-
Notifications
You must be signed in to change notification settings - Fork 192
/
submission_agent.py
701 lines (566 loc) · 31.6 KB
/
submission_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
import os
import json
from copy import deepcopy
import cv2
import carla
from PIL import Image
from collections import deque
import torch
import numpy as np
import math
from leaderboard.autoagents import autonomous_agent
from model import LidarCenterNet
from config import GlobalConfig
from data import lidar_to_histogram_features, draw_target_point, lidar_bev_cam_correspondences
from shapely.geometry import Polygon
import itertools
import pathlib
SAVE_PATH = os.environ.get('SAVE_PATH')
if not SAVE_PATH:
SAVE_PATH = None
else:
pathlib.Path(SAVE_PATH).mkdir(parents=True, exist_ok=True)
def get_entry_point():
return 'HybridAgent'
class HybridAgent(autonomous_agent.AutonomousAgent):
def setup(self, path_to_conf_file, route_index=None):
self.track = autonomous_agent.Track.SENSORS
self.config_path = path_to_conf_file
self.step = -1
self.initialized = False
args_file = open(os.path.join(path_to_conf_file, 'args.txt'), 'r')
self.args = json.load(args_file)
args_file.close()
# setting machine to avoid loading files
self.config = GlobalConfig(setting='eval')
if ('sync_batch_norm' in self.args):
self.config.sync_batch_norm = bool(self.args['sync_batch_norm'])
if ('use_point_pillars' in self.args):
self.config.use_point_pillars = self.args['use_point_pillars']
if ('n_layer' in self.args):
self.config.n_layer = self.args['n_layer']
if ('use_target_point_image' in self.args):
self.config.use_target_point_image = bool(self.args['use_target_point_image'])
if ('use_velocity' in self.args):
use_velocity = bool(self.args['use_velocity'])
else:
use_velocity = True
if ('image_architecture' in self.args):
image_architecture = self.args['image_architecture']
else:
image_architecture = 'resnet34'
if ('lidar_architecture' in self.args):
lidar_architecture = self.args['lidar_architecture']
else:
lidar_architecture = 'resnet18'
if ('backbone' in self.args):
self.backbone = self.args['backbone'] # Options 'geometric_fusion', 'transFuser', 'late_fusion', 'latentTF'
else:
self.backbone = 'transFuser' # Options 'geometric_fusion', 'transFuser', 'late_fusion', 'latentTF'
self.gps_buffer = deque(maxlen=self.config.gps_buffer_max_len) # Stores the last x updated gps signals.
self.ego_model = EgoModel(dt=self.config.carla_frame_rate) # Bicycle model used for de-noising the GPS
self.bb_buffer = deque(maxlen=1)
self.lidar_pos = self.config.lidar_pos # x, y, z coordinates of the LiDAR position.
self.iou_treshold_nms = self.config.iou_treshold_nms # Iou threshold used for Non Maximum suppression on the Bounding Box predictions.
# Load model files
self.nets = []
self.model_count = 0 # Counts how many models are in our ensemble
for file in os.listdir(path_to_conf_file):
if file.endswith(".pth"):
self.model_count += 1
print(os.path.join(path_to_conf_file, file))
net = LidarCenterNet(self.config, 'cuda', self.backbone, image_architecture, lidar_architecture, use_velocity)
if(self.config.sync_batch_norm == True):
net = torch.nn.SyncBatchNorm.convert_sync_batchnorm(net) # Model was trained with Sync. Batch Norm. Need to convert it otherwise parameters will load incorrectly.
state_dict = torch.load(os.path.join(path_to_conf_file, file), map_location='cuda:0')
state_dict = {k[7:]: v for k, v in state_dict.items()} # Removes the .module coming from the Distributed Training. Remove this if you want to evaluate a model trained without DDP.
net.load_state_dict(state_dict, strict=False)
net.cuda()
net.eval()
self.nets.append(net)
self.stuck_detector = 0
self.forced_move = 0
self.use_lidar_safe_check = True
self.aug_degrees = [0] # Test time data augmentation. Unused we only augment by 0 degree.
