = get_3dmm_loader(
# config.dataset_3dmm_test_dir, config.batch_size, config.syn_scale_size,
# config.data_format, config.split)
trainer = Trainer(config, data_loader,syn_image,syn_label, image_3dmm, annot_3dmm) #image_3dmm_test, annot_3dmm_test, latent_3dmm_test )
if config.is_train:
save_config(config)
#if config.train_renderer | (config.cont == 'ren'):
# trainer.train_renderer()
#if config.train_regressor | (config.cont == 'reg'):
# trainer.train_regressor()
if config.train_generator | (config.cont == 'gen'):
trainer.train()
elif config.generate_dataset:
trainer.generate_dataset()
elif config.fit_dataset:
trainer.fit_dataset()
else:
if not config.load_path:
raise Exception("[!] You should specify `load_path` to load a pretrained model")
trainer.test()
if __name__ == "__main__":
config, unparsed = get_config()
main(config)