├── Makefile <- Installation of dependencies
├── data <- Contains training data
│ ├── interim <- Intermediate data
│ ├── processed <- Processed data ready for training
│ ├── raw <- Raw data, directly downloaded from the source
│ └── README.md <- Description of data
├── models
│ └── trained_models <- Trained models
├── notebooks <- Jupyter notebooks that explore data and plot results
├── README.md <- This file
├── results <- Saved results
└── src <- Source code
├── data
│ ├── create_binary_bins.py <- Synthesize bin-level (aggregate) labels from task-specific binary labels
│ ├── create_BPNet_profile_hdf5.py <- Create profile labels from profile tracks
│ ├── create_ENCODE_DNase_profile_hdf5.py <- Create profile labels from profile tracks
│ ├── create_ENCODE_TFChIP_profile_hdf5.py <- Create profile labels from profile tracks
│ ├── download_ENCODE_DNase_data.py <- Download DNase-seq peaks/BAMs from ENCODE portal
│ ├── download_ENCODE_TFChIP_cellline_peaks.py <- Download specific TF's and cell line's TF ChIP-seq peaks/BAMs from ENCODE portal
│ ├── download_ENCODE_TFChIP_data.py <- Download specific TF's TF ChIP-seq peaks/BAMs from ENCODE portal
│ ├── generate_BPNet_binary_labels.sh <- Generate binary labels for Nanog/Oct4/Sox2 models from peaks
│ ├── generate_ENCODE_DNase_binary_labels.sh <- Generate binary labels for DNAse-seq models from peaks
│ ├── generate_ENCODE_DNase_profile_labels.sh <- Generate profile tracks for DNase-seq models from read tracks
│ ├── generate_ENCODE_TFChIP_binary_labels.sh <- Generate binary labels for TF ChIP-seq models from peaks
│ └── generate_ENCODE_TFChIP_profile_labels.sh <- Generate profile tracks for TF ChIP-seqmodels form read tracks
├── extract
│ ├── cluster_gradients.py <- Helper functions for clustering similar importance score tracks
│ ├── compute_ism.py <- Compute _in silico_ mutagenesis scores
│ ├── compute_predictions.py <- Compute model predictions and gradients from a trained model
│ ├── compute_shap.py <- Compute DeepSHAP importance scores from a trained model
│ ├── data_loading.py <- Data loading utilities to easily get model input data for a coordinate/bin
│ ├── extract_bed_interval.sh <- Extract a set of BED intervals overlapping a range
│ ├── __init__.py
│ ├── make_shap_scores.py <- Generate DeepSHAP scores over all positive examples
│ └── run_tfmodisco.py <- Run TF-MoDISco on DeepSHAP scores to discover motifs
├── feature
│ ├── __init__.py
│ ├── make_binary_dataset.py <- Data loading for binary models
│ ├── make_profile_dataset.py <- Data loading for profile models
│ └── util.py <- Shared data loading utilities
├── model
│ ├── binary_models.py <- Binary model architecture(s)
│ ├── binary_performance.py <- Binary model performance metrics
│ ├── binary_performance_test.py <- Tests for binary model performance metric code correctness
│ ├── hyperparam.py <- Wrapper for hyperparameter tuning
│ ├── __init__.py
│ ├── profile_models.py <- Profile model architecture(s)
│ ├── profile_performance.py <- Profile model performance metrics
│ ├── profile_performance_test.py <- Tests for profile model performance metric code correctness
│ ├── train_binary_model.py <- Training binary models
│ ├── train_profile_model.py <- Training profile models
│ └── util.py <- Shared training/model utilities
├── motif
│ ├── generate_simulated_fasta.py <- Generate a set of synthetic sequences, with embedded motifs
│ ├── homer2meme.py <- Convert a HOMER motif file to a MEME motif file
│ └── run_homer.sh <- Run HOMER 2
└── plot
├── __init__.py
└── viz_sequence.py <- Plot an importance score track
forked from amtseng/fourier_attribution_priors
-
Notifications
You must be signed in to change notification settings - Fork 0
austintwang/att_priors
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
About
Attribution priors for TF binding
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published
Languages
- Jupyter Notebook 72.2%
- Python 26.9%
- Other 0.9%