self.steer_damping = self.config.steer_damping
self.rgb_back = None #For debugging
def _init(self):
self._route_planner = RoutePlanner(self.config.route_planner_min_distance, self.config.route_planner_max_distance)
self._route_planner.set_route(self._global_plan, True)
self.initialized = True
def _get_position(self, tick_data):
gps = tick_data['gps']
gps = (gps - self._route_planner.mean) * self._route_planner.scale
return gps
def sensors(self):
sensors = [
{
'type': 'sensor.camera.rgb',
'x': self.config.camera_pos[0], 'y': self.config.camera_pos[1], 'z':self.config.camera_pos[2],
'roll': self.config.camera_rot_0[0], 'pitch': self.config.camera_rot_0[1], 'yaw': self.config.camera_rot_0[2],
'width': self.config.camera_width, 'height': self.config.camera_height, 'fov': self.config.camera_fov,
'id': 'rgb_front'
},
{
'type': 'sensor.camera.rgb',
'x': self.config.camera_pos[0], 'y': self.config.camera_pos[1], 'z':self.config.camera_pos[2],
'roll': self.config.camera_rot_1[0], 'pitch': self.config.camera_rot_1[1], 'yaw': self.config.camera_rot_1[2],
'width': self.config.camera_width, 'height': self.config.camera_height, 'fov': self.config.camera_fov,
'id': 'rgb_left'
},
{
'type': 'sensor.camera.rgb',
'x': self.config.camera_pos[0], 'y': self.config.camera_pos[1], 'z':self.config.camera_pos[2],
'roll': self.config.camera_rot_2[0], 'pitch': self.config.camera_rot_2[1], 'yaw': self.config.camera_rot_2[2],
'width': self.config.camera_width, 'height': self.config.camera_height, 'fov': self.config.camera_fov,
'id': 'rgb_right'
},
{
'type': 'sensor.other.imu',
'x': 0.0, 'y': 0.0, 'z': 0.0,
'roll': 0.0, 'pitch': 0.0, 'yaw': 0.0,
'sensor_tick': self.config.carla_frame_rate,
'id': 'imu'
},
{
'type': 'sensor.other.gnss',
'x': 0.0, 'y': 0.0, 'z': 0.0,
'roll': 0.0, 'pitch': 0.0, 'yaw': 0.0,
'sensor_tick': 0.01,
'id': 'gps'
},
{
'type': 'sensor.speedometer',
'reading_frequency': self.config.carla_fps,
'id': 'speed'
}
]
if(SAVE_PATH != None): #Debug camera for visualizations
sensors.append({
'type': 'sensor.camera.rgb',
'x': -4.5, 'y': 0.0, 'z':2.3,
'roll': 0.0, 'pitch': -15.0, 'yaw': 0.0,
'width': 960, 'height': 480, 'fov': 100,
'id': 'rgb_back'
})
if (self.backbone != 'latentTF'): # LiDAR method
sensors.append({
'type': 'sensor.lidar.ray_cast',
'x': self.lidar_pos[0], 'y': self.lidar_pos[1], 'z': self.lidar_pos[2],
'roll': self.config.lidar_rot[0], 'pitch': self.config.lidar_rot[1], 'yaw': self.config.lidar_rot[2],
'id': 'lidar'
})
return sensors
def tick(self, input_data):
rgb = []
for pos in ['left', 'front', 'right']:
rgb_cam = 'rgb_' + pos
rgb_pos = cv2.cvtColor(input_data[rgb_cam][1][:, :, :3], cv2.COLOR_BGR2RGB)
rgb_pos = self.scale_crop(Image.fromarray(rgb_pos), self.config.scale, self.config.img_width, self.config.img_width, self.config.img_resolution[0], self.config.img_resolution[0])
rgb.append(rgb_pos)
rgb = np.concatenate(rgb, axis=1)
if(SAVE_PATH != None): #Debug camera for visualizations
# don't need buffer for it always use the latest one
self.rgb_back = input_data["rgb_back"][1][:, :, :3]
gps = input_data['gps'][1][:2]
speed = input_data['speed'][1]['speed']
compass = input_data['imu'][1][-1]
if (np.isnan(compass) == True): # CARLA 0.9.10 occasionally sends NaN values in the compass
compass = 0.0
result = {
'rgb': rgb,
'gps': gps,
'speed': speed,
'compass': compass,
}
if (self.backbone != 'latentTF'):
lidar = input_data['lidar'][1][:, :3]
result['lidar'] = lidar
pos = self._get_position(result)
result['gps'] = pos
self.gps_buffer.append(pos)
denoised_pos = np.average(self.gps_buffer, axis=0)
waypoint_route = self._route_planner.run_step(denoised_pos)
