diff --git a/assume/scenario/loader_amiris.py b/assume/scenario/loader_amiris.py
index 535d9e97..9b022d3c 100644
--- a/assume/scenario/loader_amiris.py
+++ b/assume/scenario/loader_amiris.py
@@ -154,7 +154,7 @@ def add_agent_to_world(
match agent["Type"]:
case "SupportPolicy":
support_data = agent["Attributes"]["SetSupportData"]
- supports |= {x.pop("Set"): x for x in support_data}
+ supports |= {x.pop("PolicySet"): x for x in support_data}
world.add_unit_operator(agent["Id"])
for name, support in supports.items():
@@ -479,14 +479,12 @@ def load_amiris(
start += timedelta(minutes=2)
end += timedelta(minutes=2)
sim_id = f"{scenario}_{study_case}"
- save_interval = amiris_scenario["GeneralProperties"]["Output"]["Interval"]
prices = {}
index = pd.date_range(start=start, end=end, freq="1h", inclusive="left")
world.bidding_strategies["support"] = SupportStrategy
world.setup(
start=start,
end=end,
- save_frequency_hours=save_interval,
simulation_id=sim_id,
index=index,
)
diff --git a/docs/source/release_notes.rst b/docs/source/release_notes.rst
index 9c43725c..7f0b5602 100644
--- a/docs/source/release_notes.rst
+++ b/docs/source/release_notes.rst
@@ -13,6 +13,9 @@ Upcoming Release
The features in this section are not released yet, but will be part of the next release! To use the features already you have to install the main branch,
e.g. ``pip install git+https://github.com/assume-framework/assume``
+ **Bugfixes:**
+ - **Tutorial 07**: Aligned Amiris loader with changes in format in Amiris compare (https://gitlab.com/fame-framework/fame-io/-/issues/203 and https://gitlab.com/fame-framework/fame-io/-/issues/208)
+
v0.4.3 - (11th November 2024)
===========================================
diff --git a/examples/notebooks/07_interoperability_example.ipynb b/examples/notebooks/07_interoperability_example.ipynb
index 8452b4af..fa584422 100644
--- a/examples/notebooks/07_interoperability_example.ipynb
+++ b/examples/notebooks/07_interoperability_example.ipynb
@@ -42,15 +42,16 @@
{
"cell_type": "code",
"execution_count": null,
- "metadata": {
- "vscode": {
- "languageId": "shellscript"
- }
- },
+ "metadata": {},
"outputs": [],
"source": [
"# Install the ASSUME framework with the PyPSA library for network optimization\n",
- "!pip install assume-framework[network]"
+ "import importlib.util\n",
+ "\n",
+ "# Check if 'google.colab' is available\n",
+ "IN_COLAB = importlib.util.find_spec(\"google.colab\") is not None\n",
+ "if IN_COLAB:\n",
+ " !pip install assume-framework[network]"
]
},
{
@@ -63,14 +64,11 @@
{
"cell_type": "code",
"execution_count": null,
- "metadata": {
- "vscode": {
- "languageId": "shellscript"
- }
- },
+ "metadata": {},
"outputs": [],
"source": [
- "!git clone --depth=1 https://github.com/assume-framework/assume.git assume-repo"
+ "if IN_COLAB:\n",
+ " !git clone --depth=1 https://github.com/assume-framework/assume.git assume-repo"
]
},
{
@@ -83,14 +81,11 @@
{
"cell_type": "code",
"execution_count": null,
- "metadata": {
- "vscode": {
- "languageId": "shellscript"
- }
- },
+ "metadata": {},
"outputs": [],
"source": [
- "!cd assume-repo && assume -s example_01a -c tiny -db \"sqlite:///local_db/assume_db.db\""
+ "if IN_COLAB:\n",
+ " !cd assume-repo && assume -s example_01a -c tiny -db \"sqlite:///local_db/assume_db.db\""
]
},
{
@@ -99,14 +94,15 @@
"source": [
"Protip: with argcomplete - one can create very nice tab completion for python scripts.\n",
"\n",
- "Though one has to run `eval \"$(register-python-argcomplete assume)\"` once in the env before"
+ "Though one has to run `eval \"$(register-python-argcomplete assume)\"` once in the env before (for Linux and Mac). On Windows, one needs to run:\n",
+ "`register-python-argcomplete --shell powershell assume | Out-String | Invoke-Expression`"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
- "We did not use the postgresql database - therefore we can not use our visualization - lets fix this. **You need to have have postgresql and grafana installed (available through docker).**"
+ "We did not use the postgresql database - therefore we can not use our visualization - lets fix this. **You need to have have postgresql and grafana installed (available through docker).** Please make sure that you have Docker running. Otherwise this code will not work and only run endlessly."
]
},
{
@@ -119,7 +115,10 @@
},
"outputs": [],
"source": [
- "!assume -s example_01a -c base -db \"postgresql://assume:assume@localhost:5432/assume\""
+ "if not IN_COLAB:\n",
+ " !cd ../.. && assume -s example_01a -c base -db \"postgresql://assume:assume@localhost:5432/assume\"\n",
+ "else:\n",
+ " !assume -s example_01a -c base -db \"postgresql://assume:assume@localhost:5432/assume\""
]
},
{
@@ -174,16 +173,16 @@
")\n",
"sim_id = \"world_script_simulation\"\n",
"\n",
- "world.loop.run_until_complete(\n",
- " world.setup(\n",
- " start=start,\n",
- " end=end,\n",
- " save_frequency_hours=48,\n",
- " simulation_id=sim_id,\n",
- " index=index,\n",
- " )\n",
+ "\n",
+ "world.setup(\n",
+ " start=start,\n",
+ " end=end,\n",
+ " save_frequency_hours=48,\n",
+ " simulation_id=sim_id,\n",
+ " index=index,\n",
")\n",
"\n",
+ "\n",
"marketdesign = [\n",
" MarketConfig(\n",
" market_id=\"EOM\",\n",
@@ -290,13 +289,11 @@
" db_uri = \"postgresql://assume:assume@localhost:5432/assume\"\n",
"\n",
"world = World(database_uri=db_uri)\n",
- "world.loop.run_until_complete(\n",
- " load_amiris(\n",
- " world,\n",
- " \"amiris\",\n",
- " scenario.lower(),\n",
- " base_path,\n",
- " )\n",
+ "load_amiris(\n",
+ " world,\n",
+ " \"amiris\",\n",
+ " scenario.lower(),\n",
+ " base_path,\n",
")\n",
"print(f\"did load {scenario} - now simulating\")\n",
"world.run()"
@@ -306,7 +303,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "If you are running locally and have our docker with the database and the Grafan dashboards installed, we can now look at the results here:\n",
+ "If you are running locally and have our docker with the database and the Grafana dashboards installed, we can now look at the results here:\n",
"\n",
"http://localhost:3000/d/mQ3Lvkr4k/assume3a-main-overview?orgId=1&var-simulation=amiris_simple&from=1609459200000&to=1609545600000&refresh=5s"
]
@@ -380,9 +377,8 @@
"\n",
"bidding_strategies = defaultdict(lambda: default_strategies)\n",
"\n",
- "world.loop.run_until_complete(\n",
- " load_pypsa(world, scenario, study_case, network, marketdesign, bidding_strategies)\n",
- ")\n",
+ "load_pypsa(world, scenario, study_case, network, marketdesign, bidding_strategies)\n",
+ "\n",
"world.run()"
]
},
@@ -390,7 +386,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "If you are running locally and have our docker with the database and the Grafan dashboards installed, we can now look at the results here:\n",
+ "If you are running locally and have our docker with the database and the Grafana dashboards installed, we can now look at the results here:\n",
"\n",
"http://localhost:3000/d/nodalview/assume-nodal-view?orgId=1&var-simulation=world_pypsa_ac_dc_meshed&var-market=EOM\n",
"\n",
@@ -415,7 +411,7 @@
"toc_visible": true
},
"kernelspec": {
- "display_name": "assume",
+ "display_name": "assume-framework",
"language": "python",
"name": "python3"
},
@@ -429,7 +425,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.12.6"
+ "version": "3.11.9"
},
"nbsphinx": {
"execute": "never"
diff --git a/examples/notebooks/09_example_Sim_and_xRL.ipynb b/examples/notebooks/09_example_Sim_and_xRL.ipynb
index b763627b..74bf467a 100644
--- a/examples/notebooks/09_example_Sim_and_xRL.ipynb
+++ b/examples/notebooks/09_example_Sim_and_xRL.ipynb
@@ -188,7 +188,7 @@
},
{
"cell_type": "code",
- "execution_count": 2,
+ "execution_count": null,
"id": "b7c91474",
"metadata": {
"id": "e62e00c9"
@@ -222,7 +222,7 @@
},
{
"cell_type": "code",
- "execution_count": 3,
+ "execution_count": null,
"id": "85fdfe19",
"metadata": {
"lines_to_next_cell": 2,
@@ -230,32 +230,7 @@
"languageId": "shellscript"
}
},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "[WinError 3] Das System kann den angegebenen Pfad nicht finden: 'assume/examples/notebooks/'\n",
- "c:\\Users\\AEppl\\OneDrive\\Dokumente\\Studium\\2024-25 Winersemester\\Hiwi IISM\\assume\\examples\\notebooks\n",
- "[WinError 3] Das System kann den angegebenen Pfad nicht finden: 'assume-repo/examples/notebooks/'\n",
- "c:\\Users\\AEppl\\OneDrive\\Dokumente\\Studium\\2024-25 Winersemester\\Hiwi IISM\\assume\\examples\\notebooks\n",
- "[WinError 2] Das System kann die angegebene Datei nicht finden: '/content'\n",
- "c:\\Users\\AEppl\\OneDrive\\Dokumente\\Studium\\2024-25 Winersemester\\Hiwi IISM\\assume\\examples\\notebooks\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "[NbConvertApp] Converting notebook 08_market_zone_coupling.ipynb to notebook\n",
- "C:\\Users\\AEppl\\.conda\\envs\\assume\\Lib\\site-packages\\zmq\\_future.py:693: RuntimeWarning: Proactor event loop does not implement add_reader family of methods required for zmq. Registering an additional selector thread for add_reader support via tornado. Use `asyncio.set_event_loop_policy(WindowsSelectorEventLoopPolicy())` to avoid this warning.\n",
- " self._get_loop()\n",
- "[NbConvertApp] Writing 199589 bytes to output.ipynb\n",
- "Der Befehl \"cp\" ist entweder falsch geschrieben oder\n",
- "konnte nicht gefunden werden.\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"# For local execution:\n",
"%cd assume/examples/notebooks/\n",
@@ -275,7 +250,7 @@
},
{
"cell_type": "code",
- "execution_count": 4,
+ "execution_count": null,
"id": "1ca7eab9",
"metadata": {
"colab": {
@@ -284,15 +259,7 @@
"id": "233f315b",
"outputId": "f98da7d4-0080-4546-c642-838f722965b0"
},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Input CSV files have been read from 'inputs/tutorial_08'.\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"import os\n",
"\n",
@@ -325,7 +292,7 @@
},
{
"cell_type": "code",
- "execution_count": 5,
+ "execution_count": null,
"id": "8c4153fa",
"metadata": {
"colab": {
@@ -335,221 +302,7 @@
"id": "b205256f",
"outputId": "b9bb887b-f534-4a50-dd5b-229be1012600"
},
- "outputs": [
- {
- "data": {
- "text/html": [
- "
\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " technology | \n",
- " bidding_zonal | \n",
- " fuel_type | \n",
- " emission_factor | \n",
- " max_power | \n",
- " min_power | \n",
- " efficiency | \n",
- " additional_cost | \n",
- " node | \n",
- " unit_operator | \n",
- "
\n",
- " \n",
- " name | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " Unit 11 | \n",
- " nuclear | \n",
- " naive_eom | \n",
- " uranium | \n",
- " 0.0 | \n",
- " 1000.0 | \n",
- " 0.0 | \n",
- " 0.3 | \n",
- " 15 | \n",
- " north_2 | \n",
- " Operator North | \n",
- "
\n",
- " \n",
- " Unit 12 | \n",
- " nuclear | \n",
- " naive_eom | \n",
- " uranium | \n",
- " 0.0 | \n",
- " 1000.0 | \n",
- " 0.0 | \n",
- " 0.3 | \n",
- " 16 | \n",
- " north_2 | \n",
- " Operator North | \n",
- "
\n",
- " \n",
- " Unit 13 | \n",
- " nuclear | \n",
- " naive_eom | \n",
- " uranium | \n",
- " 0.0 | \n",
- " 1000.0 | \n",
- " 0.0 | \n",
- " 0.3 | \n",
- " 17 | \n",
- " north_2 | \n",
- " Operator North | \n",
- "
\n",
- " \n",
- " Unit 14 | \n",
- " nuclear | \n",
- " naive_eom | \n",
- " uranium | \n",
- " 0.0 | \n",
- " 1000.0 | \n",
- " 0.0 | \n",
- " 0.3 | \n",
- " 18 | \n",
- " north_2 | \n",
- " Operator North | \n",
- "
\n",
- " \n",
- " Unit 15 | \n",
- " nuclear | \n",
- " naive_eom | \n",
- " uranium | \n",
- " 0.0 | \n",
- " 1000.0 | \n",
- " 0.0 | \n",
- " 0.3 | \n",
- " 19 | \n",
- " north_2 | \n",
- " Operator North | \n",
- "
\n",
- " \n",
- " Unit 16 | \n",
- " nuclear | \n",
- " naive_eom | \n",
- " uranium | \n",
- " 0.0 | \n",
- " 1000.0 | \n",
- " 0.0 | \n",
- " 0.3 | \n",
- " 20 | \n",
- " south | \n",
- " Operator South | \n",
- "
\n",
- " \n",
- " Unit 17 | \n",
- " nuclear | \n",
- " naive_eom | \n",
- " uranium | \n",
- " 0.0 | \n",
- " 1000.0 | \n",
- " 0.0 | \n",
- " 0.3 | \n",
- " 21 | \n",
- " south | \n",
- " Operator South | \n",
- "
\n",
- " \n",
- " Unit 18 | \n",
- " nuclear | \n",
- " naive_eom | \n",
- " uranium | \n",
- " 0.0 | \n",
- " 1000.0 | \n",
- " 0.0 | \n",
- " 0.3 | \n",
- " 22 | \n",
- " south | \n",
- " Operator South | \n",
- "
\n",
- " \n",
- " Unit 19 | \n",
- " nuclear | \n",
- " naive_eom | \n",
- " uranium | \n",
- " 0.0 | \n",
- " 1000.0 | \n",
- " 0.0 | \n",
- " 0.3 | \n",
- " 23 | \n",
- " south | \n",
- " Operator South | \n",
- "
\n",
- " \n",
- " Unit 20 | \n",
- " nuclear | \n",
- " pp_learning | \n",
- " uranium | \n",
- " 0.0 | \n",
- " 5000.0 | \n",
- " 0.0 | \n",
- " 0.3 | \n",
- " 24 | \n",
- " south | \n",
- " Operator-RL | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " technology bidding_zonal fuel_type emission_factor max_power \\\n",
- "name \n",
- "Unit 11 nuclear naive_eom uranium 0.0 1000.0 \n",
- "Unit 12 nuclear naive_eom uranium 0.0 1000.0 \n",
- "Unit 13 nuclear naive_eom uranium 0.0 1000.0 \n",
- "Unit 14 nuclear naive_eom uranium 0.0 1000.0 \n",
- "Unit 15 nuclear naive_eom uranium 0.0 1000.0 \n",
- "Unit 16 nuclear naive_eom uranium 0.0 1000.0 \n",
- "Unit 17 nuclear naive_eom uranium 0.0 1000.0 \n",
- "Unit 18 nuclear naive_eom uranium 0.0 1000.0 \n",
- "Unit 19 nuclear naive_eom uranium 0.0 1000.0 \n",
- "Unit 20 nuclear pp_learning uranium 0.0 5000.0 \n",
- "\n",
- " min_power efficiency additional_cost node unit_operator \n",
- "name \n",
- "Unit 11 0.0 0.3 15 north_2 Operator North \n",
- "Unit 12 0.0 0.3 16 north_2 Operator North \n",
- "Unit 13 0.0 0.3 17 north_2 Operator North \n",
- "Unit 14 0.0 0.3 18 north_2 Operator North \n",
- "Unit 15 0.0 0.3 19 north_2 Operator North \n",
- "Unit 16 0.0 0.3 20 south Operator South \n",
- "Unit 17 0.0 0.3 21 south Operator South \n",
- "Unit 18 0.0 0.3 22 south Operator South \n",
- "Unit 19 0.0 0.3 23 south Operator South \n",
- "Unit 20 0.0 0.3 24 south Operator-RL "
- ]
- },
- "execution_count": 5,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"# Create scarcity in southern Germany by limiting the number of power plants\n",
"powerplant_units = powerplant_units[:20]\n",
@@ -627,7 +380,7 @@
},
{
"cell_type": "code",
- "execution_count": 6,
+ "execution_count": null,
"id": "f6c64dc2",
"metadata": {
"colab": {
@@ -636,15 +389,7 @@
"id": "9c555ce9",
"outputId": "473126ae-3c3e-4698-e3a5-347cc00e5108"
},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Configuration YAML file has been saved to 'inputs\\tutorial_08\\config.yaml'.\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"# YAML configuration for the RL training\n",
"config = {\n",
@@ -714,7 +459,7 @@
},
{
"cell_type": "code",
- "execution_count": 7,
+ "execution_count": null,
"id": "a01977d5",
"metadata": {
"cellView": "form",
@@ -938,7 +683,7 @@
},
{
"cell_type": "code",
- "execution_count": 8,
+ "execution_count": null,
"id": "0c1c9334",
"metadata": {
"colab": {
@@ -948,555 +693,7 @@
"id": "bfadf522",
"outputId": "7c91ab13-a3c2-4e89-d8ac-d20be95391f6"
},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "INFO:assume.world:connected to db\n",
- "INFO:assume.scenario.loader_csv:Starting Scenario tutorial_08/zonal_case from inputs\n",
- "INFO:assume.scenario.loader_csv:storage_units not found. Returning None\n",
- "INFO:assume.scenario.loader_csv:industrial_dsm_units not found. Returning None\n",
- "INFO:assume.scenario.loader_csv:residential_dsm_units not found. Returning None\n",
- "INFO:assume.scenario.loader_csv:forecasts_df not found. Returning None\n",
- "INFO:assume.scenario.loader_csv:cross_border_flows not found. Returning None\n",
- "INFO:assume.scenario.loader_csv:availability_df not found. Returning None\n",
- "INFO:assume.scenario.loader_csv:electricity_prices not found. Returning None\n",
- "INFO:assume.scenario.loader_csv:price_forecasts not found. Returning None\n",
- "INFO:assume.scenario.loader_csv:temperature not found. Returning None\n",
- "INFO:assume.scenario.loader_csv:save_frequency_hours is disabled due to CSV export being enabled. Data will be stored in the CSV files at the end of the simulation.\n",
- "INFO:assume.scenario.loader_csv:Adding markets\n",
- "INFO:assume.scenario.loader_csv:Read units from file\n",
- "INFO:assume.scenario.loader_csv:Adding power_plant units\n",
- "INFO:assume.scenario.loader_csv:Adding demand units\n",
- "INFO:assume.scenario.loader_csv:Adding unit operators and units\n",
- "INFO:assume.scenario.loader_csv:storage_units not found. Returning None\n",
- "INFO:assume.scenario.loader_csv:industrial_dsm_units not found. Returning None\n",
- "INFO:assume.scenario.loader_csv:residential_dsm_units not found. Returning None\n",
- "INFO:assume.scenario.loader_csv:forecasts_df not found. Returning None\n",
- "INFO:assume.scenario.loader_csv:cross_border_flows not found. Returning None\n",
- "INFO:assume.scenario.loader_csv:availability_df not found. Returning None\n",
- "INFO:assume.scenario.loader_csv:electricity_prices not found. Returning None\n",
- "INFO:assume.scenario.loader_csv:price_forecasts not found. Returning None\n",
- "INFO:assume.scenario.loader_csv:temperature not found. Returning None\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "Training Episodes: 0%| | 0/15 [00:00, ?it/s]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "INFO:assume.world:activating container\n",
- "INFO:assume.world:all agents up - starting simulation\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "tutorial_08_zonal_case_1 2019-01-01 23:00:00: : 82801.0it [00:02, 31967.24it/s] \n",
- "Training Episodes: 7%|▋ | 1/15 [00:02<00:38, 2.72s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "INFO:assume.scenario.loader_csv:Adding markets\n",
- "INFO:assume.scenario.loader_csv:Read units from file\n",
- "INFO:assume.scenario.loader_csv:Adding power_plant units\n",
- "INFO:assume.scenario.loader_csv:Adding demand units\n",
- "INFO:assume.scenario.loader_csv:Adding unit operators and units\n",
- "INFO:assume.world:activating container\n",
- "INFO:assume.world:all agents up - starting simulation\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "tutorial_08_zonal_case_2 2019-01-01 23:00:00: : 82801.0it [00:02, 30502.06it/s] \n",
- "Training Episodes: 13%|█▎ | 2/15 [00:05<00:36, 2.80s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "INFO:assume.scenario.loader_csv:Adding markets\n",
- "INFO:assume.scenario.loader_csv:Read units from file\n",
- "INFO:assume.scenario.loader_csv:Adding power_plant units\n",
- "INFO:assume.scenario.loader_csv:Adding demand units\n",
- "INFO:assume.scenario.loader_csv:Adding unit operators and units\n",
- "INFO:assume.world:activating container\n",
- "INFO:assume.world:all agents up - starting simulation\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "tutorial_08_zonal_case_3 2019-01-01 23:00:00: : 82801.0it [00:02, 32180.68it/s]\n",
- "Training Episodes: 20%|██ | 3/15 [00:08<00:33, 2.77s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "INFO:assume.scenario.loader_csv:Adding markets\n",
- "INFO:assume.scenario.loader_csv:Read units from file\n",
- "INFO:assume.scenario.loader_csv:Adding power_plant units\n",
- "INFO:assume.scenario.loader_csv:Adding demand units\n",
- "INFO:assume.scenario.loader_csv:Adding unit operators and units\n",
- "INFO:assume.world:activating container\n",
- "INFO:assume.world:all agents up - starting simulation\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "tutorial_08_zonal_case_4 2019-01-01 23:00:00: : 82801.0it [00:02, 30579.39it/s] \n",
- "Training Episodes: 27%|██▋ | 4/15 [00:11<00:30, 2.79s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "INFO:assume.scenario.loader_csv:Adding markets\n",
- "INFO:assume.scenario.loader_csv:Read units from file\n",
- "INFO:assume.scenario.loader_csv:Adding power_plant units\n",
- "INFO:assume.scenario.loader_csv:Adding demand units\n",
- "INFO:assume.scenario.loader_csv:Adding unit operators and units\n",
- "INFO:assume.world:activating container\n",
- "INFO:assume.world:all agents up - starting simulation\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "tutorial_08_zonal_case_5 2019-01-01 23:00:00: : 82801.0it [00:03, 24050.61it/s] \n",
- "Training Episodes: 33%|███▎ | 5/15 [00:14<00:30, 3.07s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "INFO:assume.scenario.loader_csv:Adding markets\n",
- "INFO:assume.scenario.loader_csv:Read units from file\n",
- "INFO:assume.scenario.loader_csv:Adding power_plant units\n",
- "INFO:assume.scenario.loader_csv:Adding demand units\n",
- "INFO:assume.scenario.loader_csv:Adding unit operators and units\n",
- "INFO:assume.world:activating container\n",
- "INFO:assume.world:all agents up - starting simulation\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "tutorial_08_zonal_case_6 2019-01-01 23:00:00: : 82801.0it [00:03, 26408.84it/s] "
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "INFO:assume.scenario.loader_csv:Adding markets\n",
- "INFO:assume.scenario.loader_csv:Read units from file\n",
- "INFO:assume.scenario.loader_csv:Adding power_plant units\n",
- "INFO:assume.scenario.loader_csv:Adding demand units\n",
- "INFO:assume.scenario.loader_csv:Adding unit operators and units\n",
- "INFO:assume.world:activating container\n",
- "INFO:assume.world:all agents up - starting simulation\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\n",
- "tutorial_08_zonal_case_eval_1 2019-01-01 23:00:00: : 82801.0it [00:02, 30411.76it/s] "
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "INFO:assume.reinforcement_learning.learning_role:New best policy saved, episode: 1, metric='avg_reward', value=4180.41\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\n",
- "Training Episodes: 40%|████ | 6/15 [00:20<00:36, 4.10s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "INFO:assume.scenario.loader_csv:Adding markets\n",
- "INFO:assume.scenario.loader_csv:Read units from file\n",
- "INFO:assume.scenario.loader_csv:Adding power_plant units\n",
- "INFO:assume.scenario.loader_csv:Adding demand units\n",
- "INFO:assume.scenario.loader_csv:Adding unit operators and units\n",
- "INFO:assume.world:activating container\n",
- "INFO:assume.world:all agents up - starting simulation\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "tutorial_08_zonal_case_7 2019-01-01 23:00:00: : 82801.0it [00:03, 27077.76it/s] \n",
- "Training Episodes: 47%|████▋ | 7/15 [00:23<00:30, 3.79s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "INFO:assume.scenario.loader_csv:Adding markets\n",
- "INFO:assume.scenario.loader_csv:Read units from file\n",
- "INFO:assume.scenario.loader_csv:Adding power_plant units\n",
- "INFO:assume.scenario.loader_csv:Adding demand units\n",
- "INFO:assume.scenario.loader_csv:Adding unit operators and units\n",
- "INFO:assume.world:activating container\n",
- "INFO:assume.world:all agents up - starting simulation\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "tutorial_08_zonal_case_8 2019-01-01 23:00:00: : 82801.0it [00:03, 23950.45it/s] \n",
- "Training Episodes: 53%|█████▎ | 8/15 [00:27<00:26, 3.73s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "INFO:assume.scenario.loader_csv:Adding markets\n",
- "INFO:assume.scenario.loader_csv:Read units from file\n",
- "INFO:assume.scenario.loader_csv:Adding power_plant units\n",
- "INFO:assume.scenario.loader_csv:Adding demand units\n",
- "INFO:assume.scenario.loader_csv:Adding unit operators and units\n",
- "INFO:assume.world:activating container\n",
- "INFO:assume.world:all agents up - starting simulation\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "tutorial_08_zonal_case_9 2019-01-01 23:00:00: : 82801.0it [00:03, 25209.52it/s] \n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "INFO:assume.scenario.loader_csv:Adding markets\n",
- "INFO:assume.scenario.loader_csv:Read units from file\n",
- "INFO:assume.scenario.loader_csv:Adding power_plant units\n",
- "INFO:assume.scenario.loader_csv:Adding demand units\n",
- "INFO:assume.scenario.loader_csv:Adding unit operators and units\n",
- "INFO:assume.world:activating container\n",
- "INFO:assume.world:all agents up - starting simulation\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "tutorial_08_zonal_case_eval_2 2019-01-01 23:00:00: : 82801.0it [00:02, 33235.56it/s] "
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "INFO:assume.reinforcement_learning.learning_role:New best policy saved, episode: 2, metric='avg_reward', value=4186.15\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\n",
- "Training Episodes: 60%|██████ | 9/15 [00:33<00:26, 4.44s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "INFO:assume.scenario.loader_csv:Adding markets\n",
- "INFO:assume.scenario.loader_csv:Read units from file\n",
- "INFO:assume.scenario.loader_csv:Adding power_plant units\n",
- "INFO:assume.scenario.loader_csv:Adding demand units\n",
- "INFO:assume.scenario.loader_csv:Adding unit operators and units\n",
- "INFO:assume.world:activating container\n",
- "INFO:assume.world:all agents up - starting simulation\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "tutorial_08_zonal_case_10 2019-01-01 23:00:00: : 82801.0it [00:03, 25664.48it/s]\n",
- "Training Episodes: 67%|██████▋ | 10/15 [00:36<00:20, 4.09s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "INFO:assume.scenario.loader_csv:Adding markets\n",
- "INFO:assume.scenario.loader_csv:Read units from file\n",
- "INFO:assume.scenario.loader_csv:Adding power_plant units\n",
- "INFO:assume.scenario.loader_csv:Adding demand units\n",
- "INFO:assume.scenario.loader_csv:Adding unit operators and units\n",
- "INFO:assume.world:activating container\n",
- "INFO:assume.world:all agents up - starting simulation\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "tutorial_08_zonal_case_11 2019-01-01 23:00:00: : 82801.0it [00:05, 15532.78it/s] \n",
- "Training Episodes: 73%|███████▎ | 11/15 [00:42<00:18, 4.50s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "INFO:assume.scenario.loader_csv:Adding markets\n",
- "INFO:assume.scenario.loader_csv:Read units from file\n",
- "INFO:assume.scenario.loader_csv:Adding power_plant units\n",
- "INFO:assume.scenario.loader_csv:Adding demand units\n",
- "INFO:assume.scenario.loader_csv:Adding unit operators and units\n",
- "INFO:assume.world:activating container\n",
- "INFO:assume.world:all agents up - starting simulation\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "tutorial_08_zonal_case_12 2019-01-01 23:00:00: : 82801.0it [00:05, 14237.22it/s]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "INFO:assume.scenario.loader_csv:Adding markets\n",
- "INFO:assume.scenario.loader_csv:Read units from file\n",
- "INFO:assume.scenario.loader_csv:Adding power_plant units\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "INFO:assume.scenario.loader_csv:Adding demand units\n",
- "INFO:assume.scenario.loader_csv:Adding unit operators and units\n",
- "INFO:assume.world:activating container\n",
- "INFO:assume.world:all agents up - starting simulation\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "tutorial_08_zonal_case_eval_3 2019-01-01 23:00:00: : 82801.0it [00:03, 24225.07it/s] "
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "INFO:assume.reinforcement_learning.learning_role:New best policy saved, episode: 3, metric='avg_reward', value=4186.91\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\n",
- "Training Episodes: 80%|████████ | 12/15 [00:51<00:18, 6.04s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "INFO:assume.scenario.loader_csv:Adding markets\n",
- "INFO:assume.scenario.loader_csv:Read units from file\n",
- "INFO:assume.scenario.loader_csv:Adding power_plant units\n",
- "INFO:assume.scenario.loader_csv:Adding demand units\n",
- "INFO:assume.scenario.loader_csv:Adding unit operators and units\n",
- "INFO:assume.world:activating container\n",
- "INFO:assume.world:all agents up - starting simulation\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "tutorial_08_zonal_case_13 2019-01-01 23:00:00: : 82801.0it [00:03, 26351.15it/s] \n",
- "Training Episodes: 87%|████████▋ | 13/15 [00:55<00:10, 5.20s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "INFO:assume.scenario.loader_csv:Adding markets\n",
- "INFO:assume.scenario.loader_csv:Read units from file\n",
- "INFO:assume.scenario.loader_csv:Adding power_plant units\n",
- "INFO:assume.scenario.loader_csv:Adding demand units\n",
- "INFO:assume.scenario.loader_csv:Adding unit operators and units\n",
- "INFO:assume.world:activating container\n",
- "INFO:assume.world:all agents up - starting simulation\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "tutorial_08_zonal_case_14 2019-01-01 23:00:00: : 82801.0it [00:03, 27199.86it/s] \n",
- "Training Episodes: 93%|█████████▎| 14/15 [00:58<00:04, 4.58s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "INFO:assume.scenario.loader_csv:Adding markets\n",
- "INFO:assume.scenario.loader_csv:Read units from file\n",
- "INFO:assume.scenario.loader_csv:Adding power_plant units\n",
- "INFO:assume.scenario.loader_csv:Adding demand units\n",
- "INFO:assume.scenario.loader_csv:Adding unit operators and units\n",
- "INFO:assume.world:activating container\n",
- "INFO:assume.world:all agents up - starting simulation\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "tutorial_08_zonal_case_15 2019-01-01 23:00:00: : 82801.0it [00:03, 26622.42it/s]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "INFO:assume.scenario.loader_csv:Adding markets\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "INFO:assume.scenario.loader_csv:Read units from file\n",
- "INFO:assume.scenario.loader_csv:Adding power_plant units\n",
- "INFO:assume.scenario.loader_csv:Adding demand units\n",
- "INFO:assume.scenario.loader_csv:Adding unit operators and units\n",
- "INFO:assume.world:activating container\n",
- "INFO:assume.world:all agents up - starting simulation\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "tutorial_08_zonal_case_eval_4 2019-01-01 23:00:00: : 82801.0it [00:02, 28226.20it/s] "
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "INFO:assume.reinforcement_learning.learning_role:New best policy saved, episode: 4, metric='avg_reward', value=4187.12\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\n",
- "Training Episodes: 100%|██████████| 15/15 [01:22<00:00, 5.49s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "INFO:assume.scenario.loader_csv:save_frequency_hours is disabled due to CSV export being enabled. Data will be stored in the CSV files at the end of the simulation.\n",
- "INFO:assume.scenario.loader_csv:Adding markets\n",
- "INFO:assume.scenario.loader_csv:Read units from file\n",
- "INFO:assume.scenario.loader_csv:Adding power_plant units\n",
- "INFO:assume.scenario.loader_csv:Adding demand units\n",
- "INFO:assume.scenario.loader_csv:Adding unit operators and units\n",
- "INFO:assume.world:activating container\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "INFO:assume.common.outputs:tried writing grid data to non postGIS database\n",
- "INFO:assume.world:all agents up - starting simulation\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "tutorial_08_zonal_case 2019-01-01 23:00:00: : 82801it [00:02, 29966.62it/s] \n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"# Import necessary classes and functions from the Assume framework\n",
"from assume import World\n",
@@ -1560,984 +757,13 @@
},
{
"cell_type": "code",
- "execution_count": 9,
+ "execution_count": null,
"id": "762acdfe",
"metadata": {
"id": "bdb21cbe",
"lines_to_next_cell": 2
},
- "outputs": [
- {
- "data": {
- "application/vnd.plotly.v1+json": {
- "config": {
- "plotlyServerURL": "https://plot.ly"
- },
- "data": [
- {
- "line": {
- "width": 2
- },
- "mode": "lines",
- "name": "DE_1 - Simulation",
- "type": "scatter",
- "x": [
- "2019-01-01T01:00:00",
- "2019-01-01T02:00:00",
- "2019-01-01T03:00:00",
- "2019-01-01T04:00:00",
- "2019-01-01T05:00:00",
- "2019-01-01T06:00:00",
- "2019-01-01T07:00:00",
- "2019-01-01T08:00:00",
- "2019-01-01T09:00:00",
- "2019-01-01T10:00:00",
- "2019-01-01T11:00:00",
- "2019-01-01T12:00:00",
- "2019-01-01T13:00:00",
- "2019-01-01T14:00:00",
- "2019-01-01T15:00:00",
- "2019-01-01T16:00:00",
- "2019-01-01T17:00:00",
- "2019-01-01T18:00:00",
- "2019-01-01T19:00:00",
- "2019-01-01T20:00:00",
- "2019-01-01T21:00:00",
- "2019-01-01T22:00:00",
- "2019-01-01T23:00:00"
- ],
- "y": [
- 98.929,
- 98.938,
- 98.939,
- 98.942,
- 98.944,
- 98.943,
- 98.945,
- 98.946,
- 98.951,
- 3000,
- 3000,
- 3000,
- 3000,
- 3000,
- 3000,
- 3000,
- 3000,
- 3000,
- 3000,
- 3000,
- 3000,
- 3000,
- 3000
- ]
- },
- {
- "line": {
- "width": 2
- },
- "mode": "lines",
- "name": "DE_2 - Simulation",
- "type": "scatter",
- "x": [
- "2019-01-01T01:00:00",
- "2019-01-01T02:00:00",
- "2019-01-01T03:00:00",
- "2019-01-01T04:00:00",
- "2019-01-01T05:00:00",
- "2019-01-01T06:00:00",
- "2019-01-01T07:00:00",
- "2019-01-01T08:00:00",
- "2019-01-01T09:00:00",
- "2019-01-01T10:00:00",
- "2019-01-01T11:00:00",
- "2019-01-01T12:00:00",
- "2019-01-01T13:00:00",
- "2019-01-01T14:00:00",
- "2019-01-01T15:00:00",
- "2019-01-01T16:00:00",
- "2019-01-01T17:00:00",
- "2019-01-01T18:00:00",
- "2019-01-01T19:00:00",
- "2019-01-01T20:00:00",
- "2019-01-01T21:00:00",
- "2019-01-01T22:00:00",
- "2019-01-01T23:00:00"
- ],
- "y": [
- 98.929,
- 98.938,
- 98.939,
- 98.942,
- 98.944,
- 98.943,
- 98.945,
- 98.946,
- 98.951,
- 3000,
- 3000,
- 3000,
- 3000,
- 3000,
- 3000,
- 3000,
- 3000,
- 3000,
- 3000,
- 3000,
- 3000,
- 3000,
- 3000
- ]
- }
- ],
- "layout": {
- "height": 600,
- "hovermode": "x unified",
- "legend": {
- "title": {
- "text": "Market Zones"
- }
- },
- "template": {
- "data": {
- "bar": [
- {
- "error_x": {
- "color": "#2a3f5f"
- },
- "error_y": {
- "color": "#2a3f5f"
- },
- "marker": {
- "line": {
- "color": "white",
- "width": 0.5
- },
- "pattern": {
- "fillmode": "overlay",
- "size": 10,
- "solidity": 0.2
- }
- },
- "type": "bar"
- }
- ],
- "barpolar": [
- {
- "marker": {
- "line": {
- "color": "white",
- "width": 0.5
- },
- "pattern": {
- "fillmode": "overlay",
- "size": 10,
- "solidity": 0.2
- }
- },
- "type": "barpolar"
- }
- ],
- "carpet": [
- {
- "aaxis": {
- "endlinecolor": "#2a3f5f",
- "gridcolor": "#C8D4E3",
- "linecolor": "#C8D4E3",
- "minorgridcolor": "#C8D4E3",
- "startlinecolor": "#2a3f5f"
- },
- "baxis": {
- "endlinecolor": "#2a3f5f",
- "gridcolor": "#C8D4E3",
- "linecolor": "#C8D4E3",
- "minorgridcolor": "#C8D4E3",
- "startlinecolor": "#2a3f5f"
- },
- "type": "carpet"
- }
- ],
- "choropleth": [
- {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- },
- "type": "choropleth"
- }
- ],
- "contour": [
- {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- },
- "colorscale": [
- [
- 0,
- "#0d0887"
- ],
- [
- 0.1111111111111111,
- "#46039f"
- ],
- [
- 0.2222222222222222,
- "#7201a8"
- ],
- [
- 0.3333333333333333,
- "#9c179e"
- ],
- [
- 0.4444444444444444,
- "#bd3786"
- ],
- [
- 0.5555555555555556,
- "#d8576b"
- ],
- [
- 0.6666666666666666,
- "#ed7953"
- ],
- [
- 0.7777777777777778,
- "#fb9f3a"
- ],
- [
- 0.8888888888888888,
- "#fdca26"
- ],
- [
- 1,
- "#f0f921"
- ]
- ],
- "type": "contour"
- }
- ],
- "contourcarpet": [
- {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- },
- "type": "contourcarpet"
- }
- ],
- "heatmap": [
- {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- },
- "colorscale": [
- [
- 0,
- "#0d0887"
- ],
- [
- 0.1111111111111111,
- "#46039f"
- ],
- [
- 0.2222222222222222,
- "#7201a8"
- ],
- [
- 0.3333333333333333,
- "#9c179e"
- ],
- [
- 0.4444444444444444,
- "#bd3786"
- ],
- [
- 0.5555555555555556,
- "#d8576b"
- ],
- [
- 0.6666666666666666,
- "#ed7953"
- ],
- [
- 0.7777777777777778,
- "#fb9f3a"
- ],
- [
- 0.8888888888888888,
- "#fdca26"
- ],
- [
- 1,
- "#f0f921"
- ]
- ],
- "type": "heatmap"
- }
- ],
- "heatmapgl": [
- {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- },
- "colorscale": [
- [
- 0,
- "#0d0887"
- ],
- [
- 0.1111111111111111,
- "#46039f"
- ],
- [
- 0.2222222222222222,
- "#7201a8"
- ],
- [
- 0.3333333333333333,
