-
Notifications
You must be signed in to change notification settings - Fork 2
/
get_shadows.py
496 lines (387 loc) · 18.5 KB
/
get_shadows.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
import os
os.environ['TF_FORCE_GPU_ALLOW_GROWTH'] = 'true'
os.environ['TF_ENABLE_GPU_GARBAGE_COLLECTION'] = 'false'
import sys
import tensorflow as tf
import numpy as np
import imageio
import json
import random
import time
from load_llff import load_llff_data
import relight_brdf_nerf
##################### This file renders 360-deg shadows.png files for any trained model - both multipose+single_lightdir AND singlepose+multi_lightdir ###################
architecture = relight_brdf_nerf
##### Multiple pre-trained folders ######
# expname = 'exp267_cowPNG'
# expname = 'exp251_buddhaPNG'
# expname = 'exp205_readingPNG'
# expname = 'exp206_pot2PNG'
expname = 'exp204_bearPNG'
model_no = 400000
tf.compat.v1.enable_eager_execution()
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
print('############## Allowing Growth ###########')
def to8b(x): return (255 * np.clip(x, 0, 1)).astype(np.uint8)
tf.compat.v1.keras.backend.set_session(tf.Session(config=config))
basedir = './logs'
config = os.path.join(basedir, expname, 'config.txt')
print('Args:')
print(open(config, 'r').read())
parser = architecture.config_parser()
ft_str = ''
ft_str = '--ft_path {}'.format(os.path.join(basedir, expname, 'model_{:06d}.npy'.format(model_no)))
args = parser.parse_args('--config {} '.format(config) + ft_str)
images, poses, bds, render_poses, i_test = load_llff_data(args.datadir, factor=args.factor,
recenter=False, bd_factor=.75,
spherify=True)
hwf = poses[0, :3, -1]
poses = poses[:, :3, :4]
print('Loaded llff', images.shape,
render_poses.shape, hwf, args.datadir)
if not isinstance(i_test, list):
i_test = [i_test]
if args.llffhold > 0:
print('Auto LLFF holdout,', args.llffhold)
i_test = np.arange(images.shape[0])[::args.llffhold]
i_val = i_test
i_train = np.array([i for i in np.arange(int(images.shape[0])) if
(i not in i_test and i not in i_val)])
print('DEFINING BOUNDS')
if args.no_ndc:
near = tf.reduce_min(bds) * .9
far = tf.reduce_max(bds) * 1.
else:
near = 0.
far = 1.
print('NEAR FAR', near, far)
light_dirs = np.load(args.lightdirsdir, )
# Cast intrinsics to right types
H, W, focal = hwf
H, W = int(H), int(W)
hwf = [H, W, focal]
render_kwargs_train, render_kwargs_test, start, grad_vars, models = architecture.create_nerf_relight(args)
bds_dict = {
'near': tf.cast(near, tf.float32),
'far': tf.cast(far, tf.float32),
}
render_kwargs_train.update(bds_dict)
render_kwargs_test.update(bds_dict)
N_rand = args.N_rand
i =0
def render_rays(ray_batch,
network_fn,
network_query_fn_relight,
N_samples,
retraw=False,
lindisp=False,
perturb=0.,
N_importance=0,
network_fine=None,
white_bkgd=False,
raw_noise_std=0.,
render_output_type='rgb',
verbose=False, **kwargs):
"""Volumetric rendering.
Args:
ray_batch: array of shape [batch_size, ...]. All information necessary
for sampling along a ray, including: ray origin, ray direction, light direction, min
dist, max dist, and unit-magnitude viewing direction, unit-magnitude lighting direction.
network_fn: function. Model for predicting RGB and density at each point
in space.
network_query_fn_relight: function used for passing queries to network_fn_relight.