next_wp, next_cmd = waypoint_route[1] if len(waypoint_route) > 1 else waypoint_route[0]
result['next_command'] = next_cmd.value
theta = compass + np.pi/2
R = np.array([
[np.cos(theta), -np.sin(theta)],
[np.sin(theta), np.cos(theta)]
])
local_command_point = np.array([next_wp[0]-denoised_pos[0], next_wp[1]-denoised_pos[1]])
local_command_point = R.T.dot(local_command_point)
result['target_point'] = tuple(local_command_point)
return result
@torch.inference_mode() # Faster version of torch_no_grad
def run_step(self, input_data, timestamp):
self.step += 1
if not self.initialized:
self._init()
control = carla.VehicleControl()
control.steer = 0.0
control.throttle = 0.0
control.brake = 1.0
self.control = control
# Need to run this every step for GPS denoising
tick_data = self.tick(input_data)
# repeat actions twice to ensure LiDAR data availability
if self.step % self.config.action_repeat == 1:
self.update_gps_buffer(self.control, tick_data['compass'], tick_data['speed'])
return self.control
# prepare image input
image = self.prepare_image(tick_data)
num_points = None
if(self.backbone == 'latentTF'): # Image only method
lidar_bev = torch.zeros((1, 2, self.config.lidar_resolution_width, self.config.lidar_resolution_height)).to('cuda', dtype=torch.float32) #Dummy data
else:
# prepare LiDAR input
if (self.config.use_point_pillars == True):
lidar_cloud = deepcopy(input_data['lidar'][1])
lidar_cloud[:, 1] *= -1 # invert
lidar_bev = [torch.tensor(lidar_cloud).to('cuda', dtype=torch.float32)]
num_points = [torch.tensor(len(lidar_cloud)).to('cuda', dtype=torch.int32)]
else:
lidar_bev = self.prepare_lidar(tick_data)
# prepare goal location input
target_point_image, target_point = self.prepare_goal_location(tick_data)
# prepare velocity input
gt_velocity = torch.FloatTensor([tick_data['speed']]).to('cuda', dtype=torch.float32) # used by controller
velocity = gt_velocity.reshape(1, 1) # used by transfuser
# unblock
is_stuck = False
# divide by 2 because we process every second frame
# 1100 = 55 seconds * 20 Frames per second, we move for 1.5 second = 30 frames to unblock
if(self.stuck_detector > self.config.stuck_threshold and self.forced_move < self.config.creep_duration):
print("Detected agent being stuck. Move for frame: ", self.forced_move)
is_stuck = True
self.forced_move += 1
# forward pass
with torch.no_grad():
pred_wps = []
bounding_boxes = []
for i in range(self.model_count):
rotated_bb = []
if (self.backbone == 'transFuser'):
pred_wp, _ = self.nets[i].forward_ego(image, lidar_bev, target_point, target_point_image, velocity,
num_points=num_points, save_path=SAVE_PATH, stuck_detector=self.stuck_detector,
forced_move=is_stuck, debug=self.config.debug, rgb_back=self.rgb_back)
elif (self.backbone == 'late_fusion'):
pred_wp, _ = self.nets[i].forward_ego(image, lidar_bev, target_point, target_point_image, velocity, num_points=num_points)
elif (self.backbone == 'geometric_fusion'):
bev_points = list()
cam_points = list()
curr_bev_points, curr_cam_points = lidar_bev_cam_correspondences(deepcopy(tick_data['lidar']), lidar_bev, image, self.step, False)
bev_points.append(torch.from_numpy(curr_bev_points).unsqueeze(0))
cam_points.append(torch.from_numpy(curr_cam_points).unsqueeze(0))
bev_points = bev_points[0].long().to('cuda', dtype=torch.int64)
cam_points = cam_points[0].long().to('cuda', dtype=torch.int64)
pred_wp, _ = self.nets[i].forward_ego(image, lidar_bev, target_point, target_point_image, velocity, bev_points, cam_points, num_points=num_points)
elif (self.backbone == 'latentTF'):
pred_wp, rotated_bb = self.nets[i].forward_ego(image, lidar_bev, target_point, target_point_image, velocity, num_points=num_points)
