diff --git a/docs/alma/alma.rst b/docs/alma/alma.rst index 64b2095b0e..ab6b581a13 100644 --- a/docs/alma/alma.rst +++ b/docs/alma/alma.rst @@ -401,12 +401,6 @@ kind of S/N to expect: >>> filelist = Alma.download_files(readmes) # doctest: +IGNORE_OUTPUT -Further Examples -================ -There are some nice examples of using the ALMA query tool in conjunction with other astroquery -tools in :doc:`../gallery`, especially :ref:`gallery-almaskyview`. - - Reference/API ============= diff --git a/docs/gallery-examples/example10_mast.py b/docs/gallery-examples/example10_mast.py deleted file mode 100644 index 04458c306a..0000000000 --- a/docs/gallery-examples/example10_mast.py +++ /dev/null @@ -1,42 +0,0 @@ -""" -Example 10 -++++++++++ -Retrieve Hubble archival data of M83 and make a figure -""" - -from astropy.io import fits -from astropy.visualization import make_lupton_rgb, ImageNormalize -import matplotlib.pyplot as plt -import reproject - -from astroquery.mast import Observations - -result = Observations.query_object('M83') -selected_bands = result[(result['obs_collection'] == 'HST') & - (result['instrument_name'] == 'WFC3/UVIS') & - ((result['filters'] == 'F657N') | - (result['filters'] == 'F487N') | - (result['filters'] == 'F336W')) & - (result['target_name'] == 'MESSIER-083')] -prodlist = Observations.get_product_list(selected_bands) -filtered_prodlist = Observations.filter_products(prodlist) - -downloaded = Observations.download_products(filtered_prodlist) - -blue = fits.open(downloaded['Local Path'][2]) -red = fits.open(downloaded['Local Path'][5]) -green = fits.open(downloaded['Local Path'][8]) - -target_header = red['SCI'].header -green_repr, _ = reproject.reproject_interp(green['SCI'], target_header) -blue_repr, _ = reproject.reproject_interp(blue['SCI'], target_header) - - -rgb_img = make_lupton_rgb(ImageNormalize(vmin=0, vmax=1)(red['SCI'].data), - ImageNormalize(vmin=0, vmax=0.3)(green_repr), - ImageNormalize(vmin=0, vmax=1)(blue_repr), - stretch=0.1, - minimum=0, - ) - -plt.imshow(rgb_img, origin='lower', interpolation='none') diff --git a/docs/gallery-examples/example1_vizier.py b/docs/gallery-examples/example1_vizier.py deleted file mode 100644 index 5e027dd163..0000000000 --- a/docs/gallery-examples/example1_vizier.py +++ /dev/null @@ -1,21 +0,0 @@ -from astroquery.vizier import Vizier -from astropy import coordinates -from astropy import units as u - -v = Vizier(keywords=['stars:white_dwarf']) - -c = coordinates.SkyCoord(0, 0, unit=('deg', 'deg'), frame='icrs') -result = v.query_region(c, radius=2*u.deg) - -print(len(result)) -# 44 - -result[0].pprint() -""" - LP Rem Name RA1950 DE1950 Rmag l_Pmag Pmag u_Pmag spClass pm pmPA _RA.icrs _DE.icrs - "h:m:s" "d:m:s" mag mag arcs / yr deg "d:m:s" --------- --- ---- -------- -------- ---- ------ ---- ------ ------- --------- ---- ---------- --------- -584-0063 00 03 23 +00 01.8 18.1 18.3 f 0.219 93 00 05 56.8 +00 18 41 -643-0083 23 50 40 +00 33.4 15.9 17.0 k 0.197 93 23 53 13.7 +00 50 15 -584-0030 23 54 05 -01 32.3 16.6 17.7 k 0.199 193 23 56 38.8 -01 15 26 -""" diff --git a/docs/gallery-examples/example2_simbad.py b/docs/gallery-examples/example2_simbad.py deleted file mode 100644 index 3f47a7d601..0000000000 --- a/docs/gallery-examples/example2_simbad.py +++ /dev/null @@ -1,14 +0,0 @@ -from astroquery.simbad import Simbad - -s = Simbad() -# bibcodelist(date1-date2) lists the number of bibliography -# items referring to each object over that date range -s.add_votable_fields('bibcodelist(2003-2013)') -r = s.query_object('m31') -r.pprint() - -""" -MAIN_ID RA DEC RA_PREC DEC_PREC COO_ERR_MAJA COO_ERR_MINA COO_ERR_ANGLE COO_QUAL COO_WAVELENGTH COO_BIBCODE BIBLIST_2003_2013 -------- ------------ ------------ ------- -------- ------------ ------------ ------------- -------- -------------- ------------------- ----------------- - M 31 00 42 44.330 +41 16 07.50 7 7 nan nan 0 B I 2006AJ....131.1163S 3758 -""" diff --git a/docs/gallery-examples/example3_simbad.py b/docs/gallery-examples/example3_simbad.py deleted file mode 100644 index 1285b484b0..0000000000 --- a/docs/gallery-examples/example3_simbad.py +++ /dev/null @@ -1,12 +0,0 @@ -from astroquery.simbad import Simbad - -customSimbad = Simbad() -customSimbad.add_votable_fields('sptype') - -result = customSimbad.query_object('g her') - -result['MAIN_ID'][0] -# 'V* g Her' - -result['SP_TYPE'][0] -# 'M6III' diff --git a/docs/gallery-examples/example4_simbad.py b/docs/gallery-examples/example4_simbad.py deleted file mode 100644 index 9bc7923933..0000000000 --- a/docs/gallery-examples/example4_simbad.py +++ /dev/null @@ -1,24 +0,0 @@ -from astropy import coordinates -from astroquery.simbad import Simbad - -customSimbad = Simbad() - -# We've seen errors where ra_prec was NAN, but it's an int: that's a problem -# this is a workaround we adapted -customSimbad.add_votable_fields('ra(d)', 'dec(d)') -customSimbad.remove_votable_fields('coordinates') - -C = coordinates.SkyCoord(0, 0, unit=('deg', 'deg'), frame='icrs') - -result = customSimbad.query_region(C, radius='2 degrees') - -result[:5].pprint() -""" - MAIN_ID RA_d DEC_d - ------------- ----------- ------------ - ALFALFA 5-186 0.00000000 0.00000000 - ALFALFA 5-188 0.00000000 0.00000000 - ALFALFA 5-206 0.00000000 0.00000000 - ALFALFA 5-241 0.00000000 0.00000000 - ALFALFA 5-293 0.00000000 0.00000000 -""" diff --git a/docs/gallery-examples/example5_oec.py b/docs/gallery-examples/example5_oec.py deleted file mode 100644 index f35f024f7c..0000000000 --- a/docs/gallery-examples/example5_oec.py +++ /dev/null @@ -1,10 +0,0 @@ -from astroquery import open_exoplanet_catalogue as oec -from astroquery.open_exoplanet_catalogue import findvalue - -cata = oec.get_catalogue() -kepler68b = cata.find(".//planet[name='Kepler-68 b']") -print(findvalue(kepler68b, 'mass')) - -""" -0.02105109 -""" diff --git a/docs/gallery-examples/example6_alma.py b/docs/gallery-examples/example6_alma.py deleted file mode 100644 index bc944e7fee..0000000000 --- a/docs/gallery-examples/example6_alma.py +++ /dev/null @@ -1,45 +0,0 @@ -from astroquery.alma import Alma -from astroquery.splatalogue import Splatalogue -from astroquery.simbad import Simbad -from astropy import units as u -from astropy import constants -from spectral_cube import SpectralCube - -m83table = Alma.query_object('M83', public=True) -m83urls = Alma.stage_data(m83table['Member ous id']) -# Sometimes there can be duplicates: avoid them with -# list(set()) -# also, to save time, we just download the first one -m83files = Alma.download_and_extract_files(list(set(m83urls['URL']))[0]) -m83files = m83files - -Simbad.add_votable_fields('rv_value') -m83simbad = Simbad.query_object('M83') -rvel = m83simbad['RV_VALUE'][0]*u.Unit(m83simbad['RV_VALUE'].unit) - -for fn in m83files: - if 'line' in fn: - cube = SpectralCube.read(fn) - # Convert frequencies to their rest frequencies - frange = u.Quantity([cube.spectral_axis.min(), - cube.spectral_axis.max()]) * (1+rvel/constants.c) - - # Query