N_samples: int. Number of different times to sample along each ray.
retraw: bool. If True, include model's raw, unprocessed predictions.
lindisp: bool. If True, sample linearly in inverse depth rather than in depth.
perturb: float, 0 or 1. If non-zero, each ray is sampled at stratified
random points in time.
N_importance: int. Number of additional times to sample along each ray.
These samples are only passed to network_fine.
network_fine: "fine" network with same spec as network_fn.
white_bkgd: bool. If True, assume a white background.
raw_noise_std: ...
verbose: bool. If True, print more debugging info.
Returns:
rgb_map: [num_rays, 3]. Estimated RGB color of a ray. Comes from fine model.
disp_map: [num_rays]. Disparity map. 1 / depth.
acc_map: [num_rays]. Accumulated opacity along each ray. Comes from fine model.
raw: [num_rays, num_samples, 4]. Raw predictions from model.
rgb0: See rgb_map. Output for coarse model.
disp0: See disp_map. Output for coarse model.
acc0: See acc_map. Output for coarse model.
z_std: [num_rays]. Standard deviation of distances along ray for each
sample.
"""
def raw2outputs(raw, z_vals, rays_d):
"""Transforms model's predictions to semantically meaningful values.
Args:
raw: [num_rays, num_samples along ray, 4]. Prediction from model.
z_vals: [num_rays, num_samples along ray]. Integration time.
rays_d: [num_rays, 3]. Direction of each ray.
Returns:
rgb_map: [num_rays, 3]. Estimated RGB color of a ray.
disp_map: [num_rays]. Disparity map. Inverse of depth map.
acc_map: [num_rays]. Sum of weights along each ray.
weights: [num_rays, num_samples]. Weights assigned to each sampled color.
depth_map: [num_rays]. Estimated distance to object.
"""
# Function for computing density from model prediction. This value is
# strictly between [0, 1].
def raw2alpha(raw, dists, act_fn=tf.nn.relu): return 1.0 - \
tf.exp(-act_fn(raw) * dists)
# Compute 'distance' (in time) between each integration time along a ray.
dists = z_vals[..., 1:] - z_vals[..., :-1]
# The 'distance' from the last integration time is infinity.
dists = tf.concat(
[dists, tf.broadcast_to([1e10], dists[..., :1].shape)],
axis=-1) # [N_rays, N_samples]
# Multiply each distance by the norm of its corresponding direction ray
# to convert to real world distance (accounts for non-unit directions).
dists = dists * tf.linalg.norm(rays_d[..., None, :], axis=-1)
# Extract RGB of each sample position along each ray.
# rgb = tf.math.sigmoid(raw[..., :3]) # [N_rays, N_samples, 3]
# rgb = raw[..., :3]
# n_norm = raw[...,4:7]
# bottleneck = raw[...,7:10]
shadow_ch1 = raw[...,-1]
shadow = tf.stack([shadow_ch1,shadow_ch1,shadow_ch1], axis=-1)
# Add noise to model's predictions for density. Can be used to
# regularize network during training (prevents floater artifacts).
noise = 0.
if raw_noise_std > 0.:
noise = tf.random.normal(raw[..., 3].shape) * raw_noise_std
# Predict density of each sample along each ray. Higher values imply
# higher likelihood of being absorbed at this point.
alpha = raw2alpha(raw[..., 3] + noise, dists) # [N_rays, N_samples]
eps = 1e-05
alpha_loss = tf.math.log(alpha+eps) + tf.math.log(1-alpha+eps)