- "#9c179e"
- ],
- [
- 0.4444444444444444,
- "#bd3786"
- ],
- [
- 0.5555555555555556,
- "#d8576b"
- ],
- [
- 0.6666666666666666,
- "#ed7953"
- ],
- [
- 0.7777777777777778,
- "#fb9f3a"
- ],
- [
- 0.8888888888888888,
- "#fdca26"
- ],
- [
- 1,
- "#f0f921"
- ]
- ],
- "type": "heatmapgl"
- }
- ],
- "histogram": [
- {
- "marker": {
- "pattern": {
- "fillmode": "overlay",
- "size": 10,
- "solidity": 0.2
- }
- },
- "type": "histogram"
- }
- ],
- "histogram2d": [
- {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- },
- "colorscale": [
- [
- 0,
- "#0d0887"
- ],
- [
- 0.1111111111111111,
- "#46039f"
- ],
- [
- 0.2222222222222222,
- "#7201a8"
- ],
- [
- 0.3333333333333333,
- "#9c179e"
- ],
- [
- 0.4444444444444444,
- "#bd3786"
- ],
- [
- 0.5555555555555556,
- "#d8576b"
- ],
- [
- 0.6666666666666666,
- "#ed7953"
- ],
- [
- 0.7777777777777778,
- "#fb9f3a"
- ],
- [
- 0.8888888888888888,
- "#fdca26"
- ],
- [
- 1,
- "#f0f921"
- ]
- ],
- "type": "histogram2d"
- }
- ],
- "histogram2dcontour": [
- {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- },
- "colorscale": [
- [
- 0,
- "#0d0887"
- ],
- [
- 0.1111111111111111,
- "#46039f"
- ],
- [
- 0.2222222222222222,
- "#7201a8"
- ],
- [
- 0.3333333333333333,
- "#9c179e"
- ],
- [
- 0.4444444444444444,
- "#bd3786"
- ],
- [
- 0.5555555555555556,
- "#d8576b"
- ],
- [
- 0.6666666666666666,
- "#ed7953"
- ],
- [
- 0.7777777777777778,
- "#fb9f3a"
- ],
- [
- 0.8888888888888888,
- "#fdca26"
- ],
- [
- 1,
- "#f0f921"
- ]
- ],
- "type": "histogram2dcontour"
- }
- ],
- "mesh3d": [
- {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- },
- "type": "mesh3d"
- }
- ],
- "parcoords": [
- {
- "line": {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- }
- },
- "type": "parcoords"
- }
- ],
- "pie": [
- {
- "automargin": true,
- "type": "pie"
- }
- ],
- "scatter": [
- {
- "fillpattern": {
- "fillmode": "overlay",
- "size": 10,
- "solidity": 0.2
- },
- "type": "scatter"
- }
- ],
- "scatter3d": [
- {
- "line": {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- }
- },
- "marker": {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- }
- },
- "type": "scatter3d"
- }
- ],
- "scattercarpet": [
- {
- "marker": {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- }
- },
- "type": "scattercarpet"
- }
- ],
- "scattergeo": [
- {
- "marker": {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- }
- },
- "type": "scattergeo"
- }
- ],
- "scattergl": [
- {
- "marker": {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- }
- },
- "type": "scattergl"
- }
- ],
- "scattermapbox": [
- {
- "marker": {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- }
- },
- "type": "scattermapbox"
- }
- ],
- "scatterpolar": [
- {
- "marker": {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- }
- },
- "type": "scatterpolar"
- }
- ],
- "scatterpolargl": [
- {
- "marker": {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- }
- },
- "type": "scatterpolargl"
- }
- ],
- "scatterternary": [
- {
- "marker": {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- }
- },
- "type": "scatterternary"
- }
- ],
- "surface": [
- {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- },
- "colorscale": [
- [
- 0,
- "#0d0887"
- ],
- [
- 0.1111111111111111,
- "#46039f"
- ],
- [
- 0.2222222222222222,
- "#7201a8"
- ],
- [
- 0.3333333333333333,
- "#9c179e"
- ],
- [
- 0.4444444444444444,
- "#bd3786"
- ],
- [
- 0.5555555555555556,
- "#d8576b"
- ],
- [
- 0.6666666666666666,
- "#ed7953"
- ],
- [
- 0.7777777777777778,
- "#fb9f3a"
- ],
- [
- 0.8888888888888888,
- "#fdca26"
- ],
- [
- 1,
- "#f0f921"
- ]
- ],
- "type": "surface"
- }
- ],
- "table": [
- {
- "cells": {
- "fill": {
- "color": "#EBF0F8"
- },
- "line": {
- "color": "white"
- }
- },
- "header": {
- "fill": {
- "color": "#C8D4E3"
- },
- "line": {
- "color": "white"
- }
- },
- "type": "table"
- }
- ]
- },
- "layout": {
- "annotationdefaults": {
- "arrowcolor": "#2a3f5f",
- "arrowhead": 0,
- "arrowwidth": 1
- },
- "autotypenumbers": "strict",
- "coloraxis": {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- }
- },
- "colorscale": {
- "diverging": [
- [
- 0,
- "#8e0152"
- ],
- [
- 0.1,
- "#c51b7d"
- ],
- [
- 0.2,
- "#de77ae"
- ],
- [
- 0.3,
- "#f1b6da"
- ],
- [
- 0.4,
- "#fde0ef"
- ],
- [
- 0.5,
- "#f7f7f7"
- ],
- [
- 0.6,
- "#e6f5d0"
- ],
- [
- 0.7,
- "#b8e186"
- ],
- [
- 0.8,
- "#7fbc41"
- ],
- [
- 0.9,
- "#4d9221"
- ],
- [
- 1,
- "#276419"
- ]
- ],
- "sequential": [
- [
- 0,
- "#0d0887"
- ],
- [
- 0.1111111111111111,
- "#46039f"
- ],
- [
- 0.2222222222222222,
- "#7201a8"
- ],
- [
- 0.3333333333333333,
- "#9c179e"
- ],
- [
- 0.4444444444444444,
- "#bd3786"
- ],
- [
- 0.5555555555555556,
- "#d8576b"
- ],
- [
- 0.6666666666666666,
- "#ed7953"
- ],
- [
- 0.7777777777777778,
- "#fb9f3a"
- ],
- [
- 0.8888888888888888,
- "#fdca26"
- ],
- [
- 1,
- "#f0f921"
- ]
- ],
- "sequentialminus": [
- [
- 0,
- "#0d0887"
- ],
- [
- 0.1111111111111111,
- "#46039f"
- ],
- [
- 0.2222222222222222,
- "#7201a8"
- ],
- [
- 0.3333333333333333,
- "#9c179e"
- ],
- [
- 0.4444444444444444,
- "#bd3786"
- ],
- [
- 0.5555555555555556,
- "#d8576b"
- ],
- [
- 0.6666666666666666,
- "#ed7953"
- ],
- [
- 0.7777777777777778,
- "#fb9f3a"
- ],
- [
- 0.8888888888888888,
- "#fdca26"
- ],
- [
- 1,
- "#f0f921"
- ]
- ]
- },
- "colorway": [
- "#636efa",
- "#EF553B",
- "#00cc96",
- "#ab63fa",
- "#FFA15A",
- "#19d3f3",
- "#FF6692",
- "#B6E880",
- "#FF97FF",
- "#FECB52"
- ],
- "font": {
- "color": "#2a3f5f"
- },
- "geo": {
- "bgcolor": "white",
- "lakecolor": "white",
- "landcolor": "white",
- "showlakes": true,
- "showland": true,
- "subunitcolor": "#C8D4E3"
- },
- "hoverlabel": {
- "align": "left"
- },
- "hovermode": "closest",
- "mapbox": {
- "style": "light"
- },
- "paper_bgcolor": "white",
- "plot_bgcolor": "white",
- "polar": {
- "angularaxis": {
- "gridcolor": "#EBF0F8",
- "linecolor": "#EBF0F8",
- "ticks": ""
- },
- "bgcolor": "white",
- "radialaxis": {
- "gridcolor": "#EBF0F8",
- "linecolor": "#EBF0F8",
- "ticks": ""
- }
- },
- "scene": {
- "xaxis": {
- "backgroundcolor": "white",
- "gridcolor": "#DFE8F3",
- "gridwidth": 2,
- "linecolor": "#EBF0F8",
- "showbackground": true,
- "ticks": "",
- "zerolinecolor": "#EBF0F8"
- },
- "yaxis": {
- "backgroundcolor": "white",
- "gridcolor": "#DFE8F3",
- "gridwidth": 2,
- "linecolor": "#EBF0F8",
- "showbackground": true,
- "ticks": "",
- "zerolinecolor": "#EBF0F8"
- },
- "zaxis": {
- "backgroundcolor": "white",
- "gridcolor": "#DFE8F3",
- "gridwidth": 2,
- "linecolor": "#EBF0F8",
- "showbackground": true,
- "ticks": "",
- "zerolinecolor": "#EBF0F8"
- }
- },
- "shapedefaults": {
- "line": {
- "color": "#2a3f5f"
- }
- },
- "ternary": {
- "aaxis": {
- "gridcolor": "#DFE8F3",
- "linecolor": "#A2B1C6",
- "ticks": ""
- },
- "baxis": {
- "gridcolor": "#DFE8F3",
- "linecolor": "#A2B1C6",
- "ticks": ""
- },
- "bgcolor": "white",
- "caxis": {
- "gridcolor": "#DFE8F3",
- "linecolor": "#A2B1C6",
- "ticks": ""
- }
- },
- "title": {
- "x": 0.05
- },
- "xaxis": {
- "automargin": true,
- "gridcolor": "#EBF0F8",
- "linecolor": "#EBF0F8",
- "ticks": "",
- "title": {
- "standoff": 15
- },
- "zerolinecolor": "#EBF0F8",
- "zerolinewidth": 2
- },
- "yaxis": {
- "automargin": true,
- "gridcolor": "#EBF0F8",
- "linecolor": "#EBF0F8",
- "ticks": "",
- "title": {
- "standoff": 15
- },
- "zerolinecolor": "#EBF0F8",
- "zerolinewidth": 2
- }
- }
- },
- "title": {
- "text": "Clearing Prices per Zone Over Time: Simulation Results"
- },
- "width": 1000,
- "xaxis": {
- "tickangle": 45,
- "title": {
- "text": "Time"
- },
- "type": "date"
- },
- "yaxis": {
- "title": {
- "text": "Clearing Price (EUR/MWh)"
- }
- }
- }
- }
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
+ "outputs": [],
"source": [
"# Import Plotly for creating interactive visualizations\n",
"import plotly.graph_objects as go\n",
@@ -2648,7 +874,7 @@
},
{
"cell_type": "code",
- "execution_count": 10,
+ "execution_count": null,
"id": "55e097c0",
"metadata": {
"id": "ae266ecb",
@@ -2656,48 +882,7 @@
"languageId": "shellscript"
}
},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Requirement already satisfied: matplotlib in c:\\users\\aeppl\\.conda\\envs\\assume\\lib\\site-packages (3.9.2)\n",
- "Requirement already satisfied: contourpy>=1.0.1 in c:\\users\\aeppl\\.conda\\envs\\assume\\lib\\site-packages (from matplotlib) (1.3.0)\n",
- "Requirement already satisfied: cycler>=0.10 in c:\\users\\aeppl\\.conda\\envs\\assume\\lib\\site-packages (from matplotlib) (0.12.1)\n",
- "Requirement already satisfied: fonttools>=4.22.0 in c:\\users\\aeppl\\.conda\\envs\\assume\\lib\\site-packages (from matplotlib) (4.54.1)\n",
- "Requirement already satisfied: kiwisolver>=1.3.1 in c:\\users\\aeppl\\.conda\\envs\\assume\\lib\\site-packages (from matplotlib) (1.4.7)\n",
- "Requirement already satisfied: numpy>=1.23 in c:\\users\\aeppl\\.conda\\envs\\assume\\lib\\site-packages (from matplotlib) (1.26.4)\n",
- "Requirement already satisfied: packaging>=20.0 in c:\\users\\aeppl\\.conda\\envs\\assume\\lib\\site-packages (from matplotlib) (24.1)\n",
- "Requirement already satisfied: pillow>=8 in c:\\users\\aeppl\\.conda\\envs\\assume\\lib\\site-packages (from matplotlib) (11.0.0)\n",
- "Requirement already satisfied: pyparsing>=2.3.1 in c:\\users\\aeppl\\.conda\\envs\\assume\\lib\\site-packages (from matplotlib) (3.2.0)\n",
- "Requirement already satisfied: python-dateutil>=2.7 in c:\\users\\aeppl\\.conda\\envs\\assume\\lib\\site-packages (from matplotlib) (2.9.0)\n",
- "Requirement already satisfied: six>=1.5 in c:\\users\\aeppl\\.conda\\envs\\assume\\lib\\site-packages (from python-dateutil>=2.7->matplotlib) (1.16.0)\n",
- "Requirement already satisfied: shap==0.42.1 in c:\\users\\aeppl\\.conda\\envs\\assume\\lib\\site-packages (0.42.1)\n",
- "Requirement already satisfied: numpy in c:\\users\\aeppl\\.conda\\envs\\assume\\lib\\site-packages (from shap==0.42.1) (1.26.4)\n",
- "Requirement already satisfied: scipy in c:\\users\\aeppl\\.conda\\envs\\assume\\lib\\site-packages (from shap==0.42.1) (1.14.1)\n",
- "Requirement already satisfied: scikit-learn in c:\\users\\aeppl\\.conda\\envs\\assume\\lib\\site-packages (from shap==0.42.1) (1.3.0)\n",
- "Requirement already satisfied: pandas in c:\\users\\aeppl\\.conda\\envs\\assume\\lib\\site-packages (from shap==0.42.1) (2.2.3)\n",
- "Requirement already satisfied: tqdm>=4.27.0 in c:\\users\\aeppl\\.conda\\envs\\assume\\lib\\site-packages (from shap==0.42.1) (4.66.6)\n",
- "Requirement already satisfied: packaging>20.9 in c:\\users\\aeppl\\.conda\\envs\\assume\\lib\\site-packages (from shap==0.42.1) (24.1)\n",
- "Requirement already satisfied: slicer==0.0.7 in c:\\users\\aeppl\\.conda\\envs\\assume\\lib\\site-packages (from shap==0.42.1) (0.0.7)\n",
- "Requirement already satisfied: numba in c:\\users\\aeppl\\.conda\\envs\\assume\\lib\\site-packages (from shap==0.42.1) (0.60.0)\n",
- "Requirement already satisfied: cloudpickle in c:\\users\\aeppl\\.conda\\envs\\assume\\lib\\site-packages (from shap==0.42.1) (3.1.0)\n",
- "Requirement already satisfied: colorama in c:\\users\\aeppl\\.conda\\envs\\assume\\lib\\site-packages (from tqdm>=4.27.0->shap==0.42.1) (0.4.6)\n",
- "Requirement already satisfied: llvmlite<0.44,>=0.43.0dev0 in c:\\users\\aeppl\\.conda\\envs\\assume\\lib\\site-packages (from numba->shap==0.42.1) (0.43.0)\n",
- "Requirement already satisfied: python-dateutil>=2.8.2 in c:\\users\\aeppl\\.conda\\envs\\assume\\lib\\site-packages (from pandas->shap==0.42.1) (2.9.0)\n",
- "Requirement already satisfied: pytz>=2020.1 in c:\\users\\aeppl\\.conda\\envs\\assume\\lib\\site-packages (from pandas->shap==0.42.1) (2024.2)\n",
- "Requirement already satisfied: tzdata>=2022.7 in c:\\users\\aeppl\\.conda\\envs\\assume\\lib\\site-packages (from pandas->shap==0.42.1) (2024.2)\n",
- "Requirement already satisfied: joblib>=1.1.1 in c:\\users\\aeppl\\.conda\\envs\\assume\\lib\\site-packages (from scikit-learn->shap==0.42.1) (1.4.2)\n",
- "Requirement already satisfied: threadpoolctl>=2.0.0 in c:\\users\\aeppl\\.conda\\envs\\assume\\lib\\site-packages (from scikit-learn->shap==0.42.1) (3.5.0)\n",
- "Requirement already satisfied: six>=1.5 in c:\\users\\aeppl\\.conda\\envs\\assume\\lib\\site-packages (from python-dateutil>=2.8.2->pandas->shap==0.42.1) (1.16.0)\n",
- "Requirement already satisfied: scikit-learn==1.3.0 in c:\\users\\aeppl\\.conda\\envs\\assume\\lib\\site-packages (1.3.0)\n",
- "Requirement already satisfied: numpy>=1.17.3 in c:\\users\\aeppl\\.conda\\envs\\assume\\lib\\site-packages (from scikit-learn==1.3.0) (1.26.4)\n",
- "Requirement already satisfied: scipy>=1.5.0 in c:\\users\\aeppl\\.conda\\envs\\assume\\lib\\site-packages (from scikit-learn==1.3.0) (1.14.1)\n",
- "Requirement already satisfied: joblib>=1.1.1 in c:\\users\\aeppl\\.conda\\envs\\assume\\lib\\site-packages (from scikit-learn==1.3.0) (1.4.2)\n",
- "Requirement already satisfied: threadpoolctl>=2.0.0 in c:\\users\\aeppl\\.conda\\envs\\assume\\lib\\site-packages (from scikit-learn==1.3.0) (3.5.0)\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"!pip install matplotlib\n",
"!pip install shap==0.42.1\n",
@@ -2833,20 +1018,12 @@
},
{
"cell_type": "code",
- "execution_count": 11,
+ "execution_count": null,
"id": "26c6f33b",
"metadata": {
"id": "b6ee4f28"
},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
"import pandas as pd\n",
@@ -2867,7 +1044,7 @@
},
{
"cell_type": "code",
- "execution_count": 12,
+ "execution_count": null,
"id": "ab89d972",
"metadata": {
"id": "44862f06"
@@ -2923,448 +1100,12 @@
},
{
"cell_type": "code",
- "execution_count": 13,
+ "execution_count": null,
"id": "6e142be2",
"metadata": {
"id": "d522969d"
},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "inputs\\tutorial_08/learned_strategies/zonal_case/buffer_obs/buffer_obs.json\n",
- "500000\n",
- "270\n"
- ]
- },
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " price forecast t+1 | \n",
- " price forecast t+2 | \n",
- " price forecast t+3 | \n",
- " price forecast t+4 | \n",
- " price forecast t+5 | \n",
- " price forecast t+6 | \n",
- " price forecast t+7 | \n",
- " price forecast t+8 | \n",
- " price forecast t+9 | \n",
- " price forecast t+10 | \n",
- " ... | \n",
- " residual load forecast t+17 | \n",
- " residual load forecast t+18 | \n",
- " residual load forecast t+19 | \n",
- " residual load forecast t+20 | \n",
- " residual load forecast t+21 | \n",
- " residual load forecast t+22 | \n",
- " residual load forecast t+23 | \n",
- " residual load forecast t+24 | \n",
- " total capacity t-1 | \n",
- " marginal costs t-1 | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " 0 | \n",
- " 2.24 | \n",
- " 2.26 | \n",
- " 2.28 | \n",
- " 2.30 | \n",
- " 2.32 | \n",
- " 2.34 | \n",
- " 2.36 | \n",
- " 2.38 | \n",
- " 2.40 | \n",
- " 2.42 | \n",
- " ... | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.406667 | \n",
- " 0.00 | \n",
- " 0.406667 | \n",
- "
\n",
- " \n",
- " 1 | \n",
- " 2.26 | \n",
- " 2.28 | \n",
- " 2.30 | \n",
- " 2.32 | \n",
- " 2.34 | \n",
- " 2.36 | \n",
- " 2.38 | \n",
- " 2.40 | \n",
- " 2.42 | \n",
- " 2.44 | \n",
- " ... | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.406667 | \n",
- " 0.406667 | \n",
- " 0.68 | \n",
- " 0.406667 | \n",
- "
\n",
- " \n",
- " 2 | \n",
- " 2.28 | \n",
- " 2.30 | \n",
- " 2.32 | \n",
- " 2.34 | \n",
- " 2.36 | \n",
- " 2.38 | \n",
- " 2.40 | \n",
- " 2.42 | \n",
- " 2.44 | \n",
- " 2.46 | \n",
- " ... | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.406667 | \n",
- " 0.406667 | \n",
- " 0.406667 | \n",
- " 0.72 | \n",
- " 0.406667 | \n",
- "
\n",
- " \n",
- " 3 | \n",
- " 2.30 | \n",
- " 2.32 | \n",
- " 2.34 | \n",
- " 2.36 | \n",
- " 2.38 | \n",
- " 2.40 | \n",
- " 2.42 | \n",
- " 2.44 | \n",
- " 2.46 | \n",
- " 2.48 | \n",
- " ... | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.406667 | \n",
- " 0.406667 | \n",
- " 0.406667 | \n",
- " 0.406667 | \n",
- " 0.76 | \n",
- " 0.406667 | \n",
- "
\n",
- " \n",
- " 4 | \n",
- " 2.32 | \n",
- " 2.34 | \n",
- " 2.36 | \n",
- " 2.38 | \n",
- " 2.40 | \n",
- " 2.42 | \n",
- " 2.44 | \n",
- " 2.46 | \n",
- " 2.48 | \n",
- " 2.50 | \n",
- " ... | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.406667 | \n",
- " 0.406667 | \n",
- " 0.406667 | \n",
- " 0.406667 | \n",
- " 0.406667 | \n",
- " 0.80 | \n",
- " 0.406667 | \n",
- "
\n",
- " \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- "
\n",
- " \n",
- " 265 | \n",
- " 2.50 | \n",
- " 2.52 | \n",
- " 2.54 | \n",
- " 2.56 | \n",
- " 2.58 | \n",
- " 2.60 | \n",
- " 2.62 | \n",
- " 2.64 | \n",
- " 2.66 | \n",
- " 2.68 | \n",
- " ... | \n",
- " 0.406667 | \n",
- " 0.406667 | \n",
- " 0.406667 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 1.00 | \n",
- " 0.406667 | \n",
- "
\n",
- " \n",
- " 266 | \n",
- " 2.52 | \n",
- " 2.54 | \n",
- " 2.56 | \n",
- " 2.58 | \n",
- " 2.60 | \n",
- " 2.62 | \n",
- " 2.64 | \n",
- " 2.66 | \n",
- " 2.68 | \n",
- " 2.22 | \n",
- " ... | \n",
- " 0.406667 | \n",
- " 0.406667 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 1.00 | \n",
- " 0.406667 | \n",
- "
\n",
- " \n",
- " 267 | \n",
- " 2.54 | \n",
- " 2.56 | \n",
- " 2.58 | \n",
- " 2.60 | \n",
- " 2.62 | \n",
- " 2.64 | \n",
- " 2.66 | \n",
- " 2.68 | \n",
- " 2.22 | \n",
- " 2.24 | \n",
- " ... | \n",
- " 0.406667 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 1.00 | \n",
- " 0.406667 | \n",
- "
\n",
- " \n",
- " 268 | \n",
- " 2.56 | \n",
- " 2.58 | \n",
- " 2.60 | \n",
- " 2.62 | \n",
- " 2.64 | \n",
- " 2.66 | \n",
- " 2.68 | \n",
- " 2.22 | \n",
- " 2.24 | \n",
- " 2.26 | \n",
- " ... | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 1.00 | \n",
- " 0.406667 | \n",
- "
\n",
- " \n",
- " 269 | \n",
- " 2.58 | \n",
- " 2.60 | \n",
- " 2.62 | \n",
- " 2.64 | \n",
- " 2.66 | \n",
- " 2.68 | \n",
- " 2.22 | \n",
- " 2.24 | \n",
- " 2.26 | \n",
- " 2.28 | \n",
- " ... | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 1.00 | \n",
- " 0.406667 | \n",
- "
\n",
- " \n",
- "
\n",
- "
270 rows × 50 columns
\n",
- "
"
- ],
- "text/plain": [
- " price forecast t+1 price forecast t+2 price forecast t+3 \\\n",
- "0 2.24 2.26 2.28 \n",
- "1 2.26 2.28 2.30 \n",
- "2 2.28 2.30 2.32 \n",
- "3 2.30 2.32 2.34 \n",
- "4 2.32 2.34 2.36 \n",
- ".. ... ... ... \n",
- "265 2.50 2.52 2.54 \n",
- "266 2.52 2.54 2.56 \n",
- "267 2.54 2.56 2.58 \n",
- "268 2.56 2.58 2.60 \n",
- "269 2.58 2.60 2.62 \n",
- "\n",
- " price forecast t+4 price forecast t+5 price forecast t+6 \\\n",
- "0 2.30 2.32 2.34 \n",
- "1 2.32 2.34 2.36 \n",
- "2 2.34 2.36 2.38 \n",
- "3 2.36 2.38 2.40 \n",
- "4 2.38 2.40 2.42 \n",
- ".. ... ... ... \n",
- "265 2.56 2.58 2.60 \n",
- "266 2.58 2.60 2.62 \n",
- "267 2.60 2.62 2.64 \n",
- "268 2.62 2.64 2.66 \n",
- "269 2.64 2.66 2.68 \n",
- "\n",
- " price forecast t+7 price forecast t+8 price forecast t+9 \\\n",
- "0 2.36 2.38 2.40 \n",
- "1 2.38 2.40 2.42 \n",
- "2 2.40 2.42 2.44 \n",
- "3 2.42 2.44 2.46 \n",
- "4 2.44 2.46 2.48 \n",
- ".. ... ... ... \n",
- "265 2.62 2.64 2.66 \n",
- "266 2.64 2.66 2.68 \n",
- "267 2.66 2.68 2.22 \n",
- "268 2.68 2.22 2.24 \n",
- "269 2.22 2.24 2.26 \n",
- "\n",
- " price forecast t+10 ... residual load forecast t+17 \\\n",
- "0 2.42 ... 0.000000 \n",
- "1 2.44 ... 0.000000 \n",
- "2 2.46 ... 0.000000 \n",
- "3 2.48 ... 0.000000 \n",
- "4 2.50 ... 0.000000 \n",
- ".. ... ... ... \n",
- "265 2.68 ... 0.406667 \n",
- "266 2.22 ... 0.406667 \n",
- "267 2.24 ... 0.406667 \n",
- "268 2.26 ... 0.000000 \n",
- "269 2.28 ... 0.000000 \n",
- "\n",
- " residual load forecast t+18 residual load forecast t+19 \\\n",
- "0 0.000000 0.000000 \n",
- "1 0.000000 0.000000 \n",
- "2 0.000000 0.000000 \n",
- "3 0.000000 0.000000 \n",
- "4 0.000000 0.000000 \n",
- ".. ... ... \n",
- "265 0.406667 0.406667 \n",
- "266 0.406667 0.000000 \n",
- "267 0.000000 0.000000 \n",
- "268 0.000000 0.000000 \n",
- "269 0.000000 0.000000 \n",
- "\n",
- " residual load forecast t+20 residual load forecast t+21 \\\n",
- "0 0.000000 0.000000 \n",
- "1 0.000000 0.000000 \n",
- "2 0.000000 0.000000 \n",
- "3 0.000000 0.406667 \n",
- "4 0.406667 0.406667 \n",
- ".. ... ... \n",
- "265 0.000000 0.000000 \n",
- "266 0.000000 0.000000 \n",
- "267 0.000000 0.000000 \n",
- "268 0.000000 0.000000 \n",
- "269 0.000000 0.000000 \n",
- "\n",
- " residual load forecast t+22 residual load forecast t+23 \\\n",
- "0 0.000000 0.000000 \n",
- "1 0.000000 0.406667 \n",
- "2 0.406667 0.406667 \n",
- "3 0.406667 0.406667 \n",
- "4 0.406667 0.406667 \n",
- ".. ... ... \n",
- "265 0.000000 0.000000 \n",
- "266 0.000000 0.000000 \n",
- "267 0.000000 0.000000 \n",
- "268 0.000000 0.000000 \n",
- "269 0.000000 0.000000 \n",
- "\n",
- " residual load forecast t+24 total capacity t-1 marginal costs t-1 \n",
- "0 0.406667 0.00 0.406667 \n",
- "1 0.406667 0.68 0.406667 \n",
- "2 0.406667 0.72 0.406667 \n",
- "3 0.406667 0.76 0.406667 \n",
- "4 0.406667 0.80 0.406667 \n",
- ".. ... ... ... \n",
- "265 0.000000 1.00 0.406667 \n",
- "266 0.000000 1.00 0.406667 \n",
- "267 0.000000 1.00 0.406667 \n",
- "268 0.000000 1.00 0.406667 \n",
- "269 0.000000 1.00 0.406667 \n",
- "\n",
- "[270 rows x 50 columns]"
- ]
- },
- "execution_count": 13,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"# path to extra loggedobservation values\n",
"path = input_dir + \"/learned_strategies/zonal_case/buffer_obs\"\n",
@@ -3402,7 +1143,7 @@
},
{
"cell_type": "code",
- "execution_count": 14,
+ "execution_count": null,
"id": "cca85e13",
"metadata": {
"id": "4da4de57"
@@ -3419,30 +1160,12 @@
},
{
"cell_type": "code",
- "execution_count": 15,
+ "execution_count": null,
"id": "1cd3b7e6",
"metadata": {
"id": "37adecfa"
},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- ""
- ]
- },
- "execution_count": 15,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"# which actor is the RL actor\n",
"ACTOR_NUM = len(powerplant_units) # 20\n",
@@ -3470,7 +1193,7 @@
},
{
"cell_type": "code",
- "execution_count": 16,
+ "execution_count": null,
"id": "c507d331",
"metadata": {
"id": "e6460cfb"
@@ -3500,19 +1223,10 @@
},
{
"cell_type": "code",
- "execution_count": 17,
+ "execution_count": null,
"id": "b0758eb5",
"metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
- "To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"# @ Title Split the data into training and testing sets\n",
"X_train, X_test, y_train, y_test = train_test_split(\n",
@@ -3542,7 +1256,7 @@
},
{
"cell_type": "code",
- "execution_count": 18,
+ "execution_count": null,
"id": "40e12192",
"metadata": {
"id": "6d9be211"
@@ -3559,20 +1273,12 @@
},
{
"cell_type": "code",
- "execution_count": 19,
+ "execution_count": null,
"id": "56a32f41",
"metadata": {
"id": "84bb96cf"
},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "WARNING:shap:Using 229 background data samples could cause slower run times. Consider using shap.sample(data, K) or shap.kmeans(data, K) to summarize the background as K samples.\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"# Create the SHAP Kernel Explainer\n",
"explainer = shap.KernelExplainer(model_predict, X_train)"
@@ -3580,2070 +1286,12 @@
},
{
"cell_type": "code",
- "execution_count": 20,
+ "execution_count": null,
"id": "4279910b",
"metadata": {
"id": "2a7929e4"
},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " 0%| | 0/41 [00:00, ?it/s]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "INFO:shap:num_full_subsets = 1\n",
- "INFO:shap:remaining_weight_vector = [0.15162364 0.10327987 0.07918123 0.06478465 0.05524272 0.04847831\n",
- " 0.04345312 0.03959062 0.03654519 0.03409718 0.0321005 0.03045432\n",
- " 0.02908698 0.02794632 0.0269936 0.02619967 0.02554233 0.0250046\n",
- " 0.02457349 0.02423915 0.02399431 0.02383382 0.02375437]\n",
- "INFO:shap:num_paired_subset_sizes = 24\n",
- "INFO:shap:weight_left = 0.7710518569800939\n",
- "INFO:shap:np.sum(w_aug) = 49.0\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0\n",
- "INFO:shap:phi = [ 1.79784418e-05 1.15468817e-05 1.30166301e-05 1.15300818e-05\n",
- " 1.18711091e-05 1.39488074e-05 1.52748890e-05 2.16141688e-05\n",
- " 3.58958362e-05 3.66234805e-05 4.17826653e-05 -4.65696405e-05\n",
- " -4.55380381e-05 -3.73971195e-05 -2.33595427e-05 -2.19386591e-05\n",
- " -2.51031245e-05 -1.52225905e-05 -1.29019921e-05 -7.01071330e-06\n",
- " 0.00000000e+00 0.00000000e+00 8.48229473e-06 1.42535630e-05\n",
- " -2.45349519e-05 -1.87689750e-05 -2.28358595e-05 -1.69830426e-05\n",
- " -9.95167072e-06 -8.15149525e-06 -1.07152648e-05 -1.21238727e-05\n",
- " -1.31964561e-05 -1.43323496e-05 -2.20271510e-05 3.08123480e-05\n",
- " 3.51450596e-05 3.95801072e-05 3.73199662e-05 4.00925265e-05\n",
- " 3.67645624e-05 3.45077654e-05 2.45146370e-05 2.84710586e-05\n",
- " -2.98761783e-05 -3.39429493e-05 -2.99043829e-05 -1.76598811e-05\n",
- " 2.05466312e-05]\n",
- "INFO:shap:np.sum(w_aug) = 49.0\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0\n",
- "INFO:shap:phi = [ 1.60813647e-05 1.01639247e-05 1.12449445e-05 9.66270112e-06\n",
- " 1.03094898e-05 1.21483033e-05 1.32066076e-05 1.86221358e-05\n",
- " 3.13443530e-05 3.20561282e-05 3.65428985e-05 -4.11468008e-05\n",
- " -4.00994805e-05 -3.25910400e-05 -2.06168887e-05 -1.93300952e-05\n",
- " -2.24048795e-05 -1.32944758e-05 -1.15391636e-05 0.00000000e+00\n",
- " 0.00000000e+00 0.00000000e+00 6.96583312e-06 1.25287214e-05\n",
- " -2.16617668e-05 -1.67701864e-05 -2.02612259e-05 -1.58411421e-05\n",
- " -9.16458904e-06 -7.32875862e-06 -9.51136610e-06 -1.05813433e-05\n",
- " -1.19556374e-05 -1.26924837e-05 -1.87674468e-05 2.72833955e-05\n",
- " 3.14958012e-05 3.53732989e-05 3.29700385e-05 3.51306332e-05\n",
- " 3.21253517e-05 3.09017854e-05 2.09224109e-05 2.51110592e-05\n",
- " -2.65662136e-05 -3.01424743e-05 -2.64135554e-05 -1.60368927e-05\n",
- " 1.78866871e-05]\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " 2%|▏ | 1/41 [00:02<01:42, 2.57s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "INFO:shap:num_full_subsets = 1\n",
- "INFO:shap:remaining_weight_vector = [0.15162364 0.10327987 0.07918123 0.06478465 0.05524272 0.04847831\n",
- " 0.04345312 0.03959062 0.03654519 0.03409718 0.0321005 0.03045432\n",
- " 0.02908698 0.02794632 0.0269936 0.02619967 0.02554233 0.0250046\n",
- " 0.02457349 0.02423915 0.02399431 0.02383382 0.02375437]\n",
- "INFO:shap:num_paired_subset_sizes = 24\n",
- "INFO:shap:weight_left = 0.7710518569800939\n",
- "INFO:shap:np.sum(w_aug) = 49.0\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0\n",
- "INFO:shap:phi = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n",
- " 0.00000000e+00 0.00000000e+00 0.00000000e+00 7.85603363e-06\n",
- " 1.74014080e-05 1.99943098e-05 2.57524140e-05 2.91721698e-05\n",
- " 3.60388978e-05 3.76928028e-05 3.07497950e-05 -3.47657027e-05\n",
- " -4.20721949e-05 -2.81602343e-05 -2.84848342e-05 -2.09079102e-05\n",
- " -1.63421120e-05 -1.20607805e-05 -8.05081316e-06 0.00000000e+00\n",
- " -2.46519307e-05 -1.92875579e-05 -2.26793130e-05 -1.72355703e-05\n",
- " -1.02099404e-05 -8.13666615e-06 -1.09581983e-05 -1.22551143e-05\n",
- " -1.33884271e-05 -1.47172317e-05 -2.22860305e-05 -1.62446277e-05\n",
- " -2.26706986e-05 -3.13393270e-05 -3.70139412e-05 3.99225309e-05\n",
- " 3.65751169e-05 3.42096082e-05 2.46579773e-05 2.79597587e-05\n",
- " 3.18820989e-05 3.44257366e-05 2.93447141e-05 1.71734162e-05\n",
- " 1.34511689e-05]\n",
- "INFO:shap:np.sum(w_aug) = 49.0\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0\n",
- "INFO:shap:phi = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n",
- " 0.00000000e+00 0.00000000e+00 0.00000000e+00 6.92631242e-06\n",
- " 1.51897106e-05 1.75733562e-05 2.27678737e-05 2.56485973e-05\n",
- " 3.17052048e-05 3.32835066e-05 2.70283166e-05 -3.06654932e-05\n",
- " -3.70373245e-05 -2.47557292e-05 -2.53108787e-05 -1.82028996e-05\n",
- " -1.45146667e-05 -1.07523589e-05 -6.99518806e-06 0.00000000e+00\n",
- " -2.18450800e-05 -1.71074602e-05 -1.99008861e-05 -1.56107466e-05\n",
- " -9.08894881e-06 -7.35982984e-06 -9.40014526e-06 -1.06493891e-05\n",
- " -1.17373287e-05 -1.30834544e-05 -1.93597490e-05 -1.45317264e-05\n",
- " -2.04230342e-05 -2.78913917e-05 -3.27777032e-05 3.51336384e-05\n",
- " 3.22437120e-05 3.06624881e-05 2.14922292e-05 2.47520098e-05\n",
- " 2.80570387e-05 3.04280561e-05 2.58287001e-05 1.53954354e-05\n",
- " 1.19194013e-05]\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " 5%|▍ | 2/41 [00:04<01:18, 2.02s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "INFO:shap:num_full_subsets = 1\n",
- "INFO:shap:remaining_weight_vector = [0.15162364 0.10327987 0.07918123 0.06478465 0.05524272 0.04847831\n",
- " 0.04345312 0.03959062 0.03654519 0.03409718 0.0321005 0.03045432\n",
- " 0.02908698 0.02794632 0.0269936 0.02619967 0.02554233 0.0250046\n",
- " 0.02457349 0.02423915 0.02399431 0.02383382 0.02375437]\n",
- "INFO:shap:num_paired_subset_sizes = 24\n",
- "INFO:shap:weight_left = 0.7710518569800939\n",
- "INFO:shap:np.sum(w_aug) = 49.0\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0\n",
- "INFO:shap:phi = [-7.79726549e-06 -4.99442460e-06 -5.77849312e-06 -5.01089590e-06\n",
- " -5.18629131e-06 -6.06464738e-06 0.00000000e+00 4.77271207e-06\n",
- " 1.33646935e-05 1.64195891e-05 2.17270983e-05 2.56735534e-05\n",
- " 3.24290451e-05 3.41780715e-05 2.83023630e-05 3.57318017e-05\n",
- " -4.61834408e-05 -3.12861201e-05 -3.17259957e-05 -2.42697144e-05\n",
- " -1.96344841e-05 -1.53195342e-05 -1.17946174e-05 -6.19032812e-06\n",
- " 3.02989098e-05 -1.90666531e-05 -2.28279979e-05 -1.69990729e-05\n",
- " -9.93111543e-06 -8.25428152e-06 -1.08262681e-05 -1.22169939e-05\n",
- " -1.32388852e-05 -1.43472173e-05 -2.21239244e-05 -1.61358708e-05\n",
- " -2.26377759e-05 -3.11318053e-05 -3.67527909e-05 -3.82840042e-05\n",
- " 3.69544152e-05 3.46737046e-05 2.47894010e-05 2.86583469e-05\n",
- " 3.18910593e-05 3.44949939e-05 2.97101869e-05 1.76875802e-05\n",
- " 8.04295729e-06]\n",
- "INFO:shap:np.sum(w_aug) = 49.0\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0\n",
- "INFO:shap:phi = [-6.64632076e-06 -4.21243981e-06 -5.19475504e-06 0.00000000e+00\n",
- " -4.95987313e-06 -5.37079653e-06 0.00000000e+00 0.00000000e+00\n",
- " 1.12861368e-05 1.46362500e-05 1.92873831e-05 2.24976856e-05\n",
- " 2.85987213e-05 3.07436322e-05 2.43554554e-05 3.14704933e-05\n",
- " -4.09700781e-05 -2.75762125e-05 -2.82116613e-05 -2.11980112e-05\n",
- " -1.71664222e-05 -1.37443063e-05 -1.04500045e-05 -5.45169849e-06\n",
- " 2.67864557e-05 -1.66328153e-05 -2.01828617e-05 -1.53542030e-05\n",
- " -8.83362583e-06 -7.32772227e-06 -9.61767787e-06 -1.04851004e-05\n",
- " -1.18643919e-05 -1.29431363e-05 -1.92016343e-05 -1.43631697e-05\n",
- " -2.00283737e-05 -2.79084715e-05 -3.26509144e-05 -3.34593802e-05\n",
- " 3.24336965e-05 3.09263398e-05 2.14144309e-05 2.52643096e-05\n",
- " 2.80306785e-05 3.08387452e-05 2.67471588e-05 1.59273401e-05\n",
- " 7.26416146e-06]\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " 7%|▋ | 3/41 [00:05<01:11, 1.89s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "INFO:shap:num_full_subsets = 1\n",
- "INFO:shap:remaining_weight_vector = [0.15162364 0.10327987 0.07918123 0.06478465 0.05524272 0.04847831\n",
- " 0.04345312 0.03959062 0.03654519 0.03409718 0.0321005 0.03045432\n",
- " 0.02908698 0.02794632 0.0269936 0.02619967 0.02554233 0.0250046\n",
- " 0.02457349 0.02423915 0.02399431 0.02383382 0.02375437]\n",
- "INFO:shap:num_paired_subset_sizes = 24\n",
- "INFO:shap:weight_left = 0.7710518569800939\n",
- "INFO:shap:np.sum(w_aug) = 49.0\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0000000000000002\n",
- "INFO:shap:phi = [-3.90789932e-05 -2.51371600e-05 -2.89946291e-05 -2.49639059e-05\n",
- " -2.58381864e-05 -3.03570292e-05 -1.82698170e-05 -1.57130520e-05\n",
- " -1.36567178e-05 -8.01459211e-06 0.00000000e+00 0.00000000e+00\n",
- " 7.77411174e-06 1.15976408e-05 1.21082827e-05 1.76316816e-05\n",
- " 3.01677949e-05 2.66331271e-05 3.57503928e-05 3.83806645e-05\n",
- " 4.32997320e-05 5.14230230e-05 -3.65096261e-05 -3.10452701e-05\n",
- " 3.04866252e-05 2.96967023e-05 4.38277904e-05 4.18301409e-05\n",
- " 3.36755409e-05 3.98256712e-05 5.11721444e-05 -1.23188865e-05\n",
- " -1.36516677e-05 -1.48087549e-05 -2.20775747e-05 -1.63690285e-05\n",
- " -2.29415089e-05 -3.13901636e-05 -3.71225475e-05 -3.84918507e-05\n",
- " -3.53009728e-05 -3.09669678e-05 -2.31777837e-05 -2.68938910e-05\n",
- " -3.00309600e-05 -3.46334373e-05 2.99111490e-05 1.78936994e-05\n",
- " -3.02466588e-05]\n",
- "INFO:shap:np.sum(w_aug) = 49.0\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0000000000000002\n",
- "INFO:shap:phi = [-3.42814564e-05 -2.23507496e-05 -2.55462934e-05 -2.18696868e-05\n",
- " -2.29431053e-05 -2.67918520e-05 -1.58426403e-05 -1.38544907e-05\n",
- " -1.19193128e-05 -7.04297241e-06 0.00000000e+00 0.00000000e+00\n",
- " 6.83880102e-06 1.02390732e-05 1.06413384e-05 1.55514242e-05\n",
- " 2.65493126e-05 2.34046407e-05 3.17659052e-05 3.34002349e-05\n",
- " 3.84485378e-05 4.58531499e-05 -3.16749489e-05 -2.71717992e-05\n",
- " 2.70084262e-05 2.63358880e-05 3.84464927e-05 3.78974966e-05\n",
- " 2.99798415e-05 3.59977024e-05 4.38589237e-05 -1.07019559e-05\n",
- " -1.19650613e-05 -1.31643440e-05 -1.91663269e-05 -1.46358687e-05\n",
- " -2.06594299e-05 -2.79302284e-05 -3.28686728e-05 -3.38676404e-05\n",
- " -3.11182602e-05 -2.77496018e-05 -2.02039014e-05 -2.38007433e-05\n",
- " -2.64226476e-05 -3.06068642e-05 2.63226685e-05 1.60264059e-05\n",
- " -2.67894070e-05]\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " 10%|▉ | 4/41 [00:07<01:08, 1.85s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "INFO:shap:num_full_subsets = 1\n",
- "INFO:shap:remaining_weight_vector = [0.15162364 0.10327987 0.07918123 0.06478465 0.05524272 0.04847831\n",
- " 0.04345312 0.03959062 0.03654519 0.03409718 0.0321005 0.03045432\n",
- " 0.02908698 0.02794632 0.0269936 0.02619967 0.02554233 0.0250046\n",
- " 0.02457349 0.02423915 0.02399431 0.02383382 0.02375437]\n",
- "INFO:shap:num_paired_subset_sizes = 24\n",
- "INFO:shap:weight_left = 0.7710518569800939\n",
- "INFO:shap:np.sum(w_aug) = 49.0\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0\n",
- "INFO:shap:phi = [ 3.83867703e-05 2.46254770e-05 2.84039519e-05 2.44677765e-05\n",
- " 2.55377582e-05 2.97735557e-05 2.73539589e-05 -4.56688530e-05\n",
- " -5.37472416e-05 -4.46304343e-05 -3.87474198e-05 -3.11754499e-05\n",
- " -2.94067476e-05 -2.25785535e-05 -1.26482504e-05 -9.81088023e-06\n",
- " -8.04538934e-06 0.00000000e+00 0.00000000e+00 6.68385665e-06\n",
- " 1.14923880e-05 1.74994433e-05 2.47124551e-05 3.06126772e-05\n",
- " -2.45594551e-05 -1.90343595e-05 -2.26555650e-05 -1.67645594e-05\n",
- " -9.93049138e-06 -8.10102804e-06 -1.07928848e-05 5.53351558e-05\n",
- " 5.71401859e-05 4.77025266e-05 5.47223503e-05 3.05256764e-05\n",
- " 3.49545323e-05 3.96511512e-05 3.73121792e-05 3.99883958e-05\n",
- " -3.48488763e-05 -3.03079289e-05 -2.26048467e-05 -2.65211382e-05\n",
- " -2.97587473e-05 -3.40857059e-05 -2.97240214e-05 -1.78449533e-05\n",
- " 2.04408886e-05]\n",
- "INFO:shap:np.sum(w_aug) = 49.0\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0\n",
- "INFO:shap:phi = [ 3.36807750e-05 2.19029761e-05 2.50305433e-05 2.14381843e-05\n",
- " 2.26809066e-05 2.62814279e-05 2.37260510e-05 -4.02771635e-05\n",
- " -4.69217860e-05 -3.92318742e-05 -3.42621443e-05 -2.74129614e-05\n",
- " -2.58720148e-05 -1.99380579e-05 -1.11183535e-05 -8.65456128e-06\n",
- " -7.08179978e-06 0.00000000e+00 0.00000000e+00 5.81767330e-06\n",
- " 1.02080660e-05 1.56084936e-05 2.14411656e-05 2.67996339e-05\n",
- " -2.17592000e-05 -1.68810295e-05 -1.98757972e-05 -1.51933487e-05\n",
- " -8.84281894e-06 -7.32360798e-06 -9.25334370e-06 4.80751205e-05\n",
- " 5.00807020e-05 4.24204441e-05 4.75246653e-05 2.73102693e-05\n",
- " 3.14874086e-05 3.52879503e-05 3.30441535e-05 3.51932998e-05\n",
- " -3.07253373e-05 -2.71648326e-05 -1.97114642e-05 -2.34732993e-05\n",
- " -2.61907601e-05 -3.01287528e-05 -2.61613919e-05 -1.59898284e-05\n",