else:
raise ("The chosen vision backbone does not exist. The options are: transFuser, late_fusion, geometric_fusion, latentTF")
pred_wps.append(pred_wp)
bounding_boxes.append(rotated_bb)
bbs_vehicle_coordinate_system = self.non_maximum_suppression(bounding_boxes, self.iou_treshold_nms)
self.bb_buffer.append(bbs_vehicle_coordinate_system)
self.pred_wp = torch.stack(pred_wps, dim=0).mean(dim=0) #Average the predictions from the ensembles
# transform to local coordinates
pred_wp_transformed = []
for i, degree in enumerate(self.aug_degrees):
rad = np.deg2rad(degree)
degree_matrix = np.array([[np.cos(rad), np.sin(rad)],
[-np.sin(rad), np.cos(rad)]])
# inverse
degree_matrix = degree_matrix.T
cur_pred_wp = self.pred_wp[i].detach().cpu().numpy()
transformed_wp = (degree_matrix @ cur_pred_wp.T).T
pred_wp_transformed.append(transformed_wp)
self.pred_wp = np.stack(pred_wp_transformed, axis=0)
self.pred_wp = torch.median(torch.from_numpy(self.pred_wp).to('cuda', dtype=torch.float32), dim=0, keepdims=True)[0]
if (self.backbone == 'latentTF'):
safety_box = []
if(self.bb_detected_in_front_of_vehicle(gt_velocity) == True):
safety_box.append(True)
else:
# safety check
safety_box = deepcopy(tick_data['lidar'])
safety_box[:, 1] *= -1 # invert
# z-axis
safety_box = safety_box[safety_box[..., 2] > self.config.safety_box_z_min]
safety_box = safety_box[safety_box[..., 2] < self.config.safety_box_z_max]
# y-axis
safety_box = safety_box[safety_box[..., 1] > self.config.safety_box_y_min]
safety_box = safety_box[safety_box[..., 1] < self.config.safety_box_y_max]
# x-axis
safety_box = safety_box[safety_box[..., 0] > self.config.safety_box_x_min]
safety_box = safety_box[safety_box[..., 0] < self.config.safety_box_x_max]
steer, throttle, brake = self.nets[0].control_pid(self.pred_wp, gt_velocity, is_stuck)
if is_stuck and self.forced_move==1: # no steer for initial frame when unblocking
steer = 0.0
# steer modulation
if brake or is_stuck:
steer *= self.steer_damping
if(gt_velocity < 0.1): # 0.1 is just an arbitrary low number to threshhold when the car is stopped
self.stuck_detector += 1
elif(gt_velocity > 0.1 and is_stuck == False):
self.stuck_detector = 0
self.forced_move = 0
control = carla.VehicleControl()
control.steer = float(steer)
control.throttle = float(throttle)
control.brake = float(brake)
# Safety controller. Stops the car in case something is directly in front of it.
if self.use_lidar_safe_check:
emergency_stop = (len(safety_box) > 0) #Checks if the List is empty
if ((emergency_stop == True) and (is_stuck == True)): # We only use the saftey box when unblocking
print("Detected object directly in front of the vehicle. Stopping. Step:", self.step)
control.steer = float(steer)
control.throttle = float(0.0)
control.brake = float(True)
# Will overwrite the stuck detector. If we are stuck in traffic we do want to wait it out.
self.control = control
self.update_gps_buffer(self.control, tick_data['compass'], tick_data['speed'])
return control
def bb_detected_in_front_of_vehicle(self, ego_speed):
if (len(self.bb_buffer) < 1): # We only start after we have 4 time steps.
return False
collision_predicted = False
# These are the dimensions of the standard ego vehicle
extent_x = self.config.ego_extent_x
extent_y = self.config.ego_extent_y
extent_z = self.config.ego_extent_z
extent = carla.Vector3D(extent_x, extent_y, extent_z)
# Safety box
bremsweg = ((ego_speed.cpu().numpy().item() * 3.6) / 10.0) ** 2 / 2.0 # Bremsweg formula for emergency break
safety_x = np.clip(bremsweg + 1.0, a_min=2.0, a_max=4.0) # plus one meter is the car.
