Set of Functions to Use in Survival Analysis and in Data Science
Collection of function to improve workflow in survival analysis and data science. Among the many features, the generation of balanced datasets, retrieval of protein coding genes from two public databases (live) and generation of random matrix based on covariance matrix.
The work has been mainly supported by two grants: FCT SFRH/BD/97415/2013 and the EU Commission under SOUND project with contract number 633974.
The only pre-requirement is to install biomaRt
bioconductor package as
it cannot be installed automatically via CRAN.
All other dependencies should be installed when running the install command.
if (!require("BiocManager"))
install.packages("BiocManager")
BiocManager::install("loose.rock")
# use the package
library(loose.rock)
coding.genes()
: downloads protein coding genes from external databasesgen.synth.xdata()
: generate random matrix with pre-determined covariancebalanced.cv.folds()
andbalanced.train.and.test()
: get balanced train/test sets and cv folds.run.cache()
: keep cache or results of a functionproper()
: Capitalize string using regexpressionmy.colors()
: My own palletemy.symbols()
: Same with symbols to plots- … check out rest of Documentation
library(dplyr)
Showing only a random sample of 15
coding.genes() %>%
dplyr::arrange(external_gene_name) %>% {
dplyr::slice(., sample(seq(nrow(.)), 15))
} %>%
knitr::kable()
ensembl_gene_id | external_gene_name |
---|---|
ENSG00000163626 | COX18 |
ENSG00000197208 | SLC22A4 |
ENSG00000115806 | GORASP2 |
ENSG00000125414 | MYH2 |
ENSG00000196453 | ZNF777 |
ENSG00000082556 | OPRK1 |
ENSG00000185475 | TMEM179B |
ENSG00000058272 | PPP1R12A |
ENSG00000132446 | FTHL17 |
ENSG00000230268 | SSU72P8 |
ENSG00000274540 | PRR23D1 |
ENSG00000128342 | LIF |
ENSG00000196371 | FUT4 |
ENSG00000103932 | RPAP1 |
ENSG00000123473 | STIL |
This is specially relevant in survival or binary output with few cases of one category that need to be well distributed among test/train datasets or in cross-validation folds.
Example below sets aside 90% of the data to the training set. As samples
are already divided in two sets (set1
and set2
), it performs the 90%
separation for each and then joins (with option join.all = T
) the
result.
set1 <- c(rep(TRUE, 8), FALSE, rep(TRUE, 9), FALSE, TRUE)
set2 <- !set1
cat(
'Set1', '\n', set1, '\n\n',
'Set2', '\n', set2, '\n\n',
'Training / Test set using logical indices', '\n\n'
)
set.seed(1985)
balanced.train.and.test(set1, set2, train.perc = .9)
#
set1 <- which(set1)
set2 <- which(set2)
cat(
'##### Same sets but using numeric indices', '\n\n',
'Set1', '\n', set1, '\n\n',
'Set2', '\n', set2, '\n\n',
'Training / Test set using numeric indices', '\n')
set.seed(1985)
balanced.train.and.test(set1, set2, train.perc = .9)
#
#> Set1
#> TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE
#>
#> Set2
#> FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
#>
#> Training / Test set using logical indices
#>
#> $train
#> [1] 1 2 3 4 5 6 7 8 9 10 11 12 14 15 17 18 20
#>
#> $test
#> [1] 13 16 19
#>
#> ##### Same sets but using numeric indices
#>
#> Set1
#> 1 2 3 4 5 6 7 8 10 11 12 13 14 15 16 17 18 20
#>
#> Set2
#> 9 19
#>
#> Training / Test set using numeric indices
#> $train
#> [1] 1 2 3 4 5 6 7 8 9 10 11 12 14 15 17 18 20
#>
#> $test
#> [1] 13 16 19
xdata1 <- gen.synth.xdata(10, 5, .2)
xdata2 <- gen.synth.xdata(10, 5, .75)
#> Using .2^|i-j| to generate co-variance matrix
#> X generated
#> cov(X)
#> Using .75^|i-j| to generate co-variance matrix (plotting correlation)
#> X generated
#> cov(X)
Uses a cache to save and retrieve results. The cache is automatically created with the arguments and source code for function, so that if any of those changes, the cache is regenerated.
Caution: Files are not deleted so the cache directory can become rather big.
Set a temporary directory to save all caches (optional)
base.dir(file.path(tempdir(), 'run-cache'))
#> [1] "/tmp/Rtmpd4sOlL/run-cache"
Run sum function twice
a <- run.cache(sum, 1, 2)
#> Saving in cache: /tmp/Rtmpd4sOlL/run-cache/8ca6/cache-generic_cache-H_8ca697a81d8184a82de72523a678a4290375a07e304dd20a78bd488827978af3.RData
b <- run.cache(sum, 1, 2)
#> Loading from cache (not calculating):
#> /tmp/Rtmpd4sOlL/run-cache/8ca6/cache-generic_cache-H_8ca697a81d8184a82de72523a678a4290375a07e304dd20a78bd488827978af3.RData
#> Cache was created at 2021-03-15 16:24:17 using loose.rock v1.1.2
all(a == b)
#> [1] TRUE
Run rnorm function with an explicit seed (otherwise it would return the same random number)
a <- run.cache(rnorm, 5, seed = 1985)
#> Saving in cache: /tmp/Rtmpd4sOlL/run-cache/9fda/cache-generic_cache-H_9fdab5baa36653c6d435ce2d68ec6651845f679861f463fe065f38115dc7acbe.RData
b <- run.cache(rnorm, 5, seed = 2000)
#> Saving in cache: /tmp/Rtmpd4sOlL/run-cache/2ada/cache-generic_cache-H_2adac402358921459b509ec972477640ce54df8436844fb57f761cbe49a3296d.RData
all(a == b)
#> [1] FALSE
One of such is a proper function that capitalizes a string.
x <- "OnE oF sUcH iS a proPer function that capitalizes a string."
proper(x)
#> [1] "One Of Such Is A Proper Function That Capitalizes A String."
my.colors()
and my.symbols()
can be used to improve plot
readability.
xdata <- -10:10
plot(
xdata, 1/10 * xdata * xdata + 1, type="l",
pch = my.symbols(1), col = my.colors(1), cex = .9,
xlab = '', ylab = '', ylim = c(0, 20)
)
grid(NULL, NULL, lwd = 2) # grid only in y-direction
for (ix in 2:22) {
points(
xdata, 1/10 * xdata * xdata + ix, pch = my.symbols(ix),
col = my.colors(ix), cex = .9
)
}