# Compute weight for RGB of each sample along each ray. A cumprod() is
# used to express the idea of the ray not having reflected up to this
# sample yet.
# [N_rays, N_samples]
weights = alpha * \
tf.math.cumprod(1. - alpha + 1e-10, axis=-1, exclusive=True)
# Computed weighted color of each sample along each ray.
rgb_map = tf.reduce_sum(
weights[..., None] * shadow, axis=-2) # [N_rays, 3]
# Estimated depth map is expected distance.
depth_map = tf.reduce_sum(weights * z_vals, axis=-1)
# Disparity map is inverse depth.
disp_map = 1. / tf.maximum(1e-10, depth_map /
tf.reduce_sum(weights, axis=-1))
# Sum of weights along each ray. This value is in [0, 1] up to numerical error.
acc_map = tf.reduce_sum(weights, -1)
# To composite onto a white background, use the accumulated alpha map.
if white_bkgd:
rgb_map = rgb_map + (1.-acc_map[..., None])
return rgb_map, disp_map, acc_map, weights, depth_map, alpha_loss
###############################
# batch size
N_rays = ray_batch.shape[0]
# Extract ray origin, direction.
rays_o, rays_d, light_d = ray_batch[:, 0:3], ray_batch[:, 3:6], ray_batch[:, 6:9] # [N_rays, 3] each
# Extract unit-normalized viewing direction.
viewdirs = ray_batch[:, 3:6] if ray_batch.shape[-1] > 8 else None # might need to remove if-statement
# Extract unit-normalized viewing direction.
lightdirs = ray_batch[:, 6:9] if ray_batch.shape[-1] > 8 else None # might need to remove if-statement
# Extract lower, upper bound for ray distance.
bounds = tf.reshape(ray_batch[..., 9:11], [-1, 1, 2])
near, far = bounds[..., 0], bounds[..., 1] # [-1,1]
# Decide where to sample along each ray. Under the logic, all rays will be sampled at
# the same times.
t_vals = tf.linspace(0., 1., N_samples)
if not lindisp:
# Space integration times linearly between 'near' and 'far'. Same
# integration points will be used for all rays.
z_vals = near * (1. - t_vals) + far * (t_vals)
else:
# Sample linearly in inverse depth (disparity).
z_vals = 1. / (1. / near * (1. - t_vals) + 1. / far * (t_vals))
z_vals = tf.broadcast_to(z_vals, [N_rays, N_samples])
# Perturb sampling time along each ray.
if perturb > 0.:
# get intervals between samples
mids = .5 * (z_vals[..., 1:] + z_vals[..., :-1])
upper = tf.concat([mids, z_vals[..., -1:]], -1)
lower = tf.concat([z_vals[..., :1], mids], -1)
# stratified samples in those intervals
t_rand = tf.random.uniform(z_vals.shape)
z_vals = lower + (upper - lower) * t_rand
# Points in space to evaluate model at.
pts = rays_o[..., None, :] + rays_d[..., None, :] * \
z_vals[..., :, None] # [N_rays, N_samples, 3]
# Evaluate model at each point.
# raw = network_query_fn(pts, viewdirs, network_fn) # [N_rays, N_samples, 4]
raw = network_query_fn_relight(pts, viewdirs, lightdirs, network_fn) # [N_rays, N_samples, 4]
rgb_map, disp_map, acc_map, weights, depth_map, alpha_loss = raw2outputs(
raw, z_vals, rays_d)
if N_importance > 0:
rgb_map_0, disp_map_0, acc_map_0 = rgb_map, disp_map, acc_map
# Obtain additional integration times to evaluate based on the weights
# assigned to colors in the coarse model.
z_vals_mid = .5 * (z_vals[..., 1:] + z_vals[..., :-1])
z_samples = architecture.sample_pdf(
z_vals_mid, weights[..., 1:-1], N_importance, det=(perturb == 0.))
