-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgpt_game_of_life.py
132 lines (99 loc) · 3.93 KB
/
gpt_game_of_life.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import numpy as np
import openai
from tqdm import tqdm
import os
import time
def update(board):
"""Update the board based on Conway's Game of Life rules."""
new_board = board.copy()
rows, cols = board.shape
for x in range(rows):
for y in range(cols):
# Count the 8 neighbors
neighbors = (
np.sum(
board[
max(x - 1, 0) : min(x + 2, rows),
max(y - 1, 0) : min(y + 2, cols),
]
)
- board[x, y]
)
# Apply the rules of Conway's Game of Life
if board[x, y] and not 2 <= neighbors <= 3:
new_board[x, y] = 0
elif not board[x, y] and neighbors == 3:
new_board[x, y] = 1
return new_board
def render_board(board, display=False):
"""Turn the board into a string."""
rows, cols = board.shape
board_str = "\n".join(
"".join("1" if board[x, y] else "0" for y in range(cols)) for x in range(rows)
)
if display:
os.system("clear")
print(board_str)
time.sleep(0.1)
return board_str
def predict_board(board, height, width, model="gpt-4"):
board_str = render_board(board)
board_tokens = "\n".join([" " + " ".join(line) for line in board_str.splitlines()])
messages = [
{
"role": "system",
"content": f"You are simulating conway's game of life. You are given the board state. Live cells are represented by ' 1' and dead cells are represented by ' 0'. You will be shown a board state and you must predict the next board state. Assume all cells outside the board are dead."
f"IMPORTANT: Only output the next board state, in the given representation. Only output the state of the cells in the initial board with width {width} and height {height}, not any other cells. Do not output anything else.",
},
{"role": "user", "content": board_tokens},
]
response = openai.ChatCompletion.create(
model=model,
messages=messages,
temperature=0.0,
)
# Transform the response into a board
predicted_str = response.choices[0].message.content
# Strip the space characters
predicted_str = predicted_str.replace(" ", "")
# Throws ValueError if the response is not a valid board
predicted_board = np.array(
[[int(c) for c in line] for line in predicted_str.split("\n")]
)
if predicted_board.shape != (height, width):
raise ValueError("Wrong shape")
return predicted_board
def main():
n_trials = 1000
height, width = 10, 10
n_different = 0
n_total = 0
n_invalid = 0
# Open and append to the files
generated_file = open("generated.txt", "a")
simulated_file = open("simulated.txt", "a")
predicted_file = open("predicted.txt", "a")
for trial in tqdm(range(n_trials)):
# Generate a random board
board = np.random.choice([0, 1], size=(height, width))
# Write the board to the file
generated_file.write(f"{render_board(board)}\n\n")
# Run the game of life for one step
simulated_board = update(board)
simulated_file.write(f"{render_board(simulated_board)}\n\n")
# Use the model to predict the board for one step
try:
predicted_board = predict_board(board=board, width=width, height=height)
except ValueError:
# Skip invalid boards
n_invalid += 1
predicted_file.write(f"Invalid board\n\n")
continue
predicted_file.write(f"{render_board(predicted_board)}\n\n")
# Compute the number of cells that are different
n_different += np.sum(np.abs(simulated_board - predicted_board))
n_total += height * width
print(f"Accuracy: {1 - n_different / n_total}")
print(f"Invalid boards: {n_invalid / n_trials}")
if __name__ == "__main__":
main()