the top 20 most common species in the frequency range of the - # cube with an upper energy state <= 50K - lines = Splatalogue.query_lines(frange[0], frange[1], top20='top20', - energy_max=50, energy_type='eu_k', - only_NRAO_recommended=True) - lines.pprint() - - # Change the cube coordinate system to be in velocity with respect - # to the rest frequency (in the M83 rest frame) - rest_frequency = lines['Freq-GHz'][0]*u.GHz / (1+rvel/constants.c) - vcube = cube.with_spectral_unit(u.km/u.s, - rest_value=rest_frequency, - velocity_convention='radio') - - # Write the cube with the specified line name - fmt = "{Species}{Resolved QNs}" - row = lines[0] - linename = fmt.format(**dict(zip(row.colnames, row.data))) - vcube.write('M83_ALMA_{linename}.fits'.format(linename=linename)) diff --git a/docs/gallery-examples/example7_alma.py b/docs/gallery-examples/example7_alma.py deleted file mode 100644 index 9319f1acd9..0000000000 --- a/docs/gallery-examples/example7_alma.py +++ /dev/null @@ -1,225 +0,0 @@ -""" -Query ALMA archive for M83 pointings and plotting them on a 2MASS image -""" - -import numpy as np -from astroquery.alma import Alma -from astroquery.skyview import SkyView -import string -from astropy import units as u -from astropy.io import fits -from astropy import wcs -from astroquery import log -import pylab as pl -import aplpy -import pyregion - - -# Retrieve M83 2MASS K-band image: -m83_images = SkyView.get_images(position='M83', survey=['2MASS-K'], - pixels=1500) - -# Retrieve ALMA archive information *including* private data and non-science -# fields: -m83 = Alma.query_object('M83', public=False, science=False) - - -# Parse components of the ALMA data. Specifically, find the frequency support -# - the frequency range covered - and convert that into a central frequency for -# beam radius estimation. -def parse_frequency_support(frequency_support_str): - supports = frequency_support_str.split("U") - freq_ranges = [(float(sup.strip('[] ').split("..")[0]), - float(sup.strip('[] ') - .split("..")[1] - .split(', ')[0] - .strip(string.ascii_letters))) - *u.Unit(sup.strip('[] ') - .split("..")[1] - .split(', ')[0] - .strip(string.punctuation+string.digits)) - for sup in supports] - return u.Quantity(freq_ranges) - -def approximate_primary_beam_sizes(frequency_support_str): - freq_ranges = parse_frequency_support(frequency_support_str) - beam_sizes = [(1.22*fr.mean().to(u.m, - u.spectral())/(12*u.m)).to(u.arcsec, - u.dimensionless_angles()) - for fr in freq_ranges] - return u.Quantity(beam_sizes) - - -primary_beam_radii = [approximate_primary_beam_sizes(row['Frequency support']) for row in m83] - - -# Compute primary beam parameters for the public and private components of the data for plotting below. -print("The bands used include: ", np.unique(m83['Band'])) - -private_circle_parameters = [(row['RA'], row['Dec'], np.mean(rad).to(u.deg).value) - for row, rad in zip(m83, primary_beam_radii) - if row['Release date']!=b'' and row['Band']==3] -public_circle_parameters = [(row['RA'], row['Dec'], np.mean(rad).to(u.deg).value) - for row, rad in zip(m83, primary_beam_radii) - if row['Release date']==b'' and row['Band']==3] -unique_private_circle_parameters = np.array(list(set(private_circle_parameters))) -unique_public_circle_parameters = np.array(list(set(public_circle_parameters))) - -print("BAND 3") -print("PUBLIC: Number of rows: {0}. Unique pointings: {1}".format(len(m83), len(unique_public_circle_parameters))) -print("PRIVATE: Number of rows: {0}. Unique pointings: {1}".format(len(m83), len(unique_private_circle_parameters))) - -private_circle_parameters_band6 = [(row['RA'], row['Dec'], np.mean(rad).to(u.deg).value) - for row, rad in zip(m83, primary_beam_radii) - if row['Release date']!