forked from erick093/MPI_Pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
evaluation_pipeline.py
203 lines (157 loc) · 6.42 KB
/
evaluation_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import pandas as pd
import torch
import os
from mpi4py import MPI
import logging
from PIL import Image
import utils
import torch.nn as nn
from torchvision import models, transforms
from models import initialize_model
import numpy as np
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
size = comm.Get_size()
# Creating a logger
def init_logger(log_file: str = 'evaluation.log'):
# Specify the format
formatter = logging.Formatter('%(levelname)s:%(name)s_R{}:%(message)s'.format(rank))
# Create a StreamHandler Instance
stream_handler = logging.StreamHandler()
stream_handler.setLevel(logging.DEBUG)
stream_handler.setFormatter(formatter)
# Create a FileHandler Instance
file_handler = logging.FileHandler(log_file)
file_handler.setFormatter(formatter)
# Create a logging.Logger Instance
logger = logging.getLogger('Herbarium')
logger.setLevel(logging.DEBUG)
logger.addHandler(stream_handler)
logger.addHandler(file_handler)
return logger
LOGGER = init_logger()
def send_to_predictors(message):
"""
Sends an input message to all the predictor nodes.
:param message: input message
"""
for i in range(size - 3):
comm.send(message, dest=i + 3)
def read_images(df):
"""
Read each image from the dataframe column "file_name" and send the vales of the image, the file_name,
the category_id (label) and the node_predictor to node 1.
:param df: input dataframe
"""
directory = utils.TRAIN_DIR
data = list(zip(df["file_name"], df["category_id"], df["node_predictor"]))
for (fname, category_id, node_predictor) in data:
# open each image stated in the dataframe
pil_image = Image.open(os.path.join(directory, fname))
# LOGGER.info("Node 0 sends: {}".format(fname))
# send the image to node 1
comm.send((pil_image, fname, category_id, node_predictor), dest=1)
# send None 4-tuple when all images are already sent to node 1
comm.send((None, None, None, None), dest=1)
def resize_images():
"""
Resize each image to the width and height specified in utils.py.
Each resized image is sent to node 2
"""
while True:
# receive image from node 0
pil_image, filename, category_id, node_predictor = comm.recv(source=0)
# if received image is None, then break (no more images to resize)
if pil_image is None:
break
# resizing the image
resized_image = pil_image.resize((utils.WIDTH, utils.HEIGHT))
# send the resized image to node 2
comm.send((resized_image, filename, category_id, node_predictor), dest=2)
# LOGGER.info("Node 1 resized: {}".format(filename))
# send None 4-tuple when all resized-images are already sent to node 2
comm.send((None, None, None, None), dest=2)
def preprocess_image():
"""
Apply a transformation to each image, this transformation consist in converting the image to a tensor form and
normalizing the image.
"""
while True:
# receive resized-images from node 1
pil_image, filename, category_id, node_predictor = comm.recv(source=1)
# if received image is None, then break (no more images to process)
if pil_image is None:
break
# define the transformation for the images:
# 1. Each image will be transformed to a tensor form
# 2. Each image will be normalized
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406),
(0.229, 0.224, 0.225))])
# apply the defined transformation to the image
normalized_img = transform(pil_image)
# send the image to the corresponding predictor node
comm.send((normalized_img, filename, category_id), dest=node_predictor)
# LOGGER.info("Node 2 preprocessed: {}".format(filename))
# send None 4-tuple when all resized-images are already sent to predictor nodes
send_to_predictors((None, None, None))
def predict(dataset_size):
"""
Predict the labels of a transformed image
:param dataset_size:
"""
# device = 'cpu'
model, input_size = initialize_model(utils.MODEL_NAME, utils.NUM_CLASSES, use_pretrained=False,
feature_extract=False)
# load trained model checkpoint
model.load_state_dict(
torch.load(utils.CHECKPOINT_DIR + "checkpoint_{}.pt".format(utils.MODEL_NAME))[
'state_dict'])
# evaluate the input image
model.eval()
running_corrects = 0
while True:
image, filename, label = comm.recv(source=2)
if image is None:
accuracy = running_corrects / dataset_size
LOGGER.info("Finished node {}, acc {}".format(rank, accuracy))
return accuracy
with torch.no_grad():
output = model(image[None, ...])
_, pred = torch.max(output, 1)
running_corrects += torch.sum(pred == label)
# LOGGER.info("Node {} predicted {} for {} with true label: {}".format(rank, pred, filename, label))
def pipeline():
"""
Creates the evaluation pipeline where:
1. Node 0 reads the test dataframe and sends each image to node 1.
It also randomly labels nodes as predictors (without considering nodes 0, 1 & 2)
2. Node 1 resizes the dataset images and send them to node 1
3. Node 2 normalizes the images and transform them to tensors and send them to node [3,N] where N is number of nodes
4. Nodes 3 to N loads a testing model & checkpoint and predicts the label of each image
"""
acc = 0
if rank == 0:
LOGGER.info('Logger Initialized')
df = pd.read_csv("./data/test_sample.csv")
# assign a predictor node for each image, the nodes are assigned from the uniform distribution of
# numpy rand int
df["node_predictor"] = np.random.randint(low=3, high=size, size=df.shape[0])
# send the total number of samples to each predictor
dataset_size = df.shape[0]
send_to_predictors(dataset_size)
# read the images from the dataframe
read_images(df)
elif rank == 1:
resize_images()
elif rank == 2:
preprocess_image()
else:
dataset_size = comm.recv(source=0)
acc = predict(dataset_size)
sum = comm.reduce(acc, op=MPI.SUM, root=0)
if rank == 0:
LOGGER.info('Accuracy is {}'.format(sum))
if __name__ == '__main__':
pipeline()