- " 1.81102308e-05]\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " 12%|█▏ | 5/41 [00:09<01:08, 1.89s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "INFO:shap:num_full_subsets = 1\n",
- "INFO:shap:remaining_weight_vector = [0.15162364 0.10327987 0.07918123 0.06478465 0.05524272 0.04847831\n",
- " 0.04345312 0.03959062 0.03654519 0.03409718 0.0321005 0.03045432\n",
- " 0.02908698 0.02794632 0.0269936 0.02619967 0.02554233 0.0250046\n",
- " 0.02457349 0.02423915 0.02399431 0.02383382 0.02375437]\n",
- "INFO:shap:num_paired_subset_sizes = 24\n",
- "INFO:shap:weight_left = 0.7710518569800939\n",
- "INFO:shap:np.sum(w_aug) = 49.0\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0\n",
- "INFO:shap:phi = [ 1.27401066e-05 8.16863439e-06 9.41993939e-06 8.16290177e-06\n",
- " 8.48076671e-06 9.86875742e-06 1.21925543e-05 1.81404308e-05\n",
- " 3.10601312e-05 3.24545365e-05 3.76029782e-05 4.05896314e-05\n",
- " -4.95971166e-05 -4.13181074e-05 -2.61102711e-05 -2.50198686e-05\n",
- " -2.90271315e-05 -1.83454221e-05 -1.66452953e-05 -1.03504602e-05\n",
- " -5.70651289e-06 0.00000000e+00 4.45540801e-06 1.00798979e-05\n",
- " -2.44632064e-05 -1.88992922e-05 -2.26187197e-05 -1.68911167e-05\n",
- " -9.85779784e-06 -8.20658121e-06 -1.07485803e-05 -1.21100206e-05\n",
- " -1.31204172e-05 -1.42765338e-05 -2.19377908e-05 -1.60240419e-05\n",
- " 3.50052417e-05 3.95424412e-05 3.72421055e-05 4.00975888e-05\n",
- " 3.65900343e-05 3.43530287e-05 2.45467311e-05 2.83991457e-05\n",
- " 3.16297426e-05 -3.40153031e-05 -2.99133410e-05 -1.79360673e-05\n",
- " 2.05331723e-05]\n",
- "INFO:shap:np.sum(w_aug) = 49.0\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0\n",
- "INFO:shap:phi = [ 1.11925868e-05 7.07688992e-06 8.41038462e-06 7.21287117e-06\n",
- " 7.49144490e-06 8.59608326e-06 1.07451440e-05 1.62084857e-05\n",
- " 2.70955758e-05 2.86532538e-05 3.33469460e-05 3.59205331e-05\n",
- " -4.34024957e-05 -3.66464872e-05 -2.29008010e-05 -2.22942695e-05\n",
- " -2.56604504e-05 -1.58441805e-05 -1.47471553e-05 -8.71569461e-06\n",
- " -4.73851525e-06 0.00000000e+00 0.00000000e+00 9.09247046e-06\n",
- " -2.16446415e-05 -1.68150273e-05 -1.98589773e-05 -1.51153108e-05\n",
- " -8.75843915e-06 -7.26141176e-06 -9.19458787e-06 -1.03267938e-05\n",
- " -1.16085633e-05 -1.28341871e-05 -1.89337639e-05 -1.42096254e-05\n",
- " 3.16926046e-05 3.52951615e-05 3.32077239e-05 3.54043393e-05\n",
- " 3.22965756e-05 3.10755680e-05 2.16445477e-05 2.52046338e-05\n",
- " 2.76821501e-05 -2.98366424e-05 -2.63080622e-05 -1.58529878e-05\n",
- " 1.82705448e-05]\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " 15%|█▍ | 6/41 [00:11<01:04, 1.84s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "INFO:shap:num_full_subsets = 1\n",
- "INFO:shap:remaining_weight_vector = [0.15162364 0.10327987 0.07918123 0.06478465 0.05524272 0.04847831\n",
- " 0.04345312 0.03959062 0.03654519 0.03409718 0.0321005 0.03045432\n",
- " 0.02908698 0.02794632 0.0269936 0.02619967 0.02554233 0.0250046\n",
- " 0.02457349 0.02423915 0.02399431 0.02383382 0.02375437]\n",
- "INFO:shap:num_paired_subset_sizes = 24\n",
- "INFO:shap:weight_left = 0.7710518569800939\n",
- "INFO:shap:np.sum(w_aug) = 49.0\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0\n",
- "INFO:shap:phi = [ 1.25533686e-05 7.98797446e-06 9.12664275e-06 8.02128300e-06\n",
- " 8.19726876e-06 9.41619252e-06 1.21906794e-05 1.79862743e-05\n",
- " 3.15498557e-05 3.21749926e-05 3.76657590e-05 4.02226269e-05\n",
- " -4.98270205e-05 -4.15636665e-05 -2.68042209e-05 -2.48083054e-05\n",
- " -2.89144588e-05 -1.85475889e-05 -1.63156208e-05 -1.03978714e-05\n",
- " 0.00000000e+00 0.00000000e+00 0.00000000e+00 9.79381441e-06\n",
- " -2.42991422e-05 -1.87922621e-05 -2.25923565e-05 -1.68421661e-05\n",
- " -9.96461944e-06 -8.15880036e-06 -1.03907083e-05 -1.21851880e-05\n",
- " -1.31944395e-05 -1.42845947e-05 -2.14040081e-05 -1.57978616e-05\n",
- " 3.47205277e-05 3.95182807e-05 3.71667507e-05 4.00581235e-05\n",
- " 3.61977245e-05 3.47101549e-05 2.49306211e-05 2.83054817e-05\n",
- " 3.18675530e-05 -3.39526575e-05 -2.99859827e-05 -1.79499386e-05\n",
- " 2.08284397e-05]\n",
- "INFO:shap:np.sum(w_aug) = 49.0\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0\n",
- "INFO:shap:phi = [ 1.10128229e-05 7.10221522e-06 8.03963401e-06 7.02065225e-06\n",
- " 7.27395802e-06 8.30640189e-06 1.05724444e-05 1.58563028e-05\n",
- " 2.75424652e-05 2.82878872e-05 3.32970863e-05 3.53566767e-05\n",
- " -4.38442594e-05 -3.67024414e-05 -2.35544448e-05 -2.18871639e-05\n",
- " -2.54414390e-05 -1.63047340e-05 -1.45074648e-05 -9.04964688e-06\n",
- " 0.00000000e+00 0.00000000e+00 0.00000000e+00 8.56369561e-06\n",
- " -2.15307939e-05 -1.66698432e-05 -1.98207158e-05 -1.52646733e-05\n",
- " -8.87483007e-06 -7.37438734e-06 -8.89954481e-06 -1.05885089e-05\n",
- " -1.15716205e-05 -1.27015097e-05 -1.85854855e-05 -1.41368649e-05\n",
- " 3.12664588e-05 3.51746705e-05 3.29093814e-05 3.52560983e-05\n",
- " 3.19206913e-05 3.10884999e-05 2.17379217e-05 2.50470069e-05\n",
- " 2.80388649e-05 -3.00073243e-05 -2.63997455e-05 -1.60917983e-05\n",
- " 1.84448522e-05]\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " 17%|█▋ | 7/41 [00:13<01:03, 1.86s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "INFO:shap:num_full_subsets = 1\n",
- "INFO:shap:remaining_weight_vector = [0.15162364 0.10327987 0.07918123 0.06478465 0.05524272 0.04847831\n",
- " 0.04345312 0.03959062 0.03654519 0.03409718 0.0321005 0.03045432\n",
- " 0.02908698 0.02794632 0.0269936 0.02619967 0.02554233 0.0250046\n",
- " 0.02457349 0.02423915 0.02399431 0.02383382 0.02375437]\n",
- "INFO:shap:num_paired_subset_sizes = 24\n",
- "INFO:shap:weight_left = 0.7710518569800939\n",
- "INFO:shap:np.sum(w_aug) = 49.0\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0000000000000002\n",
- "INFO:shap:phi = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n",
- " 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.14032298e-05\n",
- " 2.24293048e-05 2.44472972e-05 2.93722603e-05 3.36749418e-05\n",
- " 4.03069044e-05 4.15114880e-05 -3.13297683e-05 -3.02717217e-05\n",
- " -3.70256762e-05 -2.40966525e-05 -2.35214094e-05 -1.67627103e-05\n",
- " -1.21613351e-05 -7.04528141e-06 0.00000000e+00 0.00000000e+00\n",
- " -2.41549397e-05 -1.80887062e-05 -2.23459991e-05 -1.59819071e-05\n",
- " -8.96298398e-06 -8.15938173e-06 -1.03828424e-05 -1.15590507e-05\n",
- " -1.23940175e-05 -1.35194055e-05 -2.17690568e-05 -1.56203691e-05\n",
- " -2.19373607e-05 -3.08413383e-05 3.74595064e-05 4.08202698e-05\n",
- " 3.67061033e-05 3.43709025e-05 2.52927705e-05 2.86674732e-05\n",
- " 3.23838556e-05 3.47254159e-05 2.97472834e-05 -1.73789644e-05\n",
- " 2.04607811e-05]\n",
- "INFO:shap:np.sum(w_aug) = 49.0\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0000000000000002\n",
- "INFO:shap:phi = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n",
- " 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00596412e-05\n",
- " 1.95841571e-05 2.14931475e-05 2.59803736e-05 2.96128802e-05\n",
- " 3.54654696e-05 3.66598690e-05 -2.75381158e-05 -2.67083104e-05\n",
- " -3.25885314e-05 -2.11824399e-05 -2.09073078e-05 -1.45882423e-05\n",
- " -1.08032475e-05 -6.29660950e-06 0.00000000e+00 0.00000000e+00\n",
- " -2.14038945e-05 -1.60498702e-05 -1.96039981e-05 -1.45086412e-05\n",
- " -7.99770464e-06 -7.37250597e-06 -8.89671717e-06 -1.00376764e-05\n",
- " -1.08676776e-05 -1.20328437e-05 -1.89017291e-05 -1.39779585e-05\n",
- " -1.97673983e-05 -2.74484545e-05 3.31731104e-05 3.59221058e-05\n",
- " 3.23676210e-05 3.08016268e-05 2.20604591e-05 2.53696864e-05\n",
- " 2.84993954e-05 3.06883339e-05 2.61900227e-05 -1.55807061e-05\n",
- " 1.81291284e-05]\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " 20%|█▉ | 8/41 [00:15<01:04, 1.96s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "INFO:shap:num_full_subsets = 1\n",
- "INFO:shap:remaining_weight_vector = [0.15162364 0.10327987 0.07918123 0.06478465 0.05524272 0.04847831\n",
- " 0.04345312 0.03959062 0.03654519 0.03409718 0.0321005 0.03045432\n",
- " 0.02908698 0.02794632 0.0269936 0.02619967 0.02554233 0.0250046\n",
- " 0.02457349 0.02423915 0.02399431 0.02383382 0.02375437]\n",
- "INFO:shap:num_paired_subset_sizes = 24\n",
- "INFO:shap:weight_left = 0.7710518569800939\n",
- "INFO:shap:np.sum(w_aug) = 49.0\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0\n",
- "INFO:shap:phi = [ 2.81297003e-05 1.80476820e-05 2.09427008e-05 1.83499784e-05\n",
- " 1.87112809e-05 2.19407924e-05 2.13821423e-05 2.82902835e-05\n",
- " 4.44294884e-05 -5.24835230e-05 -4.66686212e-05 -3.84423107e-05\n",
- " -3.73348849e-05 -2.99681111e-05 -1.80446837e-05 -1.57490309e-05\n",
- " -1.61704854e-05 -8.69348652e-06 -5.42296503e-06 0.00000000e+00\n",
- " 0.00000000e+00 1.05769615e-05 1.66451379e-05 2.24177071e-05\n",
- " -2.41502203e-05 -1.88040893e-05 -2.26677951e-05 -1.65373601e-05\n",
- " -9.80429308e-06 -8.24770267e-06 -1.07997279e-05 -1.20390408e-05\n",
- " -1.30623348e-05 4.76993382e-05 5.48925422e-05 3.07477186e-05\n",
- " 3.50730833e-05 3.97498349e-05 3.72665302e-05 4.04205935e-05\n",
- " 3.64453738e-05 3.43367268e-05 -2.26385279e-05 -2.66817041e-05\n",
- " -2.96067035e-05 -3.35844442e-05 -2.96303197e-05 -1.82220753e-05\n",
- " 2.04540106e-05]\n",
- "INFO:shap:np.sum(w_aug) = 49.0\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0\n",
- "INFO:shap:phi = [ 2.46788969e-05 1.60514815e-05 1.84539373e-05 1.60792876e-05\n",
- " 1.66167550e-05 1.93652730e-05 1.85457151e-05 2.49481028e-05\n",
- " 3.87806654e-05 -4.61253764e-05 -4.12615739e-05 -3.37957939e-05\n",
- " -3.28422727e-05 -2.64593208e-05 -1.58584957e-05 -1.38879506e-05\n",
- " -1.42283423e-05 -7.63839897e-06 -4.81721596e-06 0.00000000e+00\n",
- " 0.00000000e+00 9.43203869e-06 1.44418330e-05 1.96223357e-05\n",
- " -2.13940665e-05 -1.66744765e-05 -1.98849958e-05 -1.49875859e-05\n",
- " -8.72759422e-06 -7.45332963e-06 -9.25936999e-06 -1.04572364e-05\n",
- " -1.14462453e-05 4.24094178e-05 4.76708463e-05 2.75009054e-05\n",
- " 3.15869489e-05 3.53713679e-05 3.29986059e-05 3.55717522e-05\n",
- " 3.21266479e-05 3.07707801e-05 -1.97380453e-05 -2.36107414e-05\n",
- " -2.60503631e-05 -2.96786378e-05 -2.60751500e-05 -1.63229671e-05\n",
- " 1.81184460e-05]\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " 22%|██▏ | 9/41 [00:17<01:01, 1.91s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "INFO:shap:num_full_subsets = 1\n",
- "INFO:shap:remaining_weight_vector = [0.15162364 0.10327987 0.07918123 0.06478465 0.05524272 0.04847831\n",
- " 0.04345312 0.03959062 0.03654519 0.03409718 0.0321005 0.03045432\n",
- " 0.02908698 0.02794632 0.0269936 0.02619967 0.02554233 0.0250046\n",
- " 0.02457349 0.02423915 0.02399431 0.02383382 0.02375437]\n",
- "INFO:shap:num_paired_subset_sizes = 24\n",
- "INFO:shap:weight_left = 0.7710518569800939\n",
- "INFO:shap:np.sum(w_aug) = 49.0\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0\n",
- "INFO:shap:phi = [ 2.31728949e-05 1.46179359e-05 1.69345594e-05 1.47367402e-05\n",
- " 1.52049663e-05 1.77337542e-05 1.82191447e-05 2.44705829e-05\n",
- " 3.97966614e-05 4.05928324e-05 -5.09073705e-05 -4.26151581e-05\n",
- " -4.14082344e-05 -3.37963116e-05 -2.08575701e-05 -1.89370681e-05\n",
- " -2.07538185e-05 -1.20483324e-05 -9.37463635e-06 0.00000000e+00\n",
- " 0.00000000e+00 6.65084799e-06 1.25895411e-05 1.81936470e-05\n",
- " -2.45413612e-05 -1.87790583e-05 -2.25113783e-05 -1.68180674e-05\n",
- " -9.86396348e-06 -8.47160436e-06 -1.08912458e-05 -1.23211489e-05\n",
- " -1.32017293e-05 -1.41634793e-05 5.46778529e-05 3.05854413e-05\n",
- " 3.49915948e-05 3.94736629e-05 3.70293946e-05 4.00542882e-05\n",
- " 3.68142163e-05 3.42898878e-05 2.48316403e-05 -2.65997200e-05\n",
- " -2.98223187e-05 -3.42183170e-05 -3.00462095e-05 -1.77101826e-05\n",
- " 2.04116895e-05]\n",
- "INFO:shap:np.sum(w_aug) = 49.0\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0\n",
- "INFO:shap:phi = [ 2.03291180e-05 1.30031084e-05 1.49233381e-05 1.29125685e-05\n",
- " 1.35044058e-05 1.56551900e-05 1.58018985e-05 2.15878261e-05\n",
- " 3.47397511e-05 3.56773879e-05 -4.50129021e-05 -3.74755088e-05\n",
- " -3.64283081e-05 -2.98448249e-05 -1.83316285e-05 -1.67042117e-05\n",
- " -1.82661866e-05 -1.05879682e-05 -8.32663222e-06 0.00000000e+00\n",
- " 0.00000000e+00 5.93243797e-06 1.09216663e-05 1.59279813e-05\n",
- " -2.17432358e-05 -1.66561573e-05 -1.97499664e-05 -1.52390964e-05\n",
- " -8.78108535e-06 -7.64802914e-06 -9.33704082e-06 -1.07037648e-05\n",
- " -1.15705404e-05 -1.25946444e-05 4.74791683e-05 2.73602998e-05\n",
- " 3.15210050e-05 3.51306732e-05 3.27957928e-05 3.52501266e-05\n",
- " 3.24550658e-05 3.07351505e-05 2.16470354e-05 -2.35446485e-05\n",
- " -2.62418864e-05 -3.02432528e-05 -2.64435571e-05 -1.58715679e-05\n",
- " 1.80848419e-05]\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " 24%|██▍ | 10/41 [00:19<00:58, 1.89s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "INFO:shap:num_full_subsets = 1\n",
- "INFO:shap:remaining_weight_vector = [0.15162364 0.10327987 0.07918123 0.06478465 0.05524272 0.04847831\n",
- " 0.04345312 0.03959062 0.03654519 0.03409718 0.0321005 0.03045432\n",
- " 0.02908698 0.02794632 0.0269936 0.02619967 0.02554233 0.0250046\n",
- " 0.02457349 0.02423915 0.02399431 0.02383382 0.02375437]\n",
- "INFO:shap:num_paired_subset_sizes = 24\n",
- "INFO:shap:weight_left = 0.7710518569800939\n",
- "INFO:shap:np.sum(w_aug) = 49.0\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0\n",
- "INFO:shap:phi = [-2.85698480e-05 -1.83126147e-05 -2.11735334e-05 -1.83992793e-05\n",
- " -1.90231148e-05 -2.22395632e-05 -1.20478289e-05 -8.83136632e-06\n",
- " -4.65885529e-06 0.00000000e+00 5.55397896e-06 1.04456839e-05\n",
- " 1.60103507e-05 1.90949147e-05 1.74591412e-05 2.36506422e-05\n",
- " 3.86328442e-05 3.30093200e-05 4.31958120e-05 4.51000891e-05\n",
- " -3.37106479e-05 -3.01767137e-05 -2.82030477e-05 -2.27218982e-05\n",
- " 3.04399466e-05 2.97554533e-05 4.38127280e-05 4.16331647e-05\n",
- " 3.34892622e-05 -8.29492052e-06 -1.08743986e-05 -1.22874111e-05\n",
- " -1.33051728e-05 -1.44149925e-05 -2.22283288e-05 -1.62192691e-05\n",
- " -2.27462591e-05 -3.12743729e-05 -3.69442860e-05 -3.84793104e-05\n",
- " -3.51978786e-05 -3.08603646e-05 -2.29047307e-05 -2.70172680e-05\n",
- " 3.20481699e-05 3.46581380e-05 2.98421075e-05 1.77726458e-05\n",
- " -1.73815614e-05]\n",
- "INFO:shap:np.sum(w_aug) = 49.0\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0\n",
- "INFO:shap:phi = [-2.48139885e-05 -1.64646864e-05 -1.86361465e-05 -1.65600230e-05\n",
- " -1.68092598e-05 -1.92722039e-05 -1.01360585e-05 -7.55594057e-06\n",
- " 0.00000000e+00 0.00000000e+00 0.00000000e+00 9.25211339e-06\n",
- " 1.42769467e-05 1.70226585e-05 1.51164879e-05 2.08334279e-05\n",
- " 3.45503577e-05 2.90642168e-05 3.83843988e-05 3.91443014e-05\n",
- " -2.97312358e-05 -2.69755960e-05 -2.41211282e-05 -1.99116478e-05\n",
- " 2.70110283e-05 2.59437845e-05 3.83297258e-05 3.76572163e-05\n",
- " 2.99558637e-05 -7.81105832e-06 -9.61575444e-06 -1.07333754e-05\n",
- " -1.17247258e-05 -1.22336522e-05 -1.94820419e-05 -1.50701168e-05\n",
- " -2.00971346e-05 -2.79823234e-05 -3.29610310e-05 -3.37269216e-05\n",
- " -3.10641399e-05 -2.74521310e-05 -2.00402684e-05 -2.40444530e-05\n",
- " 2.83324033e-05 3.06803911e-05 2.62549835e-05 1.58907757e-05\n",
- " -1.52256449e-05]\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " 27%|██▋ | 11/41 [00:20<00:56, 1.87s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "INFO:shap:num_full_subsets = 1\n",
- "INFO:shap:remaining_weight_vector = [0.15162364 0.10327987 0.07918123 0.06478465 0.05524272 0.04847831\n",
- " 0.04345312 0.03959062 0.03654519 0.03409718 0.0321005 0.03045432\n",
- " 0.02908698 0.02794632 0.0269936 0.02619967 0.02554233 0.0250046\n",
- " 0.02457349 0.02423915 0.02399431 0.02383382 0.02375437]\n",
- "INFO:shap:num_paired_subset_sizes = 24\n",
- "INFO:shap:weight_left = 0.7710518569800939\n",
- "INFO:shap:np.sum(w_aug) = 49.0\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0000000000000002\n",
- "INFO:shap:phi = [ 3.84763146e-05 2.48387479e-05 2.84445471e-05 2.47054570e-05\n",
- " 2.55088230e-05 2.98147011e-05 2.74517648e-05 -4.57941967e-05\n",
- " -5.38439352e-05 -4.47376566e-05 -3.88004706e-05 -3.16725531e-05\n",
- " -2.90255120e-05 -2.25231011e-05 -1.26509693e-05 -9.90290892e-06\n",
- " -8.11047763e-06 0.00000000e+00 0.00000000e+00 6.81232289e-06\n",
- " 1.15179761e-05 1.75670623e-05 2.48175714e-05 3.05421394e-05\n",
- " -2.44310812e-05 -1.90788163e-05 -2.26383146e-05 -1.67119576e-05\n",
- " -9.82721815e-06 -8.23916694e-06 -1.06279282e-05 5.54306554e-05\n",
- " 5.71073646e-05 4.76290174e-05 5.44505370e-05 3.06402894e-05\n",
- " 3.52151530e-05 3.95427901e-05 3.72075758e-05 4.01814496e-05\n",
- " -3.48217763e-05 -3.04716370e-05 -2.26131450e-05 -2.68491830e-05\n",
- " -2.98876501e-05 -3.40929849e-05 -2.98053671e-05 -1.79131636e-05\n",
- " 2.04982417e-05]\n",
- "INFO:shap:np.sum(w_aug) = 49.0\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0000000000000002\n",
- "INFO:shap:phi = [ 3.37596642e-05 2.20920096e-05 2.50655270e-05 2.16468837e-05\n",
- " 2.26550364e-05 2.63176805e-05 2.38130341e-05 -4.03889861e-05\n",
- " -4.70068357e-05 -3.93261275e-05 -3.43080656e-05 -2.78524634e-05\n",
- " -2.55366259e-05 -1.98898938e-05 -1.11199926e-05 -8.73592090e-06\n",
- " -7.14045079e-06 0.00000000e+00 0.00000000e+00 5.93107720e-06\n",
- " 1.02302169e-05 1.56699519e-05 2.15354533e-05 2.67391381e-05\n",
- " -2.16477795e-05 -1.69205745e-05 -1.98623417e-05 -1.51455936e-05\n",
- " -8.75000571e-06 -7.44699851e-06 -9.10790801e-06 4.81589507e-05\n",
- " 5.00517398e-05 4.23531435e-05 4.72858261e-05 2.74116360e-05\n",
- " 3.17168131e-05 3.51924534e-05 3.29520569e-05 3.53625890e-05\n",
- " -3.07013208e-05 -2.73086066e-05 -1.97170242e-05 -2.37627462e-05\n",
- " -2.63029396e-05 -3.01352208e-05 -2.62344892e-05 -1.60496396e-05\n",
- " 1.81622807e-05]\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " 29%|██▉ | 12/41 [00:22<00:55, 1.91s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "INFO:shap:num_full_subsets = 1\n",
- "INFO:shap:remaining_weight_vector = [0.15162364 0.10327987 0.07918123 0.06478465 0.05524272 0.04847831\n",
- " 0.04345312 0.03959062 0.03654519 0.03409718 0.0321005 0.03045432\n",
- " 0.02908698 0.02794632 0.0269936 0.02619967 0.02554233 0.0250046\n",
- " 0.02457349 0.02423915 0.02399431 0.02383382 0.02375437]\n",
- "INFO:shap:num_paired_subset_sizes = 24\n",
- "INFO:shap:weight_left = 0.7710518569800939\n",
- "INFO:shap:np.sum(w_aug) = 49.0\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0\n",
- "INFO:shap:phi = [ 1.28183710e-05 8.24989935e-06 9.59996796e-06 8.19557618e-06\n",
- " 8.82999305e-06 1.01969009e-05 1.24307975e-05 1.80109990e-05\n",
- " 3.13127052e-05 3.24161910e-05 3.74939624e-05 4.04698225e-05\n",
- " -4.93919407e-05 -4.15187577e-05 -2.61179069e-05 -2.48722559e-05\n",
- " -2.87837654e-05 -1.85273771e-05 -1.64403155e-05 -1.01965240e-05\n",
- " -5.75753884e-06 0.00000000e+00 0.00000000e+00 1.01537524e-05\n",
- " -2.42901539e-05 -1.90403011e-05 -2.26971669e-05 -1.67026409e-05\n",
- " -9.76987802e-06 -8.10102280e-06 -1.06811532e-05 -1.19764466e-05\n",
- " -1.30711266e-05 -1.41272525e-05 -2.15950251e-05 -1.59234966e-05\n",
- " 3.52491453e-05 3.97392293e-05 3.72731629e-05 4.03721566e-05\n",
- " 3.69757999e-05 3.43921165e-05 2.46969745e-05 2.83863231e-05\n",
- " 3.12975202e-05 -3.37818271e-05 -2.97176886e-05 -1.77812001e-05\n",
- " 2.05183060e-05]\n",
- "INFO:shap:np.sum(w_aug) = 49.0\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0\n",
- "INFO:shap:phi = [ 1.12458500e-05 7.33430941e-06 8.45244065e-06 7.17532813e-06\n",
- " 7.83427427e-06 8.99185635e-06 1.07847578e-05 1.58821035e-05\n",
- " 2.73385820e-05 2.85023004e-05 3.31472695e-05 3.55780069e-05\n",
- " -4.34611631e-05 -3.66585565e-05 -2.29515818e-05 -2.19460174e-05\n",
- " -2.53267659e-05 -1.62802713e-05 -1.46144979e-05 -8.87489310e-06\n",
- " -5.10985809e-06 0.00000000e+00 0.00000000e+00 8.88495598e-06\n",
- " -2.15255045e-05 -1.68864623e-05 -1.99116294e-05 -1.51404588e-05\n",
- " -8.69997999e-06 -7.32506024e-06 -9.15638200e-06 -1.04088527e-05\n",
- " -1.14582144e-05 -1.25646652e-05 -1.87540730e-05 -1.42475987e-05\n",
- " 3.17299829e-05 3.53672117e-05 3.30039628e-05 3.55298999e-05\n",
- " 3.26049390e-05 3.08155411e-05 2.15345425e-05 2.51163680e-05\n",
- " 2.75428727e-05 -2.98555204e-05 -2.61623526e-05 -1.59426470e-05\n",
- " 1.81730991e-05]\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " 32%|███▏ | 13/41 [00:24<00:53, 1.92s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "INFO:shap:num_full_subsets = 1\n",
- "INFO:shap:remaining_weight_vector = [0.15162364 0.10327987 0.07918123 0.06478465 0.05524272 0.04847831\n",
- " 0.04345312 0.03959062 0.03654519 0.03409718 0.0321005 0.03045432\n",
- " 0.02908698 0.02794632 0.0269936 0.02619967 0.02554233 0.0250046\n",
- " 0.02457349 0.02423915 0.02399431 0.02383382 0.02375437]\n",
- "INFO:shap:num_paired_subset_sizes = 24\n",
- "INFO:shap:weight_left = 0.7710518569800939\n",
- "INFO:shap:np.sum(w_aug) = 49.0\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0\n",
- "INFO:shap:phi = [ 7.42995390e-06 5.01676528e-06 5.66543656e-06 0.00000000e+00\n",
- " 5.04584089e-06 5.93079736e-06 9.05451997e-06 1.46919290e-05\n",
- " 2.67808849e-05 2.85349375e-05 3.33546486e-05 3.66324843e-05\n",
- " 4.39788736e-05 -4.46762732e-05 -2.84392246e-05 -2.78287666e-05\n",
- " -3.33625759e-05 -2.17227759e-05 -2.02615519e-05 -1.37868587e-05\n",
- " -9.32228592e-06 0.00000000e+00 0.00000000e+00 6.37349732e-06\n",
- " -2.48456949e-05 -1.83577042e-05 -2.25901192e-05 -1.66033386e-05\n",
- " -9.71890361e-06 -8.13999621e-06 -1.08101508e-05 -1.20274158e-05\n",
- " -1.29029152e-05 -1.40085798e-05 -2.20352373e-05 -1.60560484e-05\n",
- " -2.24944838e-05 3.92035983e-05 3.72351997e-05 4.02361955e-05\n",
- " 3.66127887e-05 3.44481640e-05 2.44082547e-05 2.84200547e-05\n",
- " 3.16671224e-05 3.42052557e-05 -2.99942837e-05 -1.78586137e-05\n",
- " 2.09222481e-05]\n",
- "INFO:shap:np.sum(w_aug) = 49.0\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0\n",
- "INFO:shap:phi = [ 6.51778672e-06 4.45599050e-06 4.98942007e-06 0.00000000e+00\n",
- " 4.48142345e-06 5.23301818e-06 7.85494387e-06 1.29587428e-05\n",
- " 2.33782803e-05 2.50834202e-05 2.94892570e-05 3.22101018e-05\n",
- " 3.86915618e-05 -3.94531327e-05 -2.49992939e-05 -2.45492429e-05\n",
- " -2.93651680e-05 -1.90932178e-05 -1.80051570e-05 -1.20022842e-05\n",
- " -8.27594940e-06 0.00000000e+00 0.00000000e+00 5.58383910e-06\n",
- " -2.20122697e-05 -1.62817029e-05 -1.98214303e-05 -1.50556924e-05\n",
- " -8.65610178e-06 -7.35928302e-06 -9.27414618e-06 -1.04501112e-05\n",
- " -1.13083451e-05 -1.24598232e-05 -1.91421423e-05 -1.43630217e-05\n",
- " -2.02592418e-05 3.48900010e-05 3.29724569e-05 3.54144537e-05\n",
- " 3.22793161e-05 3.08679202e-05 2.12768459e-05 2.51498597e-05\n",
- " 2.78676595e-05 3.02311608e-05 -2.63999420e-05 -1.60050586e-05\n",
- " 1.85322334e-05]\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " 34%|███▍ | 14/41 [00:26<00:51, 1.89s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "INFO:shap:num_full_subsets = 1\n",
- "INFO:shap:remaining_weight_vector = [0.15162364 0.10327987 0.07918123 0.06478465 0.05524272 0.04847831\n",
- " 0.04345312 0.03959062 0.03654519 0.03409718 0.0321005 0.03045432\n",
- " 0.02908698 0.02794632 0.0269936 0.02619967 0.02554233 0.0250046\n",
- " 0.02457349 0.02423915 0.02399431 0.02383382 0.02375437]\n",
- "INFO:shap:num_paired_subset_sizes = 24\n",
- "INFO:shap:weight_left = 0.7710518569800939\n",
- "INFO:shap:np.sum(w_aug) = 49.00000000000001\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0\n",
- "INFO:shap:phi = [-2.85656018e-05 -1.83109354e-05 -2.11735749e-05 -1.83958576e-05\n",
- " -1.90245703e-05 -2.22389963e-05 -1.20524284e-05 -8.82408813e-06\n",
- " -4.65852671e-06 0.00000000e+00 5.55605432e-06 1.04452710e-05\n",
- " 1.60129669e-05 1.90881961e-05 1.74570573e-05 2.36484870e-05\n",
- " 3.86359234e-05 3.30056813e-05 4.31949869e-05 4.51021795e-05\n",
- " -3.37080501e-05 -3.01783564e-05 -2.82028767e-05 -2.27210091e-05\n",
- " 3.04377926e-05 2.97478620e-05 4.38150797e-05 4.16331638e-05\n",
- " 3.34864589e-05 -8.29556869e-06 -1.08801428e-05 -1.22838779e-05\n",
- " -1.33086169e-05 -1.44190619e-05 -2.22311673e-05 -1.62183435e-05\n",
- " -2.27451768e-05 -3.12756663e-05 -3.69454808e-05 -3.84794713e-05\n",
- " -3.51979665e-05 -3.08609391e-05 -2.29004575e-05 -2.70143309e-05\n",
- " 3.20468435e-05 3.46549249e-05 2.98449645e-05 1.77772344e-05\n",
- " -1.73744319e-05]\n",
- "INFO:shap:np.sum(w_aug) = 49.00000000000001\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0\n",
- "INFO:shap:phi = [-2.50618664e-05 -1.62856507e-05 -1.86573348e-05 -1.61177206e-05\n",
- " -1.68953633e-05 -1.96296013e-05 -1.04530459e-05 -7.78141412e-06\n",
- " -4.06557756e-06 0.00000000e+00 4.91386571e-06 9.18451383e-06\n",
- " 1.40872302e-05 1.68544005e-05 1.53429532e-05 2.08585998e-05\n",
- " 3.40067244e-05 2.90078794e-05 3.83846010e-05 3.92505573e-05\n",
- " -2.99346968e-05 -2.69136163e-05 -2.44705891e-05 -1.98900075e-05\n",
- " 2.69690958e-05 2.63816777e-05 3.84414727e-05 3.77248701e-05\n",
- " 2.98135420e-05 -7.49764792e-06 -9.32657829e-06 -1.06724129e-05\n",
- " -1.16637448e-05 -1.28210940e-05 -1.93045657e-05 -1.45063390e-05\n",
- " -2.04855872e-05 -2.78314606e-05 -3.27156285e-05 -3.38630597e-05\n",
- " -3.10314211e-05 -2.76568507e-05 -1.99642066e-05 -2.39086513e-05\n",
- " 2.81983198e-05 3.06291402e-05 2.62676625e-05 1.59265026e-05\n",
- " -1.53894825e-05]\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " 37%|███▋ | 15/41 [00:28<00:48, 1.87s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "INFO:shap:num_full_subsets = 1\n",
- "INFO:shap:remaining_weight_vector = [0.15162364 0.10327987 0.07918123 0.06478465 0.05524272 0.04847831\n",
- " 0.04345312 0.03959062 0.03654519 0.03409718 0.0321005 0.03045432\n",
- " 0.02908698 0.02794632 0.0269936 0.02619967 0.02554233 0.0250046\n",
- " 0.02457349 0.02423915 0.02399431 0.02383382 0.02375437]\n",
- "INFO:shap:num_paired_subset_sizes = 24\n",
- "INFO:shap:weight_left = 0.7710518569800939\n",
- "INFO:shap:np.sum(w_aug) = 49.00000000000001\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0000000000000004\n",
- "INFO:shap:phi = [ 2.79463581e-05 1.80495365e-05 2.10132499e-05 1.78586098e-05\n",
- " 1.86133562e-05 2.19277459e-05 2.11966039e-05 2.83361995e-05\n",
- " 4.45489297e-05 -5.26998072e-05 -4.66951024e-05 -3.88013380e-05\n",
- " -3.72218950e-05 -3.03166853e-05 -1.78043941e-05 -1.55241004e-05\n",
- " -1.64138748e-05 -8.56581429e-06 -5.34817475e-06 0.00000000e+00\n",
- " 0.00000000e+00 1.06577768e-05 1.66543965e-05 2.24816774e-05\n",
- " -2.42174898e-05 -1.86433577e-05 -2.24797244e-05 -1.68815714e-05\n",
- " -9.42584722e-06 -7.87648945e-06 -1.05811450e-05 -1.21928921e-05\n",
- " -1.31296347e-05 4.76661941e-05 5.49345762e-05 3.07766296e-05\n",
- " 3.50792744e-05 3.95551854e-05 3.75653155e-05 4.00089637e-05\n",
- " 3.67234400e-05 3.46346705e-05 -2.25722788e-05 -2.68800014e-05\n",
- " -2.98363654e-05 -3.36553062e-05 -2.99692579e-05 -1.75691560e-05\n",
- " 2.05681804e-05]\n",
- "INFO:shap:np.sum(w_aug) = 49.00000000000001\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0000000000000004\n",
- "INFO:shap:phi = [ 2.41254464e-05 1.56303518e-05 1.87967760e-05 1.55908368e-05\n",
- " 1.67527618e-05 1.90993041e-05 1.83827112e-05 2.48079031e-05\n",
- " 3.86387303e-05 -4.66599511e-05 -4.14053461e-05 -3.42567859e-05\n",
- " -3.27964640e-05 -2.70216083e-05 -1.57703563e-05 -1.40392649e-05\n",
- " -1.44768578e-05 -7.39585902e-06 0.00000000e+00 0.00000000e+00\n",
- " 0.00000000e+00 9.33499132e-06 1.41085298e-05 1.92294584e-05\n",
- " -2.14007583e-05 -1.65977151e-05 -1.99294540e-05 -1.54652679e-05\n",
- " -8.37714529e-06 -7.27445551e-06 -9.01655514e-06 -1.06651567e-05\n",
- " -1.17414585e-05 4.21432739e-05 4.73609132e-05 2.75371623e-05\n",
- " 3.17186122e-05 3.52912215e-05 3.29984831e-05 3.51193675e-05\n",
- " 3.24244031e-05 3.12305613e-05 -1.97403961e-05 -2.37241161e-05\n",
- " -2.62235326e-05 -2.97701333e-05 -2.64684876e-05 -1.56279396e-05\n",
- " 1.79897603e-05]\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " 39%|███▉ | 16/41 [00:30<00:46, 1.86s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "INFO:shap:num_full_subsets = 1\n",
- "INFO:shap:remaining_weight_vector = [0.15162364 0.10327987 0.07918123 0.06478465 0.05524272 0.04847831\n",
- " 0.04345312 0.03959062 0.03654519 0.03409718 0.0321005 0.03045432\n",
- " 0.02908698 0.02794632 0.0269936 0.02619967 0.02554233 0.0250046\n",
- " 0.02457349 0.02423915 0.02399431 0.02383382 0.02375437]\n",
- "INFO:shap:num_paired_subset_sizes = 24\n",
- "INFO:shap:weight_left = 0.7710518569800939\n",
- "INFO:shap:np.sum(w_aug) = 49.000000000000014\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0000000000000004\n",
- "INFO:shap:phi = [ 7.79139876e-06 4.81655671e-06 6.02371859e-06 5.04571545e-06\n",
- " 0.00000000e+00 0.00000000e+00 9.60067953e-06 1.46138947e-05\n",
- " 2.60177680e-05 2.89814388e-05 3.39406167e-05 3.69462429e-05\n",
- " 4.39770429e-05 -4.46764445e-05 -2.89680504e-05 -2.80984755e-05\n",
- " -3.28751278e-05 -2.10663518e-05 -2.02157854e-05 -1.35159809e-05\n",
- " -8.52074605e-06 0.00000000e+00 0.00000000e+00 6.38647247e-06\n",
- " -2.40386772e-05 -1.91115655e-05 -2.27187262e-05 -1.68664479e-05\n",
- " -9.86021112e-06 -7.96696350e-06 -9.71403952e-06 -1.17824634e-05\n",
- " -1.24788617e-05 -1.38212040e-05 -2.18727782e-05 -1.59548459e-05\n",
- " -2.24423039e-05 3.92935810e-05 3.68662557e-05 4.02625651e-05\n",
- " 3.68105984e-05 3.39498449e-05 2.48492674e-05 2.85548232e-05\n",
- " 3.15472143e-05 3.43391676e-05 -2.92892415e-05 -1.73458871e-05\n",
- " 2.05919689e-05]\n",
- "INFO:shap:np.sum(w_aug) = 49.000000000000014\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0000000000000004\n",
- "INFO:shap:phi = [ 6.79524741e-06 4.69750770e-06 0.00000000e+00 0.00000000e+00\n",
- " 0.00000000e+00 0.00000000e+00 8.49511492e-06 1.28933565e-05\n",
- " 2.27041844e-05 2.57678854e-05 2.99480209e-05 3.25224786e-05\n",
- " 3.94703436e-05 -3.93366513e-05 -2.54184625e-05 -2.47661789e-05\n",
- " -2.88430920e-05 -1.81176005e-05 -1.79919464e-05 -1.15737348e-05\n",
- " -7.49051247e-06 0.00000000e+00 0.00000000e+00 5.82460756e-06\n",
- " -2.06992711e-05 -1.67216842e-05 -1.92910166e-05 -1.49783484e-05\n",
- " -8.20157053e-06 -6.47370724e-06 -8.26587194e-06 -9.93636062e-06\n",
- " -1.06434657e-05 -1.21283208e-05 -1.88154554e-05 -1.38636919e-05\n",
- " -2.02273996e-05 3.52170328e-05 3.25487217e-05 3.56273755e-05\n",
- " 3.28787705e-05 3.07122715e-05 2.18062285e-05 2.53450232e-05\n",
- " 2.81852913e-05 3.04070052e-05 -2.56763817e-05 -1.50890867e-05\n",
- " 1.85212792e-05]\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " 41%|████▏ | 17/41 [00:32<00:44, 1.85s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "INFO:shap:num_full_subsets = 1\n",
- "INFO:shap:remaining_weight_vector = [0.15162364 0.10327987 0.07918123 0.06478465 0.05524272 0.04847831\n",
- " 0.04345312 0.03959062 0.03654519 0.03409718 0.0321005 0.03045432\n",
- " 0.02908698 0.02794632 0.0269936 0.02619967 0.02554233 0.0250046\n",
- " 0.02457349 0.02423915 0.02399431 0.02383382 0.02375437]\n",
- "INFO:shap:num_paired_subset_sizes = 24\n",
- "INFO:shap:weight_left = 0.7710518569800939\n",
- "INFO:shap:np.sum(w_aug) = 49.0\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0\n",
- "INFO:shap:phi = [-3.38490088e-05 -2.15809779e-05 -2.52210059e-05 -2.18839414e-05\n",
- " -2.26162279e-05 -2.64011504e-05 -1.50015775e-05 -1.23133955e-05\n",
- " -8.99950505e-06 0.00000000e+00 0.00000000e+00 6.23984236e-06\n",
- " 1.16287862e-05 1.52654653e-05 1.48564412e-05 2.05538493e-05\n",
- " 3.43833500e-05 2.97997759e-05 3.94276688e-05 4.20279437e-05\n",
- " 4.66550767e-05 -3.40060502e-05 -3.23834722e-05 -2.68437420e-05\n",
- " 3.04600374e-05 2.95648577e-05 4.37560906e-05 4.17912635e-05\n",
- " 3.36087101e-05 3.97570152e-05 -1.09226471e-05 -1.23242699e-05\n",
- " -1.33270873e-05 -1.45427855e-05 -2.22975798e-05 -1.63127061e-05\n",
- " -2.26637216e-05 -3.14516625e-05 -3.70821668e-05 -3.87161909e-05\n",
- " -3.53300743e-05 -3.10514858e-05 -2.31991372e-05 -2.70864647e-05\n",
- " -3.03820425e-05 3.46009836e-05 2.97063136e-05 1.79034999e-05\n",
- " -2.39134280e-05]\n",
- "INFO:shap:np.sum(w_aug) = 49.0\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0\n",
- "INFO:shap:phi = [-2.96934008e-05 -1.91907700e-05 -2.22191296e-05 -1.91705548e-05\n",
- " -2.00802476e-05 -2.32983741e-05 -1.30065122e-05 -1.08557560e-05\n",
- " -7.85361781e-06 0.00000000e+00 0.00000000e+00 5.48473636e-06\n",
- " 1.02278721e-05 1.34762258e-05 1.30538894e-05 1.81269302e-05\n",
- " 3.02574241e-05 2.61851021e-05 3.50311631e-05 3.65721036e-05\n",
- " 4.14277633e-05 -3.03215630e-05 -2.80930695e-05 -2.34948027e-05\n",
- " 2.69834410e-05 2.62152307e-05 3.83798183e-05 3.78596928e-05\n",
- " 2.99180422e-05 3.59343731e-05 -9.36128000e-06 -1.07056975e-05\n",
- " -1.16773696e-05 -1.29278101e-05 -1.93595434e-05 -1.45870121e-05\n",
- " -2.04119059e-05 -2.79837145e-05 -3.28308598e-05 -3.40652691e-05\n",
- " -3.11428866e-05 -2.78215140e-05 -2.02235079e-05 -2.39692901e-05\n",
- " -2.67301032e-05 3.05774176e-05 2.61407724e-05 1.60357708e-05\n",
- " -2.11791137e-05]\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " 44%|████▍ | 18/41 [00:34<00:42, 1.86s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "INFO:shap:num_full_subsets = 1\n",
- "INFO:shap:remaining_weight_vector = [0.15162364 0.10327987 0.07918123 0.06478465 0.05524272 0.04847831\n",
- " 0.04345312 0.03959062 0.03654519 0.03409718 0.0321005 0.03045432\n",
- " 0.02908698 0.02794632 0.0269936 0.02619967 0.02554233 0.0250046\n",
- " 0.02457349 0.02423915 0.02399431 0.02383382 0.02375437]\n",
- "INFO:shap:num_paired_subset_sizes = 24\n",
- "INFO:shap:weight_left = 0.7710518569800939\n",
- "INFO:shap:np.sum(w_aug) = 49.0\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0000000000000002\n",
- "INFO:shap:phi = [ 2.80083387e-05 1.79604855e-05 2.13161084e-05 1.82826061e-05\n",
- " 1.86674907e-05 2.22148425e-05 2.12791185e-05 2.85372880e-05\n",
- " 4.44395962e-05 -5.27932029e-05 -4.65744523e-05 -3.88493941e-05\n",
- " -3.70087316e-05 -3.03017219e-05 -1.76047689e-05 -1.59316745e-05\n",
- " -1.64757066e-05 -8.75555234e-06 -5.41012564e-06 0.00000000e+00\n",
- " 0.00000000e+00 1.02371160e-05 1.64942280e-05 2.26935463e-05\n",
- " -2.44784392e-05 -1.86056979e-05 -2.21986107e-05 -1.66998228e-05\n",
- " -9.97207910e-06 -8.19128269e-06 -1.06743098e-05 -1.19501765e-05\n",
- " -1.28051131e-05 4.75760892e-05 5.49495000e-05 3.09081747e-05\n",
- " 3.50478097e-05 3.94508868e-05 3.72322351e-05 4.00297086e-05\n",
- " 3.64287417e-05 3.43581912e-05 -2.24316117e-05 -2.66744828e-05\n",
- " -2.93028551e-05 -3.39207257e-05 -2.97113224e-05 -1.77855771e-05\n",
- " 2.04905017e-05]\n",
- "INFO:shap:np.sum(w_aug) = 49.0\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0000000000000002\n",
- "INFO:shap:phi = [ 2.45703565e-05 1.59734387e-05 1.87839622e-05 1.60186803e-05\n",
- " 1.65785027e-05 1.96094106e-05 1.84554179e-05 2.51673065e-05\n",
- " 3.87902424e-05 -4.64019094e-05 -4.11770136e-05 -3.41566608e-05\n",
- " -3.25535873e-05 -2.67561438e-05 -1.54674576e-05 -1.40519366e-05\n",
- " -1.44984816e-05 -7.69378527e-06 -4.80589203e-06 0.00000000e+00\n",
- " 0.00000000e+00 9.13059050e-06 1.43075510e-05 1.98672257e-05\n",
- " -2.16854518e-05 -1.64978868e-05 -1.94670056e-05 -1.51330402e-05\n",
- " -8.87721904e-06 -7.40217070e-06 -9.14807467e-06 -1.03786772e-05\n",
- " -1.12177361e-05 4.23011987e-05 4.77224160e-05 2.76427506e-05\n",
- " 3.15638368e-05 3.51056908e-05 3.29682126e-05 3.52255424e-05\n",
- " 3.21127855e-05 3.07893021e-05 -1.95538750e-05 -2.36035794e-05\n",
- " -2.57802468e-05 -2.99785222e-05 -2.61476513e-05 -1.59340262e-05\n",
- " 1.81501048e-05]\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " 46%|████▋ | 19/41 [00:36<00:41, 1.89s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "INFO:shap:num_full_subsets = 1\n",