center_safety_box = carla.Location(x=safety_x, y=0.0, z=1.0)
safety_bounding_box = carla.BoundingBox(center_safety_box, extent)
safety_bounding_box.rotation = carla.Rotation(0.0,0.0,0.0)
for bb in self.bb_buffer[-1]:
bb_orientation = self.get_bb_yaw(bb)
bb_extent_x = 0.5 * np.sqrt((bb[3, 0] - bb[0, 0]) ** 2 + (bb[3, 1] - bb[0, 1]) ** 2)
bb_extent_y = 0.5 * np.sqrt((bb[0, 0] - bb[1, 0]) ** 2 + (bb[0, 1] - bb[1, 1]) ** 2)
bb_extent_z = 1.0 # We just give them some arbitrary height. Does not matter
loc_local = carla.Location(bb[4,0], bb[4,1], 0.0)
extent_det = carla.Vector3D(bb_extent_x, bb_extent_y, bb_extent_z)
bb_local = carla.BoundingBox(loc_local, extent_det)
bb_local.rotation = carla.Rotation(0.0, np.rad2deg(bb_orientation).item(), 0.0)
if (self.check_obb_intersection(safety_bounding_box, bb_local) == True):
collision_predicted = True
return collision_predicted
def non_maximum_suppression(self, bounding_boxes, iou_treshhold):
filtered_boxes = []
bounding_boxes = np.array(list(itertools.chain.from_iterable(bounding_boxes)), dtype=np.object)
if(bounding_boxes.size == 0): #If no bounding boxes are detected can't do NMS
return filtered_boxes
confidences_indices = np.argsort(bounding_boxes[:, 2])
while (len(confidences_indices) > 0):
idx = confidences_indices[-1]
current_bb = bounding_boxes[idx, 0]
filtered_boxes.append(current_bb)
confidences_indices = confidences_indices[:-1] #Remove last element from the list
if(len(confidences_indices) == 0):
break
for idx2 in deepcopy(confidences_indices):
if(self.iou_bbs(current_bb, bounding_boxes[idx2, 0]) > iou_treshhold): # Remove BB from list
confidences_indices = confidences_indices[confidences_indices != idx2]
return filtered_boxes
def update_gps_buffer(self, control, theta, speed):
yaw = np.array([(theta - np.pi/2.0)])
speed = np.array([speed])
action = np.array(np.stack([control.steer, control.throttle, control.brake], axis=-1))
#Update gps locations
for i in range(len(self.gps_buffer)):
loc =self.gps_buffer[i]
loc_temp = np.array([loc[1], -loc[0]]) #Bicycle model uses a different coordinate system
next_loc_tmp, _, _ = self.ego_model.forward(loc_temp, yaw, speed, action)
next_loc = np.array([-next_loc_tmp[1], next_loc_tmp[0]])
self.gps_buffer[i] = next_loc
return None
def get_bb_yaw(self, box):
location_2 = box[2]
location_3 = box[3]
location_4 = box[4]
center_top = (0.5 * (location_3 - location_2)) + location_2
vector_top = center_top - location_4
rotation_yaw = np.arctan2(vector_top[1], vector_top[0])
return rotation_yaw
def prepare_image(self, tick_data):
image = Image.fromarray(tick_data['rgb'])
image_degrees = []
for degree in self.aug_degrees:
crop_shift = degree / 60 * self.config.img_width
rgb = torch.from_numpy(self.shift_x_scale_crop(image, scale=self.config.scale, crop=self.config.img_resolution, crop_shift=crop_shift)).unsqueeze(0)
image_degrees.append(rgb.to('cuda', dtype=torch.float32))
image = torch.cat(image_degrees, dim=0)
return image
def iou_bbs(self, bb1, bb2):
a = Polygon([(bb1[0,0], bb1[0,1]), (bb1[1,0], bb1[1,1]), (bb1[2,0], bb1[2,1]), (bb1[3,0], bb1[3,1])])
b = Polygon([(bb2[0,0], bb2[0,1]), (bb2[1,0], bb2[1,1]), (bb2[2,0], bb2[2,1]), (bb2[3,0], bb2[3,1])])
intersection_area = a.intersection(b).area
union_area = a.union(b).area
iou = intersection_area / union_area
return iou
def dot_product(self, vector1, vector2):
return (vector1.x * vector2.x + vector1.y * vector2.y + vector1.z * vector2.z)
def cross_product(self, vector1, vector2):
return carla.Vector3D(x=vector1.y * vector2.z - vector1.z * vector2.y, y=vector1.z * vector2.x - vector1.x * vector2.z, z=vector1.x * vector2.y - vector1.y * vector2.x)
