From 069237b6127098a9d5878af891933babc17b249f Mon Sep 17 00:00:00 2001 From: aucker Date: Mon, 17 Jun 2024 18:40:59 +0800 Subject: [PATCH] June17: DFS, BFS, Iter, Recursive, Graph, Tree, UnionFind [M] validTree can use multiple slns, like Tree with iteration BFS/DFS, and Recursive BFS/DFS w/ time complexity of O(E+N) and Space complexity of O(E+N) But with Graph Theory, the time and space complexity will be O(N) Union Find will grant a better solution, with Time of O(N* a(N)) & Space of O(N) --- daily/June17.cpp | 342 +++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 342 insertions(+) create mode 100644 daily/June17.cpp diff --git a/daily/June17.cpp b/daily/June17.cpp new file mode 100644 index 0000000..106e0ac --- /dev/null +++ b/daily/June17.cpp @@ -0,0 +1,342 @@ +#include +using namespace std; + +class Solution { + public: + /** + * @brief LC: 261: Graph Valid Tree [M] + * Sln1: Iterative DFS: Time: O(N+E) + * + * @param n + * @param edges + * @return true + * @return false + */ + bool validTreeIterativeDFS(int n, vector>& edges) { + if (edges.size() != n - 1) { + return false; + } + + vector> adj_list(n); + for (const auto& edge : edges) { + adj_list[edge[0]].push_back(edge[1]); + adj_list[edge[1]].push_back(edge[0]); + } + + unordered_map parent; + parent[0] = -1; + stack stk; + stk.push(0); + while (!stk.empty()) { + int node = stk.top(); + stk.pop(); + for (int neighbour : adj_list[node]) { + if (neighbour == parent[node]) { + continue; + } + if (parent.find(neighbour) != parent.end()) { + // exist before, indegree gt 1 + return false; + } + parent[neighbour] = node; + stk.push(neighbour); + } + } + return parent.size() == n; + } + + bool validTreeRecursiveDFS(int n, vector>& edges) { + if (edges.size() != n - 1) { + return false; + } + vector> adj_list(n); + for (const auto& edge : edges) { + adj_list[edge[0]].push_back(edge[1]); + adj_list[edge[1]].push_back(edge[0]); + } + unordered_set seen; + + function>&, unordered_set&)> + dfs = [&](int node, int parent, const vector>& adj_list, + unordered_set& seen) -> bool { + if (seen.count(node)) { + // indegree gt 1 + return false; + } + seen.insert(node); + for (int neighbour : adj_list[node]) { + if (neighbour == parent) { + continue; + } + if (seen.count(neighbour)) { + return false; + } + if (!dfs(neighbour, node, adj_list, seen)) { + return false; + } + } + return true; + }; + + return dfs(0, -1, adj_list, seen) && seen.size() == n; + } + + bool validTreeIterBFS(int n, vector>& edges) { + if (edges.size() != n - 1) return false; + + vector> adj_list(n); + for (const auto& edge : edges) { + adj_list[edge[0]].push_back(edge[1]); + adj_list[edge[1]].push_back(edge[0]); + } + + unordered_map parent; + parent[0] = -1; + queue q; + q.push(0); + + while (!q.empty()) { + int node = q.front(); + q.pop(); + for (int neighbour : adj_list[node]) { + if (neighbour == parent[node]) continue; + if (parent.find(neighbour) != parent.end()) return false; + parent[neighbour] = node; + q.push(neighbour); + } + } + return parent.size() == n; + } + + bool validTreeGraphIterDFS(int n, vector>& edges) { + if (edges.size() != n - 1) return false; + + vector> adj_list(n); + for (const auto& edge : edges) { + adj_list[edge[0]].push_back(edge[1]); + adj_list[edge[1]].push_back(edge[0]); + } + + unordered_set seen = {0}; + stack stk; + stk.push(0); + while (!stk.empty()) { + int node = stk.top(); + stk.pop(); + for (int neighbour : adj_list[node]) { + if (seen.count(neighbour)) continue; + seen.insert(neighbour); + stk.push(neighbour); + } + } + return seen.size() == n; + } + + bool validTreeGraphRecurDFS(int n, vector>& edges) { + if (edges.size() != n - 1) return false; + + vector> adj_list(n); + for (const auto& edge : edges) { + adj_list[edge[0]].push_back(edge[1]); + adj_list[edge[1]].push_back(edge[0]); + } + + function>&, unordered_set&)> dfs = + [&](int node, const vector>& adj_list, + unordered_set& seen) { + if (seen.count(node)) return; + seen.insert(node); + for (int neighbour : adj_list[node]) { + dfs(neighbour, adj_list, seen); + } + }; + + unordered_set seen; + dfs(0, adj_list, seen); + return seen.size() == n; + } + + // void dfs(int node, const vector>& adj_list, unordered_set& + // seen) { + // if (seen.count(node)) return; + // seen.insert(node); + // for (int neighbour : adj_list[node]) { + // dfs(neighbour, adj_list, seen); + // } + // } + + bool validTreeGraphIterBFS(int n, vector>& edges) { + if (edges.size() != n - 1) return false; + + vector> adj_list(n); + for (const auto& edge : edges) { + adj_list[edge[0]].push_back(edge[1]); + adj_list[edge[1]].push_back(edge[0]); + } + unordered_set seen = {0}; + queue q; + q.push(0); + + while (!q.empty()) { + int node = q.front(); + q.pop(); + for (int neighbour : adj_list[node]) { + if (seen.count(neighbour)) continue; + seen.insert(neighbour); + q.push(neighbour); + } + } + + return seen.size() == n; + } + + /** + * @brief LC: 522: Longest Uncommon Subsequence II + * Time: O(N^2 * m), N: strs.size(), m: strs[i].size() + * Space: O(1) + * + * @param strs + * @return int + */ + int findLUSlength(vector& strs) { + auto is_subseq = [](const string& lhs, const string& rhs) -> bool { + int pt_lhs = 0, pt_rhs = 0; + while (pt_lhs < lhs.size() && pt_rhs < rhs.size()) { + if (lhs[pt_lhs] == rhs[pt_rhs]) { + ++pt_lhs; + } + ++pt_rhs; + } + return pt_lhs == lhs.size(); + }; + + function is_subseqq = + [&](const string& lhs, const string& rhs) { + int pt_lhs = 0, pt_rhs = 0; + while (pt_lhs < lhs.size() && pt_rhs < rhs.size()) { + if (lhs[pt_lhs] == rhs[pt_rhs]) { + ++pt_lhs; + } + ++pt_rhs; + } + return pt_lhs == lhs.size(); + }; + + int len = strs.size(); + int ans = -1; + for (int i = 0; i < len; i++) { + bool check = true; + for (int j = 0; j < len; j++) { + if (i != j && is_subseqq(strs[i], strs[j])) { + check = false; + break; + } + } + if (check) { + ans = max(ans, static_cast(strs[i].size())); + } + } + return ans; + } +}; + +class UnionFind { + public: + UnionFind(int n) { + parent.resize(n); + for (int i = 0; i < n; i++) { + parent[i] = i; + } + } + + int find(int A) { + while (A != parent[A]) { + A = parent[A]; + } + return A; + } + + bool unionSets(int A, int B) { + int root_A = find(A); + int root_B = find(B); + if (root_A == root_B) { + return false; + } + parent[root_A] = root_B; + return true; + } + + private: + vector parent; +}; + +class UnionFindOP { + private: + vector parent; + vector size; + + public: + UnionFindOP(int n) : parent(n), size(n, 1) { + for (int i = 0; i < n; i++) { + parent[i] = i; + } + } + + int find(int A) { + int root = A; + while (root != parent[root]) { + root = parent[root]; + } + while (A != root) { + int oldRoot = parent[A]; + parent[A] = root; + A = oldRoot; + } + return root; + } + + bool unionSets(int A, int B) { + int rootA = find(A); + int rootB = find(B); + if (rootA == rootB) return false; + + if (size[rootA] < size[rootB]) { + parent[rootA] = rootB; + size[rootB] += size[rootA]; + } else { + parent[rootB] = rootA; + size[rootA] += size[rootB]; + } + return true; + } +}; + +class ValidTree { + public: + bool validTreeUF(int n, vector>& edges) { + if (edges.size() != n - 1) { + return false; + } + UnionFind unionFind(n); + for (const auto& edge : edges) { + if (!unionFind.unionSets(edge[0], edge[1])) { + return false; + } + } + return true; + } + + bool validTreeUFOP(int n, vector>& edges) { + if (edges.size() != n - 1) { + return false; + } + + UnionFindOP unionFindOP(n); + for (const auto& edge : edges) { + if (!unionFindOP.unionSets(edge[0], edge[1])) { + return false; + } + } + return true; + } +};