- "INFO:shap:remaining_weight_vector = [0.15162364 0.10327987 0.07918123 0.06478465 0.05524272 0.04847831\n",
- " 0.04345312 0.03959062 0.03654519 0.03409718 0.0321005 0.03045432\n",
- " 0.02908698 0.02794632 0.0269936 0.02619967 0.02554233 0.0250046\n",
- " 0.02457349 0.02423915 0.02399431 0.02383382 0.02375437]\n",
- "INFO:shap:num_paired_subset_sizes = 24\n",
- "INFO:shap:weight_left = 0.7710518569800939\n",
- "INFO:shap:np.sum(w_aug) = 48.99999999999999\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0000000000000002\n",
- "INFO:shap:phi = [-1.31413251e-05 -8.26844698e-06 -9.65216306e-06 -8.29733381e-06\n",
- " -8.58084957e-06 -1.01555042e-05 0.00000000e+00 0.00000000e+00\n",
- " 8.98929194e-06 1.26851885e-05 1.78218162e-05 2.18009396e-05\n",
- " 2.84525668e-05 3.04764326e-05 2.55253642e-05 3.27421954e-05\n",
- " 5.11783575e-05 -3.46036314e-05 -3.55470771e-05 -2.78809762e-05\n",
- " -2.31732978e-05 -1.89674898e-05 -1.57777539e-05 -1.04470182e-05\n",
- " 3.04869270e-05 2.95471299e-05 -2.26841934e-05 -1.71103847e-05\n",
- " -9.71679187e-06 -8.38686987e-06 -1.08168586e-05 -1.21126004e-05\n",
- " -1.31654741e-05 -1.46400733e-05 -2.20322147e-05 -1.62703568e-05\n",
- " -2.27221639e-05 -3.10327591e-05 -3.69295378e-05 -3.82188189e-05\n",
- " -3.50870308e-05 3.45288799e-05 2.47448108e-05 2.87589596e-05\n",
- " 3.18716577e-05 3.45072669e-05 2.96811676e-05 1.76474326e-05\n",
- " 0.00000000e+00]\n",
- "INFO:shap:np.sum(w_aug) = 48.99999999999999\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0000000000000002\n",
- "INFO:shap:phi = [-1.15289108e-05 -7.35750315e-06 -8.50004391e-06 -7.26453109e-06\n",
- " -7.62064776e-06 -8.96113311e-06 0.00000000e+00 0.00000000e+00\n",
- " 7.84896493e-06 1.11531944e-05 1.57586144e-05 1.91711781e-05\n",
- " 2.50369636e-05 2.69132208e-05 2.24364240e-05 2.88862922e-05\n",
- " 4.50469678e-05 -3.04074977e-05 -3.15858254e-05 -2.42648376e-05\n",
- " -2.05794516e-05 -1.69182951e-05 -1.36869633e-05 -9.14084489e-06\n",
- " 2.70142276e-05 2.62066794e-05 -1.99026810e-05 -1.54992216e-05\n",
- " -8.65456258e-06 -7.57464597e-06 -9.26843243e-06 -1.05226527e-05\n",
- " -1.15390624e-05 -1.30133110e-05 -1.91307714e-05 -1.45529437e-05\n",
- " -2.04586638e-05 -2.76184579e-05 -3.27005465e-05 -3.36369451e-05\n",
- " -3.09375950e-05 3.09508483e-05 2.15742323e-05 2.54527096e-05\n",
- " 2.80488313e-05 3.05007325e-05 2.61315955e-05 1.58203196e-05\n",
- " 0.00000000e+00]\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " 49%|████▉ | 20/41 [00:38<00:42, 2.01s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "INFO:shap:num_full_subsets = 1\n",
- "INFO:shap:remaining_weight_vector = [0.15162364 0.10327987 0.07918123 0.06478465 0.05524272 0.04847831\n",
- " 0.04345312 0.03959062 0.03654519 0.03409718 0.0321005 0.03045432\n",
- " 0.02908698 0.02794632 0.0269936 0.02619967 0.02554233 0.0250046\n",
- " 0.02457349 0.02423915 0.02399431 0.02383382 0.02375437]\n",
- "INFO:shap:num_paired_subset_sizes = 24\n",
- "INFO:shap:weight_left = 0.7710518569800939\n",
- "INFO:shap:np.sum(w_aug) = 49.0\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0\n",
- "INFO:shap:phi = [-1.82394555e-05 -1.13825216e-05 -1.33670789e-05 -1.14946273e-05\n",
- " -1.22082219e-05 -1.42397485e-05 -5.93809919e-06 0.00000000e+00\n",
- " 0.00000000e+00 8.21597867e-06 1.35986260e-05 1.83706474e-05\n",
- " 2.42818134e-05 2.65307025e-05 2.30397668e-05 2.95342409e-05\n",
- " 4.70678655e-05 3.93079564e-05 -3.92080127e-05 -3.11104142e-05\n",
- " -2.65260334e-05 -2.26100965e-05 -1.98653184e-05 -1.44162982e-05\n",
- " 3.05636638e-05 2.97357795e-05 4.37516557e-05 -1.69483683e-05\n",
- " -9.85291802e-06 -8.14834072e-06 -1.07895819e-05 -1.22142406e-05\n",
- " -1.32234576e-05 -1.44098421e-05 -2.20358866e-05 -1.61169668e-05\n",
- " -2.27278914e-05 -3.11484530e-05 -3.68614633e-05 -3.81697290e-05\n",
- " -3.47463883e-05 -3.06927721e-05 2.49067754e-05 2.85769234e-05\n",
- " 3.18457184e-05 3.45059233e-05 2.98069990e-05 1.78522016e-05\n",
- " -4.83382988e-06]\n",
- "INFO:shap:np.sum(w_aug) = 49.0\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0\n",
- "INFO:shap:phi = [-1.60057188e-05 -1.01304631e-05 -1.17798687e-05 -1.00709419e-05\n",
- " -1.08436999e-05 -1.25681402e-05 -5.15204346e-06 0.00000000e+00\n",
- " 0.00000000e+00 7.22103389e-06 1.20267255e-05 1.61543437e-05\n",
- " 2.13665554e-05 2.34324347e-05 2.02516091e-05 2.60584428e-05\n",
- " 4.14337385e-05 3.45528685e-05 -3.48456951e-05 -2.70786344e-05\n",
- " -2.35638637e-05 -2.01719279e-05 -1.72392961e-05 -1.26217753e-05\n",
- " 2.70830968e-05 2.63744959e-05 3.83905542e-05 -1.53607406e-05\n",
- " -8.77700161e-06 -7.36978705e-06 -9.24927771e-06 -1.06141518e-05\n",
- " -1.15930295e-05 -1.28161038e-05 -1.91388886e-05 -1.44194558e-05\n",
- " -2.04699729e-05 -2.77269951e-05 -3.26472238e-05 -3.35992515e-05\n",
- " -3.06437428e-05 -2.75117817e-05 2.17165884e-05 2.52986873e-05\n",
- " 2.80283941e-05 3.05014306e-05 2.62406770e-05 1.59966656e-05\n",
- " -4.27919867e-06]\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " 51%|█████ | 21/41 [00:40<00:38, 1.94s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "INFO:shap:num_full_subsets = 1\n",
- "INFO:shap:remaining_weight_vector = [0.15162364 0.10327987 0.07918123 0.06478465 0.05524272 0.04847831\n",
- " 0.04345312 0.03959062 0.03654519 0.03409718 0.0321005 0.03045432\n",
- " 0.02908698 0.02794632 0.0269936 0.02619967 0.02554233 0.0250046\n",
- " 0.02457349 0.02423915 0.02399431 0.02383382 0.02375437]\n",
- "INFO:shap:num_paired_subset_sizes = 24\n",
- "INFO:shap:weight_left = 0.7710518569800939\n",
- "INFO:shap:np.sum(w_aug) = 49.0\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0\n",
- "INFO:shap:phi = [ 2.80659703e-05 1.79936272e-05 2.08014554e-05 1.80763588e-05\n",
- " 1.86913311e-05 2.18539648e-05 2.12268833e-05 2.82118434e-05\n",
- " 4.44510237e-05 -5.26770993e-05 -4.67102995e-05 -3.89333200e-05\n",
- " -3.73321996e-05 -3.00529963e-05 -1.79822301e-05 -1.59516142e-05\n",
- " -1.64160291e-05 -8.76653549e-06 -5.53510572e-06 0.00000000e+00\n",
- " 4.65655365e-06 1.03170892e-05 1.65449300e-05 2.23238042e-05\n",
- " -2.44371491e-05 -1.89033066e-05 -2.26220478e-05 -1.68509245e-05\n",
- " -9.84357252e-06 -8.18520275e-06 -1.07327907e-05 -1.21118804e-05\n",
- " -1.31309434e-05 4.75857302e-05 5.46140959e-05 3.06470811e-05\n",
- " 3.50040790e-05 3.95358460e-05 3.72280968e-05 4.01164741e-05\n",
- " 3.66242212e-05 3.43582651e-05 -2.25889139e-05 -2.66529871e-05\n",
- " -2.97324110e-05 -3.39957496e-05 -2.99012022e-05 -1.79113204e-05\n",
- " 2.05242728e-05]\n",
- "INFO:shap:np.sum(w_aug) = 49.0\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0\n",
- "INFO:shap:phi = [ 2.44205803e-05 1.58113188e-05 1.80584157e-05 1.56018482e-05\n",
- " 1.62272236e-05 1.94618338e-05 1.82599664e-05 2.47580703e-05\n",
- " 3.84908337e-05 -4.61530796e-05 -4.14328217e-05 -3.43323136e-05\n",
- " -3.28587416e-05 -2.65015717e-05 -1.57957093e-05 -1.44351741e-05\n",
- " -1.46136172e-05 -7.88730742e-06 0.00000000e+00 0.00000000e+00\n",
- " 4.29941188e-06 9.12500431e-06 1.42923488e-05 1.92110086e-05\n",
- " -2.17020697e-05 -1.68495936e-05 -2.01066770e-05 -1.52866461e-05\n",
- " -8.79487172e-06 -7.49878109e-06 -9.46514873e-06 -1.03714183e-05\n",
- " -1.15225734e-05 4.23237309e-05 4.73237395e-05 2.72378059e-05\n",
- " 3.15322463e-05 3.52270242e-05 3.27377100e-05 3.53062382e-05\n",
- " 3.24073788e-05 3.07956891e-05 -1.98305210e-05 -2.39930598e-05\n",
- " -2.61931051e-05 -3.01969366e-05 -2.64918661e-05 -1.58989420e-05\n",
- " 1.77696132e-05]\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " 54%|█████▎ | 22/41 [00:42<00:40, 2.14s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "INFO:shap:num_full_subsets = 1\n",
- "INFO:shap:remaining_weight_vector = [0.15162364 0.10327987 0.07918123 0.06478465 0.05524272 0.04847831\n",
- " 0.04345312 0.03959062 0.03654519 0.03409718 0.0321005 0.03045432\n",
- " 0.02908698 0.02794632 0.0269936 0.02619967 0.02554233 0.0250046\n",
- " 0.02457349 0.02423915 0.02399431 0.02383382 0.02375437]\n",
- "INFO:shap:num_paired_subset_sizes = 24\n",
- "INFO:shap:weight_left = 0.7710518569800939\n",
- "INFO:shap:np.sum(w_aug) = 49.0\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0000000000000002\n",
- "INFO:shap:phi = [ 7.48597607e-06 4.91482200e-06 5.73459835e-06 4.57909315e-06\n",
- " 0.00000000e+00 5.98035655e-06 9.29539026e-06 1.49795756e-05\n",
- " 2.64510104e-05 2.82415183e-05 3.35445888e-05 3.69634153e-05\n",
- " 4.44172447e-05 -4.50094525e-05 -2.88277253e-05 -2.78482827e-05\n",
- " -3.32918157e-05 -2.12880559e-05 -1.99343303e-05 -1.38588116e-05\n",
- " -9.42185499e-06 0.00000000e+00 0.00000000e+00 5.88841847e-06\n",
- " -2.40062451e-05 -1.91134512e-05 -2.22944217e-05 -1.69705078e-05\n",
- " -1.00967318e-05 -8.05978676e-06 -1.03101918e-05 -1.17391985e-05\n",
- " -1.34879697e-05 -1.41654597e-05 -2.20513161e-05 -1.57620076e-05\n",
- " -2.23181045e-05 3.94302480e-05 3.75586806e-05 4.01747834e-05\n",
- " 3.62050413e-05 3.43711117e-05 2.47868294e-05 2.80954696e-05\n",
- " 3.14978153e-05 3.45150147e-05 -2.94983081e-05 -1.80979357e-05\n",
- " 2.03466161e-05]\n",
- "INFO:shap:np.sum(w_aug) = 49.0\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0000000000000002\n",
- "INFO:shap:phi = [ 6.67879302e-06 4.49658204e-06 5.14572290e-06 0.00000000e+00\n",
- " 0.00000000e+00 5.19477996e-06 8.28047289e-06 1.32112771e-05\n",
- " 2.31502286e-05 2.50421301e-05 2.97157603e-05 3.24905575e-05\n",
- " 3.91580775e-05 -3.94316032e-05 -2.52288166e-05 -2.46647486e-05\n",
- " -2.92989784e-05 -1.88184750e-05 -1.75271236e-05 -1.19074896e-05\n",
- " -8.51898664e-06 0.00000000e+00 0.00000000e+00 5.10967101e-06\n",
- " -2.12187839e-05 -1.67124739e-05 -1.95006684e-05 -1.52202068e-05\n",
- " -8.90618862e-06 -7.13914901e-06 -8.70775354e-06 -1.02235396e-05\n",
- " -1.18454667e-05 -1.25406141e-05 -1.90822341e-05 -1.38286867e-05\n",
- " -2.02507743e-05 3.51085511e-05 3.34390830e-05 3.52982207e-05\n",
- " 3.21574965e-05 3.07286433e-05 2.17748497e-05 2.51677432e-05\n",
- " 2.83640213e-05 3.04816063e-05 -2.58004509e-05 -1.61511528e-05\n",
- " 1.81480315e-05]\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " 56%|█████▌ | 23/41 [00:44<00:37, 2.07s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "INFO:shap:num_full_subsets = 1\n",
- "INFO:shap:remaining_weight_vector = [0.15162364 0.10327987 0.07918123 0.06478465 0.05524272 0.04847831\n",
- " 0.04345312 0.03959062 0.03654519 0.03409718 0.0321005 0.03045432\n",
- " 0.02908698 0.02794632 0.0269936 0.02619967 0.02554233 0.0250046\n",
- " 0.02457349 0.02423915 0.02399431 0.02383382 0.02375437]\n",
- "INFO:shap:num_paired_subset_sizes = 24\n",
- "INFO:shap:weight_left = 0.7710518569800939\n",
- "INFO:shap:np.sum(w_aug) = 49.0\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0\n",
- "INFO:shap:phi = [-1.29038708e-05 -8.38434680e-06 -9.54540388e-06 -8.19493472e-06\n",
- " -8.62693034e-06 -9.97607178e-06 -2.84041255e-06 0.00000000e+00\n",
- " 8.93420000e-06 1.24891891e-05 1.77175454e-05 2.19859606e-05\n",
- " 2.83918586e-05 3.04862600e-05 2.57479152e-05 3.29064632e-05\n",
- " 5.12464110e-05 -3.44763160e-05 -3.53530068e-05 -2.78557886e-05\n",
- " -2.29580246e-05 -1.90195302e-05 -1.57908292e-05 -1.02243509e-05\n",
- " 3.03244577e-05 2.96349862e-05 -2.27100404e-05 -1.68937882e-05\n",
- " -9.86524628e-06 -8.22783028e-06 -1.08311489e-05 -1.22361797e-05\n",
- " -1.33027796e-05 -1.42865587e-05 -2.21447997e-05 -1.60587766e-05\n",
- " -2.27999135e-05 -3.10735527e-05 -3.67655595e-05 -3.83432850e-05\n",
- " -3.49176341e-05 3.48452417e-05 2.48568108e-05 2.89325785e-05\n",
- " 3.20649207e-05 3.46673032e-05 2.97233972e-05 1.76788003e-05\n",
- " 0.00000000e+00]\n",
- "INFO:shap:np.sum(w_aug) = 49.0\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0\n",
- "INFO:shap:phi = [-1.13215667e-05 -7.45587508e-06 -8.40743784e-06 -7.17674019e-06\n",
- " -7.66198208e-06 -8.80290602e-06 -2.46336812e-06 0.00000000e+00\n",
- " 7.80030922e-06 1.09794454e-05 1.56695006e-05 1.93335916e-05\n",
- " 2.49829596e-05 2.69219786e-05 2.26312502e-05 2.90325037e-05\n",
- " 4.51058985e-05 -3.03006954e-05 -3.14160757e-05 -2.42452550e-05\n",
- " -2.03901619e-05 -1.69654320e-05 -1.36973344e-05 -8.94458038e-06\n",
- " 2.68701058e-05 2.62846030e-05 -1.99219043e-05 -1.53095982e-05\n",
- " -8.78363211e-06 -7.43821782e-06 -9.28585798e-06 -1.06307497e-05\n",
- " -1.16623068e-05 -1.27048252e-05 -1.92328854e-05 -1.43658850e-05\n",
- " -2.05300035e-05 -2.76574672e-05 -3.25565302e-05 -3.37486726e-05\n",
- " -3.07873625e-05 3.12279867e-05 2.16716418e-05 2.56058399e-05\n",
- " 2.82179332e-05 3.06415754e-05 2.61673274e-05 1.58458763e-05\n",
- " 0.00000000e+00]\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " 59%|█████▊ | 24/41 [00:46<00:33, 1.97s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "INFO:shap:num_full_subsets = 1\n",
- "INFO:shap:remaining_weight_vector = [0.15162364 0.10327987 0.07918123 0.06478465 0.05524272 0.04847831\n",
- " 0.04345312 0.03959062 0.03654519 0.03409718 0.0321005 0.03045432\n",
- " 0.02908698 0.02794632 0.0269936 0.02619967 0.02554233 0.0250046\n",
- " 0.02457349 0.02423915 0.02399431 0.02383382 0.02375437]\n",
- "INFO:shap:num_paired_subset_sizes = 24\n",
- "INFO:shap:weight_left = 0.7710518569800939\n",
- "INFO:shap:np.sum(w_aug) = 49.00000000000001\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0\n",
- "INFO:shap:phi = [-1.82012728e-05 -1.13909411e-05 -1.36184848e-05 -1.14740035e-05\n",
- " -1.19341474e-05 -1.42197048e-05 -5.78577764e-06 0.00000000e+00\n",
- " 0.00000000e+00 8.21684484e-06 1.34144415e-05 1.77044244e-05\n",
- " 2.43292748e-05 2.61395390e-05 2.23433160e-05 3.01276736e-05\n",
- " 4.72442953e-05 3.96447583e-05 -3.94262036e-05 -3.12457990e-05\n",
- " -2.65623623e-05 -2.25877563e-05 -1.97397092e-05 -1.47617426e-05\n",
- " 3.04390690e-05 2.95354655e-05 4.32341258e-05 -1.67832036e-05\n",
- " -1.02296426e-05 -8.45343572e-06 -1.10590335e-05 -1.17633180e-05\n",
- " -1.32141686e-05 -1.44479953e-05 -2.22393988e-05 -1.66518473e-05\n",
- " -2.25264886e-05 -3.12453023e-05 -3.68464264e-05 -3.83887688e-05\n",
- " -3.52347246e-05 -3.12609661e-05 2.48540519e-05 2.86049571e-05\n",
- " 3.17675613e-05 3.43696415e-05 2.94475177e-05 1.78428495e-05\n",
- " 0.00000000e+00]\n",
- "INFO:shap:np.sum(w_aug) = 49.00000000000001\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0\n",
- "INFO:shap:phi = [-1.59737479e-05 -1.01351182e-05 -1.20007949e-05 -1.00518290e-05\n",
- " -1.06026003e-05 -1.25512351e-05 -5.01946521e-06 0.00000000e+00\n",
- " 0.00000000e+00 7.22165886e-06 1.18662560e-05 1.55685507e-05\n",
- " 2.14077129e-05 2.30828056e-05 1.96411664e-05 2.65749311e-05\n",
- " 4.15893260e-05 3.48481819e-05 -3.50403782e-05 -2.72010515e-05\n",
- " -2.35969963e-05 -2.01521097e-05 -1.71269219e-05 -1.29238333e-05\n",
- " 2.69721630e-05 2.61969009e-05 3.79347462e-05 -1.52162873e-05\n",
- " -9.10538191e-06 -7.63756368e-06 -9.48787827e-06 -1.02181318e-05\n",
- " -1.15859873e-05 -1.28493494e-05 -1.93186558e-05 -1.48925780e-05\n",
- " -2.02945985e-05 -2.78120931e-05 -3.26337381e-05 -3.37934213e-05\n",
- " -3.10724297e-05 -2.80137570e-05 2.16687881e-05 2.53245356e-05\n",
- " 2.79579267e-05 3.03814819e-05 2.59233607e-05 1.59871111e-05\n",
- " 0.00000000e+00]\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " 61%|██████ | 25/41 [00:48<00:31, 1.95s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "INFO:shap:num_full_subsets = 1\n",
- "INFO:shap:remaining_weight_vector = [0.15162364 0.10327987 0.07918123 0.06478465 0.05524272 0.04847831\n",
- " 0.04345312 0.03959062 0.03654519 0.03409718 0.0321005 0.03045432\n",
- " 0.02908698 0.02794632 0.0269936 0.02619967 0.02554233 0.0250046\n",
- " 0.02457349 0.02423915 0.02399431 0.02383382 0.02375437]\n",
- "INFO:shap:num_paired_subset_sizes = 24\n",
- "INFO:shap:weight_left = 0.7710518569800939\n",
- "INFO:shap:np.sum(w_aug) = 49.0\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0\n",
- "INFO:shap:phi = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n",
- " 0.00000000e+00 0.00000000e+00 6.75487063e-06 1.22162116e-05\n",
- " 2.20245202e-05 2.48789078e-05 3.00067306e-05 3.30731959e-05\n",
- " 4.02916128e-05 4.14298701e-05 -3.09817424e-05 -3.08759882e-05\n",
- " -3.74110688e-05 -2.42622271e-05 -2.35649929e-05 -1.73874732e-05\n",
- " -1.21449390e-05 -7.71299250e-06 0.00000000e+00 0.00000000e+00\n",
- " -2.39365940e-05 -1.87188112e-05 -2.22666833e-05 -1.66816717e-05\n",
- " -9.48329928e-06 -8.11651873e-06 -1.03997206e-05 -1.18764653e-05\n",
- " -1.29355674e-05 -1.40623890e-05 -2.15151275e-05 -1.56367469e-05\n",
- " -2.23926381e-05 -3.04637071e-05 3.73162267e-05 3.99747586e-05\n",
- " 3.69533018e-05 3.43491827e-05 2.48850064e-05 2.84640154e-05\n",
- " 3.18676496e-05 3.46411320e-05 2.97193320e-05 -1.78437423e-05\n",
- " 2.02934914e-05]\n",
- "INFO:shap:np.sum(w_aug) = 49.0\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0\n",
- "INFO:shap:phi = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n",
- " 0.00000000e+00 0.00000000e+00 5.86569692e-06 1.07743909e-05\n",
- " 1.92317313e-05 2.18707942e-05 2.65323571e-05 2.90845119e-05\n",
- " 3.54505422e-05 3.65880722e-05 -2.72345787e-05 -2.72359227e-05\n",
- " -3.29240053e-05 -2.13228694e-05 -2.09424108e-05 -1.51340471e-05\n",
- " -1.07866519e-05 -6.87965150e-06 0.00000000e+00 0.00000000e+00\n",
- " -2.12137739e-05 -1.65990977e-05 -1.95346026e-05 -1.51179663e-05\n",
- " -8.44264654e-06 -7.33609685e-06 -8.90559198e-06 -1.03160964e-05\n",
- " -1.13377078e-05 -1.25072400e-05 -1.86804167e-05 -1.39897523e-05\n",
- " -2.01670726e-05 -2.71142113e-05 3.30482176e-05 3.51841784e-05\n",
- " 3.25812406e-05 3.07878890e-05 2.16975743e-05 2.51964496e-05\n",
- " 2.80459701e-05 3.06211968e-05 2.61569223e-05 -1.59850954e-05\n",
- " 1.79862179e-05]\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " 63%|██████▎ | 26/41 [00:50<00:28, 1.90s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "INFO:shap:num_full_subsets = 1\n",
- "INFO:shap:remaining_weight_vector = [0.15162364 0.10327987 0.07918123 0.06478465 0.05524272 0.04847831\n",
- " 0.04345312 0.03959062 0.03654519 0.03409718 0.0321005 0.03045432\n",
- " 0.02908698 0.02794632 0.0269936 0.02619967 0.02554233 0.0250046\n",
- " 0.02457349 0.02423915 0.02399431 0.02383382 0.02375437]\n",
- "INFO:shap:num_paired_subset_sizes = 24\n",
- "INFO:shap:weight_left = 0.7710518569800939\n",
- "INFO:shap:np.sum(w_aug) = 49.0\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0000000000000002\n",
- "INFO:shap:phi = [-2.29639658e-05 -1.48791000e-05 -1.68425634e-05 -1.51331323e-05\n",
- " -1.53213094e-05 -1.80583761e-05 -8.73198989e-06 -5.25465371e-06\n",
- " 0.00000000e+00 0.00000000e+00 9.89468525e-06 1.42642205e-05\n",
- " 2.00803745e-05 2.28637111e-05 1.99846042e-05 2.67149227e-05\n",
- " 4.28901187e-05 3.61879517e-05 4.67923498e-05 -3.43162733e-05\n",
- " -2.98485204e-05 -2.60194559e-05 -2.39685412e-05 -1.85872550e-05\n",
- " 3.03122916e-05 2.97228381e-05 4.37542629e-05 4.12624211e-05\n",
- " -9.70854147e-06 -8.54378673e-06 -1.08158216e-05 -1.21403387e-05\n",
- " -1.32804554e-05 -1.43982635e-05 -2.20509852e-05 -1.59507904e-05\n",
- " -2.27948491e-05 -3.10723754e-05 -3.67778675e-05 -3.82765027e-05\n",
- " -3.46193224e-05 -3.06423017e-05 -2.26438257e-05 2.87469304e-05\n",
- " 3.17546751e-05 3.43860925e-05 2.99294625e-05 1.77722059e-05\n",
- " 2.07126653e-05]\n",
- "INFO:shap:np.sum(w_aug) = 49.0\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0000000000000002\n",
- "INFO:shap:phi = [-2.01453081e-05 -1.32332894e-05 -1.48406315e-05 -1.32560442e-05\n",
- " -1.36076891e-05 -1.59380271e-05 -7.57115839e-06 -4.63400093e-06\n",
- " 0.00000000e+00 0.00000000e+00 8.74665366e-06 1.25409068e-05\n",
- " 1.76627715e-05 2.01857093e-05 1.75617482e-05 2.35642840e-05\n",
- " 3.77465471e-05 3.17997908e-05 4.15772333e-05 -2.98586462e-05\n",
- " -2.65084877e-05 -2.32085079e-05 -2.07940599e-05 -1.62692517e-05\n",
- " 2.68560654e-05 2.63551382e-05 3.83832222e-05 3.73899406e-05\n",
- " -8.64442366e-06 -7.71452396e-06 -9.27023476e-06 -1.05465070e-05\n",
- " -1.16381862e-05 -1.28010357e-05 -1.91457477e-05 -1.42702779e-05\n",
- " -2.05229369e-05 -2.76511851e-05 -3.25649222e-05 -3.36833196e-05\n",
- " -3.05203596e-05 -2.74598526e-05 -1.97404044e-05 2.54389423e-05\n",
- " 2.79420665e-05 3.03873314e-05 2.63410782e-05 1.59214711e-05\n",
- " 1.83465072e-05]\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " 66%|██████▌ | 27/41 [00:51<00:25, 1.83s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "INFO:shap:num_full_subsets = 1\n",
- "INFO:shap:remaining_weight_vector = [0.15162364 0.10327987 0.07918123 0.06478465 0.05524272 0.04847831\n",
- " 0.04345312 0.03959062 0.03654519 0.03409718 0.0321005 0.03045432\n",
- " 0.02908698 0.02794632 0.0269936 0.02619967 0.02554233 0.0250046\n",
- " 0.02457349 0.02423915 0.02399431 0.02383382 0.02375437]\n",
- "INFO:shap:num_paired_subset_sizes = 24\n",
- "INFO:shap:weight_left = 0.7710518569800939\n",
- "INFO:shap:np.sum(w_aug) = 49.00000000000001\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0\n",
- "INFO:shap:phi = [-3.89397879e-05 -2.51054397e-05 -2.90739739e-05 -2.52389094e-05\n",
- " -2.58687076e-05 -3.03453940e-05 -1.82012094e-05 -1.56247858e-05\n",
- " -1.38118491e-05 -8.03625164e-06 0.00000000e+00 0.00000000e+00\n",
- " 7.83291938e-06 1.16017694e-05 1.20330805e-05 1.74838706e-05\n",
- " 3.01137138e-05 2.65649849e-05 3.59387125e-05 3.82354669e-05\n",
- " 4.33384169e-05 5.13016301e-05 -3.64823278e-05 -3.10683437e-05\n",
- " 3.04360182e-05 3.02595684e-05 4.40089936e-05 4.16402713e-05\n",
- " 3.35164602e-05 4.00659782e-05 5.11480576e-05 -1.24743270e-05\n",
- " -1.35671813e-05 -1.46313648e-05 -2.21865948e-05 -1.62257592e-05\n",
- " -2.27581170e-05 -3.14437603e-05 -3.70637053e-05 -3.86095265e-05\n",
- " -3.55088502e-05 -3.10174594e-05 -2.30552851e-05 -2.71725010e-05\n",
- " -3.01238969e-05 -3.47538126e-05 3.00030771e-05 1.79488266e-05\n",
- " -2.99984129e-05]\n",
- "INFO:shap:np.sum(w_aug) = 49.00000000000001\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0\n",
- "INFO:shap:phi = [-3.41578149e-05 -2.23245378e-05 -2.56170256e-05 -2.21104604e-05\n",
- " -2.29721197e-05 -2.67828084e-05 -1.57818004e-05 -1.37752619e-05\n",
- " -1.20548770e-05 -7.06130727e-06 0.00000000e+00 0.00000000e+00\n",
- " 6.88923718e-06 1.02435277e-05 1.05743497e-05 1.54216483e-05\n",
- " 2.65013340e-05 2.33451976e-05 3.19306997e-05 3.32715815e-05\n",
- " 3.84859298e-05 4.57468735e-05 -3.16510625e-05 -2.71952132e-05\n",
- " 2.69631214e-05 2.68308766e-05 3.86066146e-05 3.77310490e-05\n",
- " 2.98383285e-05 3.62099636e-05 4.38378597e-05 -1.08390926e-05\n",
- " -1.18900714e-05 -1.30070874e-05 -1.92625624e-05 -1.45109781e-05\n",
- " -2.04964793e-05 -2.79775773e-05 -3.28172520e-05 -3.39719535e-05\n",
- " -3.13007017e-05 -2.77926128e-05 -2.00955587e-05 -2.40479703e-05\n",
- " -2.65048116e-05 -3.07134949e-05 2.64035783e-05 1.60772349e-05\n",
- " -2.65705105e-05]\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " 68%|██████▊ | 28/41 [00:53<00:23, 1.81s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "INFO:shap:num_full_subsets = 1\n",
- "INFO:shap:remaining_weight_vector = [0.15162364 0.10327987 0.07918123 0.06478465 0.05524272 0.04847831\n",
- " 0.04345312 0.03959062 0.03654519 0.03409718 0.0321005 0.03045432\n",
- " 0.02908698 0.02794632 0.0269936 0.02619967 0.02554233 0.0250046\n",
- " 0.02457349 0.02423915 0.02399431 0.02383382 0.02375437]\n",
- "INFO:shap:num_paired_subset_sizes = 24\n",
- "INFO:shap:weight_left = 0.7710518569800939\n",
- "INFO:shap:np.sum(w_aug) = 49.0\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0000000000000002\n",
- "INFO:shap:phi = [-3.92282427e-05 -2.51073822e-05 -2.90261157e-05 -2.52367148e-05\n",
- " -2.60188489e-05 -3.02926411e-05 -1.81774589e-05 -1.54131064e-05\n",
- " -1.37941770e-05 -8.26482951e-06 0.00000000e+00 0.00000000e+00\n",
- " 7.75154445e-06 1.15813855e-05 1.20586697e-05 1.75088604e-05\n",
- " 3.01106685e-05 2.65589561e-05 3.56869118e-05 3.82897202e-05\n",
- " 4.33080145e-05 5.11556321e-05 -3.67177569e-05 -3.08873103e-05\n",
- " 3.05685936e-05 2.97858186e-05 4.39171632e-05 4.15553301e-05\n",
- " 3.34557277e-05 3.99700905e-05 5.12838959e-05 -1.20429816e-05\n",
- " -1.31750368e-05 -1.45191887e-05 -2.21790192e-05 -1.61710754e-05\n",
- " -2.28450471e-05 -3.14057323e-05 -3.70529210e-05 -3.84794594e-05\n",
- " -3.54469473e-05 -3.08165839e-05 -2.29900489e-05 -2.67367821e-05\n",
- " -3.04741821e-05 -3.45674315e-05 2.98034714e-05 1.78625904e-05\n",
- " -3.00617416e-05]\n",
- "INFO:shap:np.sum(w_aug) = 49.0\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0000000000000002\n",
- "INFO:shap:phi = [-3.44128998e-05 -2.23252065e-05 -2.55735219e-05 -2.21084739e-05\n",
- " -2.31039965e-05 -2.67359194e-05 -1.57608893e-05 -1.35902963e-05\n",
- " -1.20385806e-05 -7.26338068e-06 0.00000000e+00 0.00000000e+00\n",
- " 6.81811949e-06 1.02257545e-05 1.05983890e-05 1.54432304e-05\n",
- " 2.65000777e-05 2.33396660e-05 3.17105022e-05 3.33201063e-05\n",
- " 3.84584547e-05 4.56152339e-05 -3.18587904e-05 -2.70334178e-05\n",
- " 2.70814682e-05 2.64129465e-05 3.85262107e-05 3.76541997e-05\n",
- " 2.97879918e-05 3.61254171e-05 4.39557148e-05 -1.04577316e-05\n",
- " -1.15436680e-05 -1.29091710e-05 -1.92553454e-05 -1.44627769e-05\n",
- " -2.05751488e-05 -2.79450443e-05 -3.28077457e-05 -3.38579495e-05\n",
- " -3.12461930e-05 -2.76159385e-05 -2.00372932e-05 -2.36643442e-05\n",
- " -2.68140072e-05 -3.05483968e-05 2.62266202e-05 1.60001860e-05\n",
- " -2.66281601e-05]\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " 71%|███████ | 29/41 [00:55<00:21, 1.81s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "INFO:shap:num_full_subsets = 1\n",
- "INFO:shap:remaining_weight_vector = [0.15162364 0.10327987 0.07918123 0.06478465 0.05524272 0.04847831\n",
- " 0.04345312 0.03959062 0.03654519 0.03409718 0.0321005 0.03045432\n",
- " 0.02908698 0.02794632 0.0269936 0.02619967 0.02554233 0.0250046\n",
- " 0.02457349 0.02423915 0.02399431 0.02383382 0.02375437]\n",
- "INFO:shap:num_paired_subset_sizes = 24\n",
- "INFO:shap:weight_left = 0.7710518569800939\n",
- "INFO:shap:np.sum(w_aug) = 49.00000000000001\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0000000000000002\n",
- "INFO:shap:phi = [-1.28542084e-05 -8.45355809e-06 -9.58068911e-06 -8.34426206e-06\n",
- " -8.57284032e-06 -1.00246024e-05 0.00000000e+00 0.00000000e+00\n",
- " 8.80057125e-06 1.22783970e-05 1.76232808e-05 2.19346091e-05\n",
- " 2.81893846e-05 3.02375431e-05 2.56185800e-05 3.25746585e-05\n",
- " 5.10589222e-05 -3.44554220e-05 -3.54378031e-05 -2.77847272e-05\n",
- " -2.33008251e-05 -1.88873491e-05 -1.59844223e-05 -1.02794919e-05\n",
- " 3.00863890e-05 2.92410135e-05 -2.31926888e-05 -1.70060811e-05\n",
- " -9.95995615e-06 -8.12837164e-06 -1.07345064e-05 -1.22077516e-05\n",
- " -1.32918553e-05 -1.42839071e-05 -2.20739128e-05 -1.61269887e-05\n",
- " -2.25119672e-05 -3.11797419e-05 -3.69181597e-05 -3.82069330e-05\n",
- " -3.48358369e-05 3.47167772e-05 2.46689508e-05 2.83700541e-05\n",
- " 3.17372701e-05 3.44805000e-05 2.95950527e-05 1.78227380e-05\n",
- " 2.06850427e-05]\n",
- "INFO:shap:np.sum(w_aug) = 49.00000000000001\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0000000000000002\n",
- "INFO:shap:phi = [-1.12816045e-05 -7.51642176e-06 -8.44023825e-06 -7.30884508e-06\n",
- " -7.61699167e-06 -8.84520122e-06 0.00000000e+00 0.00000000e+00\n",
- " 7.68278768e-06 1.07935597e-05 1.55863137e-05 1.92849616e-05\n",
- " 2.48063918e-05 2.67012040e-05 2.25150130e-05 2.87408240e-05\n",
- " 4.49402542e-05 -3.02811413e-05 -3.14914665e-05 -2.41815668e-05\n",
- " -2.06929841e-05 -1.68500065e-05 -1.38652837e-05 -8.99496215e-06\n",
- " 2.66621005e-05 2.59425415e-05 -2.03448161e-05 -1.54062905e-05\n",
- " -8.86626870e-06 -7.34980121e-06 -9.19956233e-06 -1.06070827e-05\n",
- " -1.16508802e-05 -1.27017961e-05 -1.91712857e-05 -1.44253659e-05\n",
- " -2.02721078e-05 -2.77503772e-05 -3.26901269e-05 -3.36300667e-05\n",
- " -3.07195174e-05 3.11108881e-05 2.15096395e-05 2.51103670e-05\n",
- " 2.79291905e-05 3.04743126e-05 2.60568025e-05 1.59734862e-05\n",
- " 1.83245535e-05]\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " 73%|███████▎ | 30/41 [00:56<00:19, 1.76s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "INFO:shap:num_full_subsets = 1\n",
- "INFO:shap:remaining_weight_vector = [0.15162364 0.10327987 0.07918123 0.06478465 0.05524272 0.04847831\n",
- " 0.04345312 0.03959062 0.03654519 0.03409718 0.0321005 0.03045432\n",
- " 0.02908698 0.02794632 0.0269936 0.02619967 0.02554233 0.0250046\n",
- " 0.02457349 0.02423915 0.02399431 0.02383382 0.02375437]\n",
- "INFO:shap:num_paired_subset_sizes = 24\n",
- "INFO:shap:weight_left = 0.7710518569800939\n",
- "INFO:shap:np.sum(w_aug) = 49.0\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0000000000000002\n",
- "INFO:shap:phi = [-1.84861917e-05 -1.13588938e-05 -1.34231455e-05 -1.16005426e-05\n",
- " -1.23323692e-05 -1.41096008e-05 -6.26881334e-06 0.00000000e+00\n",
- " 0.00000000e+00 8.40196665e-06 1.36332545e-05 1.79913071e-05\n",
- " 2.42939857e-05 2.63247047e-05 2.26466555e-05 2.97377358e-05\n",
- " 4.68483948e-05 3.89540848e-05 -3.94517742e-05 -3.10762562e-05\n",
- " -2.62378378e-05 -2.29099153e-05 -1.98873796e-05 -1.43527046e-05\n",
- " 3.04044470e-05 2.97157181e-05 4.35128589e-05 -1.70644438e-05\n",
- " -9.77101275e-06 -8.65122823e-06 -1.07443662e-05 -1.19284026e-05\n",
- " -1.29965883e-05 -1.46875276e-05 -2.20147486e-05 -1.63353191e-05\n",
- " -2.29811920e-05 -3.12856918e-05 -3.70081570e-05 -3.83082365e-05\n",
- " -3.50140423e-05 -3.10062071e-05 2.45072125e-05 2.87119684e-05\n",
- " 3.15680619e-05 3.45139820e-05 2.95542946e-05 1.79391370e-05\n",
- " 0.00000000e+00]\n",
- "INFO:shap:np.sum(w_aug) = 49.0\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0000000000000002\n",
- "INFO:shap:phi = [-1.62230021e-05 -1.01088160e-05 -1.18299263e-05 -1.01650232e-05\n",
- " -1.09546496e-05 -1.24555124e-05 -5.44384295e-06 0.00000000e+00\n",
- " 0.00000000e+00 7.38509691e-06 1.20591335e-05 1.58227161e-05\n",
- " 2.13761181e-05 2.32519419e-05 1.99070911e-05 2.62332119e-05\n",
- " 4.12388235e-05 3.42405672e-05 -3.50611035e-05 -2.70491527e-05\n",
- " -2.33110843e-05 -2.04374265e-05 -1.72567816e-05 -1.25655799e-05\n",
- " 2.69418488e-05 2.63564951e-05 3.81810936e-05 -1.54633858e-05\n",
- " -8.70542389e-06 -7.81076300e-06 -9.20862560e-06 -1.03617295e-05\n",
- " -1.13926578e-05 -1.30609585e-05 -1.91236379e-05 -1.46162955e-05\n",
- " -2.06944746e-05 -2.78473777e-05 -3.27780021e-05 -3.37218365e-05\n",
- " -3.08755554e-05 -2.77891282e-05 2.13607034e-05 2.54155992e-05\n",
- " 2.77812127e-05 3.05088885e-05 2.60161068e-05 1.60747752e-05\n",
- " 0.00000000e+00]\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " 76%|███████▌ | 31/41 [00:58<00:17, 1.78s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "INFO:shap:num_full_subsets = 1\n",
- "INFO:shap:remaining_weight_vector = [0.15162364 0.10327987 0.07918123 0.06478465 0.05524272 0.04847831\n",
- " 0.04345312 0.03959062 0.03654519 0.03409718 0.0321005 0.03045432\n",
- " 0.02908698 0.02794632 0.0269936 0.02619967 0.02554233 0.0250046\n",
- " 0.02457349 0.02423915 0.02399431 0.02383382 0.02375437]\n",
- "INFO:shap:num_paired_subset_sizes = 24\n",
- "INFO:shap:weight_left = 0.7710518569800939\n",
- "INFO:shap:np.sum(w_aug) = 49.0\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0000000000000002\n",
- "INFO:shap:phi = [ 2.83375697e-05 1.79675760e-05 2.05922408e-05 1.81827264e-05\n",
- " 1.86855619e-05 2.21962456e-05 2.13947128e-05 2.81607058e-05\n",
- " 4.45278253e-05 -5.25676578e-05 -4.67135063e-05 -3.88930702e-05\n",
- " -3.72370845e-05 -3.00671254e-05 -1.76532648e-05 -1.59513349e-05\n",
- " -1.62646008e-05 -8.72935077e-06 -5.22261332e-06 0.00000000e+00\n",
- " 0.00000000e+00 1.03933469e-05 1.66828588e-05 2.22673339e-05\n",
- " -2.44445007e-05 -1.89018195e-05 -2.26402871e-05 -1.64999993e-05\n",
- " -1.00575535e-05 -7.93918642e-06 -1.05904653e-05 -1.20577521e-05\n",
- " -1.28665268e-05 4.79282897e-05 5.47894310e-05 3.07137934e-05\n",
- " 3.51016767e-05 3.93620470e-05 3.73697491e-05 4.02975476e-05\n",
- " 3.67687370e-05 3.41260136e-05 -2.21653121e-05 -2.62687334e-05\n",
- " -2.93613241e-05 -3.37671059e-05 -3.00330923e-05 -1.77763204e-05\n",
- " 2.03187651e-05]\n",
- "INFO:shap:np.sum(w_aug) = 49.0\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0000000000000002\n",
- "INFO:shap:phi = [ 2.49863713e-05 1.61248968e-05 1.78304040e-05 1.59448603e-05\n",
- " 1.63117165e-05 1.95942089e-05 1.81344503e-05 2.47033307e-05\n",
- " 3.89925475e-05 -4.64381445e-05 -4.13389087e-05 -3.44139361e-05\n",
- " -3.30068359e-05 -2.65091042e-05 -1.57013479e-05 -1.44175441e-05\n",
- " -1.44967807e-05 -7.75687420e-06 0.00000000e+00 0.00000000e+00\n",
- " 0.00000000e+00 8.91442710e-06 1.44871348e-05 1.94461544e-05\n",
- " -2.16569767e-05 -1.71219245e-05 -1.99728251e-05 -1.48051300e-05\n",
- " -8.90214815e-06 -7.24943365e-06 -9.23982270e-06 -1.05155780e-05\n",
- " -1.14557702e-05 4.27426041e-05 4.74333464e-05 2.74918769e-05\n",
- " 3.15742055e-05 3.48955381e-05 3.30663612e-05 3.50632077e-05\n",
- " 3.22394831e-05 3.00796066e-05 -1.92860824e-05 -2.31801138e-05\n",
- " -2.57009774e-05 -2.98791990e-05 -2.66083090e-05 -1.59183209e-05\n",
- " 1.79818495e-05]\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " 78%|███████▊ | 32/41 [01:00<00:16, 1.84s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "INFO:shap:num_full_subsets = 1\n",
- "INFO:shap:remaining_weight_vector = [0.15162364 0.10327987 0.07918123 0.06478465 0.05524272 0.04847831\n",
- " 0.04345312 0.03959062 0.03654519 0.03409718 0.0321005 0.03045432\n",
- " 0.02908698 0.02794632 0.0269936 0.02619967 0.02554233 0.0250046\n",
- " 0.02457349 0.02423915 0.02399431 0.02383382 0.02375437]\n",
- "INFO:shap:num_paired_subset_sizes = 24\n",
- "INFO:shap:weight_left = 0.7710518569800939\n",
- "INFO:shap:np.sum(w_aug) = 49.0\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0\n",
- "INFO:shap:phi = [-4.45967404e-05 -2.83946798e-05 -3.28383381e-05 -2.86832093e-05\n",
- " -2.97701673e-05 -3.47368486e-05 -2.15221681e-05 -1.92749494e-05\n",
- " -1.83378546e-05 -1.22105049e-05 -6.68496643e-06 0.00000000e+00\n",
- " 0.00000000e+00 7.83260191e-06 9.53942028e-06 1.47153265e-05\n",
- " 2.60289103e-05 2.36910524e-05 3.23383546e-05 3.51398118e-05\n",
- " 4.01249919e-05 4.80820895e-05 5.82599055e-05 -3.55416583e-05\n",
- " 3.07766047e-05 3.00155087e-05 4.44847029e-05 4.20510549e-05\n",
- " 3.39733089e-05 4.02690763e-05 5.17063679e-05 5.70710432e-05\n",
- " -1.34392303e-05 -1.45413934e-05 -2.24399519e-05 -1.62543877e-05\n",
- " -2.28313609e-05 -3.14403395e-05 -3.75153078e-05 -3.90758244e-05\n",
- " -3.55458577e-05 -3.11729524e-05 -2.27760204e-05 -2.74267093e-05\n",
- " -3.04475404e-05 -3.47652938e-05 -3.05807552e-05 1.79535602e-05\n",
- " -1.39822902e-04]\n",
- "INFO:shap:np.sum(w_aug) = 49.0\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0\n",
- "INFO:shap:phi = [-3.91334428e-05 -2.52595897e-05 -2.89399660e-05 -2.51345757e-05\n",
- " -2.64426416e-05 -3.06669399e-05 -1.86693193e-05 -1.70014022e-05\n",
- " -1.60081658e-05 -1.07340867e-05 -5.91127755e-06 0.00000000e+00\n",
- " 0.00000000e+00 6.91606229e-06 8.38644380e-06 1.29819241e-05\n",
- " 2.29131484e-05 2.08242451e-05 2.87405690e-05 3.05873516e-05\n",
- " 3.56402108e-05 4.28850639e-05 5.05545224e-05 -3.11191623e-05\n",
- " 2.72725310e-05 2.66235892e-05 3.90335647e-05 3.81099257e-05\n",
- " 3.02521511e-05 3.64040499e-05 4.43293732e-05 4.95860196e-05\n",
- " -1.17794290e-05 -1.29309679e-05 -1.94891954e-05 -1.45415017e-05\n",
- " -2.05715563e-05 -2.79852962e-05 -3.32253228e-05 -3.43904117e-05\n",
- " -3.13424003e-05 -2.79408144e-05 -1.98530060e-05 -2.42786291e-05\n",
- " -2.67976222e-05 -3.07325168e-05 -2.69168054e-05 1.60867866e-05\n",
