-
Notifications
You must be signed in to change notification settings - Fork 3
/
sae.c
89 lines (86 loc) · 3.1 KB
/
sae.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <float.h>
#include <stdio.h>
#include <math.h>
#include "sann_priv.h"
void sae_core_forward(int n_in, int n_hidden, const float *t, sann_activate_f f1, sann_activate_f f2, float r, const float *x, float *z, float *y, float *deriv1, int scaled)
{
int j, k;
float tmp, a01 = 1., a12 = 1.;
const float *b1, *b2, *w10;
if (scaled == SAE_SC_SQRT) a01 = 1. / sqrt(n_in), a12 = 1. / sqrt(n_hidden);
else if (scaled == SAE_SC_FULL) a01 = 1. / n_in, a12 = 1. / n_hidden;
a01 *= 1.0f / (1.0f - r);
sae_par2ptr(n_in, n_hidden, t, &b1, &b2, &w10);
memcpy(y, b2, n_in * sizeof(float));
for (j = 0; j < n_hidden; ++j) {
const float *w10j = w10 + j * n_in;
tmp = a01 * sann_sdot(n_in, x, w10j) + b1[j];
z[j] = f1(tmp, &deriv1[j]);
sann_saxpy(n_in, a12 * z[j], w10j, y);
}
for (k = 0; k < n_in; ++k)
y[k] = f2(y[k], &tmp);
}
// buf[] is at least 3*n_in+2*n_hidden in length
void sae_core_backprop(int n_in, int n_hidden, const float *t, sann_activate_f f1, sann_activate_f f2, float r, const float *x, float *d, float *buf, int scaled)
{
int i, j, k;
float *db1, *db2, *dw10, *out0, *out1, *out2, *delta1, *delta2, a01 = 1., a12 = 1.;
const float *b1, *b2, *w10;
if (scaled == SAE_SC_SQRT) a01 = 1. / sqrt(n_in), a12 = 1. / sqrt(n_hidden);
else if (scaled == SAE_SC_FULL) a01 = 1. / n_in, a12 = 1. / n_hidden;
a01 *= 1.0f / (1.0f - r);
// set pointers
out0 = buf, out1 = out0 + n_in, out2 = out1 + n_hidden;
delta1 = out2 + n_in, delta2 = delta1 + n_hidden;
sae_par2ptr(n_in, n_hidden, t, &b1, &b2, &w10);
sae_par2ptr(n_in, n_hidden, d, &db1, &db2, &dw10);
// add noises to the input
if (r > 0. && r < 1.) {
for (i = 0; i < n_in; ++i)
out0[i] = sann_drand() < r? 0. : x[i];
} else memcpy(out0, x, n_in * sizeof(float));
// forward calculation
sae_core_forward(n_in, n_hidden, t, f1, f2, r, out0, out1, out2, delta1, scaled);
// backward calculation
for (k = 0; k < n_in; ++k) // delta at the output layer
delta2[k] = out2[k] - x[k]; // use x, not out0
for (j = 0; j < n_hidden; ++j) { // delta at the hidden layer
const float *w10j = w10 + j * n_in;
delta1[j] *= a12 * sann_sdot(n_in, w10j, delta2); // now, delta1 is set
}
// update differences
sann_saxpy(n_in, 1., delta2, db2);
sann_saxpy(n_hidden, 1., delta1, db1);
for (j = 0; j < n_hidden; ++j) {
float *dw10j = dw10 + j * n_in;
sann_saxpy(n_in, a12 * out1[j], delta2, dw10j);
sann_saxpy(n_in, a01 * delta1[j], out0, dw10j);
}
}
void sae_core_randpar(int n_in, int n_hidden, float *t, int scaled)
{
float *b1, *b2, *w10;
int i, iset = 0;
double gset;
sae_par2ptr(n_in, n_hidden, t, &b1, &b2, &w10);
if (scaled != SAE_SC_NONE) {
memset(b1, 0, n_hidden * sizeof(float));
memset(b2, 0, n_in * sizeof(float));
for (i = 0; i < n_in * n_hidden; ++i)
w10[i] = sann_normal(&iset, &gset);
} else {
int n_par = sae_n_par(n_in, n_hidden);
for (i = 0; i < n_hidden; ++i)
b1[i] = n_hidden + 1.;
for (i = 0; i < n_in; ++i)
b2[i] = n_in + 1.;
for (i = 0; i < n_in * n_hidden; ++i)
w10[i] = n_in + 1.;
for (i = 0; i < n_par; ++i)
t[i] = sann_normal(&iset, &gset) / sqrt(t[i]);
}
}