def get_separating_plane(self, rPos, plane, obb1, obb2):
''' Checks if there is a seperating plane
rPos Vec3
plane Vec3
obb1 Bounding Box
obb2 Bounding Box
'''
return (abs(self.dot_product(rPos, plane)) > (abs(self.dot_product((obb1.rotation.get_forward_vector() * obb1.extent.x), plane)) +
abs(self.dot_product((obb1.rotation.get_right_vector() * obb1.extent.y), plane)) +
abs(self.dot_product((obb1.rotation.get_up_vector() * obb1.extent.z), plane)) +
abs(self.dot_product((obb2.rotation.get_forward_vector() * obb2.extent.x), plane)) +
abs(self.dot_product((obb2.rotation.get_right_vector() * obb2.extent.y), plane)) +
abs(self.dot_product((obb2.rotation.get_up_vector() * obb2.extent.z), plane)))
)
def check_obb_intersection(self, obb1, obb2):
RPos = obb2.location - obb1.location
return not(self.get_separating_plane(RPos, obb1.rotation.get_forward_vector(), obb1, obb2) or
self.get_separating_plane(RPos, obb1.rotation.get_right_vector(), obb1, obb2) or
self.get_separating_plane(RPos, obb1.rotation.get_up_vector(), obb1, obb2) or
self.get_separating_plane(RPos, obb2.rotation.get_forward_vector(), obb1, obb2) or
self.get_separating_plane(RPos, obb2.rotation.get_right_vector(), obb1, obb2) or
self.get_separating_plane(RPos, obb2.rotation.get_up_vector(), obb1, obb2) or
self.get_separating_plane(RPos, self.cross_product(obb1.rotation.get_forward_vector(), obb2.rotation.get_forward_vector()), obb1, obb2) or
self.get_separating_plane(RPos, self.cross_product(obb1.rotation.get_forward_vector(), obb2.rotation.get_right_vector()), obb1, obb2) or
self.get_separating_plane(RPos, self.cross_product(obb1.rotation.get_forward_vector(), obb2.rotation.get_up_vector()), obb1, obb2) or
self.get_separating_plane(RPos, self.cross_product(obb1.rotation.get_right_vector() , obb2.rotation.get_forward_vector()), obb1, obb2) or
self.get_separating_plane(RPos, self.cross_product(obb1.rotation.get_right_vector() , obb2.rotation.get_right_vector()), obb1, obb2) or
self.get_separating_plane(RPos, self.cross_product(obb1.rotation.get_right_vector() , obb2.rotation.get_up_vector()), obb1, obb2) or
self.get_separating_plane(RPos, self.cross_product(obb1.rotation.get_up_vector() , obb2.rotation.get_forward_vector()), obb1, obb2) or
self.get_separating_plane(RPos, self.cross_product(obb1.rotation.get_up_vector() , obb2.rotation.get_right_vector()), obb1, obb2) or
self.get_separating_plane(RPos, self.cross_product(obb1.rotation.get_up_vector() , obb2.rotation.get_up_vector()), obb1, obb2))
def prepare_lidar(self, tick_data):
lidar_transformed = deepcopy(tick_data['lidar'])
lidar_transformed[:, 1] *= -1 # invert
lidar_transformed = torch.from_numpy(lidar_to_histogram_features(lidar_transformed)).unsqueeze(0)
lidar_transformed_degrees = [lidar_transformed.to('cuda', dtype=torch.float32)]
lidar_bev = torch.cat(lidar_transformed_degrees[::-1], dim=1)
return lidar_bev
def prepare_goal_location(self, tick_data):
tick_data['target_point'] = [torch.FloatTensor([tick_data['target_point'][0]]),
torch.FloatTensor([tick_data['target_point'][1]])]
target_point = torch.stack(tick_data['target_point'], dim=1).to('cuda', dtype=torch.float32)
target_point_image_degrees = []
target_point_degrees = []
for degree in self.aug_degrees:
rad = np.deg2rad(degree)
degree_matrix = np.array([[np.cos(rad), np.sin(rad)],
[-np.sin(rad), np.cos(rad)]])
current_target_point = (degree_matrix @ target_point[0].cpu().numpy().reshape(2, 1)).T
target_point_image = draw_target_point(current_target_point[0])
target_point_image = torch.from_numpy(target_point_image)[None].to('cuda', dtype=torch.float32)
target_point_image_degrees.append(target_point_image)
target_point_degrees.append(torch.from_numpy(current_target_point))