z_samples = tf.stop_gradient(z_samples)
# Obtain all points to evaluate color, density at.
z_vals = tf.sort(tf.concat([z_vals, z_samples], -1), -1)
pts = rays_o[..., None, :] + rays_d[..., None, :] * \
z_vals[..., :, None] # [N_rays, N_samples + N_importance, 3]
# Make predictions with network_fine.
run_fn = network_fn if network_fine is None else network_fine
# raw = network_query_fn(pts, viewdirs, run_fn)
raw = network_query_fn_relight(pts, viewdirs, lightdirs, run_fn)
rgb_map, disp_map, acc_map, weights, depth_map, alpha_loss = raw2outputs(
raw, z_vals, rays_d)
ret = {'rgb_map': rgb_map, 'disp_map': disp_map, 'acc_map': acc_map}
if retraw:
ret['raw'] = raw
if N_importance > 0:
ret['rgb0'] = rgb_map_0
ret['disp0'] = disp_map_0
ret['acc0'] = acc_map_0
ret['alpha_loss'] = alpha_loss
ret['z_std'] = tf.math.reduce_std(z_samples, -1) # [N_rays]
for k in ret:
tf.debugging.check_numerics(ret[k], 'output {}'.format(k))
return ret
def batchify_rays(rays_flat, chunk=1024 * 32, **kwargs):
"""Render rays in smaller minibatches to avoid OOM."""
all_ret = {}
for i in range(0, rays_flat.shape[0], chunk):
ret = render_rays(rays_flat[i:i + chunk], **kwargs)
for k in ret:
if k not in all_ret:
all_ret[k] = []
all_ret[k].append(ret[k])
all_ret = {k: tf.concat(all_ret[k], 0) for k in all_ret}
return all_ret
def render_relight(H, W, focal, lightdir=None,
chunk=1024 * 32, rays=None, c2w=None, ndc=True,
near=0., far=1.,
use_viewdirs=False, use_lightdirs=False, c2w_staticcam=None,
**kwargs):
"""Render rays
Args:
H: int. Height of image in pixels.
W: int. Width of image in pixels.
focal: float. Focal length of pinhole camera.
chunk: int. Maximum number of rays to process simultaneously. Used to
control maximum memory usage. Does not affect final results.
rays: array of shape [2, batch_size, 3]. Ray origin and direction for
each example in batch.
c2w: array of shape [3, 4]. Camera-to-world transformation matrix.
light_dir: array of shape [3, 1]. Light direction matrix.
ndc: bool. If True, represent ray origin, direction in NDC coordinates.
near: float or array of shape [batch_size]. Nearest distance for a ray.
far: float or array of shape [batch_size]. Farthest distance for a ray.
use_viewdirs: bool. If True, use viewing direction of a point in space in model.
use_lightdirs: bool. If True, use lighting direction of a point in space in model.
c2w_staticcam: array of shape [3, 4]. If not None, use this transformation matrix for
camera while using other c2w argument for viewing directions.
Returns:
rgb_map: [batch_size, 3]. Predicted RGB values for rays.
disp_map: [batch_size]. Disparity map. Inverse of depth.
acc_map: [batch_size]. Accumulated opacity (alpha) along a ray.
extras: dict with everything returned by render_rays().
"""
if c2w is not None:
# special case to render full image
rays_o, rays_d, light_d = architecture.get_rays_relight(H, W, focal, c2w, lightdir) # kinda fixed
# light_d = # same size as ray_0 //replicate lightdirs only one image rendered here
else:
# use provided ray batch
rays_o, rays_d, light_d = rays
if (use_viewdirs == True) and (use_lightdirs == True):
