-
Notifications
You must be signed in to change notification settings - Fork 4
/
upscaling_kite_specs_and_settings.py
155 lines (143 loc) · 5.86 KB
/
upscaling_kite_specs_and_settings.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import numpy as np
# first 100kW implementation
sys_props_100 = {
'kite_projected_area': 44.15, # [m^2] - of ??? total flat area
'kite_mass': 53, # [kg] - kite + KCU
'tether_density': 724., # [kg/m^3] - 0.85 GPa
'tether_diameter': 0.014, # [m]
'tether_force_max_limit': 5000 * 9.81, #5000/(.25*np.pi*0.004**2) * (.25*np.pi*0.014**2), # ~61250 [N]
'tether_force_min_limit': 500, # [N]
'kite_lift_coefficient_powered': 1.1, # [-] - in the range of .9 - 1.0
'kite_drag_coefficient_powered': .13, # [-]
'kite_lift_coefficient_depowered': .2, # [-]
'kite_drag_coefficient_depowered': .1, # [-] - in the range of .1 - .2
'reeling_speed_min_limit': 0.05, # 2, # [m/s] - ratio of 4 between lower and upper limit would reduce generator costs
'reeling_speed_max_limit_retr': 10,
'reeling_speed_max_limit_trac': 5,
'reeling_speed_max_limit': 10, # [m/s]
'tether_drag_coefficient': 1.1, # [-]
}
# Create pumping cycle simulation object, run simulation, and plot results.
settings_100 = {
'cycle': {
# THis settings does not do anything now - overwritten
# 'traction_phase': TractionPhaseHybrid,
'elevation_angle_traction': 35*np.pi/180.,
# TODO improve this? Could go up to 500
# TODO what does this setting do exacly?
'tether_length_start_retraction': 300.,
'tether_length_end_retraction': 150.,
},
'retraction': {
# TODO retraction control -> x_opt parameter?
'control': ('tether_force_ground', 10000),
'time_step': .25, # .05,
},
'transition': {
'control': ('reeling_speed', 0.),
'time_step': .25, # .05,
},
'traction': {
# TODO controlled reeling factor - does this have an effect?
'control': ('reeling_factor', .37),
'time_step': .25, # .05,
'azimuth_angle': 15. * np.pi / 180.,
'course_angle': 110. * np.pi / 180.,
},
}
# Kitepower 100kW
sys_props_kitepower_100 = {
# TODO surface area
'kite_projected_area': 78, # 100m^2 flat area, estimated by reduction of 1.28, # [m^2] - of ??? total flat area
'kite_mass': 100 + 70, # [kg] - kite + KCU
'tether_density': 724., # [kg/m^3] - 0.85 GPa
'tether_diameter': 0.014, # [m]
'tether_force_max_limit': 5000 * 9.81, #5000/(.25*np.pi*0.004**2) * (.25*np.pi*0.014**2), # ~61250 [N]
'tether_force_min_limit': 500, # [N]
'kite_lift_coefficient_powered': 1.05, # [-]
'kite_drag_coefficient_powered': .13, # [-]
'kite_lift_coefficient_depowered': .2, # [-]
'kite_drag_coefficient_depowered': .1, # [-] - in the range of .1 - .2
'reeling_speed_min_limit': 0.05, # 2, # [m/s] - ratio of 4 between lower and upper limit would reduce generator costs
'reeling_speed_max_limit_retr': 9.3493, # 10,
'reeling_speed_max_limit_trac': 5,
'reeling_speed_max_limit': 10, # [m/s]
'tether_drag_coefficient': 1.1, # [-]
}
# Create pumping cycle simulation object, run simulation, and plot results.
settings_kitepower_100 = {
'cycle': {
# 'traction_phase': TractionPhase,
'elevation_angle_traction': 35*np.pi/180.,
# TODO improve this? Could go up to 500
# TODO what does this setting do exacly?
'tether_length_start_retraction': 500.,
'tether_length_end_retraction': 200.,
},
'retraction': {
'control': ('tether_force_ground', 10000),
'time_step': .25, # .05,
},
'transition': {
'control': ('reeling_speed', 0.),
'time_step': .25, # .05,
},
'traction': {
'control': ('reeling_factor', .37),
'time_step': .25, # .05,
'azimuth_angle': 15. * np.pi / 180.,
'course_angle': 110. * np.pi / 180.,
},
}
# Kitepower 500kW
sys_props_kitepower_500 = {
# TODO surface area
# TODO tether settings
'kite_projected_area': 199, # 250m^2 flat area, estimated by reduction of 1.28 (Kitepower Falcon: 60 -> 47) , # [m^2]
'kite_mass': 300 + 70, # [kg] - kite + KCU
'tether_density': 724., # [kg/m^3] - 0.85 GPa
'tether_diameter': np.sqrt(5) * 0.014, # [m]
'tether_force_max_limit': 5 * 5000 * 9.81, #5000/(.25*np.pi*0.004**2) * (.25*np.pi*0.014**2), # ~61250 [N]
'tether_force_min_limit': 500, # [N]
'kite_lift_coefficient_powered': 1.1, # [-]
'kite_drag_coefficient_powered': .12, # [-]
'kite_lift_coefficient_depowered': .2, # [-]
'kite_drag_coefficient_depowered': .1, # [-] - in the range of .1 - .2
'reeling_speed_min_limit': 0.05, # 2, # [m/s] - ratio of 4 between lower and upper limit would reduce generator costs
'reeling_speed_max_limit_retr': 10,
'reeling_speed_max_limit_trac': 5,
# 'reeling_speed_max_limit': 10, # [m/s]
'tether_drag_coefficient': 1.1, # [-]
}
# Create pumping cycle simulation object, run simulation, and plot results.
settings_kitepower_500 = {
'cycle': {
# 'traction_phase': TractionPhase,
'elevation_angle_traction': 35*np.pi/180.,
# TODO improve this? Could go up to 500
# TODO what does this setting do exacly?
'tether_length_start_retraction': 500.,
'tether_length_end_retraction': 200.,
},
'retraction': {
'control': ('tether_force_ground', 10000),
'time_step': .25, # .05,
},
'transition': {
'control': ('reeling_speed', 0.),
'time_step': .25, # .05,
},
'traction': {
'control': ('reeling_factor', .37),
'time_step': .25, # .05,
'azimuth_angle': 15. * np.pi / 180.,
'course_angle': 110. * np.pi / 180.,
},
}
# all kites
kite_sys_props = {'100': sys_props_100,
'kitepower_100': sys_props_kitepower_100,
'kitepower_500': sys_props_kitepower_500}
kite_qsm_settings = {'100': settings_100,
'kitepower_100': settings_kitepower_100,
'kitepower_500': settings_kitepower_500}