target_point_image = torch.cat(target_point_image_degrees, dim=0)
target_point = torch.cat(target_point_degrees, dim=0).to('cuda', dtype=torch.float32)
return target_point_image, target_point
def scale_crop(self, image, scale=1, start_x=0, crop_x=None, start_y=0, crop_y=None):
(width, height) = (image.width // scale, image.height // scale)
if scale != 1:
image = image.resize((width, height))
if crop_x is None:
crop_x = width
if crop_y is None:
crop_y = height
image = np.asarray(image)
cropped_image = image[start_y:start_y+crop_y, start_x:start_x+crop_x]
return cropped_image
def shift_x_scale_crop(self, image, scale, crop, crop_shift=0):
crop_h, crop_w = crop
(width, height) = (int(image.width // scale), int(image.height // scale))
im_resized = image.resize((width, height))
image = np.array(im_resized)
start_y = height//2 - crop_h//2
start_x = width//2 - crop_w//2
# only shift in x direction
start_x += int(crop_shift // scale)
cropped_image = image[start_y:start_y+crop_h, start_x:start_x+crop_w]
cropped_image = np.transpose(cropped_image, (2,0,1))
return cropped_image
def destroy(self):
del self.nets
# Taken from LBC
class RoutePlanner(object):
def __init__(self, min_distance, max_distance):
self.saved_route = deque()
self.route = deque()
self.min_distance = min_distance
self.max_distance = max_distance
self.is_last = False
self.mean = np.array([0.0, 0.0]) # for carla 9.10
self.scale = np.array([111324.60662786, 111319.490945]) # for carla 9.10
def set_route(self, global_plan, gps=False):
self.route.clear()
for pos, cmd in global_plan:
if gps:
pos = np.array([pos['lat'], pos['lon']])
pos -= self.mean
pos *= self.scale
else:
pos = np.array([pos.location.x, pos.location.y])
pos -= self.mean
self.route.append((pos, cmd))
def run_step(self, gps):
if len(self.route) <= 2:
self.is_last = True
return self.route
to_pop = 0
farthest_in_range = -np.inf
cumulative_distance = 0.0
for i in range(1, len(self.route)):
if cumulative_distance > self.max_distance:
break
cumulative_distance += np.linalg.norm(self.route[i][0] - self.route[i-1][0])
distance = np.linalg.norm(self.route[i][0] - gps)
if distance <= self.min_distance and distance > farthest_in_range:
farthest_in_range = distance
to_pop = i
for _ in range(to_pop):
if len(self.route) > 2:
self.route.popleft()
return self.route
def save(self):
self.saved_route = deepcopy(self.route)
def load(self):
self.route = self.saved_route
self.is_last = False
# Taken from World on Rails
class EgoModel():
def __init__(self, dt=1./4):
self.dt = dt
# Kinematic bicycle model. Numbers are the tuned parameters from World on Rails
self.front_wb = -0.090769015
self.rear_wb = 1.4178275
self.steer_gain = 0.36848336
self.brake_accel = -4.952399
self.throt_accel = 0.5633837
def forward(self, locs, yaws, spds, acts):
# Kinematic bicycle model. Numbers are the tuned parameters from World on Rails
steer = acts[..., 0:1].item()
throt = acts[..., 1:2].item()
brake = acts[..., 2:3].astype(np.uint8)
if (brake):
accel = self.brake_accel
else:
accel = self.throt_accel * throt
wheel = self.steer_gain * steer
beta = math.atan(self.rear_wb / (self.front_wb + self.rear_wb) * math.tan(wheel))
yaws = yaws.item()
spds = spds.item()
next_locs_0 = locs[0].item() + spds * math.cos(yaws + beta) * self.dt
next_locs_1 = locs[1].item() + spds * math.sin(yaws + beta) * self.dt
next_yaws = yaws + spds / self.rear_wb * math.sin(beta) * self.dt
next_spds = spds + accel * self.dt
next_spds = next_spds * (next_spds > 0.0) # Fast ReLU
next_locs = np.array([next_locs_0, next_locs_1])
next_yaws = np.array(next_yaws)
next_spds = np.array(next_spds)
return next_locs, next_yaws, next_spds