=b'' and row['Band']==6] -public_circle_parameters_band6 = [(row['RA'], row['Dec'], np.mean(rad).to(u.deg).value) - for row, rad in zip(m83, primary_beam_radii) - if row['Release date']==b'' and row['Band']==6] - - -# Show all of the private observation pointings that have been acquired -fig = aplpy.FITSFigure(m83_images[0]) -fig.show_grayscale(stretch='arcsinh', vmid=0.1) -fig.show_circles(unique_private_circle_parameters[:, 0], - unique_private_circle_parameters[:, 1], - unique_private_circle_parameters[:, 2], - color='r', alpha=0.2) - -fig = aplpy.FITSFigure(m83_images[0]) -fig.show_grayscale(stretch='arcsinh', vmid=0.1) -fig.show_circles(unique_public_circle_parameters[:, 0], - unique_public_circle_parameters[:, 1], - unique_public_circle_parameters[:, 2], - color='b', alpha=0.2) - - -# Use pyregion to write the observed regions to disk. Pyregion has a very -# awkward API; there is (in principle) work in progress to improve that -# situation but for now one must do all this extra work. - -import pyregion -from pyregion.parser_helper import Shape -prv_regions = pyregion.ShapeList([Shape('circle', [x, y, r]) for x, y, r in private_circle_parameters]) -pub_regions = pyregion.ShapeList([Shape('circle', [x, y, r]) for x, y, r in public_circle_parameters]) -for r, (x, y, c) in zip(prv_regions+pub_regions, - np.vstack([private_circle_parameters, - public_circle_parameters])): - r.coord_format = 'fk5' - r.coord_list = [x, y, c] - r.attr = ([], {'color': 'green', 'dash': '0 ', 'dashlist': '8 3 ', 'delete': '1 ', 'edit': '1 ', - 'fixed': '0 ', 'font': '"helvetica 10 normal roman"', 'highlite': '1 ', - 'include': '1 ', 'move': '1 ', 'select': '1 ', 'source': '1', 'text': '', - 'width': '1 '}) - -prv_regions.write('M83_observed_regions_private_March2015.reg') -pub_regions.write('M83_observed_regions_public_March2015.reg') - -prv_mask = fits.PrimaryHDU(prv_regions.get_mask(m83_images[0][0]).astype('int'), - header=m83_images[0][0].header) -pub_mask = fits.PrimaryHDU(pub_regions.get_mask(m83_images[0][0]).astype('int'), - header=m83_images[0][0].header) - -pub_mask.writeto('public_m83_almaobs_mask.fits', clobber=True) - -fig = aplpy.FITSFigure(m83_images[0]) -fig.show_grayscale(stretch='arcsinh', vmid=0.1) -fig.show_contour(prv_mask, levels=[0.5, 1], colors=['r', 'r']) -fig.show_contour(pub_mask, levels=[0.5, 1], colors=['b', 'b']) - -# ## More advanced ## -# -# Now we create a 'hit mask' showing the relative depth of each observed field in each band - -hit_mask_band3_public = np.zeros_like(m83_images[0][0].data) -hit_mask_band3_private = np.zeros_like(m83_images[0][0].data) -hit_mask_band6_public = np.zeros_like(m83_images[0][0].data) -hit_mask_band6_private = np.zeros_like(m83_images[0][0].data) - -mywcs = wcs.WCS(m83_images[0][0].header) - -def pyregion_subset(region, data, mywcs): - """ - Return a subset of an image (`data`) given a region. - """ - shapelist = pyregion.ShapeList([region]) - if shapelist[0].coord_format not in ('physical', 'image'): - # Requires astropy >0.4... - # pixel_regions = shapelist.as_imagecoord(self.wcs.celestial.to_header()) - # convert the regions to image (pixel) coordinates - celhdr = mywcs.sub([wcs.WCSSUB_CELESTIAL]).to_header() - pixel_regions = shapelist.as_imagecoord(celhdr) - else: - # For this to work, we'd need to change the reference pixel after cropping. - # Alternatively, we can just make the full-sized mask... todo.... - raise NotImplementedError("Can't use non-celestial coordinates with regions.") - pixel_regions = shapelist - - # This is a hack to use mpl to determine the outer bounds of the regions - # (but it's a legit hack - pyregion needs a major internal refactor - # before we can approach this any other way, I think -AG) - mpl_objs = pixel_regions.get_mpl_patches_texts()[0] - - # Find the minimal enclosing box containing all of the regions - # (this will speed up the mask creation below) - extent = mpl_objs[0].get_extents() - xlo, ylo = extent.min - xhi, yhi = extent.max - all_extents = [obj.get_extents() for obj in mpl_objs] - for ext in all_extents: - xlo = int(xlo if xlo < ext.min[0] else ext.min[0]) - ylo = int(ylo if ylo < ext.min[1] else ext.min[1]) - xhi = int(xhi if xhi > ext.max[0] else ext.max[0]) - yhi = int(yhi if yhi > ext.max[1] else ext.max[1]) - - log.debug("Region boundaries: ") - log.debug("xlo={xlo}, ylo={ylo}, xhi={xhi}, yhi={yhi}".format(xlo=xlo, - ylo=ylo, - xhi=xhi, - yhi=yhi)) - - - subwcs = mywcs[ylo:yhi, xlo:xhi] - subhdr = subwcs.sub([wcs.WCSSUB_CELESTIAL]).to_header() - subdata = data[ylo:yhi, xlo:xhi] - - mask = shapelist.get_mask(header=subhdr, - shape=subdata.shape) - log.debug("Shapes: data={0}, subdata={2}, mask={1}".format(data.shape, mask.shape, subdata.shape)) - return (xlo, xhi, ylo, yhi), mask - - -for row, rad in zip(m83, primary_beam_radii): - shape = Shape('circle', (row['RA'], row['Dec'], np.mean(rad).to(u.deg).value)) - shape.coord_format = 'fk5' - shape.coord_list = (row['RA'], row['Dec'], np.mean(rad).to(u.deg).value) - shape.attr = ([], {'color': 'green', 'dash': '0 ', 'dashlist': '8 3 ', - 'delete': '1 ', 'edit': '1 ', 'fixed': '0 ', - 'font': '"helvetica 10 normal roman"', 'highlite': '1 ', - 'include': '1 ', 'move': '1 ', 'select': '1 ', - 'source': '1', 'text': '', 'width': '1 '}) - if row['Release date']==b'' and row['Band']==3: - (xlo, xhi, ylo, yhi), mask = pyregion_subset(shape, hit_mask_band3_private, mywcs) - hit_mask_band3_private[ylo:yhi, xlo:xhi] += row['Integration']*mask - elif row['Release date'] and row['Band']==3: - (xlo, xhi, ylo, yhi), mask = pyregion_subset(shape, hit_mask_band3_public, mywcs) - hit_mask_band3_public[ylo:yhi, xlo:xhi] += row['Integration']*mask - elif row['Release date'] and row['Band']==6: - (xlo, xhi, ylo, yhi), mask = pyregion_subset(shape, hit_mask_band6_public, mywcs) - hit_mask_band6_public[ylo:yhi, xlo:xhi] += row['Integration']*mask - elif row['Release date']==b'' and row['Band']==6: - (xlo, xhi, ylo, yhi), mask = pyregion_subset(shape, hit_mask_band6_private, mywcs) - hit_mask_band6_private[ylo:yhi, xlo:xhi] += row['Integration']*mask - - -fig = aplpy.FITSFigure(m83_images[0]) -fig.show_grayscale(stretch='arcsinh', vmid=0.1) -for mask, color in zip([hit_mask_band3_public, - hit_mask_band3_private, - hit_mask_band6_public, - hit_mask_band6_private, - ], - 'rycb'): - - if np.any(mask): - fig.show_contour(fits.PrimaryHDU(data=mask, header=m83_images[0][0].header), - levels=np.logspace(0, 5, base=2, num=6), colors=[color]*6) diff --git a/docs/gallery-examples/example8_eso.py b/docs/gallery-examples/example8_eso.py deleted file mode 100644 index 595a3c8cf8..0000000000 --- a/docs/gallery-examples/example8_eso.py +++ /dev/null @@ -1,28 +0,0 @@ -from astroquery.eso import Eso -import shutil - -# log in so you can get proprietary data -Eso.login('aginsburg') -# make sure you don't filter out anything -Eso.ROW_LIMIT = 1e6 - -# List all of your pi/co projects -all_pi_proj = Eso.query_instrument('apex', pi_coi='ginsburg') - -# Have a look at the project IDs only -print(set(all_pi_proj['APEX Project ID'])) -# set(['E-095.F-9802A-2015', 'E-095.C-0242A-2015', 'E-093.C-0144A-2014']) - -# The full project name includes prefix and suffix -full_proj = 'E-095.F-9802A-2015' -proj_id = full_proj[2:-6] - -# Then get the APEX quicklook "reduced" data -tbl = Eso.query_apex_quicklooks(prog_id=proj_id) - -# and finally, download it -files = Eso.retrieve_data(tbl['Product ID']) - -# then move the files to your local directory -for fn in files: - shutil.move(fn, '.') diff --git a/docs/gallery-examples/example9_skyview_vizier.py b/docs/gallery-examples/example9_skyview_vizier.py deleted file mode 100644 index 9f5319ffc2..0000000000 --- a/docs/gallery-examples/example9_skyview_vizier.py +++ /dev/null @@ -1,52 +0,0 @@ -from astropy import coordinates, units as u, wcs -from astroquery.skyview import SkyView -from astroquery.vizier import Vizier -import pylab as pl - -center = coordinates.SkyCoord.from_name('Orion KL') - -# Grab an image from SkyView of the Orion KL nebula region -imglist = SkyView.get_images(position=center, survey='2MASS-J') - -# the returned value is a list of images, but there is only one -img = imglist[0] - -# 'img' is now a fits.HDUList object; the 0th entry is the image -mywcs = wcs.WCS(img[0].header) - -fig = pl.figure(1) -fig.clf() # just in case one was open before -# use astropy's wcsaxes tool to create an RA/Dec image -ax = fig.add_axes([0.15, 0.1, 0.8, 0.8], projection=mywcs) -ax.set_xlabel("RA") -ax.set_ylabel("Dec") - -ax.imshow(img[0].data, cmap='gray_r', interpolation='none', origin='lower', - norm=pl.matplotlib.colors.LogNorm()) - - -# retrieve a specific table from Vizier to overplot -tablelist = Vizier.query_region(center, radius=5*u.arcmin, - catalog='J/ApJ/826/16/table1') -# again, the result is a list of tables, so we'll get the first one -result = tablelist[0] - -# convert the ra/dec entries in the table to astropy coordinates -tbl_crds = coordinates.SkyCoord(result['RAJ2000'], result['DEJ2000'], - unit=(u.hour, u.deg), frame='fk5') - -# we want this table too: -tablelist2 = Vizier(row_limit=10000).query_region(center, radius=5*u.arcmin, - catalog='J/ApJ/540/236') -result2 = tablelist2[0] -tbl_crds2 = coordinates.SkyCoord(result2['RAJ2000'], result2['DEJ2000'], - unit=(u.hour, u.deg), frame='fk5') - - -# overplot the data in the image -ax.plot(tbl_crds.ra, tbl_crds.dec, '*', transform=ax.get_transform('fk5'), - mec='b', mfc='none') -ax.plot(tbl_crds2.ra, tbl_crds2.dec, 'o', transform=ax.get_transform('fk5'), - mec='r', mfc='none') -# zoom in on the relevant region -ax.axis([100, 200, 100, 200]) diff --git a/docs/gallery-examples/run_examples.py b/docs/gallery-examples/run_examples.py deleted file mode 100644 index 13a60a3c44..0000000000 --- a/docs/gallery-examples/run_examples.py +++ /dev/null @@ -1,11 +0,0 @@ -import runpy -runpy.run_path('example1_vizier.py') -runpy.run_path('example2_simbad.py') -runpy.run_path('example3_simbad.py') -runpy.run_path('example4_simbad.py') -runpy.run_path('example5_oec.py') -runpy.run_path('example6_alma.py') -runpy.run_path('example7_alma.py') -runpy.run_path('example8_eso.py') -runpy.run_path('example9_skyview_vizier.py') -runpy.run_path('example10_mast.py') diff --git a/docs/gallery.rst b/docs/gallery.rst deleted file mode 100644 index 6ed2ab342a..0000000000 --- a/docs/gallery.rst +++ /dev/null @@ -1,115 +0,0 @@ -.. doctest-skip-all - -A Gallery of Queries -==================== - -A series of queries folks have performed for research or for kicks. - -Example 1 -+++++++++ - -This illustrates querying Vizier with specific keyword, and the use of -`astropy.coordinates` to describe a query. -Vizier's keywords can indicate wavelength & object type, although only -object type is shown here. - -.. include:: gallery-examples/example1_vizier.py - :code: python - - -Example 2 -+++++++++ - -This illustrates adding new output fields to SIMBAD queries. -Run `~astroquery.simbad.SimbadClass.list_votable_fields` to get the full list of valid fields. - - -.. include:: gallery-examples/example2_simbad.py - :code: python - - -Example 3 -+++++++++ - -This illustrates finding the spectral type of some particular star. - -.. include:: gallery-examples/example3_simbad.py - :code: python - - -Example 4 -+++++++++ - - -.. include:: gallery-examples/example4_simbad.py - :code: python - - - -Example 5 -+++++++++ - -This illustrates a simple usage of the open_exoplanet_catalogue module. - -Finding the mass of a specific planet: - -.. include:: gallery-examples/example5_oec.py - :code: python - - -Example 6 -+++++++++ - -Grab some data from ALMA, then analyze it using the Spectral Cube package after -identifying some spectral lines in the data. - -.. include:: gallery-examples/example6_alma.py - :code: python - - -.. _gallery-almaskyview: - -Example 7 -+++++++++ -Find ALMA pointings that have been observed toward M83, then overplot the -various fields-of view on a 2MASS image retrieved from SkyView. See -http://nbviewer.jupyter.org/gist/keflavich/19175791176e8d1fb204 for the -notebook. There is an even more sophisticated version at -http://nbviewer.jupyter.org/gist/keflavich/bb12b772d6668cf9181a, which shows -Orion KL in all observed bands. - -.. include:: gallery-examples/example7_alma.py - :code: python - - -Example 8 -+++++++++ - -Retrieve data from a particular co-I or PI from the ESO archive - -.. include:: gallery-examples/example8_eso.py - :code: python - - -Example 9 -+++++++++ - -Retrieve an image from skyview and overlay a Vizier catalog on it. -This example approximately reproduces Figure 1 of -`2016ApJ...826...16E `_, -except with a different background. - - -.. include:: gallery-examples/example9_skyview_vizier.py - :code: python - - - -Example 10 -++++++++++ -Retrieve Hubble archival data of M83 and make a figure - - -.. include:: gallery-examples/example10_mast.py - :code: python - diff --git a/docs/index.rst b/docs/index.rst index fefa351d1d..e56282ed38 100644 --- a/docs/index.rst +++ b/docs/index.rst @@ -24,7 +24,6 @@ generate a cone search service complying with the They are more oriented to general `virtual observatory `_ discovery and queries, whereas Astroquery has web service specific interfaces. -Check out the :doc:`gallery` for some nice examples. Installation ------------ @@ -175,13 +174,6 @@ uncomment the relevant configuration item(s), and insert your desired value(s). Available Services ================== -If you're new to Astroquery, a good place to start is the :doc:`gallery`: - -.. toctree:: - :maxdepth: 1 - - gallery - The following modules have been completed using a common API: .. toctree::