# provide ray directions and lighting directions as input
viewdirs = rays_d
lightdirs = light_d
# Not changing as it is not used --- in relighting
# if c2w_staticcam is not None:
# # # special case to visualize effect of viewdirs and lightdirs
# # rays_o, rays_d, light_d = get_rays_relight(H, W, focal, c2w_staticcam, lightdirs)
# Make all directions unit magnitude.
# shape: [batch_size, 3]
viewdirs = viewdirs / tf.linalg.norm(viewdirs, axis=-1, keepdims=True)
viewdirs = tf.cast(tf.reshape(viewdirs, [-1, 3]), dtype=tf.float32)
lightdirs = lightdirs / tf.linalg.norm(lightdirs, axis=-1, keepdims=True)
lightdirs = tf.cast(tf.reshape(lightdirs, [-1, 3]), dtype=tf.float32)
sh = rays_d.shape # [..., 3]
if ndc:
# for forward facing scenes
rays_o, rays_d = architecture.ndc_rays(
H, W, focal, tf.cast(1., tf.float32), rays_o, rays_d)
# Create ray batch
rays_o = tf.cast(tf.reshape(rays_o, [-1, 3]), dtype=tf.float32)
rays_d = tf.cast(tf.reshape(rays_d, [-1, 3]), dtype=tf.float32)
light_d = tf.cast(tf.reshape(light_d, [-1, 3]), dtype=tf.float32)
near, far = near * \
tf.ones_like(rays_d[..., :1]), far * tf.ones_like(rays_d[..., :1])
# (ray origin, ray direction, light direction, min dist, max dist) for each ray
rays = tf.concat([rays_o, rays_d, light_d, near, far], axis=-1)
if (use_viewdirs == True) and (use_lightdirs == True):
# (ray origin, ray direction, light direction, min dist, max dist, normalized viewing direction, normalized lighting direction)
rays = tf.concat([rays, viewdirs], axis=-1)
rays = tf.concat([rays, lightdirs], axis=-1)
# Render and reshape
all_ret = batchify_rays(rays, chunk, **kwargs)
for k in all_ret:
k_sh = list(sh[:-1]) + list(all_ret[k].shape[1:])
all_ret[k] = tf.reshape(all_ret[k], k_sh)
k_extract = ['rgb_map', 'disp_map', 'acc_map']
ret_list = [all_ret[k] for k in k_extract]
ret_dict = {k: all_ret[k] for k in all_ret if k not in k_extract}
return ret_list + [ret_dict]
def render_relight_path_multilight_onepose(render_pose, lightdirs, hwf, chunk, render_kwargs, gt_imgs=None,
savedir=None, render_factor=0, **kwargs):
H, W, focal = hwf
if render_factor != 0:
# Render downsampled for speed
H = H // render_factor
W = W // render_factor
focal = focal / render_factor
rgbs = []
disps = []
t = time.time()
for i, l in enumerate(lightdirs):
print(i, time.time() - t)
t = time.time()
rgb, disp, acc, _ = render_relight(
H, W, focal, l, chunk=chunk, c2w=render_pose[:3, :4], **render_kwargs)
gam = tf.convert_to_tensor(tf.constant([1 / 2.2]), dtype=tf.float32)
rgb = tf.math.pow(rgb, gam)
rgbs.append(rgb.numpy())
disps.append(disp.numpy())
if i == 0:
print(rgb.shape, disp.shape)
if gt_imgs is not None and render_factor == 0:
p = -10. * np.log10(np.mean(np.square(rgb - gt_imgs[i])))
print(p)
if savedir is not None:
rgb8 = to8b(rgbs[-1])
filename = os.path.join(savedir, '{:03d}.png'.format(i))
imageio.imwrite(filename, rgb8)
rgbs = np.stack(rgbs, 0)
disps = np.stack(disps, 0)
return rgbs, disps
# Dimensions of Rendered Image
H = 512.0
W = 612.0
angles = []
# Save out the validation image for Tensorboard-free monitoring
testimgdir = os.path.join(basedir, expname, 'poses_shadows')
os.makedirs(testimgdir, exist_ok=True)
print('H ',H)
print('W ',W)
for i in range(0,20):
img_i = i * 32
target = images[img_i]
pose = poses[img_i, :3, :4]
rgb, disp, acc, extras = render_relight(H, W, focal, args.lightdir, chunk=args.chunk, c2w=pose,
**render_kwargs_test)
shadow = rgb
saveimg_dir_r = os.path.join(
basedir, expname, 'poses_shadows/render_p{:02d}.png'.format(i + 1))
imageio.imwrite(saveimg_dir_r, architecture.to8b(shadow))
print('DONE!')