- " -1.23880523e-04]\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " 80%|████████ | 33/41 [01:02<00:15, 1.88s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "INFO:shap:num_full_subsets = 1\n",
- "INFO:shap:remaining_weight_vector = [0.15162364 0.10327987 0.07918123 0.06478465 0.05524272 0.04847831\n",
- " 0.04345312 0.03959062 0.03654519 0.03409718 0.0321005 0.03045432\n",
- " 0.02908698 0.02794632 0.0269936 0.02619967 0.02554233 0.0250046\n",
- " 0.02457349 0.02423915 0.02399431 0.02383382 0.02375437]\n",
- "INFO:shap:num_paired_subset_sizes = 24\n",
- "INFO:shap:weight_left = 0.7710518569800939\n",
- "INFO:shap:np.sum(w_aug) = 49.00000000000001\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0000000000000002\n",
- "INFO:shap:phi = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n",
- " 0.00000000e+00 0.00000000e+00 0.00000000e+00 7.72906821e-06\n",
- " 1.75442819e-05 2.04812077e-05 2.53387888e-05 2.91636215e-05\n",
- " 3.62262685e-05 3.78755669e-05 3.05876504e-05 -3.46514629e-05\n",
- " -4.21485433e-05 -2.82243133e-05 -2.83479133e-05 -2.08405242e-05\n",
- " -1.67258466e-05 -1.21080084e-05 -7.85326523e-06 0.00000000e+00\n",
- " -2.44776759e-05 -1.88934760e-05 -2.28732463e-05 -1.69656171e-05\n",
- " -1.02948792e-05 -8.23680037e-06 -1.09379901e-05 -1.24019619e-05\n",
- " -1.31214731e-05 -1.48524646e-05 -2.19687763e-05 -1.65557740e-05\n",
- " -2.32842266e-05 -3.13123979e-05 -3.67577006e-05 3.99706308e-05\n",
- " 3.64843608e-05 3.43418247e-05 2.40986110e-05 2.82180373e-05\n",
- " 3.14916135e-05 3.43010094e-05 2.90278083e-05 1.73354342e-05\n",
- " 1.39593543e-05]\n",
- "INFO:shap:np.sum(w_aug) = 49.00000000000001\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0000000000000002\n",
- "INFO:shap:phi = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n",
- " 0.00000000e+00 0.00000000e+00 0.00000000e+00 6.81814466e-06\n",
- " 1.53132732e-05 1.79989660e-05 2.24050920e-05 2.56465708e-05\n",
- " 3.18695057e-05 3.34429344e-05 2.68845969e-05 -3.05702046e-05\n",
- " -3.71050098e-05 -2.48070717e-05 -2.51893331e-05 -1.81432419e-05\n",
- " -1.48502324e-05 -1.07950801e-05 -6.81815041e-06 0.00000000e+00\n",
- " -2.16933355e-05 -1.67584430e-05 -2.00718588e-05 -1.53728146e-05\n",
- " -9.16474820e-06 -7.44451569e-06 -9.38445883e-06 -1.07810855e-05\n",
- " -1.15037821e-05 -1.32034803e-05 -1.90789942e-05 -1.48063812e-05\n",
- " -2.09573272e-05 -2.78671002e-05 -3.25540757e-05 3.51734735e-05\n",
- " 3.21658603e-05 3.07779866e-05 2.10026004e-05 2.49765092e-05\n",
- " 2.77111309e-05 3.03160468e-05 2.55511625e-05 1.55346189e-05\n",
- " 1.23664274e-05]\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " 83%|████████▎ | 34/41 [01:04<00:13, 1.97s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "INFO:shap:num_full_subsets = 1\n",
- "INFO:shap:remaining_weight_vector = [0.15162364 0.10327987 0.07918123 0.06478465 0.05524272 0.04847831\n",
- " 0.04345312 0.03959062 0.03654519 0.03409718 0.0321005 0.03045432\n",
- " 0.02908698 0.02794632 0.0269936 0.02619967 0.02554233 0.0250046\n",
- " 0.02457349 0.02423915 0.02399431 0.02383382 0.02375437]\n",
- "INFO:shap:num_paired_subset_sizes = 24\n",
- "INFO:shap:weight_left = 0.7710518569800939\n",
- "INFO:shap:np.sum(w_aug) = 49.0\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0000000000000002\n",
- "INFO:shap:phi = [-4.46210485e-05 -2.89022544e-05 -3.28575414e-05 -2.87356411e-05\n",
- " -2.97308052e-05 -3.46573870e-05 -2.14514967e-05 -1.92412511e-05\n",
- " -1.83287523e-05 -1.21823693e-05 -6.70524938e-06 0.00000000e+00\n",
- " 0.00000000e+00 7.67757987e-06 9.59078932e-06 1.46630525e-05\n",
- " 2.64077515e-05 2.36463833e-05 3.23288272e-05 3.53929288e-05\n",
- " 4.01322316e-05 4.79138047e-05 5.84391115e-05 -3.53173902e-05\n",
- " 3.09475370e-05 3.02390417e-05 4.43170001e-05 4.22354729e-05\n",
- " 3.39721548e-05 4.01413009e-05 5.15466762e-05 5.70253306e-05\n",
- " -1.34601105e-05 -1.44702733e-05 -2.25130158e-05 -1.61418707e-05\n",
- " -2.29311982e-05 -3.15546418e-05 -3.73162297e-05 -3.90241561e-05\n",
- " -3.56867934e-05 -3.08432267e-05 -2.31589159e-05 -2.72254177e-05\n",
- " -3.06262066e-05 -3.47912681e-05 -3.06398698e-05 1.76533522e-05\n",
- " -1.39770166e-04]\n",
- "INFO:shap:np.sum(w_aug) = 49.0\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0000000000000002\n",
- "INFO:shap:phi = [-3.90342138e-05 -2.57050971e-05 -2.90186902e-05 -2.49804244e-05\n",
- " -2.62058528e-05 -3.05092444e-05 -1.79172316e-05 -1.66890931e-05\n",
- " -1.56692448e-05 -1.06847812e-05 -6.06336710e-06 0.00000000e+00\n",
- " 0.00000000e+00 0.00000000e+00 8.39244402e-06 1.31809611e-05\n",
- " 2.32882311e-05 2.05817756e-05 2.88225899e-05 3.08989561e-05\n",
- " 3.59329284e-05 4.29067739e-05 5.10529548e-05 -3.10781225e-05\n",
- " 2.74273729e-05 2.68159919e-05 3.95513597e-05 3.81347473e-05\n",
- " 3.01438964e-05 3.66596395e-05 4.43720006e-05 4.95078096e-05\n",
- " -1.16849942e-05 -1.26428401e-05 -1.94392192e-05 -1.40172359e-05\n",
- " -2.03806604e-05 -2.79745263e-05 -3.26265880e-05 -3.40219661e-05\n",
- " -3.12247910e-05 -2.75206921e-05 -2.00656386e-05 -2.42291338e-05\n",
- " -2.66528052e-05 -3.05284631e-05 -2.70181778e-05 1.55914466e-05\n",
- " -1.23227820e-04]\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " 85%|████████▌ | 35/41 [01:07<00:12, 2.08s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "INFO:shap:num_full_subsets = 1\n",
- "INFO:shap:remaining_weight_vector = [0.15162364 0.10327987 0.07918123 0.06478465 0.05524272 0.04847831\n",
- " 0.04345312 0.03959062 0.03654519 0.03409718 0.0321005 0.03045432\n",
- " 0.02908698 0.02794632 0.0269936 0.02619967 0.02554233 0.0250046\n",
- " 0.02457349 0.02423915 0.02399431 0.02383382 0.02375437]\n",
- "INFO:shap:num_paired_subset_sizes = 24\n",
- "INFO:shap:weight_left = 0.7710518569800939\n",
- "INFO:shap:np.sum(w_aug) = 49.0\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0000000000000002\n",
- "INFO:shap:phi = [-1.29370075e-05 -8.19109082e-06 -9.49901001e-06 -8.29663588e-06\n",
- " -8.64924072e-06 -9.95096945e-06 0.00000000e+00 0.00000000e+00\n",
- " 8.87628547e-06 1.22912490e-05 1.76024550e-05 2.18893098e-05\n",
- " 2.83917585e-05 3.03981631e-05 2.54300683e-05 3.25161260e-05\n",
- " 5.10339393e-05 -3.47201820e-05 -3.52845980e-05 -2.76336407e-05\n",
- " -2.32098501e-05 -1.89371406e-05 -1.58226444e-05 -1.01200209e-05\n",
- " 3.03409092e-05 2.95375597e-05 -2.27617035e-05 -1.69929317e-05\n",
- " -1.00858998e-05 -8.40344925e-06 -1.07446778e-05 -1.22828143e-05\n",
- " -1.33855254e-05 -1.44149407e-05 -2.23524825e-05 -1.60716271e-05\n",
- " -2.27529028e-05 -3.12444495e-05 -3.65978091e-05 -3.83394858e-05\n",
- " -3.50088741e-05 3.47467793e-05 2.49850250e-05 2.88825953e-05\n",
- " 3.19856699e-05 3.45960725e-05 2.96154908e-05 1.75995376e-05\n",
- " 0.00000000e+00]\n",
- "INFO:shap:np.sum(w_aug) = 49.0\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0000000000000002\n",
- "INFO:shap:phi = [-1.13509979e-05 -7.28703853e-06 -8.36850030e-06 -7.26404791e-06\n",
- " -7.67864445e-06 -8.77865837e-06 0.00000000e+00 0.00000000e+00\n",
- " 7.74990045e-06 1.08071021e-05 1.55668777e-05 1.92501657e-05\n",
- " 2.49837062e-05 2.68411984e-05 2.23542382e-05 2.86897628e-05\n",
- " 4.49190971e-05 -3.05135178e-05 -3.13554435e-05 -2.40493007e-05\n",
- " -2.06094085e-05 -1.68908363e-05 -1.37242322e-05 -8.85559853e-06\n",
- " 2.68890242e-05 2.62005389e-05 -1.99690341e-05 -1.53956448e-05\n",
- " -8.97258319e-06 -7.59165043e-06 -9.20810697e-06 -1.06699411e-05\n",
- " -1.17340233e-05 -1.28175303e-05 -1.94136327e-05 -1.43762917e-05\n",
- " -2.04854605e-05 -2.78061552e-05 -3.24103090e-05 -3.37458017e-05\n",
- " -3.08677468e-05 3.11362075e-05 2.17849878e-05 2.55627142e-05\n",
- " 2.81498911e-05 3.05782544e-05 2.60739174e-05 1.57775703e-05\n",
- " 0.00000000e+00]\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " 88%|████████▊ | 36/41 [01:09<00:10, 2.12s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "INFO:shap:num_full_subsets = 1\n",
- "INFO:shap:remaining_weight_vector = [0.15162364 0.10327987 0.07918123 0.06478465 0.05524272 0.04847831\n",
- " 0.04345312 0.03959062 0.03654519 0.03409718 0.0321005 0.03045432\n",
- " 0.02908698 0.02794632 0.0269936 0.02619967 0.02554233 0.0250046\n",
- " 0.02457349 0.02423915 0.02399431 0.02383382 0.02375437]\n",
- "INFO:shap:num_paired_subset_sizes = 24\n",
- "INFO:shap:weight_left = 0.7710518569800939\n",
- "INFO:shap:np.sum(w_aug) = 49.0\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0\n",
- "INFO:shap:phi = [ 1.77305615e-05 1.14043506e-05 1.31299690e-05 1.17054713e-05\n",
- " 1.20076341e-05 1.39457675e-05 1.52651524e-05 2.13635575e-05\n",
- " 3.57245755e-05 3.67957561e-05 4.14879297e-05 -4.66176230e-05\n",
- " -4.57943171e-05 -3.76072887e-05 -2.33344222e-05 -2.22282536e-05\n",
- " -2.49515280e-05 -1.50556424e-05 -1.29669354e-05 -6.97479460e-06\n",
- " 0.00000000e+00 0.00000000e+00 8.50414008e-06 1.41165615e-05\n",
- " -2.42533995e-05 -1.89064193e-05 -2.24807521e-05 -1.70035154e-05\n",
- " -9.91543039e-06 -8.26663275e-06 -1.06169275e-05 -1.21186606e-05\n",
- " -1.30747132e-05 -1.42201968e-05 -2.18450579e-05 3.05852651e-05\n",
- " 3.51744944e-05 3.96659342e-05 3.72470006e-05 4.01159776e-05\n",
- " 3.67686015e-05 3.45227306e-05 2.46569965e-05 2.85252756e-05\n",
- " -2.97582365e-05 -3.38837986e-05 -2.99174910e-05 -1.77976405e-05\n",
- " 2.06735848e-05]\n",
- "INFO:shap:np.sum(w_aug) = 49.0\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0\n",
- "INFO:shap:phi = [ 1.55522814e-05 1.01405640e-05 1.15647531e-05 1.02548834e-05\n",
- " 1.06626241e-05 1.23055809e-05 1.32383686e-05 1.88361808e-05\n",
- " 3.11841773e-05 3.23403655e-05 3.66776268e-05 -4.09840072e-05\n",
- " -4.02873965e-05 -3.32048477e-05 -2.05074627e-05 -1.96074661e-05\n",
- " -2.19605083e-05 -1.32301119e-05 -1.15214477e-05 -6.06862168e-06\n",
- " 0.00000000e+00 0.00000000e+00 7.37480086e-06 1.23528850e-05\n",
- " -2.14848972e-05 -1.67634044e-05 -1.97191653e-05 -1.54031775e-05\n",
- " -8.82565819e-06 -7.46955490e-06 -9.09598464e-06 -1.05277492e-05\n",
- " -1.14561960e-05 -1.26414569e-05 -1.89654344e-05 2.73553019e-05\n",
- " 3.16747835e-05 3.52958871e-05 3.29792974e-05 3.52994245e-05\n",
- " 3.24136755e-05 3.09324191e-05 2.14922189e-05 2.52437200e-05\n",
- " -2.61836150e-05 -2.99427710e-05 -2.63267490e-05 -1.59449611e-05\n",
- " 1.83107862e-05]\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " 90%|█████████ | 37/41 [01:11<00:08, 2.03s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "INFO:shap:num_full_subsets = 1\n",
- "INFO:shap:remaining_weight_vector = [0.15162364 0.10327987 0.07918123 0.06478465 0.05524272 0.04847831\n",
- " 0.04345312 0.03959062 0.03654519 0.03409718 0.0321005 0.03045432\n",
- " 0.02908698 0.02794632 0.0269936 0.02619967 0.02554233 0.0250046\n",
- " 0.02457349 0.02423915 0.02399431 0.02383382 0.02375437]\n",
- "INFO:shap:num_paired_subset_sizes = 24\n",
- "INFO:shap:weight_left = 0.7710518569800939\n",
- "INFO:shap:np.sum(w_aug) = 49.0\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0000000000000002\n",
- "INFO:shap:phi = [ 2.30743329e-05 1.47197146e-05 1.69409944e-05 1.48139777e-05\n",
- " 1.52653560e-05 1.77801043e-05 1.80050109e-05 2.47468646e-05\n",
- " 4.00960913e-05 4.04629005e-05 -5.08073319e-05 -4.26267592e-05\n",
- " -4.16274692e-05 -3.37235224e-05 -2.05419183e-05 -1.89833910e-05\n",
- " -2.05232269e-05 -1.19120494e-05 -9.21264966e-06 0.00000000e+00\n",
- " 0.00000000e+00 6.61497329e-06 1.24243039e-05 1.81923208e-05\n",
- " -2.46278671e-05 -1.90974585e-05 -2.25967312e-05 -1.69701379e-05\n",
- " -1.00849397e-05 -8.26328084e-06 -1.08234781e-05 -1.21259245e-05\n",
- " -1.33381393e-05 -1.43761185e-05 5.45873347e-05 3.05695879e-05\n",
- " 3.51023488e-05 3.96251236e-05 3.70708127e-05 4.00188879e-05\n",
- " 3.66078101e-05 3.41695486e-05 2.46745900e-05 -2.66542156e-05\n",
- " -2.97566170e-05 -3.41370201e-05 -3.00851169e-05 -1.78555464e-05\n",
- " 2.06034129e-05]\n",
- "INFO:shap:np.sum(w_aug) = 49.0\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0000000000000002\n",
- "INFO:shap:phi = [ 2.02447881e-05 1.30903016e-05 1.49303417e-05 1.29785360e-05\n",
- " 1.35585754e-05 1.56946121e-05 1.56151129e-05 2.18267757e-05\n",
- " 3.50011058e-05 3.55647526e-05 -4.49265527e-05 -3.74860943e-05\n",
- " -3.66200381e-05 -2.97801927e-05 -1.80551082e-05 -1.67443646e-05\n",
- " -1.80655386e-05 -1.04685485e-05 -8.18395459e-06 0.00000000e+00\n",
- " 0.00000000e+00 5.90142645e-06 1.07793412e-05 1.59273555e-05\n",
- " -2.18165041e-05 -1.69350741e-05 -1.98227683e-05 -1.53717725e-05\n",
- " -8.97322389e-06 -7.46607957e-06 -9.27948046e-06 -1.05354018e-05\n",
- " -1.16873712e-05 -1.27795967e-05 4.74000916e-05 2.73490437e-05\n",
- " 3.16153935e-05 3.52619731e-05 3.28297660e-05 3.52185590e-05\n",
- " 3.22749766e-05 3.06305139e-05 2.15100032e-05 -2.35939626e-05\n",
- " -2.61868399e-05 -3.01721906e-05 -2.64765353e-05 -1.59997876e-05\n",
- " 1.82528276e-05]\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " 93%|█████████▎| 38/41 [01:12<00:05, 1.93s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "INFO:shap:num_full_subsets = 1\n",
- "INFO:shap:remaining_weight_vector = [0.15162364 0.10327987 0.07918123 0.06478465 0.05524272 0.04847831\n",
- " 0.04345312 0.03959062 0.03654519 0.03409718 0.0321005 0.03045432\n",
- " 0.02908698 0.02794632 0.0269936 0.02619967 0.02554233 0.0250046\n",
- " 0.02457349 0.02423915 0.02399431 0.02383382 0.02375437]\n",
- "INFO:shap:num_paired_subset_sizes = 24\n",
- "INFO:shap:weight_left = 0.7710518569800939\n",
- "INFO:shap:np.sum(w_aug) = 49.0\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0\n",
- "INFO:shap:phi = [ 1.27411394e-05 8.08412339e-06 9.18197641e-06 8.22783884e-06\n",
- " 8.47736049e-06 9.87180396e-06 1.24115655e-05 1.82623435e-05\n",
- " 3.12858474e-05 3.26047062e-05 3.76335651e-05 4.09949126e-05\n",
- " -4.96890913e-05 -4.11525043e-05 -2.58418530e-05 -2.47658854e-05\n",
- " -2.87647417e-05 -1.84344425e-05 -1.65561653e-05 -1.01530203e-05\n",
- " -5.67659468e-06 0.00000000e+00 0.00000000e+00 1.04521474e-05\n",
- " -2.42789168e-05 -1.88318839e-05 -2.26539837e-05 -1.70330315e-05\n",
- " -9.87979368e-06 -8.14478352e-06 -1.06427656e-05 -1.21873290e-05\n",
- " -1.26720051e-05 -1.39905954e-05 -2.16459632e-05 -1.58974462e-05\n",
- " 3.53184581e-05 3.95668742e-05 3.72391189e-05 4.01162829e-05\n",
- " 3.67997015e-05 3.45898169e-05 2.46374934e-05 2.82831874e-05\n",
- " 3.17682017e-05 -3.39563153e-05 -2.98771895e-05 -1.79199900e-05\n",
- " 2.03147364e-05]\n",
- "INFO:shap:np.sum(w_aug) = 49.0\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0\n",
- "INFO:shap:phi = [ 1.11772632e-05 7.18958756e-06 8.09078060e-06 7.20455734e-06\n",
- " 7.52840035e-06 8.71010961e-06 1.07661953e-05 1.60999543e-05\n",
- " 2.73152567e-05 2.86635680e-05 3.32687586e-05 3.60334164e-05\n",
- " -4.37186460e-05 -3.63404136e-05 -2.27124678e-05 -2.18534229e-05\n",
- " -2.53137921e-05 -1.61999142e-05 -1.47147945e-05 -8.83547389e-06\n",
- " -5.04191188e-06 0.00000000e+00 0.00000000e+00 9.14458162e-06\n",
- " -2.15160561e-05 -1.67026289e-05 -1.98759061e-05 -1.54258151e-05\n",
- " -8.79444676e-06 -7.36224758e-06 -9.12251884e-06 -1.05903432e-05\n",
- " -1.11121348e-05 -1.24455835e-05 -1.88001989e-05 -1.42240553e-05\n",
- " 3.17914801e-05 3.52165546e-05 3.29750572e-05 3.53090260e-05\n",
- " 3.24516885e-05 3.09872544e-05 2.14827801e-05 2.50268722e-05\n",
- " 2.79504280e-05 -3.00063556e-05 -2.63005428e-05 -1.60614686e-05\n",
- " 1.79950164e-05]\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " 95%|█████████▌| 39/41 [01:14<00:03, 1.92s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "INFO:shap:num_full_subsets = 1\n",
- "INFO:shap:remaining_weight_vector = [0.15162364 0.10327987 0.07918123 0.06478465 0.05524272 0.04847831\n",
- " 0.04345312 0.03959062 0.03654519 0.03409718 0.0321005 0.03045432\n",
- " 0.02908698 0.02794632 0.0269936 0.02619967 0.02554233 0.0250046\n",
- " 0.02457349 0.02423915 0.02399431 0.02383382 0.02375437]\n",
- "INFO:shap:num_paired_subset_sizes = 24\n",
- "INFO:shap:weight_left = 0.7710518569800939\n",
- "INFO:shap:np.sum(w_aug) = 49.0\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0\n",
- "INFO:shap:phi = [ 7.84889342e-06 0.00000000e+00 0.00000000e+00 4.86097214e-06\n",
- " 5.52124568e-06 5.92714196e-06 9.30467717e-06 1.52085816e-05\n",
- " 2.66113748e-05 2.84280665e-05 3.34235141e-05 3.68702228e-05\n",
- " 4.41979943e-05 -4.49691829e-05 -2.79722542e-05 -2.71548217e-05\n",
- " -3.30231429e-05 -2.13930828e-05 -2.05611212e-05 -1.40701082e-05\n",
- " -8.63978652e-06 0.00000000e+00 0.00000000e+00 6.19988217e-06\n",
- " -2.42235955e-05 -1.86405348e-05 -2.27321551e-05 -1.67216690e-05\n",
- " -9.83086608e-06 -7.88453246e-06 -1.00000068e-05 -1.21359808e-05\n",
- " -1.29021348e-05 -1.44358483e-05 -2.14350751e-05 -1.57427596e-05\n",
- " -2.22053894e-05 3.95675243e-05 3.75078772e-05 4.00410542e-05\n",
- " 3.63788772e-05 3.44787364e-05 2.43037227e-05 2.85707686e-05\n",
- " 3.15543537e-05 3.42192061e-05 -2.94641583e-05 -1.78577347e-05\n",
- " 2.09769070e-05]\n",
- "INFO:shap:np.sum(w_aug) = 49.0\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0\n",
- "INFO:shap:phi = [ 6.90584584e-06 0.00000000e+00 0.00000000e+00 0.00000000e+00\n",
- " 4.77511835e-06 5.75205451e-06 8.28147990e-06 1.34812648e-05\n",
- " 2.32511927e-05 2.48700062e-05 2.98771079e-05 3.27125446e-05\n",
- " 3.90777381e-05 -3.97745277e-05 -2.43441352e-05 -2.40370944e-05\n",
- " -2.90535699e-05 -1.87984707e-05 -1.81483393e-05 -1.22341272e-05\n",
- " -7.43740708e-06 0.00000000e+00 0.00000000e+00 5.57979097e-06\n",
- " -2.15037875e-05 -1.64552619e-05 -1.98012909e-05 -1.51620970e-05\n",
- " -8.63261818e-06 -7.12149628e-06 -8.27107617e-06 -1.07886684e-05\n",
- " -1.10974870e-05 -1.26256889e-05 -1.85169926e-05 -1.38765103e-05\n",
- " -1.98049146e-05 3.52722083e-05 3.31954046e-05 3.54265624e-05\n",
- " 3.21935969e-05 3.09801450e-05 2.14769833e-05 2.53240892e-05\n",
- " 2.76086113e-05 3.03493202e-05 -2.58298346e-05 -1.59110417e-05\n",
- " 1.86533070e-05]\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " 98%|█████████▊| 40/41 [01:16<00:01, 1.85s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "INFO:shap:num_full_subsets = 1\n",
- "INFO:shap:remaining_weight_vector = [0.15162364 0.10327987 0.07918123 0.06478465 0.05524272 0.04847831\n",
- " 0.04345312 0.03959062 0.03654519 0.03409718 0.0321005 0.03045432\n",
- " 0.02908698 0.02794632 0.0269936 0.02619967 0.02554233 0.0250046\n",
- " 0.02457349 0.02423915 0.02399431 0.02383382 0.02375437]\n",
- "INFO:shap:num_paired_subset_sizes = 24\n",
- "INFO:shap:weight_left = 0.7710518569800939\n",
- "INFO:shap:np.sum(w_aug) = 49.00000000000001\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0000000000000002\n",
- "INFO:shap:phi = [-7.67038662e-06 -4.94104093e-06 -6.18704314e-06 0.00000000e+00\n",
- " -5.13042935e-06 -6.22232022e-06 0.00000000e+00 0.00000000e+00\n",
- " 1.35369210e-05 1.61442015e-05 2.17014329e-05 2.54518598e-05\n",
- " 3.20766736e-05 3.41648174e-05 2.80008862e-05 3.58671422e-05\n",
- " -4.58778584e-05 -3.12458500e-05 -3.16282803e-05 -2.42302516e-05\n",
- " -1.92719122e-05 -1.54465404e-05 -1.18541060e-05 -6.00657951e-06\n",
- " 3.01088905e-05 -1.96144699e-05 -2.24571379e-05 -1.67221955e-05\n",
- " -9.84581505e-06 -8.09376263e-06 -1.05067447e-05 -1.23180245e-05\n",
- " -1.29850092e-05 -1.45068491e-05 -2.17848602e-05 -1.59256711e-05\n",
- " -2.27197963e-05 -3.10110622e-05 -3.67439974e-05 -3.82760872e-05\n",
- " 3.69100068e-05 3.46729146e-05 2.43281404e-05 2.86499783e-05\n",
- " 3.22924295e-05 3.44536150e-05 2.96050054e-05 1.76242633e-05\n",
- " 2.01202657e-05]\n",
- "INFO:shap:np.sum(w_aug) = 49.00000000000001\n",
- "INFO:shap:np.sum(self.kernelWeights) = 1.0000000000000002\n",
- "INFO:shap:phi = [-6.73062260e-06 -4.39557003e-06 -5.45070908e-06 0.00000000e+00\n",
- " -4.55716933e-06 -5.49156866e-06 0.00000000e+00 0.00000000e+00\n",
- " 1.18185407e-05 1.41900975e-05 1.91890718e-05 2.23819691e-05\n",
- " 2.82189242e-05 3.01700726e-05 2.46139254e-05 3.16383772e-05\n",
- " -4.03831894e-05 -2.74596747e-05 -2.81049289e-05 -2.10852614e-05\n",
- " -1.71208260e-05 -1.37750400e-05 -1.02877725e-05 -5.25707368e-06\n",
- " 2.66808136e-05 -1.73872801e-05 -1.97017575e-05 -1.51589723e-05\n",
- " -8.76647153e-06 -7.31891730e-06 -8.99997707e-06 -1.07044324e-05\n",
- " -1.13807048e-05 -1.28991033e-05 -1.89150997e-05 -1.42480374e-05\n",
- " -2.04597500e-05 -2.76000316e-05 -3.25393152e-05 -3.36849809e-05\n",
- " 3.25412254e-05 3.10749372e-05 2.12060530e-05 2.53579100e-05\n",
- " 2.84179658e-05 3.04527885e-05 2.60582830e-05 1.57914086e-05\n",
- " 1.78301677e-05]\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "100%|██████████| 41/41 [01:18<00:00, 1.91s/it]\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"# Calculate SHAP values for the test set\n",
"shap_values = explainer.shap_values(X_test)"
@@ -5671,67 +1319,12 @@
},
{
"cell_type": "code",
- "execution_count": 21,
+ "execution_count": null,
"id": "d9d3d533",
"metadata": {
"id": "2e318a5b"
},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "No data for colormapping provided via 'c'. Parameters 'vmin', 'vmax' will be ignored\n"
- ]
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxEAAAO8CAYAAAA25TlWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeVxU9f748dewiGyCEipu4G7uCmq3FDU0S8IriUtetdBAVCorteXrFezaTe3mVRPX3LDccENwSbsBpuaWpmIKboiySgiBgjLM+f3hj8lxBmQQWfT9fDzm8XA+5zPnvM+Z43De57MclaIoCkIIIYQQQghRSiaVHYAQQgghhBCiepEkQgghhBBCCGEUSSKEEEIIIYQQRpEkQgghhBBCCGEUSSKEEEIIIYQQRpEkQgghhBBCCGEUSSKEEEIIIYQQRpEkQgghhBBCCGEUSSKEEEIIIYQQRpEkQgghnnFvv/02Li4uFbKttLQ0fHx8cHBwQKVSMX/+/ArZrni0NWvWoFKpSEhIqOxQHptKpSI4OLiyw6hygoODUalUZf788ePHefHFF7G2tkalUvHbb7899jpF9SVJhBCiSjh79iw+Pj44OztTs2ZNGjZsSP/+/fnmm28qO7Rqq0+fPqhUKu2rTp06dOvWjVWrVqHRaMplG//+97/ZsWNHqet/8MEH/PDDD3z66aesW7eOV199tVziKMnt27f517/+RceOHbGyssLOzo5evXoRGhqKoihlXu/u3bsr7EL1zp07BAcHEx0dXar60dHROt+9hYUF9erVo0+fPvz73//m5s2bTzbgZ1hWVhb+/v44OjpibW1N3759OXnyZGWH9dgKCgoYOnQomZmZ/Pe//2XdunU4OztXdliiEqmUx/kFFUKIcnD48GH69u1LkyZNeOutt6hfvz7Xr1/nyJEjXL58mUuXLlV2iNVSnz59uHz5Ml9++SUAN2/eJDQ0lN9++42PP/6Y2bNnA/dbIqKjo8t0B9rGxgYfHx/WrFlTqvr169enX79+fPfdd0ZvqyzS0tLw8PDg/PnzjBgxgt69e5Ofn8/WrVs5cOAAw4cP5/vvv8fU1NTodQcGBhISEvJYiUhpZWRk4OjoSFBQUKkSl+joaPr27ct7771Ht27dKCws5ObNmxw+fJiIiAjs7OzYvHkzL7/8svYzhYWFFBQUYGFhUe3vLOfn52NmZoaZmVmFblej0dCrVy9Onz7N1KlTee6551i8eDHXr1/n119/pWXLlhUaz8PUajVqtZqaNWsa/dkLFy7w/PPPs2LFCt555x1teXBwMDNnzqyQ/weiaqnY/11CCGHAF198gZ2dHcePH8fe3l5nWXp6euUEVYkURSE/Px9LS8vHXpednR2jRo3Svh8/fjytW7dm0aJF/Otf/8Lc3Pyxt2GM9PR0ve/4ceTn51OjRg1MTAw3rL/11lucP3+e7du3M2jQIG35e++9x9SpU/nPf/5Dly5d+Pjjj8stpqqkV69e+Pj46JSdPn2aV155hSFDhvD777/j5OQEgKmpaZmSqaqoLBfJ5WHLli0cPnyYsLAw7XEfNmwYrVq1IigoiPXr11dKXEUeJ7Eq+i0uz/+/onqT7kxCiEp3+fJl2rVrZ/CPU926dbX/TkhIQKVSGbzr/XAf6KJ+uvHx8YwaNQo7OzscHR355z//iaIoXL9+nb///e/UqlWL+vXr8/XXX+usr6g7yObNm5k5cyYNGzbE1tYWHx8fsrOzuXv3LpMnT6Zu3brY2Njg6+vL3bt3ddaxevVqXn75ZerWrYuFhQVt27ZlyZIlerG7uLjw+uuv88MPP+Dm5oalpSXLli2jd+/edOrUyeAxa926NQMGDCjhqBpmZWXFCy+8wO3bt0vs0nL79m0++ugjGjdujIWFBa1bt+Y///mPzt1GlUrF7du3Wbt2rbbbzNtvv21wfUX97RVFISQkRFu/yJUrVxg6dCh16tTRxrhr1y6ddRR9Jxs3bmT69Ok0bNgQKysr/vzzT4PbPHLkCD/88ANvv/22TgJR5Msvv6Rly5bMmTOHvLw8nW083G3o4XPv7bffJiQkRHscHtyforr/+c9/+O9//4uzszOWlpb07t2b2NhYnfX26dOHPn366MX24DiVhIQEHB0dAZg5c6Z2W2XtStWpUyfmz59PVlYWixYt0pYbGhNRdG5GR0drz80OHTpoj8+2bdvo0KEDNWvWxNXVlVOnTult78KFC/j4+FCnTh1q1qyJm5sbO3fu1KlTtO1Dhw7x4YcfarsCeXt7652nJ06cYMCAATz33HNYWlrStGlTxo4dq1PH0PE5deoUr732GrVq1cLGxgYPDw+OHDlS5jgM2bJlC/Xq1eONN97Qljk6OjJs2DDCw8P1fiNKo+i37MKFCwwbNoxatWrh4ODA+++/T35+fpnW9SCVSkVgYCA7duygffv2WFhY0K5dO/bu3aut8/bbb9O7d28Ahg4dikqlMnjePui7777D1dUVS0tL6tSpw4gRI7h+/bp2+erVq1GpVKxatUrnc//+979RqVTs3r3bqH0TFU9aIoQQlc7Z2ZlffvmF2NhY2rdvX67rHj58OM8//zyzZ89m165dzJo1izp16rBs2TJefvll5syZw/fff8+UKVPo1q0b7u7uOp//8ssvsbS05JNPPuHSpUt88803mJubY2Jiwq1btwgODubIkSOsWbOGpk2bMmPGDO1nlyxZQrt27Rg0aBBmZmZEREQwceJENBoNkyZN0tlOXFwcb775JuPHj8fPz4/WrVtjY2ODn5+f3nE5fvw48fHxTJ8+vUzH5MqVK5iamhZ7R1FRFAYNGkRUVBTjxo2jc+fO/PDDD0ydOpWkpCT++9//ArBu3Treeecdunfvjr+/PwDNmzc3uE53d3fWrVvH6NGj6d+/P2PGjNEuS0tL48UXX+TOnTu89957ODg4sHbtWgYNGsSWLVvw9vbWWde//vUvatSowZQpU7h79y41atQwuM2IiAgAnW09yMzMjJEjRzJz5kwOHTpEv379ij9oDxk/fjzJycns37+fdevWGawTGhpKTk4OkyZNIj8/nwULFvDyyy9z9uxZ6tWrV+ptOTo6smTJEiZMmIC3t7f2ArVjx46lXsfDfHx8GDduHPv27eOLL74ose6lS5cYOXIk48ePZ9SoUfznP//By8uLpUuX8tlnnzFx4kTg/v+VYcOGERcXp20ZOnfuHC+99BINGzbkk08+wdrams2bNzN48GC2bt2q992+++671K5dm6CgIBISEpg/fz6BgYFs2rQJuH83/JVXXsHR0ZFPPvkEe3t7EhIS2LZtW4n7cO7cOXr16kWtWrWYNm0a5ubmLFu2jD59+hATE0OPHj2MiqM4p06domvXrnotY927d2f58uXEx8fToUOHEtdRnGHDhuHi4sKXX37JkSNHWLhwIbdu3SI0NLRM63vQwYMH2bZtGxMnTsTW1paFCxcyZMgQEhMTcXBwYPz48TRs2JB///vf2i5yJZ3DX3zxBf/85z8ZNmwY77zzDjdv3uSbb77B3d2dU6dOYW9vj6+vL9u2bePDDz+kf//+NG7cmLNnzzJz5kzGjRvHwIEDH3u/xBOmCCFEJdu3b59iamqqmJqaKn/729+UadOmKT/88INy7949nXpXr15VAGX16tV66wCUoKAg7fugoCAFUPz9/bVlarVaadSokaJSqZTZs2dry2/duqVYWloqb731lrYsKipKAZT27dvrxPHmm28qKpVKee2113S2/7e//U1xdnbWKbtz545enAMGDFCaNWumU+bs7KwAyt69e3XKs7KylJo1ayoff/yxTvl7772nWFtbK7m5uXrrf1Dv3r2VNm3aKDdv3lRu3rypnD9/XnnvvfcUQPHy8tLWe+utt3Ri37FjhwIos2bN0lmfj4+PolKplEuXLmnLrK2tdY7bowDKpEmTdMomT56sAMrPP/+sLcvJyVGaNm2quLi4KIWFhYqi/PWdNGvWzOCxfdjgwYMVQLl161axdbZt26YAysKFC3W2ERUVpVPP0Lk3adIkxdCf0aK6lpaWyo0bN7TlR48eVQDlgw8+0Jb17t1b6d27t946Hv5Obt68qXeOl6RoP8LCwoqt06lTJ6V27dra96tXr1YA5erVq9qyonPz8OHD2rIffvhBu3/Xrl3Tli9btkzv2Hl4eCgdOnRQ8vPztWUajUZ58cUXlZYtW+ptu1+/fopGo9GWf/DBB4qpqamSlZWlKIqibN++XQGU48ePl7j/Dx+rwYMHKzVq1FAuX76sLUtOTlZsbW0Vd3d3o+MojrW1tTJ27Fi98l27dhn8P14aRb9lgwYN0imfOHGiAiinT582el0PApQaNWro/L8+ffq0AijffPONtqy4c+rhdSYkJCimpqbKF198oVPv7NmzipmZmU55SkqKUqdOHaV///7K3bt3lS5duihNmjRRsrOzS71PovJIdyYhRKXr378/v/zyC4MGDeL06dPMnTuXAQMG0LBhQ71uD8Z6cACgqakpbm5uKIrCuHHjtOX29va0bt2aK1eu6H1+zJgxOuMGevTogaIoet0nevTowfXr11Gr1dqyB8c0ZGdnk5GRQe/evbly5QrZ2dk6n2/atKle9yQ7Ozv+/ve/s2HDBm03osLCQjZt2sTgwYOxtrZ+5P5fuHABR0dHHB0def755/nmm2/w9PTU60LwoN27d2Nqasp7772nU/7RRx+hKAp79ux55HaNsXv3brp3707Pnj21ZTY2Nvj7+5OQkMDvv/+uU/+tt94q1XiRnJwcAGxtbYutU7SsuC5Rj2Pw4ME0bNhQ+7579+706NGjynTTsLGx0R6jkrRt25a//e1v2vdFd+1ffvllmjRpolde9P8oMzOTn376iWHDhpGTk0NGRgYZGRn88ccfDBgwgIsXL5KUlKSzLX9/f53uNr169aKwsJBr164Bf/XHj4yMpKCgoFT7WVhYyL59+xg8eDDNmjXTljs5OTFy5EgOHjyo9/0/Ko7i5OXlYWFhoVdeNEajqNtcWTzcevnuu+8ClMv51K9fP51WxI4dO1KrVi2Dv4mPsm3bNjQaDcOGDdN+5xkZGdSvX5+WLVsSFRWlrVu/fn1CQkLYv38/vXr14rfffmPVqlXUqlXrsfdJPHmSRAghqoRu3bqxbds2bt26xbFjx/j000/JycnBx8dH7yLSGA9e5MD9C/OaNWvy3HPP6ZXfunWrVJ8HaNy4sV65RqPRSQ6KushYW1tjb2+Po6Mjn332GYDBJMKQMWPGkJiYyM8//wzAjz/+SFpaGqNHjy52nx/k4uLC/v37+fHHHzl48CCpqalERkbq7f+Drl27RoMGDfQuvp9//nnt8vJ07do1WrdurVde3PaKO1YPK4q/pAvl0iQaZWVoJp5WrVpVmecw5Obmlmq/jfk/AGj/H126dAlFUfjnP/+pTWSLXkFBQYD+xAkPb6t27do66+zduzdDhgxh5syZPPfcc/z9739n9erVJY41uHnzJnfu3Cn2HNNoNDp99UsTR3EsLS0NxlI0duFxJkt4+Hxq3rw5JiYm5XI+Pby/cH+fH7W/hly8eBFFUWjZsqXe937+/Hm973zEiBF4enpy7Ngx/Pz88PDwKPN+iIolYyKEEFVKjRo16NatG926daNVq1b4+voSFhZGUFBQsdNOFhYWFrs+Q7PNFDcDjfLAoOFH1X3UOi5fvoyHhwdt2rRh3rx5NG7cmBo1arB7927++9//6j2nobiLiwEDBlCvXj2+++473N3d+e6777TTpJaGtbW1UX39q4PSXog9//zz7NixgzNnzuiNdSly5swZ4P7ddqBM59jjKBpsXlHbK1JQUEB8fHypxiCV9f9A0Tk+ZcqUYicBaNGihVHrVKlUbNmyhSNHjhAREcEPP/zA2LFj+frrrzly5Ag2NjaP3J/SMOY34kFOTk6kpKTolReVNWjQ4PGD+//Kcxresu6vIRqNBpVKxZ49ewyu9+Hv6I8//uDEiRMA/P7772g0mmJnWxNViyQRQogqy83NDfjrD3DR3cCsrCydeuV9Z7w8REREcPfuXXbu3Klzl+/BpvzSMDU1ZeTIkaxZs4Y5c+awY8cO/Pz8nuhUnM7Ozvz444/k5OTo3Km+cOGCdnmR8riQcXZ2Ji4uTq/c0PaM8frrr/Pll18SGhpqMIkoLCxk/fr11K5dm5deegkw7hx71L5fvHhRryw+Pl7n6eC1a9c22GXk4e2V93MbtmzZQl5eXplm+Cqtoq5D5ubm5Z7IvvDCC7zwwgt88cUXrF+/nn/84x9s3LhRp/tiEUdHR6ysrIo9x0xMTPRaVcqqc+fO/Pzzz3oXwkePHsXKyopWrVqVed0XL17UaYW7dOkSGo2mwp42X1rNmzdHURSaNm1aqv2dNGkSOTk5fPnll3z66afMnz+fDz/8sAIiFY9LUj0hRKWLiooyeMerqK9vUTeEWrVq8dxzz3HgwAGdeosXL37yQRqp6CL/wf3Kzs5m9erVRq9r9OjR3Lp1i/Hjx5Obm6vz3IcnYeDAgRQWFupM/wnw3//+F5VKxWuvvaYts7a21rvgLsv2jh07xi+//KItu337NsuXL8fFxUXbSmCsF198kX79+rF69WoiIyP1lv/f//0f8fHxTJs2Tdu64ezsjKmpaanOsaIxKcXt/44dO3T6/B87doyjR4/qHL/mzZtz4cIFnelDT58+zaFDh3TWZWVlVeK2jHH69GkmT55M7dq19frZl6e6devSp08fli1bZvDufFmemn3r1i2934rOnTsDFNulydTUlFdeeYXw8HCdrj9paWmsX7+enj17llsffB8fH9LS0nRmi8rIyCAsLAwvLy+D4yVKq2hK4SLffPMNgM75VBW88cYbmJqaGnwAnaIo/PHHH9r3W7ZsYdOmTcyePZtPPvmEESNGMH36dOLj4ys6bFEG0hIhhKh07777Lnfu3MHb25s2bdpw7949Dh8+zKZNm3BxccHX11db95133mH27Nm88847uLm5ceDAgSr5B+eVV16hRo0aeHl5aS/+V6xYQd26dQ1eUJWkS5cutG/fnrCwMJ5//nm6du36hKK+z8vLi759+/J///d/JCQk0KlTJ/bt20d4eDiTJ0/WGYDp6urKjz/+yLx582jQoAFNmzbVmy7zUT755BM2bNjAa6+9xnvvvUedOnVYu3YtV69eZevWrY/VtSE0NBQPDw/+/ve/M3LkSHr16sXdu3fZtm0b0dHRDB8+nKlTp2rr29nZMXToUL755htUKhXNmzcnMjLS4EMPXV1dgfsPrhswYACmpqaMGDFCu7xFixb07NmTCRMmcPfuXebPn4+DgwPTpk3T1hk7dizz5s1jwIABjBs3jvT0dJYuXUq7du10BvtaWlrStm1bNm3aRKtWrahTpw7t27d/ZHekn3/+mfz8fAoLC/njjz84dOgQO3fuxM7Oju3bt1O/fv0yH9vSCAkJoWfPnnTo0AE/Pz+aNWtGWloav/zyCzdu3OD06dNGrW/t2rUsXrwYb29vmjdvTk5ODitWrKBWrVolTgk6a9Ys9u/fT8+ePZk4cSJmZmYsW7aMu3fvMnfu3MfdTS0fHx9eeOEFfH19+f3337VPrC4sLGTmzJk6dd9++23teV6a1oSrV68yaNAgXn31VX755Re+++47Ro4cWeyzZCpL8+bNmTVrFp9++ikJCQkMHjwYW1tbrl69yvbt2/H392fKlCmkp6czYcIE+vbtS2BgIACLFi0iKiqKt99+m4MHD0q3pqqugmeDEkIIPXv27FHGjh2rtGnTRrGxsVFq1KihtGjRQnn33XeVtLQ0nbp37txRxo0bp9jZ2Sm2trbKsGHDlPT09GKneL1586bO59966y3F2tpaL4bevXsr7dq1074vbjrDoikgH55i0tD2du7cqXTs2FGpWbOm4uLiosyZM0dZtWqVwWk0PT09SzxGc+fOVQDl3//+d4n1Stqn4jw8naii3J9i9YMPPlAaNGigmJubKy1btlS++uornWkvFUVRLly4oLi7uyuWlpYK8MjpXjEwxauiKMrly5cVHx8fxd7eXqlZs6bSvXt3JTIyUqdOaaYtNSQnJ0cJDg5W2rVrp1haWiq2trbKSy+9pKxZs0ZvfxTl/nSqQ4YMUaysrJTatWsr48ePV2JjY/WmeFWr1cq7776rODo6KiqVSjvNZdEUr1999ZXy9ddfK40bN1YsLCyUXr16GZyO87vvvlOaNWum1KhRQ+ncubPyww8/GPxODh8+rLi6uio1atR45HSvRceq6GVubq44Ojoq7u7uyhdffKGkp6frfaa4KV4NnZuGvscH9/tBly9fVsaMGaPUr19fMTc3Vxo2bKi8/vrrypYtW/S2/fD/q4en3D158qTy5ptvKk2aNFEsLCyUunXrKq+//rpy4sQJvfgePj4nT55UBgwYoNjY2ChWVlZK3759daauNSaOkmRmZirjxo1THBwcFCsrK6V3794Gp6QdMmSIYmlpWeIUxIry12/L77//rvj4+Ci2trZK7dq1lcDAQCUvL++R8Rha14OK+z/p7OxscNrrR03xWmTr1q1Kz549FWtra8Xa2lpp06aNMmnSJCUuLk5RFEV54403FFtbWyUhIUHnc+Hh4QqgzJkzx6h9ExVPpShlGDUjhBCiQi1YsIAPPviAhIQEgzOpiKojISGBpk2b8tVXXzFlypTKDkdUUfXq1WPMmDF89dVXJdYLDg5m5syZ3Lx5s8RZ1YSoaNJOJIQQVZyiKKxcuZLevXtLAiHEU+DcuXPk5eXx8ccfV3YoQpSZJBFCCFFF3b59mw0bNjB+/HjOnj3LBx98UNkhCSHKQdGYl/JqWcjOziY1NbXEl3hygoODi51e+MFlCQkJ2mmKjVHWzz1pMrBaCCGqqJs3bzJy5Ejs7e357LPPGDRoUGWHJISogt5//33Wrl1bYh3pvV75nJyc+OWXXx5rqt+qRJIIIYSoolxcXOQPfzUk35soT8HBwQQHB5dYZ9q0aU986mfx+CwsLHjhhRcqO4xyI0mEEEIIIUQ11rZt2zI/T0VUnKJJF8LCwvDx8QHg3r17TJkyhe+++w6NRsPw4cPp3bs3//jHP/Sm/83PzycwMJDvv/+emjVr8o9//IPZs2djZlY5l/MyJkIIIYQQQojHpFar9V4ajabEz3zyyScsW7aMjz/+mE2bNqHRaPjkk08M1v2///s/TExM2Lx5MwEBAXz99dd8++23T2JXSkVaIoQQQgghhHgMt2/fxtzc3OCyoqfbPywzM5MlS5Ywffp07UxdAwYMoF+/fly/fl2vfo8ePVi4cCEA/fv3Jyoqii1bthAQEFBOe2EcSSKEEEKIClZQUMDq1asB8PX1LfbiQwjxhKneKH1dZVuxiywtLTlw4IBe+fLly1m/fr3Bz5w9e5b8/Hy9STP+/ve/87///U+v/iuvvKLzvm3btvz000+lifyJkCRCCCGEEEKIx2BiYoKbm5teeWRkZLGfSUlJAcDR0VGnvG7dugbr29vb67yvUaMG+fn5RkZafmRMhBBCCCGEEBXMyckJuD+d94PS09MrIxyjSRIhhBBCCCGeUSojXuWrffv21KxZk/DwcJ3yHTt2lPu2ngTpziSEEEIIIUQFc3BwYMKECXzxxRfUrFmTzp07ExYWRnx8PHC/i1RVVrWjE0IIIYQQ4ik1e/Zs/P39+fLLLxk6dCgFBQXaKV7t7OwqObqSqRR5rKYQQghRoWR2JiGqCNWQ0tdVtj65OB4wevRoDh48yNWrVytke2Ul3ZmEEEIIIcQzqvzHOhgjJiaGQ4cO4erqikajITIyku+//5558+ZValylIUmEEEIIIYQQlcDGxobIyEjmzJlDXl4eTZs2Zd68eUyePLmyQ3skSSKEEEIIIYSoBK6urhw+fLiywygTSSKEEEIIIcQzqnK7M1VnMjuTEEIIIYQQwiiSRAghhBBCCCGMIkmEEEIIIYQQwigyJkIIIYQQQjyjZExEWUlLhBBCCCGEEMIokkQIIYQQQgghjCJJhBBCCCGEEMIokkQIIYQQQgghjCJJhBBCCCGEEMIoMjuTEEIIIYR4RsnsTGUlLRFCCCGEEEIIo0gSIYQQQgghhDCKJBFCCCGEEEIIo0gSIYQQQghRFeTkwZXUyo7iGaMy4iUeJEmEEEIIIURlm70N6o+F5hOh7Xvw+/XKjkiIEkkSIYQQQghRmY7Gw6ffwZ2799+fvwFvzK3cmIR4BEkihBBCCCEqU1SsfllcEvyeWPGxPHOkO1NZSRIhhBBCCFGZmtY1XB6yt2LjEMIIkkQIIUQlyr6rcCpN4a5aqexQhBCVZXB3w+XHLlZsHEIYQZ5YLYQQlWTxKQ1TYzTcUcNzlrBuoAmvNpV7O0I8c5JvGS63sqjYOJ5J0k2prOSvlRBCVIKfEjVM+t/9BAIgIw/e2qPhXqG0SAjxzNl40HB53/YVG4cQRpAkQgghKphGURgRodErT78D8ZmVEJAQonLdyjVcPuylio1DCCNIEiGEEBXst3S4madfbmUGLnYVH48QopK1bWy4/N9bKzYOIYwgYyKEEKKCpd023GWpT2OwqSH9c4V45nR0Nlz+y4WKjeOZJL+5ZVWlWyKCg4Nxc3MrVd3k5GTc3NxYtmzZE47qPmNi8/f3x8vL6wlHVDJjj09cXBwTJkygb9++FXpchXgWOFga/qOVXEyPBiHEU+6b3YbLZYiUqMKkJULoUavVTJs2DbVaTUBAALa2trRs2bKyw6pw0dHRxMXFMX78+FJ/Zv369dja2pZ70hgbG8uePXs4f/48Fy9eJC8vj6CgoBK3k5aWxrfffsvhw4fJzMykVq1atG7dmsmTJ9OsWbNyjU8Yp00dw1cGSTkVHIgQomq4dtNwedYdKCwEU9OKjUeIUqjSScT06dP59NNPKzuMZ05SUhJJSUlMnjyZ4cOHV3Y4lSY6OprIyEijkogNGzbg5ORU7knEoUOHCAsLw8XFhZYtW3LmzJkS61+4cIFJkyZhZWXFoEGDqF+/Pn/++Se///47t24VM5WgqBDZdxXe/VF/UDVA5l3IylewrynN60I8U+ytDZffyoW0bGhQp2LjeabI721ZPXYSUVhYSEFBATVr1iyPeHSYmZlhZlal85yn0h9//AGAnV35jvBUFIW8vDysrKzKdb3Vmb+/PwDLly8vsZ6Pjw9jxozB0tKSH3/8scQk4u7du3z66afUq1eP5cuXY2NjU64xi8fzRriGnxINLytU4H+JCkNayR81IZ4pKcXc3LG3AjNphRBVk1FX6BEREcycOZOQkBDOnj1LREQEqampTJ8+HS8vLxRFYevWrezYsYOrV69iYmJC27Zt8fPz0xs/EBkZyebNm0lMTEStVuPg4ECHDh346KOPqF27NnB/3EFkZCQnTpzQ+exvv/3GwoULiYuLw9raGg8PD4YMGVJsvEuXLtXbvr+/PykpKURERGjLjhw5Qnh4OL///jsZGRmYm5vTrl07xo4di6urqzGHqlROnjzJt99+y7lz51Cr1bi4uDB06FAGDx6sUy82NpYtW7Zw5swZ0tLSMDU1pUWLFowePZq+ffvqrbe0x8cQf39/Tp48CcDMmTOZOXMmADt37qRBgwbk5eWxcuVK9u/fT3p6OrVq1aJHjx5MmDABJycn7XpOnDhBQEAAQUFB5OXlERYWxo0bN3j77be1d/b37dvHpk2buHjxIoWFhdp96tevn15cJ06cYN26dcTGxpKXl4ejoyOurq6899572NvbAxAWFkZ0dDRXrlzh1q1b2NnZ0b17dyZMmECDBg101nfw4EFCQ0O5fPky+fn52Nvb07ZtWwIDA3F2dtY5Dg+eOyV1ISqql5KSovOZomP3OBwcHEpdd//+/Vy/fp158+ZhY2PDvXv3AKhRo8ZjxSAe36VbCj8lltzJuZGtJBBCPHOSi5nbOesOuE2FE3Ohrn2FhiTEo5TpNv+CBQtQq9V4e3tjbW2Ns/P9WQVmzJjBDz/8gIeHB15eXhQUFLBnzx4mTZrE3Llz6d27NwC7du0iODiYLl26EBAQgIWFBWlpaRw6dIjMzExtEmFIbGwsEydOxMrKijFjxmBra8u+ffsICgoqy67oiIiIIDs7m4EDB1KvXj3S09MJDw9n4sSJLF26lC5dujz2NoocOHCAqVOn4uDgwKhRo7CysmLfvn3MmjWLpKQkJk2apK0bHR1NQkIC/fr1w8nJiezsbCIjI5k6dSqzZs3i1Vdf1dZ93OMzduxYOnXqxOrVq/H29tbuc+3atVGr1QQGBnL69Gk8PDwYNWoUiYmJbN26laNHjxIaGkq9evV01rdhwways7MZPHgwDg4O2uWLFy9m1apVvPjiiwQEBGBiYkJUVBSffPIJ06ZNY9iwYdp1bN26ldmzZ1O3bl2GDBmCk5MTqamp/Pzzz6SlpWmTiO+++4727dszfPhw7OzsuHz5Mjt27OD48eNs3LhRW+/XX3/lww8/pHnz5vj6+mJjY0NGRgbHjh3j+vXrODs7M3bsWBRF4dSpU3z++efaWDp27Fjssfv888+ZN28e9vb2jB07Vlte0vn8JBw6dAgAW1tb/Pz8+O2331AUhVatWvHuu+/yt7/9rULjEX9RPSI/sDaDHk6SRAjxzLlzt/hl1zNgxY/wfz4VF48QpaEYYefOnYqrq6vi7e2t5OXl6Sz76aefFFdXV2Xr1q065QUFBcqoUaMULy8vRaPRKIqiKFOmTFHc3d2VgoKCErcXFBSkuLq66pT5+voqPXr0UBISErRl9+7dU0aPHq24uroqS5cu1Yv3+PHjeuv28/NTXn/9dZ2yO3fu6NXLyMhQXn75ZeXdd999ZGzFeXhbarVa8fT0VHr37q2kp6fr7Ievr6/SrVs35dq1ayXGlZeXp3h7eys+Pj465cYcn+IcP35ccXV1VXbu3KlTvm3bNsXV1VWZP3++TvnPP/+suLq6KtOnT9dbR9++fZU//vhDp/758+cVV1dXZdGiRXrb/vDDDxV3d3clNzdXURRFSU1NVV544QXFx8dH+fPPP/XqFxYWav9t6DgdPXpUcXV1VdasWaMt+/rrrxVXV1e9uB5mzHdc5PXXX1f8/PxKXd/Pz8+o+oqiKPv37zf4/RR58803FVdXV6Vfv37K5MmTlX379ilhYWHKwIEDlW7duilHjhwxantP0h9//KHk5+dr3+fk5Oh8z3fv3lUyMjJ0PpOcnFzi+5SUFO1vTVXbRkGhRuGrgmJfNb4ueOxtVMR+yDYefxv37t1TwsPDlWXLlin37t2rtvsh2yinbTw3RlHwLv41aXn12I8nuI0nRcOoUr+ErjJN8erj46M3BmL37t1YW1vTp08fsrKytK/c3Fx69epFcnIyiYn3OwLb2NiQn5/PwYMHUZTSz1+WmZnJmTNn6N27t7b1A8Dc3JyRI0eWZVd0WFpaav99584dsrKyMDU1pX379pw7d+6x11/k/PnzpKamMmjQIBwdHbXl5ubmjBkzBo1GQ0xMjMG48vPzycrKIj8/n27dunH16lVyc+/PC/mkj09UVBQmJib4+vrqlPfs2ZNWrVpx4MABNBrdAaOenp7UqaM7IGzPnj2oVCo8PT11zpWsrCzc3d25ffs2Z8+eBeDHH3+koKAAPz8/bG1t9WIyMfnrFC46ThqNhtzcXLKysmjVqhU2NjbExsZq6xWNEfjpp59Qq9WPcUSMU3ROPfhSq9Wo1Wq98jt37jzWdgBcXFyYN28e/fv3x8fHhyVLlqBSqVi8eHF57dJjq1OnDhYWFtr3NjY2Ot9zjRo19LpyPdhtztD7+vXro3rgln9V2oaZiYrXmlKsQgUKCpUqvx+yjfLZRmpq6lOxH7KNcthGy0d0eX3jheqxH09wG6LqKVN3piZNmuiVJSQkcPv2bV555ZViP5eZmYmzszO+vr6cPHmSKVOmYGdnR9euXXnppZfo378/1tbFzFDA/VmD4P7F0cPKY8rKGzduEBISwpEjR8jJ0Z1rUfWofghGSE5OBgzH3Lx5c+CvfYX7x23JkiXExMSQmanfbzI3NxcbG5snfnySk5NxdHSkVq1aBuOOj48nKytLJ2kwdK5cvXoVRVHw8Sm+abZocPf169cBaN269SPjO378OCtWrODcuXPcvavbNPzg9zls2DBiYmKYPXs233zzDZ06deLFF19kwIABT7Tr0dy5c4mMjDS47OFxIK+//jrBwcFl2k7RD7enp6fOedukSRM6derEqVOnyMvL00lORcUJfc2U1qsKyczXX1ao3H+adTf52ynEs6VdY/glTr/cqTbMGAYvd6j4mIR4hDIlEYZmYlIUhdq1azNr1qxiP1d0gdykSRPCwsI4duwYx48f5+TJk8yaNYtly5axYsUKGjVqVJaw9JR04V9YWKjz/s6dO/j5+ZGXl8ebb75JixYtsLa2RqVSsWbNGo4fP14uMRlLURQCAwO5evUqI0aMoG3bttjY2GBiYkJERAR79+7Vu/tflRQ3a5dKpWLhwoU6LQkPKjpXSuvcuXMEBgbSqFEjAgMDadCgARYWFqhUKj777DOdY2Rvb09oaCinTp3i6NGjnDp1innz5rFs2TIWLFhQ4riHxzFmzBhee+01nbL58+cDMHnyZJ3yB1uojFWvXj0uX75scDC2g4MDiqKQm5srSUQlec5KRdRwU9zWFVJg4L9uY/0cXQjxtLtXTKv49o+hR6uKjUWIUiq3+VMbN25MYmIiHTp0KNUUnjVq1KBnz5707NkTuD9bzuTJk/n+++/5+OOPDX6maIabhIQEvWVXrlzRKyu6Y/7nn3/qLUtOTtaZPvbYsWPcvHmTGTNmMGjQIJ26S5YseeT+GKNhw4aA4ZiLyorqXLx4kfj4ePz8/PSeV7Bjxw6d98YeH2M1bNiQX375hZycHL2uRVeuXMHa2lo7eLkkjRs35vDhw9SvX5+mTUvo28FfLRnx8fE6XbQetnfvXgoLC1m4cKH22AHk5eXptSoBmJqa4ubmpp1F6eLFi4waNYqVK1eyYMECoGytTyV9plmzZnotQkXHsUePHkZvqzjt2rXj8OHDpKWl6S1LT0/H1NTUYGuSqDgdHVU41ITUh3qtmaqgvrUMrBbimZNZzOPqCyquy60QxirTmAhDPD090Wg0LFq0yODyou4pAFlZWXrL27RpA0B2dnax2yiaBjYmJoZr165pywsKCli/fr1e/aIL0GPHjumU7927l5s3dZ8Oafr/nwb58BiNI0eO6PSnLw9t2rShfv36REREkJGRoS1Xq9WsW7cOlUqlncmq6E79w3FdunSJ6OhonTJjj4+x+vTpg0ajYc2aNTrlhw4dIi4uDnd392JbFh40cOBAAEJCQvRahED3XPHw8MDc3JwVK1Zox348qOi4FPf9rVq1Sq+lxtD55+LiQs2aNXUSzqI79SWdkw+ztLQ0mLRWpAEDBmBqakp4eLjOmI/4+HjOnj2Lm5ubTl9VUfEy8xTSDQx7MZH8QYhnU01zw+UHfq/YOIQwQrm1RPTr1w8vLy82b97MhQsX6NWrF/b29qSnp3PmzBlu3LhBeHg4AJMmTcLW1pYuXbpQr149cnJyiIiIQKVSaS8wi/PBBx8wfvx4xo0bx9ChQ7VTmBq6GHVxcaF79+5s27ZNO8VlfHw80dHRNG7cWOcCq3Pnzjg4ODB//nxSUlKoW7cu8fHx7N69mxYtWnDp0qXyOlSYmpoybdo0pk6dyltvvYW3tzdWVlbs37+fs2fP4uvrq02AmjZtSrNmzQgNDSU/Px9nZ2cSExPZtm0bLVq04Pz582U+Psby8vIiMjKStWvXkpycTNeuXbl+/TpbtmzBwcFBZ1rakrRr1w5/f3+WL1/OyJEj6devH46OjmRkZHD+/HkOHTrEkSNHgPtdcz766CPmzJnDiBEj8PT0xMnJifT0dGJiYpgxYwatW7emT58+rF+/nvfffx9vb2/Mzc05evQoly5d0msdmTVrFunp6fTo0QMnJyfu3r3L/v37uX37Np6entp6HTp0YPPmzcyePZuePXtiZmZG+/btdVo6HtahQwfCw8NZsmQJTZs2RaVS4e7u/thdh1JSUti1axfwV6vSgQMHtK0NRccF7p/3Y8aMYfXq1fj7+/PKK6/w559/smnTJmrWrKnXdUpUvEtZYKgTYi15lIcQz6b+nWDLL/rlZ67pl4lyJndvyqpcHwcdFBSEm5sb27dvZ82aNRQUFODg4ECbNm10LjB9fHzYv38/27ZtIzs7Gzs7O1q3bs20adP0Hgr3sI4dOxISEsKiRYtYu3YtNjY22oepjRgxQq/+559/zldffcXevXvZvXs3Xbp0YenSpXz55ZekpKRo69na2rJo0SIWLlzIpk2bKCwspE2bNixYsIDw8PByTSIA3N3dWbx4MStXrmTdunUUFBTg4uLC9OnTdR42Z2pqyoIFC5g/fz6RkZHk5eXRvHlzgoODiY+P10sijD0+xjAzM2PRokXah81FRUVha2uLh4cHEydOpH79+qVel7+/P23btmXjxo1s2LCBvLw86tSpQ/PmzZkyZYpOXR8fHxo1akRoaCgbN26koKAAR0dHunXrpn3uROfOnZk7dy7ffvstS5cuxcLCgu7du7N8+XL8/Px01jdw4EAiIiLYtWsXt27dwtrammbNmjFnzhw8PDy09QYMGEBcXBz79u3jf//7HxqNhqCgoBKTiIkTJ5KdnU1YWBg5OTkoisLOnTsfO4lISkpi6dKlOmVRUVFERUVp9//BmSwmTZqEk5MTYWFhLFy4EAsLC9zc3AgICDB6vIkofx2eAzMVqB+anM7QYGshxDPAspiWiFYyy4KoulSKMXOsCiGEKBdNlqm5/tBwHWtzyH2/XO/tiCqqoKCA1atXA+Dr64u5eTEXkeLZMHc7fLxOv/zwv+FvbSo+nmeIohpT6roqJfQJRlL9lNuYCCGEEKXXpa5+WaeyT8olhKjOMvUnAAFgTVTFxiGEESSJEEKISjClmylmD/wCm5nAbHfTygtICFF56tkbLv/2R7iWXqGhPGsUVKV+CV3Sbi6EEJWgVyMVR0aa8u3Z+0Os3+lggmt9+SMlxDOpuI7lGgUupYKzgaZLISqZJBFCCFFJXOurcK0vrQ9CPPPOFjMLk60ldG9ZsbEIUUqSRAghhBBCVKb2TfTLLMxh44f3EwnxBEkLcFnJmAghhBBCiMrk/wp0a/HXe3tr+HkWDHStvJiEeARpiRBCCCGEqEy2lnBkNkTFQtZtGNAZbKQFQlRtkkQIIYQQQlQ2ExPw6FjZUTyDpDtTWUl3JiGEEEIIIYRRJIkQQgghhBBCGEWSCCGEEEIIIYRRZEyEEEIIIYR4JsmTqMtOWiKEEEIIIYQQRpEkQgghhBBCCGEU6c4khBBCCCGeUdKdqaykJUIIIYQQQghhFGmJEEKIKiIpR2HBSQ3X/gTPZipGt1WhUsldMiGEEFWPJBFCCFEFZOUr9Pi+kKTc++83xynEZar4opdp5QYmhCgfl1LA3BSc61Z2JEKUC+nOJIQQVcCmOEWbQBT5z3EFtUapnICEEOUjMwd6T4eWk8AlAAbPhry7lR2V+P8UI15ClyQRQghRBdwp0C+7p4FfkuRPlxDVWvAmOPD7X+/Dj8H7KysvHiHKiSQRQghRBThaGk4WjqZWcCBCiPL183n9shU/wv7fKjwUIcqTJBFCCFEF7L5qOIno6FjBgQghyldLJ8Pli/ZUbByiGCojXuJBkkQIIUQVcDlLv8xMBf2d5Q+XENWaUkyXxHwDfRiFqEYkiRBCiCqgnpV+mVqBPHXFxyKEKEdnEw2Xd3Su2DiEKGeSRAghRBXQr5gWh7A4TQVHIoQoV51dDJefuVahYQjDFFSlfgldkkQIIUQV4NPa8B+oPVcrOBAhRPl6oZXhcnVhxcYhRDmr0klEcHAwbm5upaqbnJyMm5sby5Yte8JR3WdMbP7+/nh5eT3hiEpm7PGJi4tjwoQJ9O3bt0KPqxDPqucsVQbvc91RyxSvQlRrMecMl/v3r9g4hChn8sRqoUetVjNt2jTUajUBAQHY2trSsmXLyg6rwkVHRxMXF8f48eNL/Zn169dja2tb7kljbGwse/bs4fz581y8eJG8vDyCgoIMbic5OZlBgwYZXE+zZs3YvHlzucYmysf+BMXgw4ys5FdaiOpLo4GoWP1yqxowvGfFxyNEOarSf56mT5/Op59+WtlhPHOSkpJISkpi8uTJDB8+vLLDqTTR0dFERkYalURs2LABJyenck8iDh06RFhYGC4uLrRs2ZIzZ8488jN9+/alb9++OmW2trblGpcoP6m3DZcfT6nYOIQQ5Sj8GGTf0S+va1/hoYjiyFiHsnrsJKKwsJCCggJq1qxZHvHoMDMzw8ysSuc5T6U//vgDADs7u3Jdr6Io5OXlYWVlYBqaZ5S/vz8Ay5cvL7Gej48PY8aMwdLSkh9//LFUSUSLFi0YOHBgucQpnqx8tcKMQ4YHUF/5E+4UKFiZyx86IaqdX68YLrcp/2smISqaUVfoERERzJw5k5CQEM6ePUtERASpqalMnz4dLy8vFEVh69at7Nixg6tXr2JiYkLbtm3x8/PTGz8QGRnJ5s2bSUxMRK1W4+DgQIcOHfjoo4+oXbs2cH/cQWRkJCdOnND57G+//cbChQuJi4vD2toaDw8PhgwZUmy8S5cu1du+v78/KSkpREREaMuOHDlCeHg4v//+OxkZGZibm9OuXTvGjh2Lq6urMYeqVE6ePMm3337LuXPnUKvVuLi4MHToUAYPHqxTLzY2li1btnDmzBnS0tIwNTWlRYsWjB49Wu9OM5T++Bji7+/PyZMnAZg5cyYzZ84EYOfOnTRo0IC8vDxWrlzJ/v37SU9Pp1atWvTo0YMJEybg5PTXA3VOnDhBQEAAQUFB5OXlERYWxo0bN3j77be1d/b37dvHpk2buHjxIoWFhdp96tevn15cJ06cYN26dcTGxpKXl4ejoyOurq6899572NvbAxAWFkZ0dDRXrlzh1q1b2NnZ0b17dyZMmECDBg101nfw4EFCQ0O5fPky+fn52Nvb07ZtWwIDA3F2dtY5Dg+eO8V1IXqwXkpKis5nio7d43BwcCjT5+7evYuiKE8kyRfl578nNCQX0xJhWwNJIISoroqbmSkzt0LDEOJJKNNt/gULFqBWq/H29sba2hpn5/tzHc+YMYMffvgBDw8PvLy8KCgoYM+ePUyaNIm5c+fSu3dvAHbt2kVwcDBdunQhICAACwsL0tLSOHToEJmZmdokwpDY2FgmTpyIlZUVY8aMwdbWln379hEUFFSWXdERERFBdnY2AwcOpF69eqSnpxMeHs7EiRNZunQpXbp0eextFDlw4ABTp07FwcGBUaNGYWVlxb59+5g1axZJSUlMmjRJWzc6OpqEhAT69euHk5MT2dnZREZGMnXqVGbNmsWrr76qrfu4x2fs2LF06tSJ1atX4+3trd3n2rVro1arCQwM5PTp03h4eDBq1CgSExPZunUrR48eJTQ0lHr16umsb8OGDWRnZzN48GAcHBy0yxcvXsyqVat48cUXCQgIwMTEhKioKD755BOmTZvGsGHDtOvYunUrs2fPpm7dugwZMgQnJydSU1P5+eefSUtL0yYR3333He3bt2f48OHY2dlx+fJlduzYwfHjx9m4caO23q+//sqHH35I8+bN8fX1xcbGhoyMDI4dO8b169dxdnZm7NixKIrCqVOn+Pzzz7WxdOzYsdhj9/nnnzNv3jzs7e0ZO3astryk8/lJ+v777/n2229RFIV69erh5eXF2LFjqVGjRqXEI4q37Ezxg6e71K3AQIQQ5cuhmC6k+XcrNg5RLJm69TEoRti5c6fi6uqqeHt7K3l5eTrLfvrpJ8XV1VXZunWrTnlBQYEyatQoxcvLS9FoNIqiKMqUKVMUd3d3paCgoMTtBQUFKa6urjplvr6+So8ePZSEhARt2b1795TRo0crrq6uytKlS/XiPX78uN66/fz8lNdff12n7M6dO3r1MjIylJdffll59913HxlbcR7ellqtVjw9PZXevXsr6enpOvvh6+urdOvWTbl27VqJceXl5Sne3t6Kj4+PTrkxx6c4x48fV1xdXZWdO3fqlG/btk1xdXVV5s+fr1P+888/K66ursr06dP11tG3b1/ljz/+0Kl//vx5xdXVVVm0aJHetj/88EPF3d1dyc3NVRRFUVJTU5UXXnhB8fHxUf7880+9+oWFhdp/GzpOR48eVVxdXZU1a9Zoy77++mvF1dVVL66HGfMdF3n99dcVPz+/Utf38/Mzqr6iKMr+/fsNfj9FUlJSlICAAGXDhg1KdHS0sn37dmXSpEmKq6urMmHCBEWtVhu1vSfpjz/+UPLz87Xvc3JydL7nu3fvKhkZGTqfSU5OLvF9SkqK9remOmxDXahR+Kqg2Ney3wqrxX7INozbxr1795Tw8HBl2bJlyr1796rtfsg2St7GXdcPFQVv/ZfF0Gq1H1VhG0/KXfxL/RK6yjTFq4+Pj173iN27d2NtbU2fPn3IysrSvnJzc+nVqxfJyckkJt5/aqONjQ35+fkcPHgQpbjHwRuQmZnJmTNn6N27t7b1A8Dc3JyRI0eWZVd0WFpaav99584dsrKyMDU1pX379pw7V8wUbWVw/vx5UlNTGTRoEI6Ojtpyc3NzxowZg0ajISYmxmBc+fn5ZGVlkZ+fT7du3bh69Sq5ufebRZ/08YmKisLExARfX1+d8p49e9KqVSsOHDiARqPbr9vT05M6derolO3ZsweVSoWnp6fOuZKVlYW7uzu3b9/m7NmzAPz4448UFBTg5+dncFCwiclfp3DRcdJoNOTm5pKVlUWrVq2wsbEhNvav2TFsbGwA+Omnn1CrK+5xwEXn1IMvtVqNWq3WK79zx8BAvFKqX78+S5YsYcSIEfTu3ZvBgwezaNEivL29OXbsGPv27SvHvXo8derUwcLCQvvexsZG53uuUaOGXleuB7vNGXpfv359VKq/7ixV9W2YmqjoXp9i1bdSqsV+yDaM30ZqaupTsR+yjWK2kXeXGqeLeaDcXTWkZFaP/agi2xBVT5m6MzVp0kSvLCEhgdu3b/PKK68U+7nMzEycnZ3x9fXl5MmTTJkyBTs7O7p27cpLL71E//79sba2LvbzSUlJALi4uOgta9asmfE78pAbN24QEhLCkSNHyMnJ0Vn24H+Ox5WcnAwYjrl58+bAX/sK94/bkiVLiImJITMzU+8zubm52NjYPPHjk5ycjKOjI7Vq1TIYd3x8PFlZWTpJg6Fz5erVqyiKgo+PT7HbKhrcff36dQBat279yPiOHz/OihUrOHfuHHfv6jYVP/h9Dhs2jJiYGGbPns0333xDp06dePHFFxkwYMAT7Xo0d+5cIiMjDS57eBzI66+/TnBwcLluf+zYsWzfvp2DBw/y2muvleu6xeNZ/oopfTcVcstAD4cpBxQGPXszLAtR/ZmYgLkZqO8ZXm4uE8eI6q1MZ7ChQZqKolC7dm1mzZpV7OeKLpCbNGlCWFgYx44d4/jx45w8eZJZs2axbNkyVqxYQaNGjcoSlp6SLvwLC3WfFHnnzh38/PzIy8vjzTffpEWLFlhbW6NSqVizZg3Hjx8vl5iMpSgKgYGBXL16lREjRtC2bVtsbGwwMTEhIiKCvXv36t39r0qKG9CrUqlYuHChTkvCg4rOldI6d+4cgYGBNGrUiMDAQBo0aICFhQUqlYrPPvtM5xjZ29sTGhrKqVOnOHr0KKdOnWLevHksW7aMBQsWlDju4XGMGTNG7+J9/vz5AEyePFmn/MEWqvJSr149TE1NycrKKvd1i8fTqa6K2LdNaPathrsPPcT24i24V6hQw1T67QpRrViYw4QBMC9Cf5mJCp7TvyEnKoP8tpZVuaXBjRs3JjExkQ4dOpRqCs8aNWrQs2dPeva8/7CVgwcPMnnyZL7//ns+/vhjg58pmuEmISFBb9mVK/rTqBXdMf/zzz/1liUnJ+tMH3vs2DFu3rzJjBkz9B7UtWTJkkfujzEaNmwIGI65qKyozsWLF4mPj8fPz0/veQU7duzQeW/s8TFWw4YN+eWXX8jJydHrWnTlyhWsra21g5dL0rhxYw4fPkz9+vVp2rRpiXWLWjLi4+N1umg9bO/evRQWFrJw4ULtsQPIy8vTa1UCMDU1xc3NTTuL0sWLFxk1ahQrV65kwYIFQNlan0r6TLNmzfRahIqOY48ePYzelrGSkpIoLCzU614mqoYGtia41tNwOFm33AQkgRCiuvrqLdh9Ei4kPbquENVMmcZEGOLp6YlGo2HRokUGlxd1TwEM3glt06YNANnZ2cVuo2ga2JiYGK5d+6ufYUFBAevXr9erX3QBeuzYMZ3yvXv3cvPmTZ0yU1NTAL0xGkeOHNHpT18e2rRpQ/369YmIiCAjI0NbrlarWbduHSqVSjuTVdGd+ofjunTpEtHR0Tplxh4fY/Xp0weNRsOaNWt0yg8dOkRcXBzu7u7Ftiw8qOjZBSEhIXotQqB7rnh4eGBubs6KFSu0Yz8eVHRcivv+Vq1apddSY+j8c3FxoWbNmjoJZ9EYi5LOyYdZWloaTForkqH902g0LF68GAB3d/cKjkiU1vk/9MsspceDENWXiQmYGvi7aGZa8bEIUc7K7c9Tv3798PLyYvPmzVy4cIFevXphb29Peno6Z86c4caNG4SHhwMwadIkbG1t6dKlC/Xq1SMnJ4eIiAhUKtUjH471wQcfMH78eMaNG8fQoUO1U5gauhh1cXGhe/fubNu2DUVRaNWqFfHx8URHR9O4cWOdQbWdO3fGwcGB+fPnk5KSQt26dYmPj2f37t20aNGCS5culdehwtTUlGnTpjF16lTeeustvL29sbKyYv/+/Zw9exZfX19tAtS0aVOaNWtGaGgo+fn5ODs7k5iYyLZt22jRogXnz58v8/ExlpeXF5GRkaxdu5bk5GS6du3K9evX2bJlCw4ODjrT0pakXbt2+Pv7s3z5ckaOHEm/fv1wdHQkIyOD8+fPc+jQIY4cOQLc74Lz0UcfMWfOHEaMGIGnpydOTk6kp6cTExPDjBkzaN26NX369GH9+vW8//77eHt7Y25uztGjR7l06ZJe68isWbNIT0+nR48eODk5cffuXfbv38/t27fx9PTU1uvQoQObN29m9uzZ9OzZEzMzM9q3b6/T0vGwDh06EB4ezpIlS2jatCkqlQp3d3edwfFlkZKSwq5du4C/WpUOHDhAWloagPa4AHzxxRfcvn2bjh07Uq9ePbKysvjpp584f/48vXv3xsPD47FiEU/GXbVicExEl3r6ZUKIakRt4O/vPTUciYMXHj3eTzxZMsVr2ZXrPa6goCDc3NzYvn07a9asoaCgAAcHB9q0aaNzgenj48P+/fvZtm0b2dnZ2NnZ0bp1a6ZNm6b3ULiHdezYkZCQEBYtWsTatWuxsbHRPkxtxIgRevU///xzvvrqK/bu3cvu3bvp0qULS5cu5csvvyQlJUVbz9bWlkWLFrFw4UI2bdpEYWEhbdq0YcGCBYSHh5drEgH37wYvXryYlStXsm7dOgoKCnBxcWH69Ok6D5szNTVlwYIFzJ8/n8jISPLy8mjevDnBwcHEx8frJRHGHh9jmJmZsWjRIu3D5qKiorC1tcXDw4OJEydSv34JU8w8xN/fn7Zt27Jx40Y2bNhAXl4ederUoXnz5kyZMkWnro+PD40aNSI0NJSNGzdSUFCAo6Mj3bp10z53onPnzsydO5dvv/2WpUuXYmFhQffu3Vm+fDl+fn466xs4cCARERHs2rWLW7duYW1tTbNmzZgzZ47OBfaAAQOIi4tj3759/O9//0Oj0RAUFFRiEjFx4kSys7MJCwsjJycHRVHYuXPnYycRSUlJLF26VKcsKiqKqKgo7f4XJREvvfQSu3fvZvv27WRnZ1OjRg2aNWvGxx9/zJAhQ0rVWiQqXlYx08ZfyZInVgtRrXV2gbhk/fINByWJENWaSjFmjlUhhBBPxJ93FZ4LKaTAwDwJy/qb4N9Jkr+nSUFBAatXrwbA19cXc3PzSo5IPDEDZsK+0/rl/xwKn79Z8fEIHXdVE0pd10Ip3zGy1Z38VRJCiCqgloWKN4qZyjUuU+71CFFtnbqqX2ZqAu/00y8XohqRJEIIIaqIRjaGy/s5S1cmIaotQ11ILcyhkYN+uRDViCQRQghRRaTn6ScLKqC/iyQRQlRbHfUfusqdu7D3VMXHIkQ5kiRCCCGqiOb2+mUKkFvMA2+FENVAYDGzTl5Ordg4hChnkkQIIUQVMaSl/k9y9/pgX1NaIoSotgZ1hzYPzeqnUkH/TpUTj9ChoCr1S+iSJEIIIaqI9o4qlr9igsP/nxG4W334zlMeSiVEtbfjE+ja7P6/HWvBtxOhTaPKjUmIxyTPQhVCiCrEr6MJb7dT8ec9cLCUO19CPBVaN4Rf/wMZf4KdFZjL5Zeo/uQsFkKIKsbcVKVtjRBCPEWeq1XZEQg9crOmrKQ7kxBCCCGEEMIokkQIIYQQQgghjCLdmYQQQgghxDNJZl0qO2mJEEIIIYQQQhhFkgghhBBCCCGEUSSJEEIIIYQQQhhFxkQIIYQQQohnlIyJKCtpiRBCCCGEEEIYRZIIIYQQQgghhFGkO5MQQlQDOy5qWHhS4Z5GYVx7E3w7yD0gIao8RYGFu2DDz2BvDdO84eUOlR2VeIBM8Vp2kkQIIUQVt/eqBu9wjfb9oaT7/5ZEQogq7t9bYfr6v97/7ywcnQ1dm1deTEKUE/kLJIQQVdyqs4pe2X9/1RioKYSoMm7lwpdbdcvUhbA2ulLCEaK8SRIhhBBVnLmpfllsBhxN0U8uhBBVgEYDXT+C23f1l9WQTiDi6SBJhBBCVHETO+v/VCtAyClpjRCiSvrfGUi4qV9uagLjPCo+HiGeAEkihBCiinupoYrn6+iXH0+VlgghqqTgTYbLnWpDm0YVG4sQT4gkEUIIUcUVahRc7PTLL2dBzj1JJISoUs5eg8Nxhpel3oKs2xUbjxBPiCQRQghRhRVqFF7dqmHPVf1lBRr400CXayFEJbr5Z/HL1Br47UrFxSIeSUFV6pfQJUmEEEJUYbuvKvx4zXBrw98aQENb+cMmRJXyUhuwsyp++XcHKi4WIZ6gKp1EBAcH4+bmVqq6ycnJuLm5sWzZsicc1X3GxObv74+Xl9cTjqhkxh6fuLg4JkyYQN++fSv0uAoh/qJRFIIOGR48/VpT2OxlYNomIUTlsjCH50sY93A5reJiEeIJknnGhB61Ws20adNQq9UEBARga2tLy5YtKzusChcdHU1cXBzjx48v9WfWr1+Pra1tuSeNsbGx7Nmzh/Pnz3Px4kXy8vIICgoyuJ3g4GAiIyOLXVfjxo3Zvn17ucYnnoy9VxVOpeuXq4ANr5tiZyGtEEJUOWlZcOJy8cs95InVVYv8jpZVlU4ipk+fzqefflrZYTxzkpKSSEpKYvLkyQwfPryyw6k00dHRREZGGpVEbNiwAScnp3JPIg4dOkRYWBguLi60bNmSM2fOFFv3jTfeoHv37nrlx48fJyIigl69epVrbOLJ+SnRcDcmBYjLVOjuJH/8hKhyzt+4/1C54vRtX3GxCPEEPXYSUVhYSEFBATVr1iyPeHSYmZlhZlal85yn0h9//AGAnZ2B6WAeg6Io5OXlYWVVQl/RZ4y/vz8Ay5cvL7Gej48PY8aMwdLSkh9//LHEJKJjx4507NhRr3z37t0A/P3vf3+MiEVFOphU/MxL95OICgxGCFE6nZuCdU24nW94+ZooeOn5io1JiCfAqCv0iIgIZs6cSUhICGfPniUiIoLU1FSmT5+Ol5cXiqKwdetWduzYwdWrVzExMaFt27b4+fnpjR+IjIxk8+bNJCYmolarcXBwoEOHDnz00UfUrl0b+KtbxokTJ3Q++9tvv7Fw4ULi4uKwtrbGw8ODIUOGFBvv0qVL9bbv7+9PSkoKERER2rIjR44QHh7O77//TkZGBubm5rRr146xY8fi6upqzKEqlZMnT/Ltt99y7tw51Go1Li4uDB06lMGDB+vUi42NZcuWLZw5c4a0tDRMTU1p0aIFo0ePpm/fvnrrLe3xMcTf35+TJ08CMHPmTGbOnAnAzp07adCgAXl5eaxcuZL9+/eTnp5OrVq16NGjBxMmTMDJ6a8rmhMnThAQEEBQUBB5eXmEhYVx48YN3n77be2d/X379rFp0yYuXrxIYWGhdp/69eunF9eJEydYt24dsbGx5OXl4ejoiKurK++99x729vYAhIWFER0dzZUrV7h16xZ2dnZ0796dCRMm0KBBA531HTx4kNDQUC5fvkx+fj729va0bduWwMBAnJ2ddY7Dg+dOcV2IHqyXkpKi85miY/c4HBwcHuvzKSkpHDt2jA4dOtC8efPHWpeoOBcyi192PBVGt6u4WIQQpWRvDcsCYNR8w8t/KWb6VyGqmTLd5l+wYAFqtRpvb2+sra1xdnYGYMaMGfzwww94eHjg5eVFQUEBe/bsYdKkScydO5fevXsDsGvXLoKDg+nSpQsBAQFYWFiQlpbGoUOHyMzM1CYRhsTGxjJx4kSsrKwYM2YMtra27Nu3j6CgoLLsio6IiAiys7MZOHAg9erVIz09nfDwcCZOnMjSpUvp0qXLY2+jyIEDB5g6dSoODg6MGjUKKysr9u3bx6xZs0hKSmLSpEnautHR0SQkJNCvXz+cnJzIzs4mMjKSqVOnMmvWLF599VVt3cc9PmPHjqVTp06sXr0ab29v7T7Xrl0btVpNYGAgp0+fxsPDg1GjRpGYmMjWrVs5evQooaGh1KtXT2d9GzZsIDs7m8GDB+Pg4KBdvnjxYlatWsWLL75IQEAAJiYmREVF8cknnzBt2jSGDRumXcfWrVuZPXs2devWZciQITg5OZGamsrPP/9MWlqaNon47rvvaN++PcOHD8fOzo7Lly+zY8cOjh8/zsaNG7X1fv31Vz788EOaN2+Or68vNjY2ZGRkcOzYMa5fv46zszNjx45FURROnTrF559/ro3F0B3+Ip9//jnz5s3D3t6esWPHastLOp8rys6dO9FoNNIKUc10coQDNwwv61xXujIJUWX9wx3GL4HbBuZgNpcJEaoSmbq17MqUROTn57N+/XqdLkxRUVHs2bOHzz77jDfeeENbPmLECHx9ffn6669xd3dHpVIRHR2NtbU1S5Ys0emuFBAQ8Mhtz5s3D41Gw8qVK7XJy9ChQxk3blxZdkXH9OnTsbS01CkbMmQIw4YNY/Xq1eWWRBQWFjJ37lwsLS1Zu3Ytjo6OAAwbNozx48ezdu1avLy8aNKkCQDjxo0jMDBQZx0jRoxg5MiRrFy5UieJeNzj88ILL2BmZsbq1avp2LEjAwcO1C7bvn07p0+fZvTo0bz//vva8h49ejB58mQWLVrEv/71L531paamsmXLFurU+etxuxcuXGDVqlX4+vrqJEsjRozgo48+IiQkBE9PT6ytrUlLS+M///kPLi4urFq1CltbW239CRMmoNH8NXPNxo0b9b4/d3d3Jk6cSHh4OG+99RYAMTExaDQaQkJCdOJ65513dI7D3r17OXXqlM4xKMnAgQNZsmQJderUKfVnKoJGoyEiIgIrKyteeeWVyg5HGOFDNxMO3NCfnUkFuMtDb4Wo2u4WGC6vYV6xcQjxhJRpilcfHx+9MRC7d+/G2tqaPn36kJWVpX3l5ubSq1cvkpOTSUxMBMDGxob8/HwOHjyIopT+aauZmZmcOXOG3r17ay+QAczNzRk5cmRZdkXHgxegd+7cISsrC1NTU9q3b8+5c+cee/1Fzp8/T2pqKoMGDdImEHB/P8aMGYNGoyEmJsZgXPn5+WRlZZGfn0+3bt24evUqubm5wJM/PlFRUZiYmODr66tT3rNnT1q1asWBAwd0LuoBPD09dS7UAfbs2YNKpcLT01PnXMnKysLd3Z3bt29z9uxZAH788UcKCgrw8/PTSSCKmJj8dQoXHSeNRkNubi5ZWVm0atUKGxsbYmNjtfVsbGwA+Omnn1Cr1Y9xRIxTdE49+FKr1ajVar3yO3fulNt2jx49SmpqKv37969y41EyMzO5e/evO3W5ubnk5ORo39+7d087RqdISkpKie9TU1N1fleq8zZebmz4R1oB3oxQV5v9kG0YXmf9+vWfiv2QbRSzDSsLDGrfpHrtRxXZhqh6ytQSUXSH/EEJCQncvn27xDudmZmZODs74+vry8mTJ5kyZQp2dnZ07dqVl156if79+2NtbV3s55OSkgBwcXHRW9asWTPjd+QhN27cICQkhCNHjuic7AAqVfk1dyUnJwOGYy7qr160r3D/uC1ZsoSYmBgyM/U7Sefm5mJjY/PEj09ycjKOjo7UqlXLYNzx8fFkZWXpJA2GzpWrV6+iKAo+Pj7Fbqvox+X69esAtG7d+pHxHT9+nBUrVnDu3DmdHy9A5/scNmwYMTExzJ49m2+++YZOnTrx4osvMmDAgCfa9Wju3LnFTr368DiQ119/neDg4HLZbnh4OIDeWJuq4OEEsyjBK1KjRg298SAPjr0x9P7hC7Pqvg0nGw1Jueg5kW7CLcWGotS6qu+HbEN/nampqU98G0/LsaqW28gvpiXi0796a1SL/agi23hSpDtT2ZUpiTA0E5OiKNSuXZtZs2YV+7miC+QmTZoQFhbGsWPHOH78OCdPnmTWrFksW7aMFStW0KhR+bTTl3ThX1ioO/3anTt38PPzIy8vjzfffJMWLVpgbW2NSqVizZo1HD9+vFxiMpaiKAQGBnL16lVGjBhB27ZtsbGxwcTEhIiICPbu3at3978qKW7WLpVKxcKFC3VaEh5k7ODfc+fOERgYSKNGjQgMDKRBgwZYWFigUqn47LPPdI6Rvb09oaGhnDp1iqNHj3Lq1CnmzZvHsmXLWLBgQYnjHh7HmDFjeO2113TK5s+fD8DkyZN1yh9soXocWVlZxMTE0Lx5czp0kLnJq5u8AoU/8opffrdQQeY4F6IKSr0FBQZauk1NoHl9/XIhqqFymz+1cePGJCYm0qFDh1J1mahRowY9e/akZ8+ewP3ZciZPnsz333/Pxx9/bPAzRTPcJCQk6C27cuWKXlnRHfM///xTb1lycrLOeIxjx45x8+ZNZsyYwaBBg3TqLlmy5JH7Y4yGDRsChmMuKiuqc/HiReLj4/Hz89N7XsGOHTt03ht7fIzVsGFDfvnlF3JycvS6Fl25cgVra2vt4OWSNG7cmMOHD1O/fn2aNm1aYt2iloz4+HidLloP27t3L4WFhSxcuFB77ADy8vL0WpUATE1NcXNz086idPHiRUaNGsXKlStZsGABULbWp5I+06xZM70WoaLj2KNHD6O3VRq7du2ioKBABlRXU3sTFPJLmG5+fwK0rPxx+0KIh209cr/f4cMKNXDiEnR79h7gKp4+ZRoTYYinpycajYZFixYZXP5g37esrCy95W3atAEgOzu72G0UTQMbExPDtWvXtOUFBQWsX79er37RBeixY8d0yvfu3cvNmzd1ykxN78+W8PAYjSNHjuj0py8Pbdq0oX79+kRERJCRkaEtV6vVrFu3DpVKpZ3JquhO/cNxXbp0iejoaJ0yY4+Psfr06YNGo2HNmjU65YcOHSIuLg53d/diWxYeVDToOCQkRK9FCHTPFQ8PD8zNzVmxYoV27MeDio5Lcd/fqlWr9FpqDJ1/Li4u1KxZUyfhLBpjUdI5+TBLS0uDSWtlCQ8Px9zcvEoN9BalZ/WI2zyW8hgdIaqmlFvFL7OsUXFxCPEEldufoH79+uHl5cXmzZu5cOECvXr1wt7envT0dM6cOcONGze0fbMnTZqEra0tXbp0oV69euTk5BAREYFKpXrkxc4HH3zA+PHjGTduHEOHDtVOYWroYtTFxYXu3buzbds2FEWhVatWxMfHEx0dTePGjXUG1Xbu3BkHBwfmz59PSkoKdevWJT4+nt27d9OiRQsuXbpUXocKU1NTpk2bxtSpU3nrrbfw9vbGysqK/fv3c/bsWXx9fbUJUNOmTWnWrBmhoaHk5+fj7OxMYmIi27Zto0WLFpw/f77Mx8dYXl5eREZGsnbtWpKTk+natSvXr19ny5YtODg46My0VJJ27drh7+/P8uXLGTlyJP369cPR0ZGMjAzOnz/PoUOHOHLkCAD16tXjo48+Ys6cOYwYMQJPT0+cnJxIT08nJiaGGTNm0Lp1a/r06cP69et5//338fb2xtzcnKNHj3Lp0iW91pFZs2aRnp5Ojx49cHJy4u7du+zfv5/bt2/j6emprdehQwc2b97M7Nmz6dmzJ2ZmZrRv316npeNhHTp0IDw8nCVLltC0aVNUKhXu7u56s0YZKyUlhV27dgF/tSodOHCAtLQ0AO1xeVBsbCxXrlyhf//+pWohElVPP2cVHR3hzE39ZTVMwae1dGUSokpKNPCftkhuMQ+hE6KaKdf7WEFBQbi5ubF9+3bWrFlDQUEBDg4OtGnTRucC08fHh/3797Nt2zays7Oxs7OjdevWTJs2Te+hcA/r2LEjISEhLFq0iLVr12JjY6N9mNqIESP06n/++ed89dVX7N27l927d9OlSxeWLl3Kl19+qTPy39bWlkWLFrFw4UI2bdpEYWEhbdq0YcGCBYSHh5drEgH3px5dvHgxK1euZN26dRQUFODi4sL06dN1BsCampqyYMEC5s+fT2RkJHl5eTRv3pzg4GDi4+P1kghjj48xzMzMWLRokfZhc1FRUdja2uLh4cHEiRP1BlaVxN/fn7Zt27Jx40Y2bNhAXl4ederUoXnz5kyZMkWnro+PD40aNSI0NJSNGzdSUFCAo6Mj3bp10z53onPnzsydO5dvv/2WpUuXYmFhQffu3Vm+fDl+fn466xs4cCARERHs2rWLW7duYW1tTbNmzZgzZw4eHh7aegMGDCAuLo59+/bxv//9D41GQ1BQUIlJxMSJE8nOziYsLIycnBwURWHnzp2PnUQkJSWxdOlSnbKoqCiioqK0+/9wElGUtEtXpurL1ERF1DBTmiwv5PZDYzTb1gHbGpJECFElldQdVl11xzEKYQyVYswcq0IIISrU4SSFlzbotyT+uyd8+oL0Z6quCgoKWL16NQC+vr6Ym8uzA54qB85B738aXnZsjoyJqEJyVB+Wuq6tMu8JRlL9lNuYCCGEEOXvVr7h+zw/JFRsHEIII7i3g1qGZycku/yeAyQen4Kq1C+hS5IIIYSowl5uouI5A73hYm7AwRvSkCxElfVKZ8PlrsZNYS5EVSVJhBBCVGGW5ipWDjD8U52YI0mEEFVW32KezZNTwsNfhKhGpEOtEEJUca84g4kKNA/lDDbSjV6IqsvQw+ZqmkOT8nmYqCgv0k2prKQlQgghqribeSq9BAIg5XbFxyKEKKVUA88YumcgsRCimpIkQgghqrhGttDCXr+8dyO5gyZEldW7rX5ZcV2chKiGJIkQQogqTqVS8Z2nKc617r+3MYeFL5vQxkGSCCGqrFe7wsfeUOP/9xxv3wSWjq/cmIQoRzImQgghqoEeTiqu+Jly8RY0tAEbedCcEFXf7NH3E4k/cqCF06PriwonU7eWnSQRQghRTZioVLSuU9lRCCGMUtvm/kuIp4x0ZxJCCCGEEEIYRVoihBBCCCHEM0m6M5WdtEQIIYQQQgghjCJJhBBCCCGEEMIo0p1JCCGEEEI8o6Q7U1lJS4QQQgghhBDCKJJECCGEEEIIIYwiSYQQQgghRGUrLITcvMqOQohSkyRCCCGEEKIyrdgPTuPA9h/QdwZcz6jsiJ4ZihEvoUuSCCGEEEKIynLqCoxfCjf/vP8+Ohbe/qZyYxKiFCSJEEIIIYSoLDM3gfLQfe6fzkL+vcqJR4hSkilehRDiKZR+W+HfRzWcSlf4WwMVn3Q3wb6mTGUoRJWSdxf2/aZf7mALFuYVHs6zSJ5YXXaSRAghxFNGoyj0Cyvk7P/vVn3ghsLh5EIOjJCffCGqlLRsyCvQL3+tC6jk4lZUbdKdSQghnjLRiYo2gSjy8w04lyFDA4WoUurYGC7v4FyxcQhRBpJECCHEUyYs3nCy8HC3ayFEJTt5xXC5Y62KjUOIMpC2bSGEeMrsvaqfLagAR6uKj0UIUYJf4gyXv9K5QsN4tkm3sbKSlgghhHiKJOcqXPtTv1wBvjmlqfB4hBAlaFDHcPmNPyo2DiHKoEonEcHBwbi5uZWqbnJyMm5ubixbtuwJR3WfMbH5+/vj5eX1hCMqmbHHJy4ujgkTJtC3b98KPa5CiMdzPaf4hyJFXpb+TEJUKV2aGi7fdKhi4xCiDKQ7k9CjVquZNm0aarWagIAAbG1tadmyZWWHVeGio6OJi4tj/Pjxpf7M+vXrsbW1LfekMTY2lj179nD+/HkuXrxIXl4eQUFBpdpORkYGQ4cOJScnh/fff5/Ro0eXa2yiaulSF+rUhMx8/WW//wEFhQrmptJ8L0SV0L4J1DCDe2rd8tNXKyeeZ5BM8Vp2VbolYvr06Rw6JNl4RUtKSiIpKYk333yT4cOHM3DgwGc2iVixYoVRn9mwYQMRERHlHsuhQ4cICwsjNzfX6O9i7ty5FBYWlntMomqqYaqiw3OGlxVoYPkZaY0QosrIzQe1gd/nGnKPV1R9j51EFBYWkp9v4JZXOTAzM8PCwuKJrFsU748/7vfFtLOzK9f1KorCnTt3ynWd1Z2/vz/+/v6PrOfj40NMTAybN29m5MiRpV5/TEwM0dHRvPPOO48TpqhmLmQWvyzmuiQRQlQZmw+BxsD/ya7NKj4WIYxkVKobERHBzJkzCQkJ4ezZs0RERJCamsr06dPx8vJCURS2bt3Kjh07uHr1KiYmJrRt2xY/Pz+98QORkZFs3ryZxMRE1Go1Dg4OdOjQgY8++ojatWsD98cdREZGcuLECZ3P/vbbbyxcuJC4uDisra3x8PBgyJAhxca7dOlSve37+/uTkpKic9f4yJEjhIeH8/vvv5ORkYG5uTnt2rVj7NixuLq6GnOoSuXkyZN8++23nDt3DrVajYuLC0OHDmXw4ME69WJjY9myZQtnzpwhLS0NU1NTWrRowejRo+nbt6/eekt7fAzx9/fn5MmTAMycOZOZM2cCsHPnTho0aEBeXh4rV65k//79pKenU6tWLXr06MGECRNwcnLSrufEiRMEBAQQFBREXl4eYWFh3Lhxg7ffflvbPWjfvn1s2rSJixcvUlhYqN2nfv366cV14sQJ1q1bR2xsLHl5eTg6OuLq6sp7772Hvb09AGFhYURHR3PlyhVu3bqFnZ0d3bt3Z8KECTRo0EBnfQcPHiQ0NJTLly+Tn5+Pvb09bdu2JTAwEGdnZ53j8OC5U1IXoqJ6KSkpOp8pOnaPw8HBwejP3L59m7lz5zJkyBDatm37WNsX1UthCXnCzTxQaxTMTKQJX4hKV9zYh9v3KjaOZ5h0Zyq7MrWXLViwALVajbe3N9bW1jg7338oyowZM/jhhx/w8PDAy8uLgoIC9uzZw6RJk5g7dy69e/cGYNeuXQQHB9OlSxcCAgKwsLAgLS2NQ4cOkZmZqU0iDImNjWXixIlYWVkxZswYbG1t2bdvH0FBQWXZFR0RERFkZ2czcOBA6tWrR3p6OuHh4UycOJGlS5fSpUuXx95GkQMHDjB16lQcHBwYNWoUVlZW7Nu3j1mzZpGUlMSkSZO0daOjo0lISKBfv344OTmRnZ1NZGQkU6dOZdasWbz66qvauo97fMaOHUunTp1YvXo13t7e2n2uXbs2arWawMBATp8+jYeHB6NGjSIxMZGtW7dy9OhRQkNDqVevns76NmzYQHZ2NoMHD8bBwUG7fPHixaxatYoXX3yRgIAATExMiIqK4pNPPmHatGkMGzZMu46tW7cye/Zs6taty5AhQ3ByciI1NZWff/6ZtLQ0bRLx3Xff0b59e4YPH46dnR2XL19mx44dHD9+nI0bN2rr/frrr3z44Yc0b94cX19fbGxsyMjI4NixY1y/fh1nZ2fGjh2LoiicOnWKzz//XBtLx44diz12n3/+OfPmzcPe3p6xY8dqy0s6n5+kRYsWUVhYyKRJk7hw4UKlxCAqh1kJfxOjrysEHdLwRS/TigtICKGvQA0xvxtelptXsbEIUQZlSiLy8/NZv349NWvW1JZFRUWxZ88ePvvsM9544w1t+YgRI/D19eXrr7/G3d0dlUpFdHQ01tbWLFmyBDOzv0IICAh45LbnzZuHRqNh5cqV2uRl6NChjBs3riy7omP69OlYWlrqlA0ZMoRhw4axevXqcksiCgsLmTt3LpaWlqxduxZHR0cAhg0bxvjx41m7di1eXl40adIEgHHjxhEYGKizjhEjRjBy5EhWrlypk0Q87vF54YUXMDMzY/Xq1XTs2JGBAwdql23fvp3Tp08zevRo3n//fW15jx49mDx5MosWLeJf//qXzvpSU1PZsmULder8NY3dhQsXWLVqFb6+vjrJ0ogRI/joo48ICQnB09MTa2tr0tLS+M9//oOLiwurVq3C1tZWW3/ChAloNH9NWblx40a978/d3Z2JEycSHh7OW2+9Bdzv4qPRaAgJCdGJ68EuPy+88AJ79+7l1KlTOsegJAMHDmTJkiXUqVOn1J95Us6ePcvWrVuZNWsWNjbFPBFVPLXsLCC1hJ6Dob8rfNGr4uIRQhhw4Pf7iYQhg7pVbCxClEGZxkT4+PjoJBAAu3fvxtramj59+pCVlaV95ebm0qtXL5KTk0lMTATAxsaG/Px8Dh48iGLEI1QzMzM5c+YMvXv31l4gA5ibmxvVT7w4D16A3rlzh6ysLExNTWnfvj3nzp177PUXOX/+PKmpqQwaNEibQMD9/RgzZgwajYaYmBiDceXn55OVlUV+fj7dunXj6tWr5ObmAk/++ERFRWFiYoKvr69Oec+ePWnVqhUHDhzQuagH8PT01LlQB9izZw8qlQpPT0+dcyUrKwt3d3du377N2bNnAfjxxx8pKCjAz89PJ4EoYmLy1ylcdJw0Gg25ublkZWXRqlUrbGxsiI2N1dYruqj+6aefUKuL+QF/AorOqQdfarUatVqtV/44Y0fUajWzZs2iR48evPLKK+W4B+UvMzOTu3fvat/n5uaSk5OjfX/v3j3tGJ0iKSkpJb5PTU3V+V15FrdRUncmAGvz6rEfT/s26tev/1Tsh2yjjNuwLmHM5/9/fkS12I8K2oaoesrUElF0h/xBCQkJ3L59u8SLlszMTJydnfH19eXkyZNMmTIFOzs7unbtyksvvUT//v2xtrYu9vNJSUkAuLi46C1r1uzxByHduHGDkJAQjhw5onOyA6hU5ddnLjk5GTAcc/PmzYG/9hXuH7clS5YQExNDZqb+iMnc3FxsbGye+PFJTk7G0dGRWrVqGYw7Pj6erKwsnaTB0Lly9epVFEXBx8en2G0V/bhcv34dgNatWz8yvuPHj7NixQrOnTun8+MF6Hyfw4YNIyYmhtmzZ/PNN9/QqVMnXnzxRQYMGPBEux7NnTuXyMhIg8seHgfy+uuvExwcXKbtrFmzhhs3bvD111+X6fMV6eEE8+FWkxo1auiNB3lw7I2h9w9fmD2L27j3iMm4priZPPY2iou7uh2rytxGamrqE9/G03Ksnspt9GhFsaLPgVuL6rEfFbQNUfWUKYl4uBUC7s+8U7t2bWbNmlXs54oukJs0aUJYWBjHjh3j+PHjnDx5klmzZrFs2TJWrFhBo0aNyhKWnpIu/B+e8vLOnTv4+fmRl5fHm2++SYsWLbC2tkalUrFmzRqOHz9eLjEZS1EUAgMDuXr1KiNGjKBt27bY2NhgYmJCREQEe/fu1bv7X5UYOlfg/nezcOFCnZaEBxWdK6V17tw5AgMDadSoEYGBgTRo0AALCwtUKhWfffaZzjGyt7cnNDSUU6dOcfToUU6dOsW8efNYtmwZCxYsKHHcw+MYM2YMr732mk7Z/PnzAZg8ebJO+YMtVMbIyMhg9erVeHp6oiiKNgm7efMmANnZ2Vy/fp3nnntOr+uXeHo0t4fEHMPLtg4y4Y1WVXp2byGeDSoVdGgCZxP1l2UW8x9YiCqk3CYibty4MYmJiXTo0AErK6tH1q9RowY9e/akZ8+ewP3ZciZPnsz333/Pxx9/bPAzRTPcJCQk6C27cuWKXlnRHfM///xTb1lycrLOeIxjx45x8+ZNZsyYwaBBg3TqLlmy5JH7Y4yGDRsChmMuKiuqc/HiReLj4/Hz89N76NmOHTt03ht7fIzVsGFDfvnlF3JycvS6Fl25cgVra2vt4OWSNG7cmMOHD1O/fn2aNi3maZ3/X1FLRnx8vE4XrYft3buXwsJCFi5cqD12AHl5eXqtSgCmpqa4ublpZ1G6ePEio0aNYuXKlSxYsAAoW+tTSZ9p1qyZXotQ0XHs0aOH0dsy5I8//uDu3bts27aNbdu26S1fs2YNa9asYfbs2QZnwRJPB+8WKqKKmcq1Z0OZiUSIKmP+WPAI1i+/drPCQxHCWOV2O8rT0xONRsOiRYsMLn+w71tWVpbe8jZt2gD375QWp2ga2JiYGK5du6YtLygoYP369Xr1iy5Ajx07plO+d+9e7Z3ZIqam92cqeXiMxpEjR3T605eHNm3aUL9+fSIiIsjIyNCWq9Vq1q1bh0ql0s5kVXSn/uG4Ll26RHR0tE6ZscfHWH369EGj0bBmzRqd8kOHDhEXF4e7u3uxLQsPKhp0HBISYvAhaA+eKx4eHpibm7NixQrt2I8HFR2X4r6/VatW6bXUGDr/XFxcqFmzpk7CWXSnvqRz8mGWlpYGk9aK0rBhQ2bPnq33KnoWhaenJ7Nnz35irS2iamii3+MQuD9rU11rSSKEqDJe7giWNfTL00v/d0c8HgVVqV9CV7m1RPTr1w8vLy82b97MhQsX6NWrF/b29qSnp3PmzBlu3LhBeHg4AJMmTcLW1pYuXbpQr149cnJyiIiIQKVSPXJWmw8++IDx48czbtw4hg4dqp3C1NDFqIuLC927d2fbtm0oikKrVq2Ij48nOjqaxo0b6wyq7dy5Mw4ODsyfP5+UlBTq1q1LfHw8u3fvpkWLFly6dKm8DhWmpqZMmzaNqVOn8tZbb+Ht7Y2VlRX79+/n7Nmz+Pr6ahOgpk2b0qxZM0JDQ8nPz8fZ2ZnExES2bdtGixYtOH/+fJmPj7G8vLyIjIxk7dq1JCcn07VrV65fv86WLVtwcHDQmWmpJO3atcPf35/ly5czcuRI+vXrh6OjIxkZGZw/f55Dhw5x5MgRAOrVq8dHH33EnDlzGDFiBJ6enjg5OZGenk5MTAwzZsygdevW9OnTh/Xr1/P+++/j7e2Nubk5R48e5dKlS3qtI7NmzSI9PZ0ePXrg5OTE3bt32b9/P7dv38bT01Nbr0OHDmzevJnZs2fTs2dPzMzMaN++vU5Lx8M6dOhAeHg4S5YsoWnTpqhUKtzd3R+761BKSgq7du0C/mpVOnDgAGlpaQDa42JjY1PsczYAWrRoIS0Qz4DaNVWAfktEI/25CYQQlel2Ptwt0C+3L358qBBVRbk+Vz0oKAg3Nze2b9/OmjVrKCgowMHBgTZt2uhcYPr4+LB//362bdtGdnY2dnZ2tG7dmmnTpuk9FO5hHTt2JCQkhEWLFrF27VpsbGy0D1MbMWKEXv3PP/+cr776ir1797J79266dOnC0qVL+fLLL3VG/tva2rJo0SIWLlzIpk2bKCwspE2bNixYsIDw8PByTSLg/tSjixcvZuXKlaxbt46CggJcXFyYPn26zsPmTE1NWbBgAfPnzycyMpK8vDyaN29OcHAw8fHxekmEscfHGGZmZixatEj7sLmoqChsbW3x8PBg4sSJegOrSuLv70/btm3ZuHEjGzZsIC8vjzp16tC8eXOmTJmiU9fHx4dGjRoRGhrKxo0bKSgowNHRkW7dummfO9G5c2fmzp3Lt99+y9KlS7GwsKB79+4sX74cPz8/nfUNHDiQiIgIdu3axa1bt7C2tqZZs2bMmTMHDw8Pbb0BAwYQFxfHvn37+N///odGoyEoKKjEJGLixIlkZ2cTFhZGTk4OiqKwc+fOx04ikpKSWLp0qU5ZVFQUUVFR2v2XQWiiiKEH4AJ4t5Q7aUJUKbGJhv/DvlDCoGshqgiVYswcq0IIIaq8r48XMiVG/6f9qp8pLnaSSFQFBQUFrF69GgBfX1/Mzc0rOSJRKTb+DG/+V7/8zH+hQ/HjAEX5SVf9s9R16yr/enSlZ4hM0SGEEE+Z9GIeM1LcWAkhRCXJN9CVCaBGuXYUEeKJkCRCCCGeMtbF3NTOKPszDIUQT0KbYqa033iwYuMQogwkiRBCiKdMR0f9LktWZmBjYBIYIUQlal4Pg5P+rIuu4ECEMJ4kEUII8ZTxbKbCrZ5u2bTuJliZy3gIIaoURztwa6FffjkNZMhqBVEZ8RIPkk53QgjxlDE3VREzwpR1vytcvKXQ31nFgKZyz0iIKiloGLz+b92yv7W+/0RrIaowSSKEEOIpZGWuYnwnuQgRosrzdIP3PCFkDxRqoGk9WB5Q2VEJ8UiSRAghhBBCVKYF4+ATb0jLho7OYCIthxVFOo2VnSQRQgghhBCVzanO/ZcQ1YSkukIIIYQQQgijSBIhhBBCCCGEMIp0ZxJCCCGEEM8kRaZuLTNpiRBCCCGEEEIYRZIIIYQQQgghhFGkO5MQQgghhHgmSXemspOWCCGEEEIIIYRRJIkQQgghhBBCGEW6MwkhhBBCiGeUdGcqK0kihBBCCCHKKus2LPsB4pLBowOMdAeVXJiKp58kEUIIIYQQZVGgBvfpcPba/ferf4Ljl2D+uMqNS4gKIGMihBCimjl4Q+GN8EI8Nhey8qymssMR4tm169e/EogiS36A7NuVE48QFUhaIoQQoho5labw8uZCCv5/7vBTokLOPZjsKveEhKhw6dn6ZffUkHcP7KwrPh5hNJnitezkr44QQlQjK89qtAlEkaWnpTVCiCrFRC5MxdNPkgghhKhGYjMUvbKcu5UQiBACfjxjuFwGVotngHRnEkKIaiTLQMJQqJ9XCCEqwqkr+mVNngNHu4qPRZSJ/HyWnbRECCFENdLQRv8OZ9od2J8gXZqEqHC5+fplrRpUfBxCVAJJIoQQohqZ2s1wN4ndV+V+mhAV6noGZOTol6fcqvhYhKgEVTqJCA4Oxs3NrVR1k5OTcXNzY9myZU84qvuMic3f3x8vL68nHFHJjD0+cXFxTJgwgb59+1bocRVClMysmF9te4uKjUOIZ96UNaAu1C8/dx2uplV4OEJUNBkTIfSo1WqmTZuGWq0mICAAW1tbWrZsWdlhVbjo6Gji4uIYP358qT+zfv16bG1tyzVpVBSFPXv28PPPP3P+/Hlu3ryJvb09rVq1Yty4cbRv316n/rVr19izZw9Hjhzhxo0b3Lt3j0aNGuHh4cHIkSOxtLQst9hExVEUhX/s0rDhguEWB2fbCg5IiGdd9Lnilx2+AE3rVVwsosxkiteyq9ItEdOnT+fQoUOVHcYzJykpiaSkJN58802GDx/OwIEDn9kkYsWKFUZ9ZsOGDURERJRrHPfu3WPGjBlcu3aNV155halTp+Lt7U1cXBy+vr7s3r1bp/7OnTtZv349jRo14p133uG9997D2dmZJUuWMHbsWPLzDfThFVXej9eUYhMIgA6O8odQiApV0jSunVwqLAwhKstjt0QUFhZSUFBAzZo1yyMeHWZmZpiZSWNJRfvjjz8AsLMr39klFEUhLy8PKyurcl1vdebv7w/A8uXLi61jamrKsmXLcHV11Sn39vZm2LBhzJ8/n1dffRUTk/v3BDw8PPD19cXGxkZb18fHh8aNG7Nq1SrCw8MZPnz4E9gb8SR9f77kMQ//2K3h6D9U2FlIMiFEhahpbri8vj20d67QUISoDEZdoUdERDBz5kxCQkI4e/YsERERpKamMn36dLy8vFAUha1bt7Jjxw6uXr2KiYkJbdu2xc/PT2/8QGRkJJs3byYxMRG1Wo2DgwMdOnTgo48+onbt2sD9cQeRkZGcOHFC57O//fYbCxcuJC4uDmtrazw8PBgyZEix8S5dulRv+/7+/qSkpOjcNT5y5Ajh4eH8/vvvZGRkYG5uTrt27Rg7dqzeBVx5OHnyJN9++y3nzp1DrVbj4uLC0KFDGTx4sE692NhYtmzZwpkzZ0hLS8PU1JQWLVowevRo+vbtq7fe0h4fQ/z9/Tl58iQAM2fOZObMmcD9u9sNGjQgLy+PlStXsn//ftLT06lVqxY9evRgwoQJODk5addz4sQJAgICCAoKIi8vj7CwMG7cuMHbb7+t7R60b98+Nm3axMWLFyksLNTuU79+/fTiOnHiBOvWrSM2Npa8vDwcHR1xdXXlvffew97eHoCwsDCio6O5cuUKt27dws7Oju7duzNhwgQaNNCdLePgwYOEhoZy+fJl8vPzsbe3p23btgQGBuLs7KxzHB48d4KCgortqlRULyUlReczRceurMzMzAyefw4ODnTt2pWoqCgyMzN57rnnAGjbtq3B9bzyyiusWrWKy5cvlzkWUXmir5ecRMRlwppYhfddJYkQokK0cIKEm/rlf+ZBgRrM5SZo9SC/mWVVpjN8wYIFqNVqvL29sba2xtn5fsY9Y8YMfvjhBzw8PPDy8qKgoIA9e/YwadIk5s6dS+/evQHYtWsXwcHBdOnShYCAACwsLEhLS+PQoUNkZmZqkwhDYmNjmThxIlZWVowZMwZbW1v27dtHUFBQWXZFR0REBNnZ2QwcOJB69eqRnp5OeHg4EydOZOnSpXTp0uWxt1HkwIEDTJ06FQcHB0aNGoWVlRX79u1j1qxZJCUlMWnSJG3d6OhoEhIS6NevH05OTmRnZxMZGcnUqVOZNWsWr776qrbu4x6fsWPH0qlTJ1avXo23t7d2n2vXro1arSYwMJDTp0/j4eHBqFGjSExMZOvWrRw9epTQ0FDq1dPtA7phwways7MZPHgwDg4O2uWLFy9m1apVvPjiiwQEBGBiYkJUVBSffPIJ06ZNY9iwYdp1bN26ldmzZ1O3bl2GDBmCk5MTqamp/Pzzz6SlpWmTiO+++4727dszfPhw7OzsuHz5Mjt27OD48eNs3LhRW+/XX3/lww8/pHnz5to79hkZGRw7dozr16/j7OzM2LFjURSFU6dO8fnnn2tj6dixY7HH7vPPP2fevHnY29szduxYbXlJ5/PjSk9Px9zcHFvbR3eIT0u7P9DPwcHhicUjnpzU24+ucy1bQxXvpSrE06N3O8MPm7tz9/7Ur7Vt9JcJ8RQpUxKRn5/P+vXrdbowRUVFsWfPHj777DPeeOMNbfmIESPw9fXl66+/xt3dHZVKRXR0NNbW1ixZskSnu1JAQMAjtz1v3jw0Gg0rV67UJi9Dhw5l3LhxZdkVHdOnT9cbdDpkyBCGDRvG6tWryy2JKCwsZO7cuVhaWrJ27VocHR0BGDZsGOPHj2ft2rV4eXnRpEkTAMaNG0dgYKDOOkaMGMHIkSNZuXKlThLxuMfnhRdewMzMjNWrV9OxY0cGDhyoXbZ9+3ZOnz7N6NGjef/997XlPXr0YPLkySxatIh//etfOutLTU1ly5Yt1KlTR1t24cIFVq1aha+vr06yNGLECD766CNCQkLw9PTE2tqatLQ0/vOf/+Di4sKqVat0LpYnTJiARvPX3PgbN27U+/7c3d2ZOHEi4eHhvPXWWwDExMSg0WgICQnRieudd97ROQ579+7l1KlTOsegJAMHDmTJkiXUqVOn1J95HAcPHuTcuXMMHDgQC4uSp+YpLCxk5cqVmJqaMmDAgCcemyh/VmZw18BEMA9ysZM7akJUmOb1DZc3cZAEQjwTynTLysfHR28MxO7du7G2tqZPnz5kZWVpX7m5ufTq1Yvk5GQSExMBsLGxIT8/n4MHD6IopZ/bPDMzkzNnztC7d2/tBTKAubk5I0eOLMuu6HjwAvTOnTtkZWVhampK+/btOXeuhFkYjHT+/HlSU1MZNGiQNoGA+/sxZswYNBoNMTExBuPKz88nKyuL/Px8unXrxtWrV8nNzQWe/PGJiorCxMQEX19fnfKePXvSqlUrDhw4oHNRD+Dp6alzoQ6wZ88eVCoVnp6eOudKVlYW7u7u3L59m7NnzwLw448/UlBQgJ+fn8G77UXjAOCv46TRaMjNzSUrK4tWrVphY2NDbGystl7RWIGffvoJtVr9GEfEOEXn1IMvtVqNWq3WK79z506J60pMTCQoKIi6devywQcfPHLbX3/9NWfOnCEgIAAXF5dy2qPHl5mZyd27fz2COTc3l5ycv+Zdv3fvnnaMTpGUlJQS36empur8rjwt27Azf0QGATxnmlvl90O28Zf69XUvQqvrfjyr28hTivn78cCfweqwH9VlG0+KgqrUL6GrTC0RRXfIH5SQkMDt27d55ZVXiv1cZmYmzs7O+Pr6cvLkSaZMmYKdnR1du3blpZdeon///lhbWxf7+aSkJACDF0HNmjUzfkcecuPGDUJCQjhy5IjOyQ6gUpXfyZOcnAwYjrl58+bAX/sK94/bkiVLiImJITMzU+8zubm52NjYPPHjk5ycjKOjI7Vq1TIYd3x8PFlZWTpJg6Fz5erVqyiKgo+PT7HbKvpxuX79OgCtW7d+ZHzHjx9nxYoVnDt3TufHC9D5PocNG0ZMTAyzZ8/mm2++oVOnTrz44osMGDDgiXY9mjt3LpGRkQaXPTwO5PXXXyc4ONhg3aSkJCZMmADAwoULHxnzkiVL2Lx5M97e3noJYGV7OMF8cDA4QI0aNfS6Xz049sbQ+4cvzJ6Wbbza3JSlpylWbQt4o73u/82quB+yjb+kpqY+8W08LceqKm7DsrhJQm78AYk3oYljtdiP6rINUfWUKYkwNBOToijUrl2bWbNmFfu5ogvkJk2aEBYWxrFjxzh+/DgnT55k1qxZLFu2jBUrVtCoUaOyhKWnpAv/wkLdu3p37tzBz8+PvLw83nzzTVq0aIG1tTUqlYo1a9Zw/PjxconJWIqiEBgYyNWrVxkxYgRt27bFxsYGExMTIiIi2Lt3r97d/6qkuFm7VCoVCxcu1GlJeFDRuVJa586dIzAwkEaNGhEYGEiDBg2wsLBApVLx2Wef6Rwje3t7QkNDOXXqFEePHuXUqVPMmzePZcuWsWDBghLHPTyOMWPG8Nprr+mUzZ8/H4DJkyfrlD/YQvWg5ORkAgICyMvLY/HixbRo0aLEbS5btoyVK1fi5eXFZ599VubYReUzU6mA4ltuuztBTTO5UyZEhSnpgXIlTf8qxFOi3KYOaNy4MYmJiXTo0KFUU3jWqFGDnj170rNnT+B+/+7Jkyfz/fff8/HHHxv8TNEMNwkJCXrLrly5oldWdMf8zz//1FuWnJysMx7j2LFj3Lx5kxkzZjBo0CCdukuWLHnk/hijYcOGgOGYi8qK6ly8eJH4+Hj8/Pz0Hnq2Y8cOnffGHh9jNWzYkF9++YWcnBy9rkVXrlzB2tpaO3i5JI0bN+bw4cPUr1+fpk2blli3qCUjPj5ep4vWw/bu3UthYSELFy7UHjuAvLw8vVYluD9tqpubm3YWpYsXLzJq1ChWrlzJggULgLK1PpX0mWbNmum1CBUdxx49ejxy3cnJyYwfP57c3FwWL15MmzZtSqxflJS//vrr/POf/yzX1jRR8WJulNz186yBSWKEEE/QtWL+0zWqA42eq9hYhKgE5TaNh6enJxqNhkWLFhlc/mDft6ysLL3lRRdE2dnZxW6jaBrYmJgYrl27pi0vKChg/fr1evWLLkCPHTumU753715u3tT9z29qagqgN0bjyJEjOv3py0ObNm2oX78+ERERZGRkaMvVajXr1q1DpVJpZ7IqulP/cFyXLl0iOjpap8zY42OsPn36oNFoWLNmjU75oUOHiIuLw93dvdiWhQcVDToOCQnRaxEC3XPFw8MDc3NzVqxYoR378aCi41Lc97dq1Sq9lhpD55+Liws1a9bUSTiLxliUdE4+zNLS0mDS+rhSUlIICAggJyeHRYsW8fzzz5dYf8WKFaxYsYKBAwcyY8aMUn0vomqr84hH8dypuOE9QggAx2KepWRtabhcVEmKES+hq9xaIvr164eXlxebN2/mwoUL9OrVC3t7e9LT0zlz5gw3btwgPDwcgEmTJmFra0uXLl2oV68eOTk5REREoFKpHjmrzQcffMD48eMZN24cQ4cO1U5hauhi1MXFhe7du7Nt2zYURaFVq1bEx8cTHR1N48aNdQbVdu7cGQcHB+bPn09KSgp169YlPj6e3bt306JFCy5dulRehwpTU1OmTZvG1KlTeeutt/D29sbKyor9+/dz9uxZfH19tQlQ06ZNadasGaGhoeTn5+Ps7ExiYiLbtm2jRYsWnD9/vszHx1heXl5ERkaydu1akpOT6dq1K9evX2fLli04ODjozLRUknbt2uHv78/y5csZOXIk/fr1w9HRkYyMDM6fP8+hQ4c4cuQIAPXq1eOjjz5izpw5jBgxAk9PT5ycnEhPTycmJoYZM2bQunVr+vTpw/r163n//ffx9vbG3Nyco0ePcunSJb3WkVmzZpGenk6PHj1wcnLi7t277N+/n9u3b+Pp6amt16FDBzZv3szs2bPp2bMnZmZmtG/fXqel42EdOnQgPDycJUuW0LRpU1QqFe7u7nqzRhnj9u3bBAQEkJyczPDhw7l27ZpOkgj3WzKK+pdu3ryZZcuWUb9+fbp3787evXt16tapU4cXXnihzPGIyvFJDxMOJmkoLOYvWb4kEUJUrHEeMHMTFDz09zUpw3B9IZ4y5foklKCgINzc3Ni+fTtr1qyhoKAABwcH2rRpo3OB6ePjw/79+9m2bRvZ2dnY2dnRunVrpk2bpvdQuId17NiRkJAQFi1axNq1a7GxsdE+TG3EiBF69T///HO++uor9u7dy+7du+nSpQtLly7lyy+/1Bn5b2try6JFi1i4cCGbNm2isLCQNm3asGDBAsLDw8s1iYD7U48uXryYlStXsm7dOgoKCnBxcWH69Ok6D5szNTVlwYIFzJ8/n8jISPLy8mjevDnBwcHEx8frJRHGHh9jmJmZsWjRIu3D5qKiorC1tcXDw4OJEyfqDawqib+/P23btmXjxo1s2LCBvLw86tSpQ/PmzZkyZYpOXR8fHxo1akRoaCgbN26koKAAR0dHunXrpn3uROfOnZk7dy7ffvstS5cuxcLCgu7du7N8+XL8/Px01jdw4EAiIiLYtWsXt27dwtrammbNmjFnzhw8PDy09QYMGEBcXBz79u3jf//7HxqNhqCgoBKTiIkTJ5KdnU1YWBg5OTkoisLOnTsfK4nIzs7WDprftGmTwTpLly7VJhG///47cH/QpqHB2V27dpUkohp6takJx0apWHxKw8pY/Uyi5ZObE0AIYUj92tCgjn63puJaKIR4yqgUY+ZYFUIIUam2xGkYGqE/mcI3L5sQ2FW6rVUXBQUFrF69GgBfX1/Mzc0rOSJRJjWG6rdEvNwB/jezcuIRRrum+nep6zorMkHJg+QvjhBCVCOt6xgu71i3YuMQQnC/JeJhyfpTsQvxNJIkQgghqhELU8OzbF26JY3KQlQ4JwP9CNOyKjwMISpDuY6JEEII8WQ1tr3/3NSHU4a7MrBaiIpnqNXBUOuEqLLkSdRlJy0RQghRjeQXqgxONXhPI38IhahwqVn6ZV2Ne1iqENWVJBFCCFGN1K6poudDE4SZqsCzmSQRQlSotCwoMNAE2KZBhYciRGWQJEIIIaqZ7z1N6e+sQgW41IINr5vQorYkEUJUqDt3DT+BrKUkEeLZIGMihBCimmlSS8W+oaYUahRMTSR5EKJSNK0HL7WBQxf+KnOsBa91qbyYRBnIb2hZSUuEEEJUU5JACFHJtk2Dt/veTyhed7v/fAibsj9cVIjqRFoihBBCCCHKoq49rH63sqMQolJIEiGEEEIIIZ5J8oSdspPuTEIIIYQQQgijSBIhhBBCCCGEMIokEUIIIYQQQgijyJgIIYQQQgjxTFJkitcyk5YIIYQQQgghhFEkiRBCCCGEEEIYRbozCSGEEEKIZ5J0Zyo7SSKEEEIIIcribgHM3Q77TkPz+vDZEGjVoLKjEqJCSBIhhBBCCFEW/ksgNPr+vw+eh92/QnwI2FtXalhCVAQZEyGEEEIIYaycPPguRrfs5p+w7UjlxCPKREFV6pfQJUmEEEIIIYSxbmSARtEvz82r+FiEqASSRAghhBBCGOuTdYbLm9ev2DiEqCSSRAghhBBCGENR7g+mfpiJCbzYpuLjEaISyMBqIYQQQghjmRi4D2tmAjY1Kz4WUWYGOqSJUpKWCCGEeIrl3FPYGq8hKlGDosifSyHKhUoFPQ20ONxTQ8qtio9HiEogSYQQQjylfk1VcFleiM9ODS9v1tBzQyG370kiIUS5eN3NcPmqnyo2DiEqiSQRQgjxlArYX0hm/l/vDyeD23eFHEuRREKIx3brtuHyL7bAn3cqNhbxGFRGvMSDqnQSERwcjJtbMZn+Q5KTk3Fzc2PZsmVPOKr7jInN398fLy+vJxxRyYw9PnFxcUyYMIG+fftW6HEVQpSPW/kKv6bpl1/IhH5hhaTdlkRCiMcSGmW4XF0IIXsqNhYhKoEMrBZ61Go106ZNQ61WExAQgK2tLS1btqzssCpcdHQ0cXFxjB8/vtSfWb9+Pba2tuWeNMbGxrJnzx7Onz/PxYsXycvLIygoqNjtZGVlsXbtWg4cOEBqaio2NjY0bdqUESNG0KdPn3KNTVRNXx3XFDtgMOcebL+oENBZ7qwJUSbX0uGygSy9SFQsfDqk4uIRohJU6ZaI6dOnc+jQocoO45mTlJREUlISb775JsOHD2fgwIHPbBKxYsUKoz6zYcMGIiIiyj2WQ4cOERYWRm5u7iO/i//H3n1HR1WtDRz+TUlPSEgIEGroSO8oQkSDIgkoSOdSBC6hiNeCcv0UaXKvgFelSpMiKr2HJogQinSQJr0lpBBCSEhCypTz/REyZDIz6SGU91kra2X27H32Pmfaec8uJyUlhUGDBrFq1SpefPFFPv30U/r06cPdu3f55JNPWLNmTaG3Tzx5Vl/MvqfB1f4xNUSIZ5GjffrkalvcnB5fW0SByB2r86/APREGgwGdToejY+EvaabVatFqpbPkcbt79y4A7u7uhbpdRVFITk7G2dm5ULf7NAsKCgJg/vz52ebr1q0b/fv3x8nJid9//53Tp0/bzLtnzx5CQ0MZNWoUvXv3NqW/8847BAQEsG7dOrp161Y4OyCeWBGJtp/TqOCdGvKDKES+lfGA6mXhcqT154e3f6zNEaI45OkMPTg4mAkTJjB79mzOnDlDcHAwUVFRjBkzhk6dOqEoCmvXrmXDhg1cv34dtVpNnTp1GDJkiMX8gc2bN7Nq1SpCQ0PR6/V4eXlRv359Ro0aRcmSJYH0eQebN2/m2LFjZmX/+usvZsyYwcWLF3FxccHf35+uXS27DTPaO3fuXIv6g4KCiIyMNLtqfOjQITZu3Mjff/9NTEwMdnZ21K1bl0GDBtG0adO8HKpcOXHiBD/++CPnzp1Dr9fj6+tL9+7d6dy5s1m+s2fPsmbNGk6fPs3t27fRaDRUr16dfv368eqrr1psN7fHx5qgoCBOnDgBwIQJE5gwYQIAmzZtoly5ciQnJ7Nw4UJ27txJdHQ0JUqUoGXLlgwfPhwfHx/Tdo4dO8awYcMYN24cycnJrF69mlu3bvHuu++ahgft2LGDlStXcvnyZQwGg2mf2rVrZ9GuY8eO8fPPP3P27FmSk5Px9vamadOm/Otf/8LDwwOA1atXs2fPHq5du8a9e/dwd3enRYsWDB8+nHLlypltb//+/SxdupSrV6+SkpKCh4cHderUYeTIkVSuXNnsOGR+72Q3hCgjX2RkpFmZjGNXEF5eXrnOm5SUPtnP29vbLN3V1RUnJ6ciCfjFk6ehNxy0cX7TpQY420kQIUSBfNEV3p1l/bkHqY+3LUIUg3xd5p8+fTp6vZ4uXbrg4uJC5cqVARg7diy//fYb/v7+dOrUCZ1Ox7Zt23jvvfeYOnUqr7zyCgBbtmxh/PjxNG7cmGHDhuHg4MDt27c5cOAAsbGxpiDCmrNnzzJixAicnZ3p378/bm5u7Nixg3HjxuVnV8wEBwcTHx9PQEAAZcqUITo6mo0bNzJixAjmzp1L48aNC1xHhr179/Lpp5/i5eVF3759cXZ2ZseOHUyaNInw8HDee+89U949e/Zw48YN2rVrh4+PD/Hx8WzevJlPP/2USZMm8eabb5ryFvT4DBo0iIYNG7J48WK6dOli2ueSJUui1+sZOXIkp06dwt/fn759+xIaGsratWs5fPgwS5cupUyZMmbbW758OfHx8XTu3BkvLy/T8z/88AOLFi2iVatWDBs2DLVaze7du/nss88YPXo0PXr0MG1j7dq1TJ48mdKlS9O1a1d8fHyIiopi37593L592xRE/PLLL9SrV4+ePXvi7u7O1atX2bBhA0ePHmXFihWmfMePH+fjjz+mWrVqDBw4EFdXV2JiYjhy5AhhYWFUrlyZQYMGoSgKJ0+eZOLEiaa2NGjQwOaxmzhxIt999x0eHh4MGjTIlJ7d+7koNG/eHI1Gw6xZs3B0dKRGjRokJCTw66+/kpCQYNY28exqXtZ6EOGkhdn+msffICGeNa7ZDFmy1UMhxLNEyYNNmzYpTZs2Vbp06aIkJyebPffHH38oTZs2VdauXWuWrtPplL59+yqdOnVSjEajoiiK8sknnyh+fn6KTqfLtr5x48YpTZs2NUsbOHCg0rJlS+XGjRumtLS0NKVfv35K06ZNlblz51q09+jRoxbbHjJkiNKxY0eztAcPHljki4mJUV577TXl/fffz7FttmStS6/XK4GBgcorr7yiREdHm+3HwIEDlebNmys3b97Mtl3JyclKly5dlG7dupml5+X42HL06FGladOmyqZNm8zS161bpzRt2lSZNm2aWfq+ffuUpk2bKmPGjLHYxquvvqrcvXvXLP/58+eVpk2bKrNmzbKo++OPP1b8/PyUxMRERVEUJSoqSnnxxReVbt26Kffv37fIbzAYTP9bO06HDx9WmjZtqixZssSU9u233ypNmza1aFdWeXmNM3Ts2FEZMmRIrvMPGTIkT/kVRVF27txp9fXJbNeuXUpAQIDStGlT098bb7yhnDx5Mk91FbW7d+8qKSkppscJCQlmr3NqaqoSExNjViYiIiLbx5GRkabvmue1Dr3BqHjO1Cl8Y/lXfYGuUOp4HPvxLNeRlpambNy4UZk3b56Slpb21O7H81yHru0XikIX638zNj81+/G01FFULvBtrv+EuXxNrO7WrZvFkIitW7fi4uJC27ZtiYuLM/0lJibSpk0bIiIiCA0NBdKHVaSkpLB///483UE1NjaW06dP88orr5h6PwDs7Ozo06dPfnbFjJPTo6sKDx48IC4uDo1GQ7169Th37lyBt5/h/PnzREVF8dZbb5kNObGzs6N///4YjUZCQkKstislJYW4uDhSUlJo3rw5169fJzExffBzUR+f3bt3o1arGThwoFl669atqVmzJnv37sVoNJo9FxgYiKenp1natm3bUKlUBAYGmr1X4uLi8PPzIykpiTNnzgDw+++/o9PpGDJkCG5ubhZtUqsfvYUzjpPRaCQxMZG4uDhq1qyJq6srZ8+eNeVzdXUF4I8//kCv1xfgiORNxnsq859er0ev11ukP3hQsDXG3dzcqF69OkFBQfzvf//j3//+N46OjowaNYpLly4V0h4VnKenJw4ODqbHrq6uZq+zvb29xVCuzMPmrD0uW7YsqkwTHp/HOo5EYXZ/iMySdE/PfjzrdURFRT0T+/G81qG9Go1NrV94avbjaalDPHnyNZypUqVKFmk3btwgKSmJN954w2a52NhYKleuzMCBAzlx4gSffPIJ7u7uNGnShJdffpnXX38dFxcXm+XDw8MB8PX1tXiuatWqed+RLG7dusXs2bM5dOgQCQkJZs+psluFIY8iIiIA622uVq0a8GhfIf24zZkzh5CQEGJjYy3KJCYm4urqWuTHJyIiAm9vb0qUKGG13ZcuXSIuLs4saLD2Xrl+/TqKomQ7uTdjcndYWBgAtWrVyrF9R48eZcGCBZw7d47UVPPxqJlfzx49ehASEsLkyZOZOXMmDRs2pFWrVrRv375Ihx5NnTqVzZs3W30u6zyQjh07Mn78+HzVc/DgQT744AOmTZtGq1atTOmvvvoq3bp1Y8qUKSxcuDBf2xZPB89spr3cToL7qQolHGROhBAFUq4khMVYf668p/V0IZ4h+QoirE3MVBSFkiVLMmnSJJvlMk6QK1WqxOrVqzly5AhHjx7lxIkTTJo0iXnz5rFgwQIqVKiQn2ZZyO7E32AwmD1+8OABQ4YMITk5md69e1O9enVcXFxQqVQsWbKEo0ePFkqb8kpRFEaOHMn169fp1asXderUwdXVFbVaTXBwMNu3b7e4+v8ksTWJV6VSMWPGDLOehMwy3iu5de7cOUaOHEmFChUYOXIk5cqVw8HBAZVKxeeff252jDw8PFi6dCknT57k8OHDnDx5ku+++4558+Yxffr0bOc9FET//v3p0KGDWdq0adMA+PDDD83Ss06KzouffvoJJycnswACoFSpUjRu3Jg///wTnU6HnZ1dvusQT7ZanipqloRL9yyfMwJX4hSalJEgQogC6fcKHL5s/bkbd6C0x2Ntjsgfue1m/hXa+qkVK1YkNDSU+vXr52oJT3t7e1q3bk3r1q2B9NVyPvzwQ3799Vf+/e9/Wy2TscLNjRs3LJ67du2aRVrGFfP79+9bPBcREWG2fOyRI0e4c+cOY8eO5a233jLLO2fOnBz3Jy/Kly8PWG9zRlpGnsuXL3Pp0iWGDBlicdOzDRs2mD3O6/HJq/Lly3Pw4EESEhIshhZdu3YNFxcX0+Tl7FSsWJE///yTsmXLUqVKlWzzZvRkXLp0yWyIVlbbt2/HYDAwY8YM07EDSE5OtuhVAtBoNDRr1sy0itLly5fp27cvCxcuZPr06UD+ep+yK1O1alWLHqGM49iyZcs812VLdHQ0RqMRRVEs2mMwGDAYDE904CkKx4zX1Ly51vrrfPM+NClj9SkhRG5cioDPfrH9fHT842uLEMWk0G42FxgYiNFoZNYs68udZQxPgfS76WZVu3ZtAOLjbX/wMpaBDQkJ4ebNm6Z0nU7HsmXLLPJnnIAeOXLELH379u3cuXPHLE2jSV+tJOscjUOHDpmNpy8MtWvXpmzZsgQHBxMT86grVK/X8/PPP6NSqUwrWWVcqc/aritXrrBnzx6ztLwen7xq27YtRqORJUuWmKUfOHCAixcv4ufnZ7NnIbOAgAAAZs+ebdEjBObvFX9/f+zs7FiwYIFp7kdmGcfF1uu3aNEiixNma+8/X19fHB0dzQLOjDkW2b0ns3JycrIatD5OVatWJTk5md9//90sPTw8nBMnTlC9enWzsari2dS+ipr/a2k9qC3rIr0QQhTI1PWQaGPiEYDP412VT4jiUGg9Ee3ataNTp06sWrWKCxcu0KZNGzw8PIiOjub06dPcunWLjRs3AvDee+/h5uZG48aNKVOmDAkJCQQHB6NSqUwnmLZ89NFHDB06lMGDB9O9e3fTEqbWTkZ9fX1p0aIF69atQ1EUatasyaVLl9izZw8VK1Y0m1TbqFEjvLy8mDZtGpGRkZQuXZpLly6xdetWqlevzpUrVwrrUKHRaBg9ejSffvopAwYMoEuXLjg7O7Nz507OnDnDwIEDTQFQlSpVqFq1KkuXLiUlJYXKlSsTGhrKunXrqF69OufPn8/38cmrTp06sXnzZn766SciIiJo0qQJYWFhrFmzBi8vL7NlabNTt25dgoKCmD9/Pn369KFdu3Z4e3sTExPD+fPnOXDgAIcOHQKgTJkyjBo1iilTptCrVy8CAwPx8fEhOjqakJAQxo4dS61atWjbti3Lli3jgw8+oEuXLtjZ2XH48GGuXLli0TsyadIkoqOjadmyJT4+PqSmprJz506SkpIIDAw05atfvz6rVq1i8uTJtG7dGq1WS7169cx6OrKqX78+GzduZM6cOVSpUgWVSoWfn5/Z5Pj8iIyMZMuWLcCjXqW9e/dy+/ZtANNxARg4cCAHDx7kyy+/5Pjx49SsWZPo6GjWrFlDWlparl8n8fT7bxsNMQ/0LDjzKO0NXxUvlZMgQogCuXnH9nMlXaBp3obkCvE0KtTbQY8bN45mzZqxfv16lixZgk6nw8vLi9q1a5uduHTr1o2dO3eybt064uPjcXd3p1atWowePdripnBZNWjQgNmzZzNr1ix++uknXF1dTTdT69Wrl0X+iRMn8s0337B9+3a2bt1K48aNmTt3Ll9//TWRkY/WcXZzc2PWrFnMmDGDlStXYjAYqF27NtOnT2fjxo2FGkQA+Pn58cMPP7Bw4UJ+/vlndDodvr6+jBkzxuxmcxqNhunTpzNt2jQ2b95McnIy1apVY/z48Vy6dMkiiMjr8ckLrVbLrFmzTDeb2717N25ubvj7+zNixAjKli2b620FBQVRp04dVqxYwfLly0lOTsbT05Nq1arxySefmOXt1q0bFSpUYOnSpaxYsQKdToe3tzfNmzc33XeiUaNGTJ06lR9//JG5c+fi4OBAixYtmD9/PkOGDDHbXkBAAMHBwWzZsoV79+7h4uJC1apVmTJlCv7+/qZ87du35+LFi+zYsYNdu3ZhNBoZN25ctkHEiBEjiI+PZ/Xq1SQkJKAoCps2bSpwEBEeHs7cuXPN0nbv3s3u3btN+58RRNStW5eFCxeyaNEi/vjjD9avX4+zszP16tVjwIABOX7GxLNl3hsa2ldR2B+u0KCUin/UkQBCiAILbAq/n7b+XPMaj7ctokAU5Dsxv1RKXtZYFUIIIUSB6XQ6Fi9eDKT3HspCB08ZgwHe+hq2nrB87rt34aO3LNPFE+m86vtc531B+agIW/L0KbQ5EUIIIYQQzwWNBl6ysfR4l8JbKEOIJ1mhDmcSQgghhHgu2Ns6hZLhMU8TGc6Uf9ITIYQQQgiRV7aCCFlCWzwnJIgQQgghhMir8l7W01N0j7cdQhQTCSKEEEIIIfLq9YbglmXlvdrl4YUKxdMekS9KHv6EOQkihBBCCCHyysMFNn8OjauAVgOv1YeN/wcqGWMvng8ysVoIIYQQIj/86sKJb4u7FUIUC+mJEEIIIYQQQuSJ9EQIIYQQQojnkizxmn/SEyGEEEIIIYTIEwkihBBCCCGEEHkiw5mEEEIIIcRzSYYz5Z/0RAghhBBCCCHyRIIIIYQQQgghRJ5IECGEEEIIIYTIE5kTIYQQQgghnktKcTfgKSY9EUIIIYQQQog8kSBCCCGEEEIIkScynEkIIYQQQjyXZInX/JOeCCGEeE7dT1F4kPbkjwhOTDKg0z357RTimRSXBClpxd0K8QSSngghhHjOJKUpDFqTwpozeuw0MKS5HdM6OaBRP1lX5OLiDMycH8PZv1NwclTxVoA777zlXtzNEuL5cCce+k6HHX+BiyN8+jaM61ncrRJPEOmJEEKI58z431NZdVqPUYFUPcw6qOPHo7ribpaFhT/HcvbvFACSUxRWrovj1NnkYm6VEM+JDxalBxAASSkwfiVsPlasTSoKCqpc/wlzEkQIIcRzZvtFQ67Sipu1gOHUGQkihHgstp/MXZp4bkkQIYQQz5lqXpZf/dW8nryrbGW8LUfclvG2K4aWCPEcqlbGSlrZx98O8cSSIEIIIWy4naQQnZT7Cb1GReFanEJyPicB332gEJGQ97I37hk4HWXI9STpcf72uDs+elyhhIqPWtvnqmzUfSN3Eo15bmOqTiHijh6jMff716dHSbSZ4ojKFe14pbVLnuvOC6NRITYqFV1a3vdRPDl0N+IxJuZtMrCSZkB/7R6K/vG89orBiPFaDEqq/rHUh8EI16IhNZdDF7/uCw6ZgvZ6lWDQa0XTNvFUkonVQgiRRVKaQt+tRjZeST/h7V5LxU8d1DhqbV+tPxyp0Huzgevx4OEA/2urZnD93F2nMRgVhm4zsOS0EYMC7XxVrOyixdMp+96B6/eMBPySyoWY9Mf2Gvi2vR0jW2b/1d64vIY9Qc50+TmZG/fSA6WZf+qY3MHBZpmEFIV//JxI8DkdahX0amLP4t4u2GdzTDJs/fMBs9bcJ+GBgo+Xhi8HeVC/Ws5BS8XydpT3seNmmA6NGurVccTRseiufd04l8jqb28SF52Gk5uGwCEVaPyaZ5HVJwpf2oW7RHXfRNrZGFTOdnh++RIlP2uZY7nkteeJG74F450HqMu5UXLxWzi+Ua3I2mnYe4XUfr+ghN4DT2ccZnRF+49mRVYfIeeh31wIuwterjCjP/RplX2Zyt5QpTRcCAd7LbzzIrgXbRBfHGTdt/yTnogn0LFjx2jWrBnBwcHF1oaLFy8yfPhwXn31VZo1a8a8efOKrS1CPG5fHzGy4YqCQvoPzKqLCv87avunxqgo9ApODyAA4lIhaIeRG/G5+3n68S8jC0+lBxAAv99Q+HxPznMUhgbrTAEEQJoB3t+q4+/onK+kjt2Zyo17iqnclJA0gv+2fUX0qx3JBJ9Lv4JpVGDZ8TSm703JsZ7bsQam/hJPwoP0uiLvGhj/4z0MueiRWPxLLDfD0us0GGHLbwkcO/kgx3L5YTAorJx6g7jo9KvXyQkG1k2/SXyMLG35NLk9cBtpZ9M/FMoDHXf/by/JB8OzLWOMTeZev/UY76S/t4wRCcT2XoeSXDSLDSg6A6m9fkoPIABiH5A6cBnGyPgiqQ+dHnrNSg8gAO4mwrvzICou+3KDf0gPIADS9DBxFez7u2jaKJ5KEkQIC3q9ntGjRxMaGsqwYcOYOHEir732/HVh7tmzJ8/B07Jly4ok+Dt79izffPMNgwYNok2bNtkGmePHj6dZs2Y2/7p06VLo7XvW/BFqeYJrLS3D9Xi4cd88zajAnrDcBRG7blip72bOgcCua9bz/HE9F2WvWAYpf1y1HUTsumR5QvXHpZyHYfx1ORVDluZE3zNyKzrnIOnsecsgJWO1psIWcyuF+3fN99FoSO+dEE8HY7KO1EORFunJf4RmWy7tYBhKsvl7WYlNJu2vqEJtn2nb56NQIrN8YegMGPddK5L6+DscorIEKDoD7Ltou4zeYD1g2HW6cNsmnmoynOkJ1KRJEw4cOIBWWzwvT3h4OOHh4Xz44Yf07Pn8rgm9Z88eNm/ezNChQ3NdZvny5fj4+NCpU6dCbcuBAwdYvXo1vr6+1KhRg9OnbX+Rv/POO7Ro0cIi/ejRowQHB9OmTZtCbduzqLanioMR5if2L3jZzu/jAiXs4X6Wi9Yv5HKy8gulrKTlomztUvD3HStlvXMu+0JpNcfDjRZpNvOX0XDiliFLWs7XoXzLWk6EdnJQ4e2Rc9lyPnZcu25+UMv7FM3Eag9ve+wd1aSlmB8T74qONkqIJ43KUYu2cgn0N81P0O2z+/AC2lqlQIX5uBZ7DdpqRTOUTVXZE5zt4YH5e1v9gpWJzIWhcilwsofkLF9QtcvZLqPVpE+ivpolkHqhQuG3r5jJ0q35Jz0RT5CkpCQA1Go1Dg4OaDSaYmnH3bvpXZ7u7oV7UydFUXjwoGiGIjytgoKCCAoKyjFft27dCAkJYdWqVfTp0yfbvA0aNCAgIMDi786d9LPNt99+u1Da/iwb86KaMs6PHldyg89a2P66dLZT8c0rajLfq61/HRUtfXL34/SvZhqzIMXDAca2zvnz//2b9thladY7L6h5rUrOX+3/C3DAOdP5+EuV1PRrYvsEfdybTpQt8Wh/fD1VfPKaU4711KpsR+DLj/KpgOFd3HDOxdyGfj1LYp9p6kSNavb4vVw0Y7IdnDW8MaAcmc8nmrX3olxVZ9uFxBNFpVJRatpr6ZODHnJ8pQIub1XPtpy2uieuH79ollZinB+a0rl7rymJqej/isj18CeVuxP2/w00b8Owl1HXz+akPnN9BiPK6VsoMQm5yo+HC/ynu3nacH+oXzH7ctMGmU+sbtcgfV6EEA9JEFFIgoODadasGYcPH2bevHl07NiRl156iV69evHbb79Z5O/UqRNBQUFcuHCBkSNH8sorr9C7d2/A9pwIRVFYv349AwYMoE2bNrRp04aePXsyd+5cs3xpaWksWrSIHj160KpVK9q2bctHH33EhQsXctyPzCe1EyZMMA2BiYiIACA5OZlZs2bx9ttv89JLL9G+fXvGjh1LZKR5F3LmfVi1ahXdu3enVatW/Pzzz6Y8O3bsYPDgwfj5+fHyyy8zYMAAfv/9d6vtOnbsGB988AH+/v60atWKt99+m4kTJxIXF2fKs3r1at577z06dOjAiy++SPv27fnyyy9Nbc9s//79BAUF4e/vz8svv0xgYCCffvopN2/eNB2HzZs3A5gNBcpuqFKzZs2IjIzkxIkTZmWs1Z9XXl5eODnlfMJmS2RkJEeOHKF+/fpUq1Z0kwWfBXEpCoN/M3L7YbzbuDQc76emYonsA4KENNA+/Eb1dCTXk6oBvJxV/PVPOwY1UGOnTp9T0XGVnpAchjQ90GEWCABciVUIy8VcjD3XDOgedix4u8C0Tg442dnexxreGsa/6YTTw/rik+FoaO5WlRn9D3da1XcwXezdsO8BUXdzLqs3KGQ+qw+P1BEeWXQ3xTMaFNNqUE5uGhq+UrLI6hJFw7VzDSqeGoBd7fRehJSQW0R2WocxKYe5LXYaeLhIgLq8G46BNXJVX+pPx7lX7mvuN55JXPmvSduYuzkDqhre4PHwO93JDnWT3F3hV07cRF/1c/QNJ6Iv/28MYzfmXCg0Bn7aZ562/xLcjLGeP0NgU+jrB6qHn8Gbd+Da7Vy1UzwfZDhTIZs5cybJycl069YNSA8uvvjiC9LS0iyGuNy+fZvhw4fTrl07XnvttRyv0o8dO5Zt27ZRr149Bg0ahJubGzdu3GDXrl0MGzYMSJ/P8P7773P69GkCAgLo0aMHiYmJrF+/nsGDB7NgwQLq1Kljs45BgwbRsGFDFi9eTJcuXWjcuDEAJUuWRK/XM3LkSE6dOoW/vz99+/YlNDSUtWvXcvjwYZYuXUqZMubdscuXLyc+Pp7OnTvj5eVlev6HH35g0aJFtGrVimHDhqFWq9m9ezefffYZo0ePpkePHqZtrF27lsmTJ1O6dGm6du2Kj48PUVFR7Nu3j9u3b+Ph4QHAL7/8Qr169ejZsyfu7u5cvXqVDRs2cPToUVasWGHKd/z4cT7++GOqVavGwIEDcXV1JSYmhiNHjhAWFkblypUZNGgQiqJw8uRJJk6caGpLgwYNbB67iRMn8t133+Hh4cGgQYNM6SVLFv+JyKZNmzAajdILkQtfHTSazWU4GQ0//AVjs1nI5PxdhU9CHp3wx6ZA/20Grg3RoFblrjfiehwsOv1oG1FJ0C9Yz/URdmjUlttISlMYsD6N+6nm6advK3y0XcfaXrZXWjoUamDCrkcnVXeSYPCaVM58ZPsnITrByL/WPiDtYeBxL1lhwK9JhE+ww8Uh+33ceTSZP888aui1cD3TV93n6+G2h4vo9Qoz5sSQlmnZ2gcPFGbMjWHa5PLZ1pcfMeEpbFsYjvKwuuQEA2u+v8knP9ZFrZHhDk+ThIVn0F2INT1+sP069745itf4l63mT91zg8TJB0yPjeEJ3BscTOljQ7Ktx3g7gaSg9WR8KJR7ySQNWI1d+P+hcrG9+piSoiO1/68Q9/DGick60kasRhNQB3V5j2zr1L+7BEIf7luaHuNXW1C9WQ91q2wuDn30K5zKMi/kTBh89Aus+9B2uc3HYOGuR48vR8LwefDHRNtlnkry+c4vCSIKWVxcHCtWrMDV1RVIH4bSq1cvvv/+e15//XUcHR+Nrw0PD2fMmDF07tw5x+3u3LmTbdu20aFDByZMmIBa/egqp9H46MRj5cqVHD9+nJkzZ/LSSy+Z0rt160bPnj2ZNm0a8+fPt1nPiy++iFarZfHixaZhMRnWr1/PqVOn6NevHx988IEpvWXLlnz44YfMmjWLr776ymx7UVFRrFmzBk/PRycLFy5cYNGiRQwcOJD33nvPlN6rVy9GjRrF7NmzCQwMxMXFhdu3b/O///0PX19fFi1ahJubmyn/8OHDzfZ9xYoVFlfr/fz8GDFiBBs3bmTAgAEAhISEYDQamT17tlm7/vnPf5odh+3bt3Py5EmzY5CdgIAA5syZg6enZ67LPA5Go5Hg4GCcnZ154403irs5T7x94ZZX8fdbScvsgJXnb96H0Pvgm8tRgQduWfY6hN2Hm/FQ1Uocevq20SKAyLAvNPsejP03LCc1n71tJC5ZwcPGsrJHQvWmACJDfIrCmUgDL/pm/1Ny5opl78GZK9lfGb4drSfByv0oIqP0JCUZcXEp3I70G+eSTAFEhvg7OuLupOFZ1nZAJp48yftvWaSl7LNMy5C633Lite54JEqKHpWj7fe2/ugtsn4olPgUDGei0L5YyWY544XbcDcpy8aMGA/eQN2tkc1yyv1kOGO50pSy/zJkF0TYmkCd3cRqgP3nrZSxkiaeWzKcqZB169bNFEAAuLq60rVrV+7fv8/x48fN8rq7u+d6Au62bdsA+PDDD80CCMDs8bZt2/D19eWFF14gLi7O9KfX62nZsiWnTp0iJSV/q5vs3r0btVrNwIEDzdJbt25NzZo12bt3r9lJPUBgYKDZiXpGG1UqFYGBgWZtjIuLw8/Pj6SkJM6cOQPA77//jk6nY8iQIWYBhLV9zwggjEYjiYmJxMXFUbNmTVxdXTl79qwpX8br88cff6DXP6ab/AAPHjyw2F+9Xo9er7dIL8y5I4cPHyYqKorXX38dZ+cna3x3bGwsqamPzoQTExNJSHg0zjctLc00RydD1qFzWR9HRUWhZDobzGsdDaxMSq7qZP6Dn7WOSvaWY5O9HBXKueZ+P3xU5s8DeDlBeTfr+1HOMRkHjfXgpsHDCc+2jlX9spZf/ZU9VOgf3LN5rOqV1ZC1Q8TRDtyM5jO7rb0eVcpZzu+oWt7Oog54dKxKeWlwsNLDUdJdTVyc+WTPgr7mAFq3LCd1pA9pKuFlV2h1ZD02Zcua3/23KOoo7M/H01CHQ31vstLW9bRZh119ywnNmhqe3I6LyXY/Un3dLC5iK45a1DUfrZRgbT/UVUuBlZ4KdX2f7I+VmyNKZctJ4vfKm3+vZ60ztbaNCdsNKlrWQabXo35lK2UqW63jcbzm4skjPRGFzNfX1yKtSpUqQHrPQ2bly5fP9eTpsLAwSpUqhZdX9qtMXL9+ndTUVNq1a2czT1xcnMWPV25ERETg7e1NiRIlLJ6rVq0aly5dIi4uzixoqFTJ8mrM9evXURTFNOTLmowvl7CwMABq1aqVY/uOHj3KggULOHfunNmXF2D25dWjRw9CQkKYPHkyM2fOpGHDhrRq1Yr27dsX6dCjqVOnmuZZZJX19erYsSPjx48vlHo3bkwfM5ubHq/HLWuAmTkAB7C3t7d4z/v4+GT7OOt7O691jH1Jza6bBtOSrS94woRXzQPYrHW8UdudoWEG5p1K/xG1U8NMfw32D4fB5GY/OjQozfAIPXNOGE3bmP66BoeH47Sz7kdlb1emvK7no+06s0VlSjnDN2/YWa0j4/EbNTT0bqhl+an0INpBA7PedqSUl/mxyXysfL00fPmGIxN3pKAooFbBlI7O1K1q3i5rr0dHT4Xdx1M59bD3wd1FxXtdS1jUkfVYDexbknmLYk09BCoVDBnoRfksJ00Ffc0BGr1UidBAFYe3pI8T12hVdAyqgPbhzPXCqCPrsYmKMg+GiqKOwv58PA11lPzyJR7suon+Wvqypna1PPH6/CW0Wd7fGdt07FQTx64vkLI2/Sq7ytkOj1kdcMxhP9zqVeDBl6+R8tVuMj4ULlPeRO356P1paz/sv+1M2ntryFj/2O7f/qhrlSHrAL/Mx0qlUqGd3RtD93nwcBK3qmczvPqYr7iXtU6H6QPgjckQk2m5Yk8X+Ka3RR2Q6fXo+TL8uhe2n0x/ooQTTB9stY7H8ZqLJ48EEcUo89CmwlS9enU++ugjm88/zjH6tvZRpVIxY8YMi16VDHmd/Hvu3DlGjhxJhQoVGDlyJOXKlcPBwQGVSsXnn39u1kPi4eHB0qVLOXnyJIcPH+bkyZN89913zJs3j+nTp2c776Eg+vfvT4cOHczSpk2bBqT3MGXm7W15JS0/4uLiCAkJoVq1atSvX79Qtvmsq1RCxcXBGn6/qaBVw2uVVGitzEnIau7rGkY0UrgYq9CmgoqyLnkfZ/vDm1qGNzFy4S60qaiirGv22/jgJS1v11ZzJNyI3ggu9iraVVXjYp99OZVKxcdt7Nl52UDMA4U0A2y9qCewtgZVNnM4xndwpk9TB05FGGhRSUNlz9xdBHGwVzFzlCenrqRxP0mh+Qv2ODnk3BH+ahs3NGoV8xffRadPD1xuhupo2ihX1ebZW8Mr0qJDKe7cSqFyHVdKeBbNcrKiaNlVLEHlC4N58PtNUKtw9q+MSmv7/aZSq9CUd3u0zKuLHeoSuRvC5jzhdRz+0QjDqSg0LSqgqZy731e7oS+jCaiD8dAN1PXLobbVW5CFOrABqrApKLsvoqpSClVTK70FWTX2hRvTYOfZ9BvOVfCEN+qDSw7nIHZaCGiSfm8InSE94Am37DF92skSr/knQUQhu3HjhkXa9evXgfSeh/yqVKkSISEh3L17N9veiIoVK3Lv3j2aN29u8wQ9v8qXL8/BgwdJSEiwGFp07do1XFxcTJOXs1OxYkX+/PNPypYta+qlsSWjJ+PSpUtUrmz7y3L79u0YDAZmzJhhdpyTk5PNeiEyaDQa0+pJAJcvX6Zv374sXLiQ6dOnA2R7MmVLdmWqVq1K1apVzdIyjmPLli3zXFdubNmyBZ1OJxOq88heoyKgat5f/wbeKqvDofKifmk19UvnPr9vSTW+JfP+WQ9al0LMw7tIK8CcQzreekHLm7Wy/1moWVpDzdJ5X35apVLRqEbe5hbo9Qq/rLyH7uGoQ4MRVq6Lo0UzZyqUK5oT/LK+TpT1zf9KaOLJoLLT4NKhas4ZgdQ/rpM044jpsXLnAfeGbKbMmWG5Kq+p6Y2mZt4v/KgrlkRdMe8X9VRerqi6Nc1bIRdH6Nwsb2VuxcBHi029JSSlQtDc9FWbXOUzImRORKFbs2YNiYmPugwTExNZu3Ytbm5uNG2axw99JhlXsGfMmGEx7yDzOMTAwEDu3r3Lr7/+anU7Wccg5kXbtm0xGo0sWbLELP3AgQNcvHgRPz+/XAUuGZOOZ8+ejcFgOcEzcxv9/f2xs7NjwYIFZsc1Q8a+ZwwLU7LMjFy0aJHF8cq8LGwGX19fHB0duX//0U2KMuZYxMfHW+S3xcnJyWwbxW3jxo3Y2dk9URO9RfFL0yucjLCctHw4LOe7SD9Od2L0xN+3bOeVqzZmlAuRD2mHLCdd689G57ws7LPu2FUsbjd//wGctz1JXTxfpCeikHl4eDBgwADThOng4GCioqIYM2ZMgYYvtWvXjtdff50tW7YQFhaGn58fbm5uhIaGcvDgQVatWgVA7969OXz4MNOnT+fo0aM0b94cFxcXoqKiOHr0KPb29sybNy9fbejUqRObN2/mp59+IiIigiZNmhAWFsaaNWvw8vIyW2kpO3Xr1iUoKIj58+fTp08f2rVrh7e3NzExMZw/f54DBw5w6NAhAMqUKcOoUaOYMmUKvXr1IjAwEB8fH6KjowkJCWHs2LHUqlWLtm3bsmzZMj744AO6dOmCnZ0dhw8f5sqVKxa9I5MmTSI6OpqWLVvi4+NDamoqO3fuJCkpicDARzcAql+/PqtWrWLy5Mm0bt0arVZLvXr1su1Rql+/Phs3bmTOnDlUqVIFlUqFn59fge7xAOkTzLZs2QKk9/oA7N27l9u309fszjgumZ09e5Zr167x+uuv56qHSDw/7LUq6pdVcybK/AShiZUJ0MWplJcWNzc1CQnm7azqa3v5TCHyyq6p5dh7be1SqLNZpvW50KgKqNWQ+UKcqyPUKvwllotTznfVEbZIEFHI3n//ff766y9Wr15NbGwslSpVYtKkSbz55psF3vZ//vMfGjduzMaNG1mwYAEajYZy5cqZTcrVarVMmzaNNWvWsHXrVlPA4O3tTd26denYsWO+69dqtcyaNYuFCxeyc+dOdu/ejZubG/7+/owYMSJPk7WDgoKoU6cOK1asYPny5SQnJ+Pp6Um1atX45JNPzPJ269aNChUqsHTpUlasWIFOp8Pb25vmzZub7jvRqFEjpk6dyo8//sjcuXNxcHCgRYsWzJ8/nyFDzNf6DggIIDg4mC1btnDv3j1cXFyoWrUqU6ZMwd/f35Svffv2XLx4kR07drBr1y6MRiPjxo3LNogYMWIE8fHxrF69moSEBBRFYdOmTQUOIsLDwy1uKrh79252795t2v+sQUTGhGoZyiSsmdPZgbeWJhP7cCGw/k20BNZ+soIIOzsVQwZ4MXt+DKlpCioVvB1YgkoVn/OTO1GoHN6ohvPgxjxYmD6BWOXhiMdc6b3FtzT8tw98sSy9R8LBDmYNgRJP1ip/oviolKzjP0S+BAcHM2HCBObOnWsaZy+EEE+yB2kKB24aqOCu4oV8zHN4XJKSjFy+lkq5snaU9n42rn3pdDoWL14MwMCBA7Gzk0ncxU13MQbDzXjsX64ovRCZ3YqBs6HQrDqUslyd8Wl3TDUn13mbKcOLsCVPn2fj21gIIUSeOdureL3Gk/8z4OKiplF9mcgpipZdrVLY1SqVc8bnTYVS6X9CZPHk/3oIIYQQQghRBGSJ1/yT1ZmEEEIIIYQQeSI9EYWkU6dOphWZhBBCCCGEeJZJECGEEEIIIZ5LsrpQ/slwJiGEEEIIIUSeSBAhhBBCCCGEyBMZziSEEEIIIZ5LRlmdKd+kJ0IIIYQQQgiRJxJECCGEEEIIIfJEggghhBBCCCFEnsicCCGEEEII8VySO1bnn/RECCGEEEIIIfJEggghhBBCCCFEnshwJiGEEEII8VySO1bnn/RECCGEEEIIIfJEggghhBBCCCFEnkgQIYQQQgghhMgTmRMhhBBCCCGeS7LEa/5JT4QQQgghhBAiTySIEEI88+6lKAzfaaDmQj2d1hk4Ff3krcdxItxAxyUPqPm/REZsSCEu+clroxBPO2NUAkkDVxFf8xsSu/6M4eKd4m5SwRy9DB2+gloj4YOFkJBc3C0SzxEZziSEeOb12mxkx430k/LL9xT+jDBwbYgGd4cnoxs79oGC/48PiEtJf3z5ro7QOCOb33Uu3oYJ8YxJfPsnDEfCADBejkF/OBT3K6NROdoVc8vy4XYc+I9/FDhcioDwu7BmdHG26qkjw5nyT3oihBDPtKgkxRRAZIhNgU1Xnpwr/Rv/1psCiAxbLxmISTIWT4OEeAYZzt82BRAZlPD76HddKaYWFdC6Q5Y9D+uPwP0HxdMe8dyRIEII8Uxz0IDWyjedyxN04dHF3jJNqwZ7jVwhE6LQOFv5oIH1D+DTwMXBMs1eC3aax98W8VySIEII8Uwr6ahiYD3zk/FantCx2pNzgv7WC1qqe5m355/N7Cjh+OS0UYinnaZySey61TdPa1oerV+VYmpRAb3zIviWNk8b3h6crAQXwiYlD3/CnAQRQohnmt6o4OWo4OkAJeyhc3XY30tTZFf5F53QU3dWCr7fpzDuDx0GY84/PY52KqZ3dKSShwoHLbSsqGasf9F0lcQlGhn3UzztP7vD4G9jOXklrUjqEdm7uz+akrOdKDXJmdMfHCUtrmheh1uz/uZQrbX8WXU1N74+jaIU3alQyt93udlhPRfKzCe08ybSrsUXWV2K0UjChD1EV5lG9AuzeLDgeK7KOX39JuqGPuCgRV3NC+dpnVCpsz8VUhQF3ZSdJFebQHLNr9DNCMm5fWGx6LvPRVd2FPrXv0P5KzRX7ePn/VD/M6j8AXyxCvQG23ldneDbAVDBCxztoHVt+KJr7uoRohColKL8RhH5cuzYMYYNG8a4cePo1KlTsbTh4sWLTJs2jQsXLpCQkMCQIUMYOnRosbRFiIL4cr+BSYfMv+Z29VDzWqXCv4ay9ZKBwF/NTwYnvabli1eyDwhikoxUmZpEYqair1bV8MeQwp9Y/a9Z9/jz70cVOdrDhgmlKOUuQyAelwdhSexqEYwx5dGcl7IBFWj5q1+h1hO1/Bp/9zE/4a0xoyUV369TqPUAGNMMXK66GH14oinNvlZJqv/dH5W68AP2xCn7Sfjsd7O0kht64fh27WzL3W84DcPpSNNjlbcL7jc+Q2VrqBOg+2EfuvdWm6XZ/9IP7T+a2y7T5Cs4mSlwKOWK9sZkVNaGIGXYdRbaTTZPG/M2fNXdev5bMVBjJKRk+uLo1Aw2fW67DmFhn+rHXOdto/yzCFvy9JGeCGFBr9czevRoQkNDGTZsGBMnTuS1114r7mY9dnv27GHevHl5KrNs2TKCg4MLvS1nz57lm2++YdCgQbRp04ZmzZrZrOfMmTOMHj2azp074+fnh5+fHz169GD+/PkkJiZaLfMsW3be8jrJcitphWH5GcurhsvPZnMl8aHg8wazAAJg9zUDtxMKd2J1fJLRLICA9POPkNOphVqPyF7k1ltmAQRA1PZw9Im6Qq0nevk1i7TbVtIKw4O94WYBBEDaxXuknIgukvqSl5/JVVpmhnNRZgEEgHInCV0OE6sNyy17OfTLT9jMr1yINA8gAGISUXb+nW09LD+Yu7QMG46YBxAAm4/LxGrx2MgSr0+gJk2acODAAbTa4nl5wsPDCQ8P58MPP6Rnz57F0oYnwZ49e9i8eXOeemCWL1+Oj49PofcgHThwgNWrV+Pr60uNGjU4ffq0zbw3b94kJSWFDh06UKpUKRRF4dy5cyxatIhdu3bx008/4ejoWKjte5KVdASyjKrwKKIhwx5WDqtHLuY1lHSyTHPQgpNd4V7BdbBT4WAHqVnOVd2c5HrS42TnbtkzpXHWoLYv3NdB62F5dd3OSlph0Nj4UKmL6MOmtvJhs5aWmcrdEVQqyDIAQ+Vh5QOYmZXnsy1TwgnUKsg6lNEjh57Fki5W6raSlt1zzg7g8AStGvEUkCVe809+OZ4gSUlJAKjVahwcHNBoimd4wd27dwFwd3cv1O0qisKDB3KFJLOgoCCCgoJyzNetWzdCQkJYtWoVffr0yTZvx44dmTFjBkOHDqVr165069aNcePGMWLECK5evcq+ffsKq/lPhc9aqM1+IjwcYHijovnqe6+FFrdM50xqFfy7dc4XAwJra2lQ1rxNI1oW/sRqR3sVvV81P5GpUlbDKw1lIubjVK5TJZyrupqlVX+vNmr7wv3Or/hhHdROj7ap0qqo9Gn9bErkn1OzMri0q2SWVqJ7DRyqexRJfS6jX4ZM85pUrvY4v98y2zLqCh7Y92tslqZt7Yu2tW+25ew+ec18xSNHO+w+amszv6qcB6r+L5mntaqG6pWa2dbD8HbmgYZKBZ9lc0HqnRehZjnztI87SRAhHhsJIgpJcHAwzZo14/Dhw8ybN4+OHTvy0ksv0atXL3777TeL/J06dSIoKIgLFy4wcuRIXnnlFXr37g2kz4mwNlxFURTWr1/PgAEDaNOmDW3atKFnz57MnTvXLF9aWhqLFi2iR48etGrVirZt2/LRRx9x4cKFHPcj80nthAkTaNasGc2aNSMiIgKA5ORkZs2axdtvv81LL71E+/btGTt2LJGR5l3Emfdh1apVdO/enVatWvHzzz+b8uzYsYPBgwfj5+fHyy+/zIABA/j9d/Mxrpm398EHH+Dv70+rVq14++23mThxInFxcaY8q1ev5r333qNDhw68+OKLtG/fni+//NLU9sz2799PUFAQ/v7+vPzyywQGBvLpp59y8+ZN03HYvHkzgOkYZDeEKCNfZGQkJ06cMCtjrf688vLywskph6tlOfDx8QHg/v37BW7P06RbLTX7emsIrAreTpBqgNEhRm4nZT+kae0FI2WmpaH+bxoOk9MYulVPmiH7MrW91ewfZE+DMirsNeDjCjEPch46ZadRsaGvk9kKTX9c1XM5pvDvEzGysxv/GVSC6uU0ONrB/QdGVu6R4P5x0rpoqfFpHQyuRhS1gkczT6oMzuEEMx/cmpSi+rctsPNyQKVV4fFKWVzqemRbxqgzEDrqT457Leavij8T9f2pXNfnPf5F7KqUAI0K+9ol8R6T/Uk9gGJUiB2zl5ulZxDqM5N7kw7kqi7HgJo4j2yBysUOHLU49qiLtpZX9nWl6cHdMX19Zxd77N6ph+tvg1GpbAfrSmIq+p+OgL0G3B1Rv/kCjsc+Qd20ku0yBiOULgGuDuBkhyqwPpodH2VbDwBVS6cHEq6O6YFAz5bQuant/M4OcPBrGNsdaviAkz2sPADLn68LRaL4yHCmQjZz5kySk5Pp1q0bkB5cfPHFF6SlpVkMcbl9+zbDhw+nXbt2vPbaazlepR87dizbtm2jXr16DBo0CDc3N27cuMGuXbsYNmwYkD6f4f333+f06dMEBATQo0cPEhMTWb9+PYMHD2bBggXUqWN7Ut2gQYNo2LAhixcvpkuXLjRunH7VpmTJkuj1ekaOHMmpU6fw9/enb9++hIaGsnbtWg4fPszSpUspU6aM2faWL19OfHw8nTt3xsvLy/T8Dz/8wKJFi2jVqhXDhg1DrVaze/duPvvsM0aPHk2PHj1M21i7di2TJ0+mdOnSdO3aFR8fH6Kioti3bx+3b9/Gw8MDgF9++YV69erRs2dP3N3duXr1Khs2bODo0aOsWLHClO/48eN8/PHHVKtWjYEDB+Lq6kpMTAxHjhwhLCyMypUrM2jQIBRF4eTJk0ycONHUlgYNGtg8dhMnTuS7777Dw8ODQYMGmdJLliyZ7etaVFJSUkx/58+fZ+bMmdjZ2dGyZc4/7M+aCq6w8yakPZyesPayQnyakZ3drV/5PXfHSI91ejJO4dOMMP8vI55O8PWr2X9t/nDUwOnb6YFDeAIM2qCjuqeKNpWzv8o8MjiFK3cfBRynohTaL3rA1U9dcj75yKNbdwxciUg/GCk6hRnrEyntoebN5gULVEXuJN1I5PS/jqLRpV/HizsWy4nhB3lpzauFWk/y9QQuf3AYRZf+Tr63K5K/++2l0W/tbZaJmHSCqO/Sh0saYlMJ/fgg9pXc8OxaNdu6jMl6wjoHY4hJv/lZ2oV7hL0TTPVL72Y7sfr+tKPE/+dP0+O4L/eh9XHFbXDD7Pdt1VkeTD/86PGik2gqu+M2tq3NMikTfidt5qO6dOvOouvfBPu369osk/bBWgyLH9Vj/O0CyrgUm/kBjN/uQJm63fRY2XIGZc1xVANaZVuOlYfg602PHq84BHXKw5ddbJfxdIOrt+Hywwt5lyKg73SoVQ6aVMu+PgHIcKaCkCCikMXFxbFixQpcXdO7qrt160avXr34/vvvef31183GooeHhzNmzBg6d+6c43Z37tzJtm3b6NChAxMmTECdaUk6o/HR1cqVK1dy/PhxZs6cyUsvPepO7datGz179mTatGnMnz/fZj0vvvgiWq2WxYsX06BBAwICAkzPrV+/nlOnTtGvXz8++OADU3rLli358MMPmTVrFl999ZXZ9qKiolizZg2enp6mtAsXLrBo0SIGDhzIe++9Z0rv1asXo0aNYvbs2QQGBuLi4sLt27f53//+h6+vL4sWLcLNzc2Uf/jw4Wb7vmLFCour9X5+fowYMYKNGzcyYMAAAEJCQjAajcyePdusXf/856NVF1588UW2b9/OyZMnzY5BdgICApgzZw6enp65LlOU5s6dyy+//GJ6XLVqVb7//nsqVKhQjK0qHpuuKqYAIsPvNxXiUhSrcxY2XFKw1gew5oKRr3M4z1v7t+VE6jXnDNkGEal6he2XLMtdv6dw7raRemULd5jLH39ZTqTedTJVgojHJGrbLRSdeQ9V9B+R6BJ02LkV3lCUmE2hpgAiQ+yOCPT309CWsD434t5ay4nXsWuu5RhEJIXcMgUQGdKuxpNyMhqnpmVslIKktRct09ZczDGISFljOUk5Zc3f2QYRaWssJ17r1pzJNogwrPnLPEFRMKw9heZF2/eWUNZaTro2rjmOOqcgYs0RK2lHsw8iANZkmXxtNMK6wxJEiCInw5kKWbdu3UwBBICrqytdu3bl/v37HD9uvsKDu7t7rifgbtu2DYAPP/zQLIAAzB5v27YNX19fXnjhBeLi4kx/er2eli1bcurUKVJSsr+KYsvu3btRq9UMHDjQLL1169bUrFmTvXv3mp3UAwQGBpqdqGe0UaVSERgYaNbGuLg4/Pz8SEpK4syZ9C/733//HZ1Ox5AhQ8wCCGv7nhFAGI1GEhMTiYuLo2bNmri6unL27FlTvozX548//kCv1+frWOTHgwcPLPZXr9ej1+st0gtj7sg777zD7NmzmTx5Mv/4xz+wt7c3G/71JIiNjSU19dEJbWJiIgkJCabHaWlppjk6GbIOncv6OCoqymwt/NjYWEraWb7OJezBSWu9Dged9fXtSzurbNaRsR+lXSyDEi9HY7b7YacGFzvLYU8qFXg9rLMwj5Wnm+VXv6eb+rG9Hs97HQ6lLCcAa93suBN3p1D3w76MZVCoLqFF5fDo9c9ah8rLMrgwlDB/bO1YaUtbmTSsAo23U7b7obFSTlPaOcfXI8XKe5hSj7Zl7VgZPC2Pu6r0o99ra6955ucflXGzWcfdu3ehtOVvVUZatu+rMpbzEPVezjm+5gYvyzZS+tG2nrbPh63H4skjPRGFzNfX1yKtSpX0Kxbh4eFm6eXLl8/15OmwsDBKlSqFl1f2Yz6vX79Oamoq7dq1s5knLi6OsmXL5qrezCIiIvD29qZEiRIWz1WrVo1Lly4RFxdnFjRUqmQ5bvT69esoimIa8mVNxpdLWFgYALVq1cqxfUePHmXBggWcO3fO7MsLMPvy6tGjByEhIUyePJmZM2fSsGFDWrVqRfv27Yt06NHUqVNN8yyyyvp6dezYkfHjxxeovkqVKpmOf7t27Th48CDvv/8+AG+++WaBtl1YsgaYmQNwAHt7e4v3fMbcDluPs763PT096V5C4X8nDJy68yj9s5ZqHLQqwLKOYa1KMuecjsz3ylKrYExrjc06Moxtq6X3Gp1pAZjyJWBYCwe8XM1PYDK3W61W8dUbjny42fx9O7ipFp8Saos6oGDH6t03XDh2KQ3dw9jKzUlF79ec8fQ0/0koqtfjea/Dp1NF3F5wJ+H8ozdYzY/rUq6i+STZgu6Hd5fKuDYoSeLpe6a0Kp83ROPw6HXOWkfFL5tzKWCrqQdD4+lA5dHm90Oweqx8wK1TVRKCH/VkeAysi32lEpjXYL4f7v9+keTt11FS0t+MKld73Ee1wN7H/E7MWev0/uxVYtZfQbn38KKYnZoSYx7dZ8PasXIb/waJHZeAPn3fVF7OOIx81Dtg7TXXj+tAWv9fTCs6qSqVRDuwpc06vLy8MH7WAcPOvyH14QeshBOaUW/YrMPkg/aw7E+4l/Rwg1q0X75jdgHN2muumdgb/vnDo4SqZaB/W+t18OR/Pmw9Lipys7T8kyCiGBXVMpvVq1fno48+svn84xyjb2sfVSoVM2bMsOhVyVCtWt66Yc+dO8fIkSOpUKECI0eOpFy5cjg4OKBSqfj888/Nekg8PDxYunQpJ0+e5PDhw5w8eZLvvvuOefPmMX369GznPRRE//796dChg1natGnTgPQepsy8vb0Lvf6XXnoJLy8v1qxZ88QEEY/L5msKcQ/Pzyu5wX9aq+hb13ZHrKu9ihOD7Zh+1MDO6wqV3WH0SxoalM6587ZnPS1VS6pZfc5AKWcY2FiLt5Xeiaw619Hy03EdJyONOGohqIWWaR2L5juiaU17lv2fF1uPpOBgBx1fdKKsp9xs7nHROGp4acurrPloJZpYFa/+qx0+7Qp/mKHaQUOpzpV4cPk+xlQDJduVo0ION5pzb1eBuie6cXfZZdTOWrzfrYV9BStXuq2ouDaQ+BWXSD4RjXMrH0p0rZFjGccXy1P+1CASfz4LGhWuA+pjV8Ujx3IaXw8cOtUkZdlZUIFTv4bYt/XNtoxd+1q47hrCg3+uwXjlLmjV6HddQfPPFjbLaPs2R1XDG8PaU6hKu6J9tyWqUtkfD/XL1VGdGofx54Ngp0H97suoKmd/ARCAGmXh1H9hyV5I0cE/Xk6fE5EdRYGrUemTqtP00LIGrPt39kvDClFIJIgoZDdu3LBIu379OpDe85BflSpVIiQkhLt372bbG1GxYkXu3btH8+bNbZ6g51f58uU5ePAgCQkJFkOLrl27houLi2nycnYqVqzIn3/+SdmyZU29NLZkXEm/dOkSlStXtplv+/btGAwGZsyYYXack5OTzXohMmg0GtPqSQCXL1+mb9++LFy4kOnTpwPkazJrdmWqVq1K1arm44ozjuPjmuycmpr63K3OdD1OoddmY8bFR0ITYM4phb62h0ED4O6oYmwbLWPb5L3O5uXVNC+ft89fn5XJnIxMb2SKHn44pOeDlxWqehbNpL8qPlreezt3J4ei8Gld7UhulX7DjlKv2J4zUBDRa25wY+Kj1ZXu7Yjg2pgT1PjO9kkzgHM9T5z/m/fvJJWdBo9+L+DR74U8lbOr6UnJr/J2t+7EqQdIWfrofjnJi05i16I8LkObZVsudfoBjJfTe7qV24k8GLIWTf2yaFvaXm1J09IXTUvfPLVPVassmkk5zGWwpqJXznMgMluwE75e9+jxnxfT08bYuMu1EIVI5kQUsjVr1pjdFTgxMZG1a9fi5uZG06bZLNWWg4wr2DNmzLCYd5B5HGJgYCB3797l119/tbqdrGMQ86Jt27YYjUaWLFliln7gwAEuXryIn59frgKXjEnHs2fPxmCwnEyauY3+/v7Y2dmxYMECq3dbztj3jGFhSpabCC1atMjieFmbF+Dr64ujo6PZCXbGHIv4eOvj461xcnIq9pP0mJgYq+mbN28mMTGRevXqPeYWFa+t1xVTAJHhz4jcLb36uMQkGfnzpnkj9UbYeuHxzdkRz56YTaEWaXc2WqY9jVI3WU7ITt2Y8zLmuk2WE7KtpT01Nh21TNtoZYK2EEVAeiIKmYeHBwMGDDBNmA4ODiYqKooxY8YUaPhSu3bteP3119myZQthYWH4+fnh5uZGaGgoBw8eZNWqVQD07t2bw4cPM336dI4ePUrz5s1xcXEhKiqKo0ePYm9vz7x58/LVhk6dOrF582Z++uknIiIiaNKkCWFhYaxZswYvLy+zlZayU7duXYKCgpg/fz59+vShXbt2eHt7ExMTw/nz5zlw4ACHDh0CoEyZMowaNYopU6bQq1cvAgMD8fHxITo6mpCQEMaOHUutWrVo27Yty5Yt44MPPqBLly7Y2dlx+PBhrly5YtE7MmnSJKKjo2nZsiU+Pj6kpqayc+dOkpKSCAwMNOWrX78+q1atYvLkybRu3RqtVku9evWy7VGqX78+GzduZM6cOVSpUgWVSoWfn1+B7/EQGRnJli1bgPReH4C9e/dy+/ZtANNxAfjggw9wd3enQYMGlC1blsTERP766y9CQkIoU6ZMrm5u9yypYGWOo7sDuBXNjXvzxc1BhbsjxGdZ86CCuyw9KPLPoYLlkBbHCjncNfkpoalQAt0R83mG6gqW8/WyUldwx3jjnnlaRY/CbNrjVcHKyARracImWeI1/ySIKGTvv/8+f/31F6tXryY2NpZKlSoxadKkQhmD/p///IfGjRuzceNGFixYgEajoVy5cmaTcrVaLdOmTWPNmjVs3brVFDB4e3tTt25dOnbsmO/6tVots2bNYuHChezcuZPdu3fj5uaGv78/I0aMyNNk7aCgIOrUqcOKFStYvnw5ycnJeHp6Uq1aNT755BOzvN26daNChQosXbqUFStWoNPp8Pb2pnnz5qb7TjRq1IipU6fy448/MnfuXBwcHGjRogXz589nyJAhZtsLCAggODiYLVu2cO/ePVxcXKhatSpTpkzB39/flK99+/ZcvHiRHTt2sGvXLoxGI+PGjcs2iBgxYgTx8fGsXr2ahIQEFEVh06ZNBQ4iwsPDLW4quHv3bnbv3m3a/4wgokuXLvzxxx9s2LCBuLg4tFotFSpUYMCAAfTt2zdXQ86eJYFVVbxcHg5kOt8Y+1LGpOong4NWxTh/Bz7e8mhidavKajrWlq9okX8V3qtN5E9XSItIX+1N7aDBd1yj4m1UIXH9vA2pO66iJKYBoPJ0wvWTHJZQBRwntedB/5VgTO+JVNcpjX3fxjmUeoKNeit9ide7D4ftujjC512Lt03iuaFSso7/EPkSHBzMhAkTmDt3rmmcvRDiyZCqV1h9SeHKPYU3fNW0Kv/kBBCZHbxp4LfLeqp7qeleX/tEBTqicOl0OhYvXgzAwIEDsbMrvPtDmNUTm0rUr1cxJOgo3aMKztVzvlr/tDCExZO8/Axo1Tj9owGaMrmb46M/FYFu49+oy5XAvncjVC5PULdkftyOg2X7QKeHXq2hUuEvzPEs261anOu8ryoDc870HJHLXEKIZ56DVkXfOk/+CflLlTW8lMOdrYXICztPByrmsCLT00pT0R3X0a3zXE7bsBzahuVyzvi0KOMBH+XunlPCklxJzz+ZWC2EEEIIIYTIEwkihBBCCCGEEHkiw5kKSadOnUwrMgkhhBBCCPEskyBCCCGEEEI8l2SJ1/yT4UxCCCGEEEKIPJEgQgghhBBCCJEnMpxJCCGEEEI8l2Q4U/5JT4QQQgghhBAiTySIEEIIIYQQQuSJDGcSQgghhBDPJWNxN+ApJj0RQgghhBBCiDyRIEIIIYQQQgiRJxJECCGEEEIIIfJE5kQIIYQQQojnkqKWJV7zS3oihBBCCCGEEHkiQYQQQgghhDU6PRy6CGExxd0SIZ44MpxJCCGEECKrY1fg7ckQEQtqNbz3Jsz4Z3G3ShQyRUYz5Zv0RAghhBBCZDVkTnoAAWA0wsytsP1E8bZJiCeIBBFCCCGEEJml6uCv65bpUzc89qYI8aSS4UxCCCGEEJk52IGzPTxIM08/f6t42iOKjKzOlH/SEyGEEEIIYcHKyaVGTjiFyCBBhBBCCCFEVilplmmO9o+/HUI8oWQ4kxBCPCfiUxVWXFBISIPuNVVUdperqkLY5GhnOZzJqBRPW4R4AkkQIYQQz4HIRIWWvxoIS0h/PPYAbO+qwa+iBBJCWKUzWKbdT3787RBFSpExOfkmh04IIZ4D/95rNAUQAMl6GP+nsfgaJMSTzsXRMu1uAlyNevxtEeIJ9EQHEePHj6dZs2a5yhsREUGzZs2YN29eEbcqXV7aFhQURKdOnYq4RdnL6/G5ePEiw4cP59VXX32sx1UIUfgMRoW1lyyHYVy+J0MzhLDJv7719J1/PdZmCPGkkuFMwoJer2f06NHo9XqGDRuGm5sbNWrUKO5mPXZ79uzh4sWLDB06NNdlli1bhpubW6EGjYqisG3bNvbt28f58+e5c+cOHh4e1KxZk8GDB1OvXj2LMosXL+bChQtcuHCB8PBwfHx8CA4OLrQ2iadL8FWFB3rL9LjU9PeXSiVDmoQwE5sAu05bfy4mwXq6eCopsuJWvj3RPRFjxozhwIEDxd2M5054eDjh4eH07t2bnj17EhAQ8NwGEQsWLMhTmeXLlxf6yXpaWhpjx47l5s2bvPHGG3z66ad06dKFixcvMnDgQLZu3WpRZvbs2Rw7dozy5ctTokSJQm2PeLpMO26ky0brw5YSdXA48jE3SIinwY+/Q9wD6881qPx42yLEE6rAPREGgwGdToejo5WxgwWk1WrRaqWz5HG7e/cuAO7u7oW6XUVRSE5OxtnZuVC3+zQLCgoCYP78+TbzaDQa5s2bR9OmTc3Su3TpQo8ePZg2bRpvvvkmavWjawIbNmygQoUKAPTo0YPkZJkM+DxKSlP4cn/28x7Oxhh5sZzmMbVIiKfErjPW09UqOHYV3mrxeNsjxBMoT2fowcHBTJgwgdmzZ3PmzBmCg4OJiopizJgxdOrUCUVRWLt2LRs2bOD69euo1Wrq1KnDkCFDLOYPbN68mVWrVhEaGoper8fLy4v69eszatQoSpYsCaTPO9i8eTPHjh0zK/vXX38xY8YMLl68iIuLC/7+/nTt2tVme+fOnWtRf1BQEJGRkWZXjQ8dOsTGjRv5+++/iYmJwc7Ojrp16zJo0CCLE7jCcOLECX788UfOnTuHXq/H19eX7t2707lzZ7N8Z8+eZc2aNZw+fZrbt2+j0WioXr06/fr149VXX7XYbm6PjzVBQUGcOHECgAkTJjBhwgQANm3aRLly5UhOTmbhwoXs3LmT6OhoSpQoQcuWLRk+fDg+Pj6m7Rw7doxhw4Yxbtw4kpOTWb16Nbdu3eLdd981DQ/asWMHK1eu5PLlyxgMBtM+tWvXzqJdx44d4+eff+bs2bMkJyfj7e1N06ZN+de//oWHhwcAq1evZs+ePVy7do179+7h7u5OixYtGD58OOXKlTPb3v79+1m6dClXr14lJSUFDw8P6tSpw8iRI6lcubLZccj83hk3bpzNoUoZ+SIjI83KZBy7/NJqtVbff15eXjRp0oTdu3cTGxtLqVKlTM9lBBDi+Xb7QXpvQ3aWn1f4Z4PH0x4hnhrJqdbTjQp8tRpa1ICOuZsXKcSzKl+X+adPn45er6dLly64uLhQuXJ6197YsWP57bff8Pf3p1OnTuh0OrZt28Z7773H1KlTeeWVVwDYsmUL48ePp3HjxgwbNgwHBwdu377NgQMHiI2NNQUR1pw9e5YRI0bg7OxM//79cXNzY8eOHYwbNy4/u2ImODiY+Ph4AgICKFOmDNHR0WzcuJERI0Ywd+5cGjduXOA6Muzdu5dPP/0ULy8v+vbti7OzMzt27GDSpEmEh4fz3nvvmfLu2bOHGzdu0K5dO3x8fIiPj2fz5s18+umnTJo0iTfffNOUt6DHZ9CgQTRs2JDFixfTpUsX0z6XLFkSvV7PyJEjOXXqFP7+/vTt25fQ0FDWrl3L4cOHWbp0KWXKlDHb3vLly4mPj6dz5854eXmZnv/hhx9YtGgRrVq1YtiwYajVanbv3s1nn33G6NGj6dGjh2kba9euZfLkyZQuXZquXbvi4+NDVFQU+/bt4/bt26Yg4pdffqFevXr07NkTd3d3rl69yoYNGzh69CgrVqww5Tt+/Dgff/wx1apVY+DAgbi6uhITE8ORI0cICwujcuXKDBo0CEVROHnyJBMnTjS1pUED22dbEydO5LvvvsPDw4NBgwaZ0rN7PxdUdHQ0dnZ2uLm5FVkd4ulVxR3c7CHByj2zMuwOS59gXaOkjAsWAoCb0XDkSvZ5tp+QIOIZYVTLd19+5SuISElJYdmyZWZDmHbv3s22bdv4/PPPeeedd0zpvXr1YuDAgXz77bf4+fmhUqnYs2cPLi4uzJkzx2y40rBhw3Ks+7vvvsNoNLJw4UJT8NK9e3cGDx6cn10xM2bMGJycnMzSunbtSo8ePVi8eHGhBREGg4GpU6fi5OTETz/9hLe3N5A+7GTo0KH89NNPdOrUiUqVKgEwePBgRo4cabaNXr160adPHxYuXGgWRBT0+Lz44ototVoWL15MgwYNCAgIMD23fv16Tp06Rb9+/fjggw9M6S1btuTDDz9k1qxZfPXVV2bbi4qKYs2aNXh6eprSLly4wKJFixg4cKBZsNSrVy9GjRrF7NmzCQwMxMXFhdu3b/O///0PX19fFi1aZHayPHz4cIzGR0M1VqxYYfH6+fn5MWLECDZu3MiAAQMACAkJwWg0Mnv2bLN2/fOf/zQ7Dtu3b+fkyZNmxyA7AQEBzJkzB09Pz1yXKYj9+/dz7tw5AgICcHBwKPL6xNNHpVJRqyQcu207jwJ8f8zID6/LkCYhAFi6B1Jz6MLTyudFiHxNrO7WrZvFHIitW7fi4uJC27ZtiYuLM/0lJibSpk0bIiIiCA0NBcDV1ZWUlBT279+PouR+icHY2FhOnz7NK6+8YjpBBrCzs6NPnz752RUzmU9AHzx4QFxcHBqNhnr16nHu3LkCbz/D+fPniYqK4q233jIFEJC+H/3798doNBISEmK1XSkpKcTFxZGSkkLz5s25fv06iYmJQNEfn927d6NWqxk4cKBZeuvWralZsyZ79+41O6kHCAwMNDtRB9i2bRsqlYrAwECz90pcXBx+fn4kJSVx5kz6eNTff/8dnU7HkCFDrF5tzzwPIOM4GY1GEhMTiYuLo2bNmri6unL27FlTPldXVwD++OMP9HorS9YUkYz3VOY/vV6PXq+3SH/wwMaEvodCQ0MZN24cpUuX5qOPPnpMe1D4YmNjSU19NGwgMTGRhIRHK5+kpaWZ5uhkiIyMzPZxVFSU2ffK815H5VzMq98frjzx+/Es1lG2bNlnYj+euToMubh/SkDTJ38/nrE6xJMnXz0RGVfIM7tx4wZJSUm88cYbNsvFxsZSuXJlBg4cyIkTJ/jkk09wd3enSZMmvPzyy7z++uu4uLjYLB8eHg6Ar6+vxXNVq1bN+45kcevWLWbPns2hQ4fM3uxAoS6BGBERAVhvc7Vq1YBH+wrpx23OnDmEhIQQGxtrUSYxMRFXV9ciPz4RERF4e3tbXe2nWrVqXLp0ibi4OLOgwdp75fr16yiKQrdu3WzWlfHlEhYWBkCtWrVybN/Ro0dZsGAB586dM/vyAsxezx49ehASEsLkyZOZOXMmDRs2pFWrVrRv375Ihx5NnTqVzZs3W30u6zyQjh07Mn78eKt5w8PDGT58OAAzZswo0jYXtawBZkaAl8He3h4vLy+ztMxzb6w9znpi9rzX0dzHwNrL2V+syejNf5L341msIyrK/KZlT+t+PHN19H0FJqzCptrl4fWGuGY5L3ji9uMZq6OoyB2r8y9fQYS1lZgURaFkyZJMmjTJZrmME+RKlSqxevVqjhw5wtGjRzlx4gSTJk1i3rx5LFiwoNAmhWZ34m8wmN/O/sGDBwwZMoTk5GR69+5N9erVcXFxQaVSsWTJEo4ePVoobcorRVEYOXIk169fp1evXtSpUwdXV1fUajXBwcFs377d4ur/k8TWql0qlYoZM2aY9SRklvFeya1z584xcuRIKlSowMiRIylXrhwODg6oVCo+//xzs2Pk4eHB0qVLOXnyJIcPH+bkyZN89913zJs3j+nTp2c776Eg+vfvT4cOHczSpk2bBsCHH35olp65hyqziIgIhg0bRnJyMj/88APVq1cviqaKZ8i7ddV8vtdAdt8SnarJmGAhTKr7QCk36/eDaFwFto4BubeKEIV3s7mKFSsSGhpK/fr1c7WEp729Pa1bt6Z169ZA+vjuDz/8kF9//ZV///vfVstkrHBz48YNi+euXbtmkZZxxfz+/fsWz0VERJjNxzhy5Ah37txh7NixvPXWW2Z558yZk+P+5EX58uUB623OSMvIc/nyZS5dusSQIUMsbnq2YcMGs8d5PT55Vb58eQ4ePEhCQoLF0KJr167h4uJimrycnYoVK/Lnn39StmxZqlSpkm3ejJ6MS5cumQ3Rymr79u0YDAZmzJhhOnYAycnJFr1KkL5sarNmzUyrKF2+fJm+ffuycOFCpk+fDuSv9ym7MlWrVrXoEco4ji1btsxx2xEREQwdOpTExER++OEHateunef2iedPGRcVIxqrmHXSem/EqxXh/1rKpTghzAQ0TZ8bkVVsIpR9ent/hShMhfbLERgYiNFoZNasWVafzzz2LS4uzuL5jBOi+Ph4m3VkLAMbEhLCzZs3Tek6nY5ly5ZZ5M84AT1y5IhZ+vbt27lz545ZmkaTPkkq6xyNQ4cOmY2nLwy1a9embNmyBAcHExMTY0rX6/X8/PPPqFQq00pWGVfqs7brypUr7Nmzxywtr8cnr9q2bYvRaGTJkiVm6QcOHODixYv4+fnZ7FnILGPS8ezZsy16hMD8veLv74+dnR0LFiwwzf3ILOO42Hr9Fi1aZNFTY+395+vri6Ojo1nAmTHHIrv3ZFZOTk5Wg9aCioyMZNiwYSQkJDBr1ixeeOGFQq9DPLu+baumoqv15ya1VuNsJ1dVhTDTv6319FjL3yHxdFPUqlz/CXOF1hPRrl07OnXqxKpVq7hw4QJt2rTBw8OD6OhoTp8+za1bt9i4cSMA7733Hm5ubjRu3JgyZcqQkJBAcHAwKpUqx1VtPvroI4YOHcrgwYPp3r27aQlTayejvr6+tGjRgnXr1qEoCjVr1uTSpUvs2bOHihUrmk2qbdSoEV5eXkybNo3IyEhKly7NpUuX2Lp1K9WrV+fKlRyWe8sDjUbD6NGj+fTTTxkwYABdunTB2dmZnTt3cubMGQYOHGgKgKpUqULVqlVZunQpKSkpVK5cmdDQUNatW0f16tU5f/58vo9PXnXq1InNmzfz008/ERERQZMmTQgLC2PNmjV4eXmZrbSUnbp16xIUFMT8+fPp06cP7dq1w9vbm5iYGM6fP8+BAwc4dOgQAGXKlGHUqFFMmTKFXr16ERgYiI+PD9HR0YSEhDB27Fhq1apF27ZtWbZsGR988AFdunTBzs6Ow4cPc+XKFYvekUmTJhEdHU3Lli3x8fEhNTWVnTt3kpSURGBgoClf/fr1WbVqFZMnT6Z169ZotVrq1atn1tORVf369dm4cSNz5syhSpUqqFQq/Pz8LFaNyoukpCSGDRtGREQEPXv25ObNm2ZBIqT3ZGQeX7plyxbTpLS4uDh0Oh0//vgjkD7ONPN+imefvUbFkAYqxv5p2RtRr5SVAkI87+7bWNwiIRmOX4WmeRtyK8SzqFBvBz1u3DiaNWvG+vXrWbJkCTqdDi8vL2rXrm12gtmtWzd27tzJunXriI+Px93dnVq1ajF69GiLm8Jl1aBBA2bPns2sWbP46aefcHV1Nd1MrVevXhb5J06cyDfffMP27dvZunUrjRs3Zu7cuXz99ddmM//d3NyYNWsWM2bMYOXKlRgMBmrXrs306dPZuHFjoQYRkL706A8//MDChQv5+eef0el0+Pr6MmbMGLObzWk0GqZPn860adPYvHkzycnJVKtWjfHjx3Pp0iWLICKvxycvtFots2bNMt1sbvfu3bi5ueHv78+IESMsJlZlJygoiDp16rBixQqWL19OcnIynp6eVKtWjU8++cQsb7du3ahQoQJLly5lxYoV6HQ6vL29ad68uem+E40aNWLq1Kn8+OOPzJ07FwcHB1q0aMH8+fMZMmSI2fYCAgIIDg5my5Yt3Lt3DxcXF6pWrcqUKVPw9/c35Wvfvj0XL15kx44d7Nq1C6PRyLhx47INIkaMGEF8fDyrV68mISEBRVHYtGlTgYKI+Ph406T5lStXWs0zd+5csyBi48aNppvlZc4D0KRJEwkinkOvVVYz9k/ziwl1vaCEgwxlEsLCizXBTgM6KxfgNh6RIEIIQKXkZY1VIYQQT61xBwxMPqKQZki/Ed26tzU0Ki1d9MVBp9OxePFiAAYOHIidnV0xt0hYeHMi/PaXZfqcoTCs/WNvjigaG0vmfrj32/cKvlz+4xYeHs7evXuJjo6ma9euVKhQAYPBYLqInzEcPD8KtSdCCCHEk2vCyxr+1UQhMhHqlAK1rDAjhG13razOpAL+4ffYmyKKjvKMfg0qisKoUaOYNWsWer0elUpF/fr1qVChAomJifj6+jJx4kSL1SHzQvqxhRDiOeLlpKKet0oCCCFycinCMs3FAdzyPzxViMflm2++Yfr06XzyySfs3LnTbOEZd3d33nnnHdauXVugOiSIEEIIIYTI7JcQuJ9smV6rcO5jJURRW7BgAf379+e///0vjRo1sni+QYMGXLp0qUB1yHAmIYQQQojMvt9kPX2Qv/V08dR6VpduDQsLo1WrVjafd3FxKfCS9NITIYQQQgiR2c0YyzQ7LQyWIEI8HUqXLk1YWJjN548fP266nUB+SRAhhBBCCJFZWQ/LNA8XcJBVtMTT4Z133mHu3Llcu3bNlKZ6OBdux44dLFmyhO7duxeoDgkihBBCCCEys3bHar8XHnszhMivCRMm4OPjQ6NGjejfvz8qlYopU6bQunVrOnToQIMGDfj8888LVIcEEUIIIYQQmY0MgNfqP3pcpQxM6V987RFFxqjK/d/TxN3dnUOHDjF69GjCw8NxdHQkJCSEuLg4xo0bx759+3B2di5QHTKxWgghhBAiM2cH2DUBTlyFhBR4uTZo839TLiGKg5OTE2PGjGHMmDFFsn0JIoQQQgghrGlSrbhbIMQTS4IIIYQQQgjxXHpWl3gdNGhQjnlUKhULFy7Mdx0SRAghhBBCCPEM+eOPP0yrMWUwGAxERkZiMBjw9vbGxcWlQHVIECGEEEIIIcQz5MaNG1bTdTod8+bNY9q0aezcubNAdcjqTEIIIYQQ4rmkqHL/9yyws7Nj5MiRvPHGG4wcObJA25IgQgghhBBCiOdIw4YN2bt3b4G2IUGEEEIIIYQQz5GdO3fKfSKEEEIIIYQQj0ycONFqelxcHHv37uXEiRN89tlnBapDggghhBBCCPFcUlTPyGSHLMaPH281vWTJklSrVo25c+cyZMiQAtUhQYQQQgghhBDPEKPRWOR1yJwIIYQQQgghRJ5IT4QQQuQg5oFC8FUFdwfoWE2FvSb77u/D4UZO3lZoVUFFg9JPzrWav27pOXRTT9OKWppXkq9/ITJTDEaU7WchMh5Vh3qoypcs7iaJx8D4jIxmCg0NzVe5SpUq5btO+RURQohsHI5UeH21gYS09Md1vWBfbw0lHa3/8rz/m55Zxx91I0/00/Bla83jaGq2xm17wMTfUkyPP27ryLedC7YyhxDPCiVFh6HddygHrqYnOGjRrB+OukP94m2YELnk6+trcYfq3DAYDPmuU4IIIYTIxuf7jKYAAuDcXZh7SuH/Wlp+WV+8q5gFEABf7TcwtLGa0i7Fd7krMt7If3emmKV9H5LCiNYOVCtV/AGOEMVNWX7kUQABkKrH8MkaCSLEU2PRokX5CiIKQoIIIYTIxsVYJVdpAJespOuMcD1OKdYg4tpdA/osc+wUBS7fMUgQIQSgXLptmXjRSpp45ijqZ2M807vvvvvY63xyBusKIcQTqF1lyx8Ya2kAL1dQ4ZTl0kwpJ2hUpnh/pJpU0OLpbN4GF3t4yVeuIwkBoGr3Qq7ShBCPyC+IEEJk43+vqAlPNPL7TQWtCvwqQgdf63k9nVQs7aRhyFYDcang4wq/vqXFQZtzEJGUprDmbwNxyfBOHTUV3bO/xmMwKgSf13PlrsLr1TU0LGe7R8HJXsWKAa784+dE7iQqlHJRsai3C+5OhXsdyWhUOH4ymcjbOhrUdcK3sn2hbl/knaI3ErvpJinXEvB4swIu9TxzLJN6LZ77G6+h9XbCvWt11Fkj40KgO32blB1X0VbzxLFTTVTawnsvKvdT0K8+CQ90aLo2RF3OPccyav8XUCa+hfG/WyFFDy/4oJnXt9DaZBKXBKv/hDQ9dHsJynhknz/0Dqw/DB4u6fldHAu/TeKZduDAAU6cOEF8fLzFsq8qlYovv/wy39uWIEIIIbJRylnF923VtF5hID4V/giFOkuM/NlHRTUP8+BAb0yfExGXmv44KhGuxim8mkMdMUkKL/2YypWHw6E++x229bWnbRXrgYHRqNBhcTI7Lz+aEDf7bQdGvGT7pH3NX2ncSVRM9e25oqdTvcI7yTcaFb7+NprT59LnXvxKHIP6etK+nVuh1SHyRtEbOdtuK/dDItMTRh+m2vw2lP1nbZtl7m+9wY3OW1B06ScbjpOPU/3P7mhKFN57JWneceKGb4GHo//sX/Wl1M6+qDQFDySMEfGkvPgdSlhcesLnm3H8fQSalr45F46MTw8gAM5HYvz+dzTTeha4TSY3o+Gl/4PIe+mPv/gVdk+ExlWt5999BgL+AykPJ2VNWgOHJoOXfKZEzmJjYwkMDOTIkSMoioJKpUJR0j90Gf8XNIiQ4UxPoGPHjtGsWTOCg4OLrQ0XL15k+PDhvPrqqzRr1ox58+YVW1uEKG7/OWwkPvXR4+gHMPWI5Y18gi8rhIQ+mhehAJ/vMaA3Wp9DkWHuMb0pgID085gxf+ht5v/tssEsgAD44rdUUvU25mpEG5h/MNUsbVpICmH38r8qR1anzqaYAogMK9fFodNlv++i6MQG33wUQAAoEPr5UZSsE2Qyify/P00BBEDKuVhiF/9daG1SdAbiP//DFEAApO2+QcrWy4Wyff30kEcBBEBiKrrx23Nu15VojHP3mqUZZ/6BcvNuobQLgG83PQogAOIfwFerbecfs+xRAAFwJRLm/lZ47REAKKrc/z1NPv30U06fPs2yZcu4du0aiqLw22+/cenSJYYNG0ajRo2IiIgoUB0SRAgLer2e0aNHExoayrBhw5g4cSKvvfZacTfrsduzZ0+eg6dly5YVSfB39uxZvvnmGwYNGkSbNm3yFGTGxMSYgsGff/650Nv2PLgeb3kifD3eSr44y3x3HkBimmVes3L3rGz/nu0Tveuxls/FpUBcsvUT9htW8hsVCM2mjryKvmMZ9CQ9MJKUVPR3TRXWpVxPsEjT3UnBkKizWSbt+v1cpeWX8X4qSmyyRbrhelzhbP+65Um/tbSslBsx6asNmBVUCjeIuB6du7Rs88tkb5E7W7duZejQofTs2RM3t/TeK7VaTfXq1Zk9eza+vr58+OGHBapDgognUJMmTThw4AABAQHFUn94eDjh4eH07t2bnj17EhAQQI0aNYqlLcVpz549LFiwIE9lli9fXiRBxIEDB1i9ejWJiYl5fi2mTp1aoHWgBQRUsfyqDKhqeVmqfVUVWVNfKq/Cw8Y9JUzbqmk5bCmghu05Dm/U0JJ1QZEm5dWUcbP+ld6qihb3LG3wdlXRrBBvONewviPqLNX7VrbHw0NWfyouJd+sSNY3pNtLpdF6ONgsUyLAN1dp+aXxcsaueTnzRLUKh/bVCmf7HSwnQ2sC6uRYTvVSNfDIct8ULxdULaoUSrsA6NDYMi2gSTb5rTwX0LTw2iOeaXFxcdStWxcAV1dXABITE03Pv/HGG/z2W8F6tiSIeIIkJSUB6ZGig4MDGk3x/PjevZt+5cXdPefJaHmhKAoPHjwo1G0+7YKCgggKCsoxX7du3QgJCWHVqlX06dMn19sPCQlhz549/POf/yxIM597/3gBmpUBtQrs1TCikYqRjS0Dg7reahYGaij98Fykghu8U0tlc5hRhs611XSro8ZOnX7O17m2mm/esLOZv3opNbPecsDt4blgw7Iqlvdyspnf1UHFVwFOlHyYpaa3ivWDXHM14Tu3ypa2Y/hgT1xd0n9WypbR8v5Qr0Lbvsg75zolqTi+CWqX9GDRtaU3NX/JfoZO+Zmv4NLGB1SgctJQZnwL3N7I/o62urD73Jt6mHvfHEEfkZhtXgDPZe+gqesNgKqEPe5zA7GrVSrbMkpCKinzDpM84Xf0pyJt5tO+2xK7T18Dh4cBcrkSqFvbmHOQicrFAfXaYZAxCbu8B5q1w1A52v4cAvDrAWg7CfrPgdtx2ecd0i49aNCqQaOGfq/AmG6283/7bnp+lQrstTCyA7zzYo77IvJGUaly/fc0KVeuHFFRUQA4ODhQunRpTp06ZXo+PDy8wPeVkInVhSQ4OJgJEyYwe/Zs/vrrL4KDg7l79y6VK1dm4MCBtG/f3ix/p06d8PHx4eOPP2bWrFmcOXMGd3d3Nm3axLFjxxg2bBjjxo2jU6dOpjKKorBhwwY2bNjAtWvXgPQ3yauvvsqwYcNM+dLS0vjll1/Yvn07t27dwt7ensaNGzN06FBq17Y9oQ7ST2pPnDgBwIQJE5gwYQIAmzZtoly5ciQnJ7Nw4UJ27txJdHQ0JUqUoGXLlgwfPhwfHx/TdjLvQ3JyMqtXr+bWrVu8++67DB06FIAdO3awcuVKLl++jMFgoHr16vTr14927dpZtOvYsWP8/PPPnD17luTkZLy9vWnatCn/+te/8PDwAGD16tXs2bOHa9euce/ePdzd3WnRogXDhw+nXDnzK1/79+9n6dKlXL16lZSUFDw8PKhTpw4jR46kcuXKZsehWbNmpnJZX5PMMvJFRkaalck4dgXh5ZX3k7GkpCSmTp1K165dqVMn5ytxwrozdxRaLzdy/+GQJEc7GNZQjdbG2uIDG2q4m6zw6R9GbiXAp38YWXdRYW8/rc0yPValse78o2E/vh4qPJxsf7mHxhmZ+EcaCQ+nOVyIUYhMMFLT2/p1oVn7UvjXukcBvLuTmuaF2AuR4eLlNBIfDl+Kuq1nffB93h+a/cmhKDoxq64SNuFk+tg1QH8vDa2n7V4IgKQDEST9GQUKKMkG7i29QKmRDdB6WQ9SU09Fc6vNcpSHd2S8999DlN/fB4e6tl/3lN+uYjh3BwDlfhoP5p/AZUBDVPY2FhKIT+F+yx8wXkwvkzzxD1yW9cKhZwOLvCqVCip7QurD4XUR90nrugjj56/j8J+O2e47K49CxMNxiuFxGH/cj/qVWrbzBy2EBbsfPV51GG5Mg7Ie1vP3/h62nnj0uKQrOGXzejxIhVM30odZpelh/k54qzm83ij7/RAC8PPzY+fOnXzxxRcA9OzZk6lTp6LRaDAajUybNs3i3DSvJIgoZDNnziQ5OZlu3dKvLgQHB/PFF1+QlpZmcfJ5+/Zthg8fTrt27XjttddyvEo/duxYtm3bRr169Rg0aBBubm7cuHGDXbt2mYIIvV7P+++/z+nTpwkICKBHjx4kJiayfv16Bg8ezIIFC7I9oRw0aBANGzZk8eLFdOnShcaN07tfS5YsiV6vZ+TIkZw6dQp/f3/69u1LaGgoa9eu5fDhwyxdupQyZcqYbW/58uXEx8fTuXNnvLy8TM//8MMPLFq0iFatWjFs2DDUajW7d+/ms88+Y/To0fTo0cO0jbVr1zJ58mRKly5N165d8fHxISoqin379nH79m1TEPHLL79Qr149evbsibu7O1evXmXDhg0cPXqUFStWmPIdP36cjz/+mGrVqjFw4EBcXV2JiYnhyJEjhIWFUblyZQYNGoSiKJw8eZKJEyea2tKggeWPVoaJEyfy3Xff4eHhwaBBg0zpJUuWzPZ1LSqzZs3CYDDw3nvvceHChWJpw7NgypFHAQTA/bT0tF8CrZ/wpOoVJh0wnwdwMFxh82WFzrUsA4PjEUazAAJg5hEDo1sr+LhZDyRm/plGVMKj3o1UPXz1RxqvVLX8StcbFMZtMx+DfjTUwPrTafRskv0JZV7cidGzK8T8KvT+g0l06ViCCuVlqdficPPL46YAAiDlUjzRP12m3Af1bJaJGncYDI/KpF27T+zCvyk92vowmntfHzYFEADGuFTivjlCmSXWh+MqeiMJ4/aYpemORZC8/gLOPetaLZO29IQpgEivRCH5yx1WgwjFYET3+WaLdP03f2A/2h+Vu/VgSLkRg3HBfvO0Xw6jfB6A6gUfKwUUWBRinpaqh0+Xw8/DLfOfvAZrD5mnzd4Gn3UBHxvL7v6wHcJjHz1O08OEVRJEiFz5+OOP2blzJ6mpqTg4ODB+/HjOnTtnWo3Jz8+PmTNnFqgOCSIKWVxcHCtWrDCNP+vWrRu9evXi+++/5/XXX8fR8dEaz+Hh4YwZM4bOnTvnuN2dO3eybds2OnTowIQJE1BnGnyced3flStXcvz4cWbOnMlLL71kSu/WrRs9e/Zk2rRpzJ8/32Y9L774IlqtlsWLF9OgQQOzeRnr16/n1KlT9OvXjw8++MCU3rJlSz788ENmzZrFV199Zba9qKgo1qxZg6fnoy/JCxcusGjRIgYOHMh7771nSu/VqxejRo1i9uzZBAYG4uLiwu3bt/nf//6Hr68vixYtMk0OAhg+fLjZvq9YsQInJ/MfCD8/P0aMGMHGjRsZMGAAkD7Ex2g0Mnv2bLN2ZR7y8+KLL7J9+3ZOnjyZ67kpAQEBzJkzB09Pz2Kbz5LhzJkzrF27lkmTJpnei0+i2NhYXFxccHBIP5lNTExEURTT65yWlkZCQoJZT0xkZKRZr1fWx1FRUZQpU8bUTVvQOsKtjM64HpuKojhZrSMxDbOVnDJcikqEWiUs6gi/bznUyWCEszfuULaet9U6blmZ6B0WZ+Tu3bsW++FasiyxDyzzh8cbC/VY3YszWMxLBbhyLYby5XwK7fWw9riwX/PHVUfZsmVNww2Koo608CSL1+PepWh8Hi7taK2OtDDLN3zClRhKZ3qcuQ59uOXk7QfX7pqWj8xah5Ksw3jXcmJ1wsVInHkURGSuw3jLchUDQ1i81TrsdcD9FIv86Azcu3wLz2aP5pRlrkOJiLecWA0Yw2LRPAwizI6V3oBiMFrMgdJdiyLzAChTHbesTNA2GIk5cwWvss2tvx7hlmWUW3eJtfI5fxY/H1kfi7ypX78+9evXNz0uWbIkv//+O3FxcWg0GrPzqfySORGFrFu3bmYnba6urnTt2pX79+9z/Phxs7zu7u42h8ZktW3bNgA+/PBDswACMHu8bds2fH19eeGFF4iLizP96fV6WrZsyalTp0hJsfIFmwu7d+9GrVYzcOBAs/TWrVtTs2ZN9u7da3Ejk8DAQLMT9Yw2qlQqAgMDzdoYFxeHn58fSUlJnDlzBoDff/8dnU7HkCFDrL7hM+97RgBhNBpJTEwkLi6OmjVr4urqytmzZ035Ml6fP/74A73e9jKahe3BgwcW+6vX69Hr9RbpBZk7otfrmTRpEi1btuSNN94oxD0ofJ6enqYfGUh/bTK/zvb29hZDubL+qGR9XLZsWbNxngWt4+3qlr0B3V5wtFmHl7OKlyuYl9GqoXtD8/dvRh1tfdWUyNIh4Ouhwr+ut8063q5jef2nc107q/vh5qji1Rrm+TVq6FjXvlCPVVVfe0pmmUTt5qrmpRaF+3pYe1zYr/njqiNzAFEUdXi+XZmsKvauk20d7p0t5w+U7mnee525Dpe3q1vkL9m9rs061G4OOLzma15Ao8KzZyObddi9ZTlZ2qGz9f1QuTqgbmNlDkQNb7MAImsdquaVoZyHeRkvF9RtHpUxO1Z2WlQ+lvMG7Ya/br2OtvXAPcvEbd/SlPJvavv1eLuFxfZVb7d4It67xVFHUTGqcv/3NPn7b+tLM3t4eBRKAAHSE1HofH19LdKqVElf3SE8PNwsvXz58rmePB0WFkapUqVyHBt//fp1UlNTrc4ryBAXF0fZsmVzVW9mEREReHt7U6JECYvnqlWrxqVLl4iLizMLGipVspyQd/36dRRFMQ35siZjcndYWBgAtWplMy71oaNHj7JgwQLOnTtHaqr5peCEhEdXy3r06EFISAiTJ09m5syZNGzYkFatWtG+ffsiHXo0depUNm+27GYHLF6vjh07Mn78+HzVs2TJEm7dusW3336br/LC3PuNVdxKUDHnLwW9EZqUgY45zNP8vp2GPhv1XLkH5V1hZnstVTys/wKVcFQR3MeekVt1nLmt8GIFFfPfskdtY/4EQK+Gdly9a+TbfWkk66BvYzsmtLM9ZOjnf7jy9sIEjocZ8HJW8V1nZ2qWLtyFG7RaFaM/9ObHn2K5ej0N30p2DO7vhYODXKsqLtVmvYyiMxK7/gZabycqjWtCidbZf/eXn+aHRWI0gAABAABJREFULjSBxN23UDvbUebLZrj5V7SZ3+OjZugjErk//zSoVbgPb4T7e1ZWIcqk5M9duPfPYFK3X0FT2YMSU/yznVht97IvzvO7kDzud5Q7Sdh1roPz7Ldt5ndY8S6pnRdgPJr++6F6oQyOG7NfXEJlp0X9eQeMX22B2/ehfnk08/qicspmKN6uz8H/a4iMA40K3vWDvq2t53Vzgk3/B+//CKdvwos1Yd4wyO4coHNLmNIPpm6AhGTo0wa+LoK7aItnUr169ahXrx69evWiR48eVK9uGfAXlAQRxSjz0KbCVL16dT766CObzz/OMfq29lGlUjFjxgyLXpUM1arlbbm/c+fOMXLkSCpUqMDIkSMpV65c+lUplYrPP//crIfEw8ODpUuXcvLkSQ4fPszJkyf57rvvmDdvHtOnT8923kNB9O/fnw4dOpilTZs2DcBirWZvb+981RETE8PixYsJDAxEURRTEHbnTvp44vj4eFNAmnXol7BOo1bRtaaaWScNpBnhUCQ0+dnI/t4qGpa2PNG/Ga8QsFJPzMMRG1FJYJfDebSfr4bTIzQYjUq2wUNmX7zmwBevOZgN6bBl7p8pHA9LX+b37gOFmftS6NPUHq2mcC+tVfV14L/jfPK0H6LoaEs6UHtVOxSjgiqXr8e9Xy+SuOsWAMZEHXfn/43X0Ppo3K3Pn1Fp1Hh/9xqlvk1f9Sk3q71oyrlRamufPLXLcUgLHIe0QDEaUdn43cigLueO05FPUB5+7+eUH8AwZTvGz9Y9SlAUVI2zX5WKF8pDxCzQ60Gbi9Mpv7pw6nswGrFYD9mW0V3S//JSRghgzpw5rFq1irFjx/Lll1/SqFEjU0BRubJlL2V+SBBRyG7cuGGRdv36dSC95yG/KlWqREhIiMWY56wqVqzIvXv3aN68uc0T9PwqX748Bw8eJCEhwaIr7Nq1a7i4uJgmL2enYsWK/Pnnn5QtW9bUS2NLRk/GpUuXsn3Tb9++HYPBwIwZM8yOc3JyslkvRAaNRkOzZs1MqyhdvnyZvn37snDhQqZPnw7k7scwq+zKVK1alapVzS9hZxzHli1b5rkua+7evUtqairr1q1j3bp1Fs8vWbKEJUuWMHny5Gx7q4S5qUeMpGa61UaiDr47ZuSnAMuriD8cN5gCCEifo/qfPw10rJHz5zE/J945vU8TUxW+3W0+hPFYmIGt53W8Va9oJjxLAPFkye2JOsDtr46aPU67Gs+9ZZcoNby+jRIP68jP92V+3u95+F3LbV5Fp8f49TbzxLMRKOtOoOqTi+/m3AQQmeXnt1kCiCLztC3dmltDhw5l6NCh3L59m9WrV7Nq1So+++wzPvvsM1q0aEGvXr3o3r17gVaPlHdlIVuzZo3ZzTwSExNZu3Ytbm5uNG2a/5vEZFzBnjFjhsW8AyXTZLDAwEDu3r3Lr7/+anU7GcOE8qNt27YYjUaWLFliln7gwAEuXryIn59frgKXjEnHs2fPtnoTtMxt9Pf3x87OjgULFpgd1wwZ+54xLEzJMjFu0aJFFscrLi7OYju+vr44Ojpy//6jO7NmXKmPj7dya2IbnJyczLbxuJUvX57Jkydb/GXciyIwMJDJkycXWW/LsyraysTkaBvTVqylRydlf5+IopSYqpBs5QbF0QlyJ2lhTlEU9HcsJz3rbb3ZnxUpequTsZVoywtQQjxtypQpw8iRI9m7dy+hoaF8++23qFQqRo0aVeAeCemJKGQeHh4MGDDANGE6ODiYqKgoxowZU6DhS+3ateP1119ny5YthIWF4efnh5ubG6GhoRw8eJBVq1YB0Lt3bw4fPsz06dM5evQozZs3x8XFhaioKI4ePYq9vT3z5s3LVxs6derE5s2b+emnn4iIiKBJkyaEhYWxZs0avLy8zFZayk7dunUJCgpi/vz59OnTh3bt2uHt7U1MTAznz5/nwIEDHDqUvhRemTJlGDVqFFOmTKFXr14EBgbi4+NDdHQ0ISEhjB07llq1atG2bVuWLVvGBx98QJcuXbCzs+Pw4cNcuXLFondk0qRJREdH07JlS3x8fEhNTWXnzp0kJSURGBhoyle/fn1WrVrF5MmTad26NVqtlnr16mXbo1S/fn02btzInDlzqFKlCiqVCj8/vwIPHYqMjGTLli0ApnuE7N27l9u3bwOYjourq6vN+2xA+lA36YHIu+611PwZYX7S3c3Kcq0A3WurWXI6S97axXe9pmwJNa2ratl/7dEiAk52EFhHll0V5lQqFR5dqxG38vKjRI0K9y6FczfpJ5XKzRFV+zoo2889SrTToH6rYfE1Sogi4OPjQ926dXnhhRc4e/as6SbH+SVBRCF7//33+euvv1i9ejWxsbFUqlSJSZMm8eabbxZ42//5z39o3LgxGzduZMGCBWg0GsqVK2d2UqjVapk2bRpr1qxh69atpoDB29ubunXr0rFjDjfbyYZWq2XWrFmmm83t3r0bNzc3/P39GTFiRJ4mawcFBVGnTh1WrFjB8uXLSU5OxtPTk2rVqvHJJ5+Y5e3WrRsVKlRg6dKlrFixAp1Oh7e3N82bNzfdd6JRo0ZMnTqVH3/8kblz5+Lg4ECLFi2YP38+Q4YMMdteQEAAwcHBbNmyhXv37uHi4kLVqlWZMmUK/v7+pnzt27fn4sWL7Nixg127dmE0Ghk3bly2QcSIESOIj49n9erVJCQkoCgKmzZtKnAQER4ezty5c83Sdu/eze7du037L0vhFZ1/NVFxN1nF/NMKWjW810jN4PrWA4OA6mp+aK9h6iED99Ogb101E/2K5+7zGVb0d2Xk2iS2n9fh4qCifS1t5lsBCGFSYe6rqOzVxG+8jl15F8pOfBGnBs/+DQM1Pw3EMHI5yrazUKUUmq+7oKqav7lp4umiPJujmUwURWHPnj2sXLmS9evXExMTQ8mSJenVqxc9e/Ys0LZVStbxHyJfMu5YPXfuXLO7FQshxJNgwcEUglY+GpZSxk3FyU/c8XGXUa3FQafTsXjxYgAGDhyInZ1dDiWEEEXhpyprcp13wHXbq0o+afbt28eqVatYs2YN0dHRlChRgs6dO9OzZ0/atWuHNq9zeayQngghhHgOfP27+Zjv2wkKi4+k8vnrskqXEEI8a1555RVcXV3p1KkTPXv25M0338TevnCHsUoQIYQQz4G4ZMtOZ2tpQgghnn6rV68mMDCwyG4nALI6kxBCPBf+0dT8CpRaBT0by+RqIcTzzahS5frvadK1a9ciDSBAeiIKTadOnUwrMgkhxJPmm7ecsdeoWP1XGqXdVIx53YmmFeUnQAghRP7IL4gQQjwHHO1UfNvZmW87Oxd3U4QQQjwDJIgQQgghhBDPpWd9ideiJHMihBBCCCGEEHkiQYQQQgghhBAiTySIEEIIIYQQzyVFpcr139Pm/v37TJ48mfbt29O4cWOOHDkCQGxsLN999x1Xrlwp0PZlToQQQgghhBDPkFu3bvHKK68QFhZGjRo1uHDhAomJiQB4enoyb948bt68yfTp0/NdhwQRQgghhBBCPEM+/fRTEhIS+OuvvyhdujSlS5c2e75z585s3ry5QHXIcCYhhBBCCCGeITt27OBf//oXderUQWVlKFbVqlUJCwsrUB3SEyGEEEIIIZ5LT+Nch9xITk7G29vb5vMJCQkFrkN6IoQQQgghhHiG1KlTh71799p8fsOGDTRu3LhAdUgQIYQQQgghxDPkww8/ZMWKFUyZMoX4+HgAjEYjV65coV+/fhw8eJCPPvqoQHXIcCYhhBBCCPFcelbvWN23b19u3rzJmDFj+OKLLwB48803URQFtVrNf//7Xzp37lygOiSIEEKI54iiKABWJ9oJIYR4dnzxxRf069ePtWvXcuXKFYxGI9WqVeOdd96hatWqBd6+BBFCCPEcMBgVPg0xMv+0gloFwxqqmOynRi3BhBBCPFMePHhAmzZtGDJkCMOGDSvwsCVbZE6EEEI8B74/rvD9cYUkHSSkwTdHFWafVIq7WUIIIQqZs7Mz169fL/IeZwkihBDiObDuktEibeMVCSLEc05RYOp6qDUSGnwEP+4s7haJx0xRq3L99zR58803+e2334q0DhnOJIQQz4HIJMs0NzsJIsRzbuZW+PfPjx4PmQNebtDlxeJrkxCF4Msvv6R79+7069ePoUOHUqVKFZycnCzyeXp65rsOCSKEEOIZZ1QUwhMt0yuVeLqurAlRqPQG+N9Gy/T5OyWIEE+9unXrAvD333+zbNkym/kMBkO+65AgQgghnnFqlQqtGnRZRjS5OxZPe4R4Iny0CMJiLNP3/Q0paeBo//jbJB67Z/WO1WPHji3yORESRAghxHNAY+W3ZP1lhfa+Ci+XfzZ/RIWwSW+AhbusP5eUCltPwDvSGyGeXuPHjy/yOmRitRBCPAccNJZpZ2PAb4WBLVctJ10L8VyTuFqIHElPhBBCPAfKusDdFMt0owLfHVcIrPb42yREsdFq4B9+8OPvls+pVNChyeNvkygWT9uqS7k1ceLEHPOoVCq+/PLLfNfxRAcR48ePZ/PmzRw7dizHvBEREbz11lsMGTKEoUOHPlFtCwoKIjIykuDg4CJvly15PT4XL15k2rRpXLhwgYSEhMd2XIUQRcOYzUJMCWmySpN4Do3ubD2IUAP2T/TpkRA5ym44k0qlQlGUZzuIEMVDr9czevRo9Ho9w4YNw83NjRo1ahR3sx67PXv2cPHixTwFT8uWLcPNzY1OnToVWjsURWHbtm3s27eP8+fPc+fOHTw8PKhZsyaDBw+mXr16Zvlv3LjBjz/+yIULF7hz5w56vZ6yZcvy8ssv079/f0qVKlVobRNPh9B4I9fibD/fr46MbBXPobIlraeX9gC1fCbE081otBymajQauXnzJrNnz2bv3r1s27atQHU80Z+SMWPGcODAgeJuxnMnPDyc8PBwevfuTc+ePQkICHhug4gFCxbkqczy5csLvccpLS2NsWPHcvPmTd544w0+/fRTunTpwsWLFxk4cCBbt241yx8dHU1MTAyvvvoqI0eOZNSoUbRs2ZL169fTt29fYmNjC7V94sm27ZqRmouMpNqY9tC5Ooxs/Gx25wuRrXtW1j0G0DzRp0ZC5JtaraZKlSr873//o0aNGrz//vsF2l6BeyIMBgM6nQ5Hx8JfK1Cr1aLVSmfJ43b37l0A3N3dC3W7iqKQnJyMs7NzoW73aRYUFATA/PnzbebRaDTMmzePpk2bmqV36dKFHj16MG3aNN58803UD6+ctWjRghYtWlhsp0mTJnz22WcEBwczYMCAQtwL8SQbtcdIajbLgFd0o8iXARTiiWTlSi0A8VbuzCieXc/p95+fnx///ve/C7SNPJ2hBwcHM2HCBGbPns2ZM2cIDg4mKiqKMWPG0KlTJxRFYe3atWzYsIHr16+jVqupU6cOQ4YMoVmzZmbb2rx5M6tWrSI0NBS9Xo+Xlxf169dn1KhRlCyZ3sVoa97BX3/9xYwZM7h48SIuLi74+/vTtWtXm+2dO3euRf3W5ikcOnSIjRs38vfffxMTE4OdnR1169Zl0KBBFidwheHEiRP8+OOPnDt3Dr1ej6+vL927d6dz585m+c6ePcuaNWs4ffo0t2/fRqPRUL16dfr168err75qsd3cHh9rgoKCOHHiBAATJkxgwoQJAGzatIly5cqRnJzMwoUL2blzJ9HR0ZQoUYKWLVsyfPhwfHx8TNs5duwYw4YNY9y4cSQnJ7N69Wpu3brFu+++axoetGPHDlauXMnly5cxGAymfWrXrp1Fu44dO8bPP//M2bNnSU5Oxtvbm6ZNm/Kvf/0LDw8PAFavXs2ePXu4du0a9+7dw93dnRYtWjB8+HDKlStntr39+/ezdOlSrl69SkpKCh4eHtSpU4eRI0dSuXJls+OQ+b0zbtw4m0OVMvJFRkaalck4dvml1Wqtvv+8vLxo0qQJu3fvJjY2NsdhSmXLlgUgISEh320RT5+L97J//nDk42mHEE+U307CO1OtP5eQAncT0u9cLcQz6tixY6aLj/mVr8v806dPR6/X06VLF1xcXKhcuTKQfmOL3377DX9/fzp1+n/27jw+pnt//PhrsghZJOQGsSVIcW1FLL0twY1WK+IrFaS+aEMTQW6rtdzefl3B9f1d1XtdNCGoLVpCbJFYStskKq2t1FYSe8giNBIJE2Yy5/dHvpkaM4lsEon38/GYRzuf8znn8zmfjJnzPp/leKPRaNi7dy9Tpkxh4cKF9OvXD4Ddu3czZ84cunXrRlBQEFZWVty6dYvExESysrL0QYQpZ8+eZfLkyVhbWzNu3Djs7OzYv38/ISEh5TkVAzExMeTk5DB48GAaN25MZmYm0dHRTJ48mfDwcLp161bhMoocPHiQGTNm4OjoyJgxY7C2tmb//v3Mnz+f1NRUpkyZos8bHx/PtWvXGDhwIM7OzuTk5BAbG8uMGTOYP38+b775pj5vRdtn/PjxvPzyy6xduxYfHx/9OTdo0ACtVktwcDCnTp3C09OTMWPGkJKSwrZt2zhy5AgRERE0btzY4HibNm0iJyeHYcOG4ejoqN++bNky1qxZw6uvvkpQUBBmZmbExcXxySefMHPmTEaOHKk/xrZt21iwYAGNGjVi+PDhODs7k5GRwQ8//MCtW7f0QcRXX31Fp06dGDVqFPb29ly+fJmdO3dy7NgxIiMj9fl+/vlnPv74Y9q0aYO/vz+2trbcuXOHo0ePcuPGDVxcXBg/fjyKonDy5EmDFQ66dOlSbNvNmzePRYsW4eDgwPjx4/XpJX2eKyozMxNLS0vs7Ix/7B4+fIharebhw4dcvXqVpUuXAvDaa689s/qI58v9R8pTV6o8nwWaAgVLUw+SEKI20ulgYjg8eFh8nvBv4H98q65OQlSyiIgIk+nZ2dkcPHiQ7du38/7771esEKUMdu3apbi7uys+Pj6KWq022Pb9998r7u7uyrZt2wzSNRqNMmbMGMXb21vR6XSKoijK9OnTFQ8PD0Wj0ZRYXkhIiOLu7m6Q5u/vr/Tu3Vu5du2aPu3Ro0fK2LFjFXd3dyU8PNyovseOHTM6dkBAgDJkyBCDtAcPHhjlu3PnjvLnP/9Z+ctf/vLUuhXnybK0Wq3i5eWl9OvXT8nMzDQ4D39/f6Vnz57K9evXS6yXWq1WfHx8FF9fX4P0srRPcY4dO6a4u7sru3btMkjfvn274u7urixevNgg/YcfflDc3d2VWbNmGR1jwIABym+//WaQ//z584q7u7sSGhpqVPbHH3+seHh4KHl5eYqiKEpGRobyyiuvKL6+vsq9e/eM8hcUFOj/31Q7HTlyRHF3d1fWrVunT/v3v/+tuLu7G9XrSWX5GxcZMmSIEhAQUOr8AQEBZcr/uKJ2//vf/25ye2RkpOLu7q5/eXt7K3v27ClXWc/Kb7/9puTn5+vf5+bmGvydHz58qNy5c8dgn7S0tBLfp6en679rXvQyDpy7pfC55qmvq9m65/o8amMZjx49UqKjo5UVK1Yojx49qrHnUSPLyMxWFHxKfr392fN/Hi9YGc/Kss4xpX7VJCqVqtiXk5OT8re//c3oWr6sytUT4evrazQHYs+ePdjY2NC/f3+ys7MNtvXt25eVK1eSkpKCi4sLtra25Ofnc+jQIfr161fq8bhZWVmcPn0aT09Pfe8HgKWlJaNHj2bWrFnlOR29evXq6f//wYMHPHr0CHNzczp16sTZs2crdOzHnT9/noyMDEaPHo2Tk5M+3dLSknHjxjF9+nQSEhIYO3asUb3y8/PJzy9c7L1nz55s27aNvLw8bG1tn3n7xMXFYWZmhr+/v0F6nz59aNu2LQcPHkSn0xl0j3l5edGwYUOD/Hv37kWlUuHl5WX0WfHw8CAhIYEzZ87wyiuv8O2336LRaAgICDB5t/3xsoraSafT8eDBA7RaLW3btsXW1tbg72drawvA999/z7Bhw6ps3k3RZ+pxWq0WwKgd6tSpU+LckZSUFEJCQmjUqBEfffSRyTz9+/fH1dUVtVpNUlISCQkJRuVUtyc/G0V/myJ16tTB0dHRIO3xYXOm3hcN25Iy4LWXnGhQt4C7Jp4PUaSRNTS3e77Po7aWkZGR8czLqC1tVall/KE+uDnDpRLG8r3S9vk/jxesDFE2V69eNUpTqVQ0aNDA5PVUeZTr6qlly5ZGadeuXeP+/fu88cYbxe6XlZWFi4sL/v7+nDhxgunTp2Nvb0/37t157bXXeP3117GxsSl2/9TUVABcXV2NtrVu3brsJ/KEmzdvEhYWxuHDh43GjVfmxMO0tDTAdJ3btCl84lPRuUJhuy1fvpyEhASTK+sUBRHPun3S0tJwcnKifv36JuudnJxMdna2wZeHqc/K1atXURQFX9/iu4qLJnffuHEDgHbt2j21fseOHWPVqlWcO3eOhw8Nu6kf/3uOHDmShIQEFixYwBdffMHLL7/Mq6++yqBBg57p0KOFCxcSGxtrctuT80CGDBlS7BrPqampTJo0CYClS5cWW+fGjRvrh4/179+fP//5z4wbN478/HyjQFDUTvUsVaweZMa7e3XkPjKdp28zsKilD1sSwiSVClZPhtfnwiOt8XbrOjDlraqvlxCVSKVS4eTkZHAj+nFqtZrbt2+bvE4rrXIFEaZWYlIUhQYNGjB//vxi9yu6QG7ZsiVRUVEcPXqUY8eOceLECebPn8+KFStYtWoVzZs3L0+1jJR04V9QYLhcyYMHDwgICECtVvPOO+/g5uaGjY0NKpWKdevWcezYsUqpU1kpikJwcDBXr17Fz8+PDh06YGtri5mZGTExMezbt8/kWsDPi+JW7VKpVCxdurTYST1Fn5XSOnfuHMHBwTRv3pzg4GCaNm2KlZUVKpWKTz/91KCNHBwciIiI4OTJkxw5coSTJ0+yaNEiVqxYwZIlS0qc91AR48aN4623DH+YFi9eDMDUqVMN0h/voXpcWloaQUFBqNVqli1bhpubW6nLf+mll2jXrh1bt26VIOIF4vOSGa+7qBgYVWByEvX3KfBQq2BlIYGEeIF4dISPvOGzHcbbFMDaqsqrJERlatWqFRs2bGD06NEmt+/atYvRo0cbXQ+XRaWN42jRogUpKSl07ty5VEt41qlThz59+tCnTx+gcLWcqVOn8vXXXxe75FTRCjfXrl0z2nblyhWjtKI75vfu3TPalpaWZjCM5ejRo9y+fZvZs2czdOhQg7zLly9/6vmURbNmzQDTdS5KK8pz8eJFkpOTTT4xeufOnQbvy9o+ZdWsWTN++ukncnNzjbrCrly5go2NjX7ycklatGjBjz/+SJMmTWjVqlWJeYsi5OTkZIMhWk/at28fBQUFLF26VN92UBhpm1qNyNzcnB49euhXUbp48SJjxoxh9erVLFmyBChf71NJ+7Ru3dqoR6ioHXv37v3UY6elpTFx4kTy8vJYtmwZ7du3L3P9Hj58SE5OTpn3EzWbbR1VsROs7z6E47fgtWbFZBCitpoxDD7fafw4d/UjuJIBrZuY2kvUMkotXeJVUZQSt2s0mgqvzlRpT1Tx8vJCp9MRGhpqcnvR8BQwHv8N6C+ISrrAKVoGNiEhgevXr+vTNRoNGzduNMpfdAF69OhRg/R9+/Zx+/ZtgzRzc3PAuNEPHz5cqfMhoPBcmzRpQkxMDHfu3NGna7VaNmzYgEql0q9kVfQHfrJely5dIj4+3iCtrO1TVv3790en07Fu3TqD9MTERJKSkvDw8CjVB3Lw4MEAhIWFmYyAH/+seHp6YmlpyapVq8jLM34wUFG7FPf3W7NmjVFPjanPn6urK3Xr1jUIOIu6AMty0V2vXj2TQWtFpaenExQURG5uLqGhofzxj38sNu/jn6nHHT9+nMuXL9O5c+dKr594vimKwoVinjFopip8VoQQLxxHO6hXxzjdTAVOlfucJCGqwr1790hJSSElJQUovJ4qev/46/Tp00RGRlZ43kml9UQMHDgQb29vtmzZwoULF+jbty8ODg5kZmZy+vRpbt68SXR0NABTpkzBzs6Obt260bhxY3Jzc4mJiUGlUukvMIvz0UcfMXHiRCZMmMCIESP0S5iauhh1dXWlV69ebN++HUVRaNu2LcnJycTHx9OiRQv9pFaArl274ujoyOLFi0lPT6dRo0YkJyezZ88e3NzcuHTpUmU1Febm5sycOZMZM2bw7rvv4uPjg7W1NQcOHODMmTP4+/vrA6BWrVrRunVrIiIiyM/Px8XFhZSUFLZv346bmxvnz58vd/uUlbe3N7Gxsaxfv560tDS6d+/OjRs32Lp1K46OjgbL0pakY8eOBAYGsnLlSkaPHs3AgQNxcnLizp07nD9/nsTERA4fPgwUjuufNm0an332GX5+fnh5eeHs7ExmZiYJCQnMnj2bdu3a0b9/fzZu3MiHH36Ij48PlpaWHDlyhEuXLhn1jsyfP5/MzEx69+6Ns7MzDx8+5MCBA9y/fx8vLy99vs6dO7NlyxYWLFhAnz59sLCwoFOnTgY9HU/q3Lkz0dHRLF++nFatWqFSqfDw8Ch2TGJp3L9/n6CgINLS0hg1ahTXr183CBKhsCejaJLaggULuHPnDj179qRJkyY8evSI8+fPs3//fqytrY2GTona75dMyC5mNcs/t4SW9WvnnTghnqrAxHDgOhZgV/7vbCGqy3/+8x/9svQqlYqpU6cW+5uvKEqJUxBKo1KXpQkJCaFHjx7s2LGDdevWodFocHR0pH379gYXmL6+vhw4cIDt27eTk5ODvb097dq1Y+bMmUYPhXtSly5dCAsLIzQ0lPXr12Nra6t/mJqfn59R/nnz5vH555+zb98+9uzZQ7du3QgPD+ef//wn6em/DxC2s7MjNDSUpUuXsnnzZgoKCmjfvj1LliwhOjq6UoMIKFyFaNmyZaxevZoNGzag0WhwdXVl1qxZBg+bMzc3Z8mSJSxevJjY2FjUajVt2rRhzpw5JCcnGwURZW2fsrCwsCA0NFT/sLm4uDjs7Ozw9PRk8uTJRqszlCQwMJAOHToQGRnJpk2bUKvVNGzYkDZt2jB9+nSDvL6+vjRv3pyIiAgiIyPRaDQ4OTnRs2dP/cThrl27snDhQr788kvCw8OxsrKiV69erFy5koCAAIPjDR48mJiYGHbv3s3du3exsbGhdevWfPbZZ3h6eurzDRo0iKSkJPbv3893332HTqcjJCSkxCBi8uTJ5OTkEBUVRW5uLoqisGvXrgoFETk5OfpJ85s3bzaZJzw8XB9EDBo0iN27d7Nnzx7u3r2LSqWiSZMmvP3224wbN65MfydRO1hbFN+t/UH3SuuQFqLmsasH+RrDtEdayMqFhtJF9yJQVLXnO/CNN97A1tYWRVGYOXMm77zzDt27dzfIo1KpsLGxwd3d/anX3E+jUp42aEoIIUSNFnNZx9AdxndcOzSEU++Zy+pM1UCj0bB27VoA/P39sbS0rOYavaAWbIO/fW2cvmoSvP961ddHVLmwrntLnXfKLzVn1a65c+cyfPhwOnXq9MzKqD3hlxBCCJMsi/mm7/gHWd5VvOAmFrMsfZ2qeX6QEM9KSEjIMw0goJKHMwkhhHj+DHRR0dQG0u4bpu+8BPceKtS3kkBCvKASk0ynv1b84hWidlFq+Y2UxMRETpw4QU5OjtFCMyqVir///e/lPrYEEUIIUctZmKn4ay8VH8YZjl7V6kDz/D5mRohnL7+YpzBKT4So4bKysvDy8uLo0aMoioJKpdKvYFn0/xUNImQ4kxBCvADGdjSjwRPPfhzqpsKxXu2+CydEid7qDo0dDNM8u0CLP1RLdYSoLDNmzOD06dNs3LiRK1euoCgK33zzDcnJyQQFBdG1a1fS0tIqVIYEEUII8QJoUFdF/Chzhrmp6OgIH3ZXEfGW/ASIF5xNXYifB75/gg4tYPKbEDX96fsJ8Zzbs2cPEydOZNSoUfoH25qZmeHm5kZYWBiurq4VXvJd+uuEEOIF0cVJxY5h5tVdDSGeL+2bQ9SM6q6FqCa19YnV2dnZdOzYEQBbW1sAg4f2vvHGG3z66acVKkNuQwkhhBBCCFGLNG3alIyMDACsrKxo1KgRp06d0m9PTU1FVcEASnoihBBCCCGEqEU8PDw4cOAA//M//wPAqFGjWLhwIebm5uh0OhYvXsygQYMqVIYEEUIIIYQQ4sVUO0cz8fHHH3PgwAEePnyIlZUVc+bM4dy5c/rVmDw8PPjiiy8qVIYEEUIIIYQQQtQinTt3pnPnzvr3DRo04NtvvyU7Oxtzc3P9ZOuKkCBCCCGEEEKIF4CDg0OlHUsmVgshhBBCiBeSolKV+lXTpKSkEBQURLt27WjYsCEHDx4E4M6dO3zwwQecPHmyQseXngghhBBCCCFqkV9//ZW+ffui0+no3bs3ly5dQqvVAvCHP/yBQ4cOcf/+fVavXl3uMiSIEEIIIYQQohaZOXMmDg4OHD58GJVKRaNGjQy2e3l5sXnz5gqVIcOZhBBCCCGEqEUOHjzIpEmTcHJyMvk8iJYtW5KamlqhMqQnQgghhBBCvJAUs5o316E0dDod1tbWxW6/ffs2VlZWFSpDeiKEEEJUqivZCnMSC5iTWMDlbKW6qyOEEC+c7t27s3v3bpPbtFotkZGRvPLKKxUqQ4IIIYQQlebELYUu6wuY+5PC3J8UOq0tIPGmrrqrJYQQL5S//e1v7Nu3j0mTJnH27FkAbt26xbfffssbb7zB+fPn+eSTTypUhgxnEkIIUWk+P6bjvub39/kFMGCLjqih8F9uct9KCPF8qYlLt5bGW2+9xbp16/jwww9ZuXIlAGPGjEFRFOrXr09ERAQeHh4VKkOCCCGEEJUm84FxmkYHfjE60iZBg7oSSAghRFUYO3Ysb7/9Nvv37+fSpUvodDratGnDoEGD5InVQgghni9vv6Ti+xTjeRD5BfD+Nzq2/ZcEEUII8Sx8+umn+Pn50aVLF32ajY0NPj4+z6Q8+TYXQghRaSZ3VfHf7U1v23MFFEUmWgshxLOwYMEC/fwHgN9++w1zc3O+//77Z1Ke9EQIIYSoNCqViss5prfZ1MHkeuVCCFFdauuciCLP8saN9EQIIYSoNCt+KeBwuultH7vLT44QQtQW0hMhhBCiUiTcUAj61vRdr9dd4NNXJIgQola7ngk7jkBDW/B9Fawr9jAz8XyTIEIIIUSlWH2m+OdBHEqF+BQd/VtKICFErfTtKRjy/+Dh/63xPH8bHP4nNKz4KkDPUm0bznTt2jVOnDgBQE5O4djSixcv4uDgYDJ/9+7dy13Wc/1tPmfOHHr06FGqvGlpafTo0YMVK1Y841oVKkvdAgMD8fb2fsY1KllZ2ycpKYlJkyYxYMCAKm1XIUTNlX6/+LG3ai38PVEeOidErfU/G38PIAAupsGYxdVWnRfV3//+d3r27EnPnj0ZOHAgAJMnT9anFb169OhBz549K1SW9EQII1qtlpkzZ6LVagkKCsLOzo6XXnqpuqtV5eLj40lKSmLixIml3mfjxo3Y2dlVetB49uxZ9u7dy/nz57l48SJqtZqQkBCT5Tx48ICvvvqK8+fPk5SURGZmJt27d9c/bEaIZ6VdA/j2evHbrxYz4VoIUQtcvWWctvckJJ6H1/5Y9fV5Aa1du7ZKy3uug4hZs2bxt7/9rbqr8cJJTU0lNTWVqVOnMmrUqOquTrWJj48nNja2TEHEpk2bcHZ2rvQgIjExkaioKFxdXXnppZc4ffp0sXmzs7NZuXIljo6OtG/fnt9++61S6yJEcbo2Knn74Na1a9iAEOIxr/0Rdh4xTj9w6rkOImrTcKZ33323SsurcBBRUFCARqOhbt26lVEfAxYWFlhYPNdxTq1UdNFpb29fqcdVFAW1Wo21tXWlHrcmCwwMBHhqL4Gvry/jxo2jXr16fPvttyUGEX/4wx/YvXs3jRs3BqBv376VV2EhSnD9ngowPaTJ2QY+7/dcj6AVQlREO2fT6S8Vky5qvDJdocfExDB37lzCwsI4c+YMMTExZGRkMGvWLLy9vVEUhW3btrFz506uXr2KmZkZHTp0ICAgwGj+QGxsLFu2bCElJQWtVoujoyOdO3dm2rRpNGjQACicdxAbG8vx48cN9v3ll19YunQpSUlJ2NjY4OnpyfDhw4utb3h4uFH5gYGBpKenExMTo087fPgw0dHR/Prrr9y5cwdLS0s6duzI+PHjcXd3L0tTlcqJEyf48ssvOXfuHFqtFldXV0aMGMGwYcMM8p09e5atW7dy+vRpbt26hbm5OW5ubowdO5YBAwYYHbe07WNKYGCgfkLO3LlzmTt3LgC7du2iadOmqNVqVq9ezYEDB8jMzKR+/fr07t2bSZMm4ez8+xfF8ePHCQoKIiQkBLVaTVRUFDdv3uS9997T39nfv38/mzdv5uLFixQUFOjPqWgM3+OOHz/Ohg0bOHv2LGq1GicnJ9zd3fnggw/0k4WioqKIj4/nypUr3L17F3t7e3r16sWkSZNo2rSpwfEOHTpEREQEly9fJj8/HwcHBzp06EBwcDAuLi4G7fD4Z6e4IUSP50tPTzfYp6jtKsLR0bHUeevUqaMPIISoSpEXip8T0dtZhb1V7bnjJ4R4jKLAvpOmt9WTFZpqq3Ld5l+yZAlarRYfHx9sbGxwcXEBYPbs2XzzzTd4enri7e2NRqNh7969TJkyhYULF9KvXz8Adu/ezZw5c+jWrRtBQUFYWVlx69YtEhMTycrK0gcRppw9e5bJkydjbW3NuHHjsLOzY//+/YSEhJTnVAzExMSQk5PD4MGDady4MZmZmURHRzN58mTCw8Pp1q1bhcsocvDgQWbMmIGjoyNjxozB2tqa/fv3M3/+fFJTU5kyZYo+b3x8PNeuXWPgwIE4OzuTk5NDbGwsM2bMYP78+bz55pv6vBVtn/Hjx/Pyyy+zdu1afHx89OfcoEEDtFotwcHBnDp1Ck9PT8aMGUNKSgrbtm3jyJEjREREGF28btq0iZycHIYNG4ajo6N++7Jly1izZg2vvvoqQUFBmJmZERcXxyeffMLMmTMZOXKk/hjbtm1jwYIFNGrUiOHDh+Ps7ExGRgY//PADt27d0gcRX331FZ06dWLUqFHY29tz+fJldu7cybFjx4iMjNTn+/nnn/n4449p06YN/v7+2NracufOHY4ePcqNGzdwcXFh/PjxKIrCyZMnmTdvnr4ujz9K/knz5s1j0aJFODg4MH78eH16SZ9nIWqTG/eK3xb0sgQQQtRaa7+HU8VMiDI1V0LUCuUKIvLz89m4caPBEKa4uDj27t3Lp59+yttvv61P9/Pzw9/fn3//+994eHigUqmIj4/HxsaG5cuXGwxXCgoKemrZixYtQqfTsXr1an3wMmLECCZMmFCeUzEwa9Ys6tWrZ5A2fPhwRo4cydq1aystiCgoKGDhwoXUq1eP9evX4+TkBMDIkSOZOHEi69evx9vbm5YtWwIwYcIEgoODDY7h5+fH6NGjWb16tUEQUdH2eeWVV7CwsGDt2rV06dKFwYMH67ft2LGDU6dOMXbsWD788EN9eu/evZk6dSqhoaH84x//MDheRkYGW7dupWHDhvq0CxcusGbNGvz9/Q2CJT8/P6ZNm0ZYWBheXl7Y2Nhw69Yt/vWvf+Hq6sqaNWuws/t9qbhJkyah0/2+2ktkZKTR38/Dw4PJkycTHR2tHyuYkJCATqcjLCzMoF7vv/++QTvs27ePkydPGrRBSQYPHszy5ctp2LBhqfcRojZp5QAXsozTzYBBrWQokxC11tYfi982sPibb8+D2jQnoqqV61vd19fXaA7Enj17sLGxoX///mRnZ+tfeXl59O3bl7S0NFJSUgCwtbUlPz+fQ4cOlelx3FlZWZw+fZp+/frpL5ABLC0tGT16dHlOxcDjF6APHjwgOzsbc3NzOnXqxLlz5yp8/CLnz58nIyODoUOH6gMIKDyPcePGodPpSEhIMFmv/Px8srOzyc/Pp2fPnly9epW8vDzg2bdPXFwcZmZm+Pv7G6T36dOHtm3bcvDgQYOLegAvLy+DC3WAvXv3olKp8PLyMvisZGdn4+Hhwf379zlz5gwA3377LRqNhoCAAIMAooiZ2e8f4aJ20ul05OXlkZ2dTdu2bbG1teXs2bP6fLa2tgB8//33aLXaCrRI2RR9ph5/abVatFqtUfqDBw+qrF7VKSsri4cPH+rf5+XlkZubq3//6NEjo4nh6enpJb7PyMgw+F6RMqqujKFtMOnxb4WacB5VVUaTJk1qxXlIGVJGXnMHTLK3hpdbVUoZ4vlTrp6Iojvkj7t27Rr379/njTfeKHa/rKwsXFxc8Pf358SJE0yfPh17e3u6d+/Oa6+9xuuvv46NjU2x+6empgLg6upqtK1169ZlP5En3Lx5k7CwMA4fPmzwYQdQVWKkmpaWBpiuc5s2hb/CRecKhe22fPlyEhISyMoyvs2Xl5eHra3tM2+ftLQ0nJycqF+/vsl6Jycnk52dbRA0mPqsXL16FUVR8PX1Lbasoi+XGzduANCuXbun1u/YsWOsWrWKc+fOGXxBAgZ/z5EjR5KQkMCCBQv44osvePnll3n11VcZNGjQMx16tHDhQmJjY01ue3IeyJAhQ5gzZ84zq8vz4skAsyjAK1KnTh2j+SCPz70x9f7JCzMpo+rKGOSiYuEx0zeGbj9QcLJW1YjzqKoyMjIynnkZtaWtpIznuwzbkNGwOh50T/z7z3kAyWnYtjWcF1ieMsTzp1xBhKmVmBRFoUGDBsyfP7/Y/YoukFu2bElUVBRHjx7l2LFjnDhxgvnz57NixQpWrVpF8+bNy1MtIyVd+BcUFBi8f/DgAQEBAajVat555x3c3NywsbFBpVKxbt06jh07Vil1KitFUQgODubq1av4+fnRoUMHbG1tMTMzIyYmhn379hnd/X+eFLdql0qlYunSpQY9CY8r+qyU1rlz5wgODqZ58+YEBwfTtGlTrKysUKlUfPrppwZt5ODgQEREBCdPnuTIkSOcPHmSRYsWsWLFCpYsWVLivIeKGDduHG+99ZZB2uLFiwGYOnWqQfrjPVRC1BTNje8v6H31q46PephXXWWEEFWnsQPYWEFuvvG28zehbcUWF3mWZDhT+VXa+qktWrQgJSWFzp07l2oJzzp16tCnTx/69OkDFK6WM3XqVL7++mv++te/mtynaIWba9euGW27cuWKUVrRHfN794xn+6WlpRnMxzh69Ci3b99m9uzZDB061CDv8uXLn3o+ZdGsWTPAdJ2L0oryXLx4keTkZAICAoyeV7Bz506D92Vtn7Jq1qwZP/30E7m5uUZDi65cuYKNjU2xj1V/XIsWLfjxxx9p0qQJrVq1KjFvUU9GcnKywRCtJ+3bt4+CggKWLl2qbzsAtVpt1KsEYG5uTo8ePfSrKF28eJExY8awevVqlixZApSv96mkfVq3bm3UI1TUjr179y5zWUI8bz45WPzw1P89ovCX7goWZvKDLUStc+KK6QDCwhz+1Lbq6yOqRKXNdPPy8kKn0xEaGmpy++Nj37Kzs422t2/fHoCcnOIfaVq0DGxCQgLXr/++CoBGo2Hjxo1G+YsuQI8ePWqQvm/fPm7fvm2QZm5eeIfsyTkahw8fNhhPXxnat29PkyZNiImJ4c6dO/p0rVbLhg0bUKlU+pWsiu7UP1mvS5cuER8fb5BW1vYpq/79+6PT6Vi3bp1BemJiIklJSXh4eBTbs/C4oknHYWFhRj1CYPhZ8fT0xNLSklWrVunnfjyuqF2K+/utWbPGqKfG1OfP1dWVunXrGgScRXMsSvpMPqlevXomg1Yharur2Qo7LhW//Tc17L9W+jlwQogapGkDMPX7P88PGjlUeXVE1ai0noiBAwfi7e3Nli1buHDhAn379sXBwYHMzExOnz7NzZs3iY6OBmDKlCnY2dnRrVs3GjduTG5uLjExMahUqqeuavPRRx8xceJEJkyYwIgRI/RLmJq6GHV1daVXr15s374dRVFo27YtycnJxMfH06JFC4NJtV27dsXR0ZHFixeTnp5Oo0aNSE5OZs+ePbi5uXHpUgm/jmVkbm7OzJkzmTFjBu+++y4+Pj5YW1tz4MABzpw5g7+/vz4AatWqFa1btyYiIoL8/HxcXFxISUlh+/btuLm5cf78+XK3T1l5e3sTGxvL+vXrSUtLo3v37ty4cYOtW7fi6OhosNJSSTp27EhgYCArV65k9OjRDBw4ECcnJ+7cucP58+dJTEzk8OHDADRu3Jhp06bx2Wef4efnh5eXF87OzmRmZpKQkMDs2bNp164d/fv3Z+PGjXz44Yf4+PhgaWnJkSNHuHTpklHvyPz588nMzKR37944Ozvz8OFDDhw4wP379/Hy8tLn69y5M1u2bGHBggX06dMHCwsLOnXqZNDT8aTOnTsTHR3N8uXLadWqFSqVCg8PD6NVo8oqPT2d3bt3A7/3Kh08eJBbtwqXzitqlyKbN2/W98BotVoyMjL48ssvAWjbti0eHh4Vqo8QT3pQijUK7muefT2EENWg+R9g8iAI3ft72vBX4G+le0ZVdVKkd7TcKvVx0CEhIfTo0YMdO3awbt06NBoNjo6OtG/f3uAC09fXlwMHDrB9+3ZycnKwt7enXbt2zJw50+ihcE/q0qULYWFhhIaGsn79emxtbfUPU/Pz8zPKP2/ePD7//HP27dvHnj176NatG+Hh4fzzn/80mPlvZ2dHaGgoS5cuZfPmzRQUFNC+fXuWLFlCdHR0pQYRULj06LJly1i9ejUbNmxAo9Hg6urKrFmzDB42Z25uzpIlS1i8eDGxsbGo1WratGnDnDlzSE5ONgoiyto+ZWFhYUFoaKj+YXNxcXHY2dnh6enJ5MmTjSZvlSQwMJAOHToQGRnJpk2bUKvVNGzYkDZt2jB9+nSDvL6+vjRv3pyIiAgiIyPRaDQ4OTnRs2dP/XMnunbtysKFC/nyyy8JDw/HysqKXr16sXLlSgICAgyON3jwYGJiYti9ezd3797FxsaG1q1b89lnn+Hp6anPN2jQIJKSkti/fz/fffcdOp2OkJCQEoOIyZMnk5OTQ1RUFLm5uSiKwq5duyocRKSmphIeHm6QFhcXR1xcnP78Hw8ivvrqK4PPd1pamn7/IUOGSBAhKl3HP6jo4gSnbxefR36rhajFlr4PXu7wUzJ0awVDe1Z3jcQzplLKssaqEEIIUYz0PB2uK3U8Kmath/GdVKx+UyZXQ+Ew07Vr1wLg7++PpaVlNddIiBfTwn4HS513ZoLcgHucPP1HCCFEpXC2NcPHrfjtjYtfwVsIIUQNU6nDmYQQQrzY0u+bTm9kDZNelvtWQojniyzxWn7yjS6EEKLS2NYxnb53uBkt6suPtRBC1BYSRAghhKg07RuaTv8xtWrrIYQQ4tmS4UxCCCEqzQ3jZzsC0LBiC5QJIcQzIcOZyk96IoQQQlSa7IfGP8j1LMDHTX6ohRCiNpEgQgghRKUZ0c44WAj5k4p6lhJECCFEbSLDmYQQQlSa9zuruP3AjGW/6NApENhFxcxecr9KCCFqGwkihBBCVBqVSsWnr6j49BUJHIQQzz+ZE1F+8i0vhBBCCCGEKBMJIoQQQgghhBBlIsOZhBBCCCHEC0mGM5Wf9EQIIYQQQgghykSCCCGEEEIIIUSZyHAmIYQQQgjxQpLhTOUnPRFCCCGEEEKIMpGeCCGEEJXmcrbCilM68h7Bf3cw47VmcpdPCCFqIwkihBBCVIrEVB2eW3Q8LCh8H36qgK1DzXi7rXR6CyFEbSPf7EIIISrsZq7C648FEAAK8NlRXbXVSQghnkZRqUr9EoYkiBBCCFFh/zlegLrAOD37YdXXRQghxLMnQYQQQogK23/NdPp//1F+ZoQQojaSORFCCCEq7LbadPr1ezrkfpUQ4nmlyCilcpNvdiGEEBVmUcyvyZqz8HOGUrWVEUII8cxJECGEEKLChrQuftv5LAkihBCitpEgQgghRIXVtzKdrgI8mst4ASGEqG1kToQQQogKu5RlOn1oG2hZX4IIIZ6J7PtgXQfqWFZ3TWosWbq1/GpVT8ScOXPo0aNHqfKmpaXRo0cPVqxY8YxrVagsdQsMDMTb2/sZ16hkZW2fpKQkJk2axIABA6q0XYUQz4cOfzD9Q3woFXSKDGcSolKlZcGA2dBgLDTyh4U7qrtG4gUkPRGiwrRaLTNnzkSr1RIUFISdnR0vvfRSdVerysXHx5OUlMTEiRNLvc/GjRuxs7Or9KDxq6++4uDBg1y/fp179+5Rv359XF1d8fPzY8CAAZValhAAb7WC/z1inP5bPlzLgdYOVV4lIWqvieEQf7bw/3MewF83wPo42DIdOras3rqJF0at6omYNWsWiYmJ1V2NF05qaiqpqam88847jBo1isGDB7+wQcSqVavKtM+mTZuIiYmp9LqcO3eOpk2bMnr0aD755BPGjBlDfn4+M2bM4Msvv6z08oQ4lGo63VwFzjZVWxchar19J43Tfr0Jwz4D6fkrE3lidflVeU9EQUEBGo2GunXrVvqxLSwssLCQzpWq9ttvvwFgb29fqcdVFAW1Wo21tXWlHrcmCwwMBGDlypUl5vvnP/9plPbOO+8wduxYIiIi8Pf3x9zc/JnUUbx44lN0/Odn0xcuOrmeEaLytW4MyWnG6ZfS4bvTMPDlqq+TeOE80yvumJgY5s6dS1hYGGfOnCEmJoaMjAxmzZqFt7c3iqKwbds2du7cydWrVzEzM6NDhw4EBAQYzR+IjY1ly5YtpKSkoNVqcXR0pHPnzkybNo0GDRoAhfMOYmNjOX78uMG+v/zyC0uXLiUpKQkbGxs8PT0ZPnx4sfUNDw83Kj8wMJD09HSDu8aHDx8mOjqaX3/9lTt37mBpaUnHjh0ZP3487u7uldWMeidOnODLL7/k3LlzaLVaXF1dGTFiBMOGDTPId/bsWbZu3crp06e5desW5ubmuLm5MXbsWJNDWUrbPqYEBgZy4sQJAObOncvcuXMB2LVrF02bNkWtVrN69WoOHDhAZmYm9evXp3fv3kyaNAlnZ2f9cY4fP05QUBAhISGo1WqioqK4efMm7733nn540P79+9m8eTMXL16koKBAf04DBw40qtfx48fZsGEDZ8+eRa1W4+TkhLu7Ox988AEODg4AREVFER8fz5UrV7h79y729vb06tWLSZMm0bRpU4PjHTp0iIiICC5fvkx+fj4ODg506NCB4OBgXFxcDNrh8c9OSEhIsUOVivKlp6cb7FPUdpXNwsICJycnLl26hFarlSBCVIob9xTe2q4jX2t6u5M1WMm9HSEqj04HvV8yHUQAvLsUUldXbZ3EC6lKvtqXLFmCVqvFx8cHGxsbXFxcAJg9ezbffPMNnp6eeHt7o9Fo2Lt3L1OmTGHhwoX069cPgN27dzNnzhy6detGUFAQVlZW3Lp1i8TERLKysvRBhClnz55l8uTJWFtbM27cOOzs7Ni/fz8hISEVPq+YmBhycnIYPHgwjRs3JjMzk+joaCZPnkx4eDjdunWrcBlFDh48yIwZM3B0dGTMmDFYW1uzf/9+5s+fT2pqKlOmTNHnjY+P59q1awwcOBBnZ2dycnKIjY1lxowZzJ8/nzfffFOft6LtM378eF5++WXWrl2Lj4+P/pwbNGiAVqslODiYU6dO4enpyZgxY0hJSWHbtm0cOXKEiIgIGjdubHC8TZs2kZOTw7Bhw3B0dNRvX7ZsGWvWrOHVV18lKCgIMzMz4uLi+OSTT5g5cyYjR47UH2Pbtm0sWLCARo0aMXz4cJydncnIyOCHH37g1q1b+iDiq6++olOnTowaNQp7e3suX77Mzp07OXbsGJGRkfp8P//8Mx9//DFt2rTB398fW1tb7ty5w9GjR7lx4wYuLi6MHz8eRVE4efIk8+bN09elS5cuxbbdvHnzWLRoEQ4ODowfP16fXtLnuaxycnLQ6XRkZ2fz7bff8tNPP9GjRw+srIpZj1OIMtp+USk2gAD4x2tmmMkwACEqz7wtsCGh+O1pdwsnWs/0qbo61WA6+X4qtyoJIvLz89m4caPBEKa4uDj27t3Lp59+yttvv61P9/Pzw9/fn3//+994eHigUqmIj4/HxsaG5cuXGwxXCgoKemrZixYtQqfTsXr1an3wMmLECCZMmFDh85o1axb16tUzSBs+fDgjR45k7dq1lRZEFBQUsHDhQurVq8f69etxcnICYOTIkUycOJH169fj7e1Ny5aFk6kmTJhAcHCwwTH8/PwYPXo0q1evNggiKto+r7zyChYWFqxdu5YuXbowePBg/bYdO3Zw6tQpxo4dy4cffqhP7927N1OnTiU0NJR//OMfBsfLyMhg69atNGzYUJ924cIF1qxZg7+/v0Gw5Ofnx7Rp0wgLC8PLywsbGxtu3brFv/71L1xdXVmzZg12dnb6/JMmTUKn0+nfR0ZGGv39PDw8mDx5MtHR0bz77rsAJCQkoNPpCAsLM6jX+++/b9AO+/bt4+TJkwZtUJLBgwezfPlyGjZsWOp9yurtt98mJycHAHNzc/785z/zySefPJOyxIvJvoR41FwFgS/Xqql3QlS/td8/Pc+enyWIEM9clXy7+/r6Gs2B2LNnDzY2NvTv35/s7Gz9Ky8vj759+5KWlkZKSgoAtra25Ofnc+jQIZQyTBjKysri9OnT9OvXT3+BDGBpacno0aMrfF6PX4A+ePCA7OxszM3N6dSpE+fOnavw8YucP3+ejIwMhg4dqg8goPA8xo0bh06nIyHh97sSj9crPz+f7Oxs8vPz6dmzJ1evXiUvLw949u0TFxeHmZkZ/v7+Bul9+vShbdu2HDx40OCiHsDLy8vgQh1g7969qFQqvLy8DD4r2dnZeHh4cP/+fc6cOQPAt99+i0ajISAgwCCAKGJm9vtHvqiddDodeXl5ZGdn07ZtW2xtbTl79qw+n62tLQDff/89Wm0Jt1wrWdFn6vGXVqtFq9UapT948MDkMT7//HNCQ0OZPXs2vXv35uHDh9y/f7/KzuFpsrKyePjwof59Xl4eubm5+vePHj3Sz7kpkp6eXuL7jIwMg+8JKePZltHX/haNi5m2ZG9Vc86jOspo0qRJrTgPKaNqyyioU4r7vw62z/15lLUM8fypkp6Iojvkj7t27Rr379/njTfeKHa/rKwsXFxc8Pf358SJE0yfPh17e3u6d+/Oa6+9xuuvv46NTfHLfqSmFi4X4urqarStdevWZT+RJ9y8eZOwsDAOHz5s8I8DQFWJ3WNpaYXjHk3VuU2bNsDv5wqF7bZ8+XISEhLIyjJ+AlReXh62trbPvH3S0tJwcnKifv36JuudnJxMdna2QdBg6rNy9epVFEXB19e32LKKvoxu3LgBQLt27Z5av2PHjrFq1SrOnTtn8GUHGPw9R44cSUJCAgsWLOCLL77g5Zdf5tVXX2XQoEGVOvToSQsXLiQ2NtbktifngQwZMoQ5c+YY5evevbv+/4cOHcqnn37KhAkTiIqKMvl3qWpPBoxFAVuROnXq4OjoaJD2+FwaU++fvDCTMp5tGW1aOLP+rQLe3GZ8g8faouacR3WUkZGR8czLqC1tJWX8XgbT/wuCSngWk7kZfOBVoTKex7YSz58qCSJMrcSkKAoNGjRg/vz5xe5XdIHcsmVLoqKiOHr0KMeOHePEiRPMnz+fFStWsGrVKpo3b14p9Szpwr+goMDg/YMHDwgICECtVvPOO+/g5uaGjY0NKpWKdevWcezYsUqpU1kpikJwcDBXr17Fz8+PDh06YGtri5mZGTExMezbt8/o7v/zpLhVu1QqFUuXLjXoSXhc0WeltM6dO0dwcDDNmzcnODiYpk2bYmVlhUql4tNPPzVoIwcHByIiIjh58iRHjhzh5MmTLFq0iBUrVrBkyZIS5z1UxLhx43jrrbcM0hYvXgzA1KlTDdIf76EqyZAhQ9i/fz/ff/+90YR8IcqrYV0zoMAo/WYeZD7Q0chahjQJUWkmDioMFAKWG2+ztoL9s+G1P1Z9vWooBZkTUV7VtmZGixYtSElJoXPnzqVawrNOnTr06dOHPn36AIWr5UydOpWvv/6av/71ryb3KVrh5tq1a0bbrly5YpRWdGf23r17RtvS0tIM5mMcPXqU27dvM3v2bIYOHWqQd/lyE/+wK6BZs2aA6ToXpRXluXjxIsnJyQQEBBg99Gznzp0G78vaPmXVrFkzfvrpJ3Jzc42GFl25cgUbGxv95OWStGjRgh9//JEmTZrQqlWrEvMW9WQkJycbDNF60r59+ygoKGDp0qX6tgNQq9VGvUpQOJ+gR48e+lWULl68yJgxY1i9ejVLliwBytf7VNI+rVu3NuoRKmrH3r17l7ksQN/jYuozLkR59WgCTvXgttp426bzCh9W/mJ1QrzYPDqaTu/iIgGEqDLVdnvIy8sLnU5HaGioye2Pj5XLzs422t6+fXsA/aRRU4qWgU1ISOD69ev6dI1Gw8aNG43yF12AHj161CB937593L592yCtaHnMJ+doHD582GA8fWVo3749TZo0ISYmhjt37ujTtVotGzZsQKVS6VeyKrpT/2S9Ll26RHx8vEFaWdunrPr3749Op2PdunUG6YmJiSQlJeHh4VFsz8LjiiYdh4WFGfUIgeFnxdPTE0tLS1atWqWf+/G4onYp7u+3Zs0ao54aU58/V1dX6tata3AxXjTHoqTP5JPq1atX6Rf0arXa5ByJgoICoqKiAOjcuXOllilebCqVirbFjOzL08hdPiEqXdumYOom1IBOVV8X8cKqtp6IgQMH4u3tzZYtW7hw4QJ9+/bFwcGBzMxMTp8+zc2bN4mOjgZgypQp2NnZ0a1bNxo3bkxubi4xMTGoVKqnrmrz0UcfMXHiRCZMmMCIESP0S5iauhh1dXWlV69ebN++HUVRaNu2LcnJycTHx9OiRQuDSbVdu3bF0dGRxYsXk56eTqNGjUhOTmbPnj24ublx6dKlSmsrc3NzZs6cyYwZM3j33Xfx8fHB2tqaAwcOcObMGfz9/fUBUKtWrWjdujURERHk5+fj4uJCSkoK27dvx83NjfPnz5e7fcrK29ub2NhY1q9fT1paGt27d+fGjRts3boVR0dHg5WWStKxY0cCAwNZuXIlo0ePZuDAgTg5OXHnzh3Onz9PYmIihw8fBqBx48ZMmzaNzz77DD8/P7y8vHB2diYzM5OEhARmz55Nu3bt6N+/Pxs3buTDDz/Ex8cHS0tLjhw5wqVLl4x6R+bPn09mZia9e/fG2dmZhw8fcuDAAe7fv4+X1+/jTjt37syWLVtYsGABffr0wcLCgk6dOhn0dDypc+fOREdHs3z5clq1aoVKpcLDw8No1aiySElJITAwEE9PT1xcXLC3tyczM5NvvvmG69evM2TIkEpdflgIgBvGMTsAb7tVbT2EeGH4/gmifvz9vZkK3ulbffWpoeRJ1OVXrY8ACgkJoUePHuzYsYN169ah0WhwdHSkffv2BheYvr6+HDhwgO3bt5OTk4O9vT3t2rVj5syZRg+Fe1KXLl0ICwsjNDSU9evXY2trq3+Ymp+fn1H+efPm8fnnn7Nv3z727NlDt27dCA8P55///KfBSgF2dnaEhoaydOlSNm/eTEFBAe3bt2fJkiVER0dXahABhUuPLlu2jNWrV7NhwwY0Gg2urq7MmjXLYGy7ubk5S5YsYfHixcTGxqJWq2nTpg1z5swhOTnZKIgoa/uUhYWFBaGhofqHzcXFxWFnZ4enpyeTJ082mohVksDAQDp06EBkZCSbNm1CrVbTsGFD2rRpw/Tp0w3y+vr60rx5cyIiIoiMjESj0eDk5ETPnj31z53o2rUrCxcu5MsvvyQ8PBwrKyt69erFypUrCQgIMDje4MGDiYmJYffu3dy9excbGxtat27NZ599hqenpz7foEGDSEpKYv/+/Xz33XfodDpCQkJKDCImT55MTk4OUVFR5ObmoigKu3btqlAQ0bhxYwYPHswvv/xCfHw89+/fx9bWlnbt2vH+++8bLPErRGXRFnPfoZWD/EAL8UysmQINbWHHEWjaEOaMgs7FD+MVorKplLKsmSqEEEKYUO8/WvKfCCTMVaCdJo+rNkWj0bB27VoA/P39sbS0rOYaCfFi+vvgn0ud9x97ZILX4+TbXQghRIU81CpGAQRAQ9OLrQkhxHNDhjOVn6y7J4QQokKsLFSYmfgd1lR8apUQQojnlAQRQgghKszGRL929iNIy5MRs0IIURtJECGEEKJC7j1UUGtMbzucJkGEEELURjInQgghRIUcSVfQFrOt4x9kvLEQ4vklcyLKT3oihBBCVMhLDUz/CDtYQbuG8gMthBC1kQQRQgghKsTVXkXPxsbprzaVAEIIIWorCSKEEEJU2I5h5jSy/v29rSWEvCo/MUKI55uiKv1LGJI5EUIIISqsmZ2K5AnmRCUpqLUwvK2KprbyqyuEELWVBBFCCCEqhb2Vive7SOAghBAvAulrFkIIIYQQQpSJ9EQIIYQQQogXkk6WeC036YkQQgghhBBClIkEEUIIIYQQQogykeFMQgghhBDihSRPrC4/6YkQQgghhBBClIkEEUIIIYQQQogykeFMQgghhHhx7DsBi2IgLx/G9oNJb1Z3jUQ1kuFM5SdBhBBCCCFeDD9egMH/C4pS+P6nJHikhQ+HVG+9hKiBZDiTEEIIIV4Mn+34PYAo8uW31VMXIWo46YkQQghhIOehwte/KmTlg29bFe0dpbtf1AKKAgd/NU7XFlR9XYSoBSSIEEIIoXf7gUKvrwq4dq/w/dyfYOd/meHVRjquRQ2XcRey7xunN3Go8qqI54c8sbr85FdBCCGE3qrTij6AANDqYGqcrvoqJERl+UN9sKlrnH7jt6qvixC1gAQRQggh9G7mKkZpl7LhVKZxuhA1iqUFdHU1Tk+VIEKI8pAgQgghhN5QN9Nd+2vPyrhxUQu0a2qc9lALjzRVXxfxXFBUpX8JQxJECCGE0HuzlRlW5sbpJ25VfV2EqHSmOtRUgLlcDglRVs/1v5o5c+bQo0ePUuVNS0ujR48erFix4hnXqlBZ6hYYGIi3t/czrlHJyto+SUlJTJo0iQEDBlRpuwohqp+NpXFavnREiNrAwsRlj04BcxORsxCiRLI6kzCi1WqZOXMmWq2WoKAg7OzseOmll6q7WlUuPj6epKQkJk6cWOp9Nm7ciJ2dXaUGjYqisHfvXn744QfOnz/P7du3cXBwoG3btkyYMIFOnToZ7aPT6di0aRPbt28nPT2dBg0aMHDgQIKCgqhXr16l1U3UPgU6hXuPjNMbmJiPKkSNU9yQlB9+hb4dqrQqQtR0z3VPxKxZs0hMTKzuarxwUlNTSU1N5Z133mHUqFEMHjz4hQ0iVq1aVaZ9Nm3aRExMTKXW49GjR8yePZvr16/zxhtvMGPGDHx8fEhKSsLf3589e/YY7bNo0SL+85//0Lp1a2bMmIGnpyeRkZF89NFH6HSy0o4o3qbzBWhNfER6N5EBwaIWsC3mJsqpa1VaDfH8UFCV+iUMVbgnoqCgAI1GQ926lX+bysLCAgsL6Sypar/9VrhShb29faUeV1EU1Go11tbWlXrcmiwwMBCAlStXFpvH3NycFStW4O7ubpDu4+PDyJEjWbx4MW+++SZmZoX3BC5fvszmzZsZMGAAn3/+uT5/06ZN+de//sX+/ft58803n8HZiJou5Z5CwH7T27o4yQ+oqOGifoQlsaa3HUmG4MFVWx8hargyXaHHxMQwd+5cwsLCOHPmDDExMWRkZDBr1iy8vb1RFIVt27axc+dOrl69ipmZGR06dCAgIMBo/kBsbCxbtmwhJSUFrVaLo6MjnTt3Ztq0aTRo0AAonHcQGxvL8ePHDfb95ZdfWLp0KUlJSdjY2ODp6cnw4cOLrW94eLhR+YGBgaSnpxvcNT58+DDR0dH8+uuv3LlzB0tLSzp27Mj48eONLuAqw4kTJ/jyyy85d+4cWq0WV1dXRowYwbBhwwzynT17lq1bt3L69Glu3bqFubk5bm5ujB07lgEDBhgdt7TtY0pgYCAnTpwAYO7cucydOxeAXbt20bRpU9RqNatXr+bAgQNkZmZSv359evfuzaRJk3B2dtYf5/jx4wQFBRESEoJarSYqKoqbN2/y3nvv6YcH7d+/n82bN3Px4kUKCgr05zRw4ECjeh0/fpwNGzZw9uxZ1Go1Tk5OuLu788EHH+Dg4ABAVFQU8fHxXLlyhbt372Jvb0+vXr2YNGkSTZsarshx6NAhIiIiuHz5Mvn5+Tg4ONChQweCg4NxcXExaIfHPzshISHFDlUqypeenm6wT1HblZeFhYXJz5+joyPdu3cnLi6OrKws/vCHPwDwzTffoCgKo0ePNsjv4+NDaGgoe/bskSBCmPTJQV2xcx/+55AO33bPdee1EMVTP4QJoVBQzFLFsT8XPrnaQuZGCFFa5brNv2TJErRaLT4+PtjY2ODi4gLA7Nmz+eabb/D09MTb2xuNRsPevXuZMmUKCxcupF+/fgDs3r2bOXPm0K1bN4KCgrCysuLWrVskJiaSlZWlDyJMOXv2LJMnT8ba2ppx48ZhZ2fH/v37CQkJKc+pGIiJiSEnJ4fBgwfTuHFjMjMziY6OZvLkyYSHh9OtW7cKl1Hk4MGDzJgxA0dHR8aMGYO1tTX79+9n/vz5pKamMmXKFH3e+Ph4rl27xsCBA3F2diYnJ4fY2FhmzJjB/PnzDS4IK9o+48eP5+WXX2bt2rX4+Pjoz7lBgwZotVqCg4M5deoUnp6ejBkzhpSUFLZt28aRI0eIiIigcePGBsfbtGkTOTk5DBs2DEdHR/32ZcuWsWbNGl599VWCgoIwMzMjLi6OTz75hJkzZzJy5Ej9MbZt28aCBQto1KgRw4cPx9nZmYyMDH744Qdu3bqlDyK++uorOnXqxKhRo7C3t+fy5cvs3LmTY8eOERkZqc/3888/8/HHH9OmTRv8/f2xtbXlzp07HD16lBs3buDi4sL48eNRFIWTJ08yb948fV26dOlSbNvNmzePRYsW4eDgwPjx4/XpJX2eKyozMxNLS0vs7Oz0ab/++itmZmZ07NjRIK+VlRVt27bl119/fWb1ETXbwZvFPwsi+S7sulTAUDe5yBI1UPxZyM0vfnv2/cLnRbg0qro6ieeCPLG6/MoVROTn57Nx40aDIUxxcXHs3buXTz/9lLfffluf7ufnh7+/P//+97/x8PBApVIRHx+PjY0Ny5cvNxiuFBQU9NSyFy1ahE6nY/Xq1frgZcSIEUyYMKE8p2Jg1qxZRpNOhw8fzsiRI1m7dm2lBREFBQUsXLiQevXqsX79epycnAAYOXIkEydOZP369Xh7e9OyZUsAJkyYQHBwsMEx/Pz8GD16NKtXrzYIIiraPq+88goWFhasXbuWLl26MHjw7927O3bs4NSpU4wdO5YPP/xQn967d2+mTp1KaGgo//jHPwyOl5GRwdatW2nYsKE+7cKFC6xZswZ/f3+DYMnPz49p06YRFhaGl5cXNjY23Lp1i3/961+4urqyZs0ag4vlSZMmGYzvj4yMNPr7eXh4MHnyZKKjo3n33XcBSEhIQKfTERYWZlCv999/36Ad9u3bx8mTJw3aoCSDBw9m+fLlNGzYsNT7VMShQ4c4d+4cgwcPxsrKSp9eNPG6Tp06Rvs0atSI06dPo9FosLQ0sQSPeKEVPGW6zL+OKwx1q5q6CFGp9p8uebu5GTRzrJq6CFFLlKtv2tfX12gOxJ49e7CxsaF///5kZ2frX3l5efTt25e0tDRSUlIAsLW1JT8/n0OHDqEopX8KalZWFqdPn6Zfv376C2QAS0tLo6Eb5fH4BeiDBw/Izs7G3NycTp06ce7cuQofv8j58+fJyMhg6NCh+gACCs9j3Lhx6HQ6EhISTNYrPz+f7Oxs8vPz6dmzJ1evXiUvLw949u0TFxeHmZkZ/v7+Bul9+vShbdu2HDx40GjSrpeXl8GFOsDevXtRqVR4eXkZfFays7Px8PDg/v37nDlzBoBvv/0WjUZDQECAQQBRpGgeAPzeTjqdjry8PLKzs2nbti22tracPXtWn8/W1haA77//Hq1WW4EWKZuiz9TjL61Wi1arNUp/8OBBicdKSUkhJCSERo0a8dFHHxlsy8/PLzZAKAos8vNLuCNXhbKysnj48KH+fV5eHrm5ufr3jx490s/RKZKenl7i+4yMDIPvFSmjdGWcylTIeFDy9/FdtfLcn0dNKqNJkya14jxqQhkF9+5TojoWpN/OfO7P40UuQzx/ytUTUXSH/HHXrl3j/v37vPHGG8Xul5WVhYuLC/7+/pw4cYLp06djb29P9+7dee2113j99dexsbEpdv/U1FQAXF1djba1bt267CfyhJs3bxIWFsbhw4cNPuwAqkrs7kpLSwNM17lNmzbA7+cKhe22fPlyEhISyMrKMtonLy8PW1vbZ94+aWlpODk5Ub9+fZP1Tk5OJjs72yBoMPVZuXr1Koqi4OvrW2xZRV8uN27cAKBdu3ZPrd+xY8dYtWoV586dM/jyAgz+niNHjiQhIYEFCxbwxRdf8PLLL/Pqq68yaNCgZzr0aOHChcTGmp7U9+Q8kCFDhjBnzhyTeVNTU5k0aRIAS5cuNapz3bp1uXv3rsl9Hz16pM/zPHgywCwK8IrUqVMHR0fDu4OPz70x9f7JCzMpo3Rl7Lioo/j1LwuN7mD+3J9HTSojIyPjmZdRW9qqomWYj+kHa76nWB1b1IjzeJHLeFYUGc5UbuUKIkxdgCiKQoMGDZg/f36x+xVdILds2ZKoqCiOHj3KsWPHOHHiBPPnz2fFihWsWrWK5s2bl6daRkq68C8oMJw9+ODBAwICAlCr1bzzzju4ublhY2ODSqVi3bp1HDt2rFLqVFaKohAcHMzVq1fx8/OjQ4cO2NraYmZmRkxMDPv27Xuul+ws7mJVpVKxdOlSg56ExxV9Vkrr3LlzBAcH07x5c4KDg2natClWVlaoVCo+/fRTgzZycHAgIiKCkydPcuTIEU6ePMmiRYtYsWIFS5YsKXHeQ0WMGzeOt956yyBt8eLFAEydOtUg/fEeqselpaURFBSEWq1m2bJluLkZjy1xcnLi6tWrPHr0yGhIU2ZmJg4ODjKUSRhpbKPC9ON8CwV2UTGzp/zYihpqQGeY+AasKGb5sQ6Vc90hxIuk0tZPbdGiBSkpKXTu3LlUS3jWqVOHPn360KdPH6BwfPfUqVP5+uuv+etf/2pyn6IVbq5du2a07cqVK0ZpRXfM7927Z7QtLS3NYD7G0aNHuX37NrNnz2bo0KEGeZcvX/7U8ymLZs2aAabrXJRWlOfixYskJycTEBBg9NCznTt3Grwva/uUVbNmzfjpp5/Izc01Glp05coVbGxs9JOXS9KiRQt+/PFHmjRpQqtWrUrMW9STkZycbDBE60n79u2joKCApUuX6tsOQK1WG/UqQeGyqT169NCvonTx4kXGjBnD6tWrWbJkCVC+3qeS9mndurVRj1BRO/bu3fupx05LS2PixInk5eWxbNky2rdvbzJfhw4dOHz4MOfOnTOYx/Pw4UOSk5Pp3r17aU5FvGD++48q/vMzXDTRidXACla8IROqRQ1nY1X8NofiR0EIIUyrtPX6vLy80Ol0hIaGmtz++Ni37Oxso+1FF0Q5OTnFllG0DGxCQgLXr1/Xp2s0GjZu3GiUv+gC9OjRowbp+/bt4/bt2wZp5v/3yPsn52gcPnzYYDx9ZWjfvj1NmjQhJiaGO3fu6NO1Wi0bNmxApVLpV7IqulP/ZL0uXbpEfHy8QVpZ26es+vfvj06nY926dQbpiYmJJCUl4eHhUWzPwuOKJh2HhYUZ9QiB4WfF09MTS0tLVq1apZ/78biidinu77dmzRqjnhpTnz9XV1fq1q1rEHAWzbEo6TP5pHr16pkMWisqPT2doKAgcnNzCQ0N5Y9//GOxed944w1UKpXR33zHjh3k5+fL8q7CpPpWKmJ9TP/7bVW5j4wRono0KWG4av9OVVcPIWqJSuuJGDhwIN7e3mzZsoULFy7Qt29fHBwcyMzM5PTp09y8eZPo6GgApkyZgp2dHd26daNx48bk5uYSExODSqV66qo2H330ERMnTmTChAmMGDFCv4SpqYtRV1dXevXqxfbt21EUhbZt25KcnEx8fDwtWrQwmFTbtWtXHB0dWbx4Menp6TRq1Ijk5GT27NmDm5sbly5dqqymwtzcnJkzZzJjxgzeffddfHx8sLa25sCBA5w5cwZ/f399ANSqVStat25NREQE+fn5uLi4kJKSwvbt23Fzc+P8+fPlbp+y8vb2JjY2lvXr15OWlkb37t25ceMGW7duxdHR0WClpZJ07NiRwMBAVq5cyejRoxk4cCBOTk7cuXOH8+fPk5iYyOHDhwFo3Lgx06ZN47PPPsPPzw8vLy+cnZ3JzMwkISGB2bNn065dO/r378/GjRv58MMP8fHxwdLSkiNHjnDp0iWj3pH58+eTmZlJ7969cXZ25uHDhxw4cID79+/j5eWlz9e5c2e2bNnCggUL6NOnDxYWFnTq1Mmgp+NJnTt3Jjo6muXLl9OqVStUKhUeHh5Gq0aVxf379wkKCiItLY1Ro0Zx/fp1gyARCnsyisaXurm5MWLECLZs2cKMGTN47bXXuHr1KpGRkXTv3l2CCFGsOuame9JOZMIvmQpdG8lwJlGDvdLWdPqr7WDY03uDRe0kcyLKr1IfBx0SEkKPHj3YsWMH69atQ6PR4OjoSPv27Q0uMH19fTlw4ADbt28nJycHe3t72rVrx8yZM40eCvekLl26EBYWRmhoKOvXr8fW1lb/MDU/Pz+j/PPmzePzzz9n37597Nmzh27duhEeHs4///lPg5n/dnZ2hIaGsnTpUjZv3kxBQQHt27dnyZIlREdHV2oQAYVLjy5btozVq1ezYcMGNBoNrq6uzJo1y+Bhc+bm5ixZsoTFixcTGxuLWq2mTZs2zJkzh+TkZKMgoqztUxYWFhaEhobqHzYXFxeHnZ0dnp6eTJ482WhiVUkCAwPp0KEDkZGRbNq0CbVaTcOGDWnTpg3Tp083yOvr60vz5s2JiIggMjISjUaDk5MTPXv21D93omvXrixcuJAvv/yS8PBwrKys6NWrFytXriQgIMDgeIMHDyYmJobdu3dz9+5dbGxsaN26NZ999hmenp76fIMGDSIpKYn9+/fz3XffodPpCAkJKTGImDx5Mjk5OURFRZGbm4uiKOzatatCQUROTo5+0vzmzZtN5gkPDzeYpDZt2jSaNm3K9u3bOXToEA4ODowaNUr/TA4hTHG1V9GoHmSqjbftuiRBhKjhXm0HKhU8uSpk11aF6UKIMlEpZVljVQghRK11OE3hTxtN91quGWSGf2cJQCuLRqNh7dq1APj7+8tiB1UhVw31/9s4/QMvWFLxZ02JmumDEeefnun/LI0qfijxi6hSeyKEEELUXL/+Zvqe0h8bwqj2cqdW1HBfJZhO79iiaushnis6+WorN7mtJIQQAgCP5iqjJ0U41oWjY8ywtpRfWlHD7SpmqfaBz2ZZbyFqOwkihBBCAODWQEXYQDPs/u/xIi3tIOZtc2zryE+FqAUKinmmUuShqq2HELWE/DIIIYTQm9TVjPQgc5LGm3MlwJw/NZUeCFFLvD/QdPrek1VbD/FcUVSqUr+EIQkihBBCGLCpo6JtQxXmZvKjKWqRka9B/47G6a0bV31dhKgFJIgQQgghxIth5SRwqv/7e0c7+Nvb1VcfIWowWZ1JCCGEEC+Gl5pCUihs/anweRG+f4KGdtVdKyFqJAkihBBCCPHiaGALAa9Xdy3Ec0JntCadKC0ZziSEEEIIIYQoEwkihBBCCCGEEGUiw5mEEEIIIcQLSZZuLT/piRBCCCGEEEKUiQQRQgghhBBCiDKRIEIIIYQQQghRJjInQgghhBBCvJB0MiWi3KQnQgghhBBCCFEmEkQIIYQQQgghykSCCCGEEBWWr1WYEV9Am1VaXtuoZd9VXXVXSQghnkqnUpX6JQxJECGEEKLCpsbp+NdxhSs58GMaeO/Qce6OUt3VEkII8YxIECGEEKLCVp8xDBi0Ooi8IL0RQghRW8nqTEIIISrk5wwdWhPxgk46IoQQzzl5YnX5SU+EEEKICtmcZDpa6NdcfpyFEKK2kiBCCCFEhWTlm05vZle19RBCCFF1JIgQQghRId0bme5x2HBO5kSIF4iiwNVb8OBhdddEiCohQYQQQogK8e9kOog4e6eKKyJEdfnlKrT/C7SeBE3GQ+ie6q6RKCWdqvQvYUiCCCGEEBVSt5glOtLyqrYeQlSb/14MyWmF/5+rhr98CaevVWeNhHjmJIgQQghRISqVCltL4/Tb6qqvixBVLuMu/HrDOH3auiqvihBV6bkOIubMmUOPHj1KlTctLY0ePXqwYsWKZ1yrQmWpW2BgIN7e3s+4RiUra/skJSUxadIkBgwYUKXtKoSomcxMdPXLjAjxQnC0Axsr4/T4c1VfF1FmCqpSv4QheU6EMKLVapk5cyZarZagoCDs7Ox46aWXqrtaVS4+Pp6kpCQmTpxY6n02btyInZ1dpQeNZ8+eZe/evZw/f56LFy+iVqsJCQkxWc6ZM2fYsGEDycnJZGVlAdCkSRMGDhzI6NGjsbW1rdS6CVGcjDzYcVGHz0vP9f0qISrG0gI6t4TDFw3TtQWFQ5q6uFZHrYR45p7rb/ZZs2aRmJhY3dV44aSmppKamso777zDqFGjGDx48AsbRKxatapM+2zatImYmJhKr0tiYiJRUVHk5eU99W9x/fp18vPzeeutt/jwww/54IMP6NixI2vWrGHChAnk5xezHqcQ5fRAo3BfY5yuA96J1ZF5X546J2qx/Efw8xXT2y5lVG1dhKhCFe6JKCgoQKPRULdu3cqojwELCwssLKSzpKr99ttvANjb21fqcRVFQa1WY21tXanHrckCAwMBWLlyZYn5fH19GTduHPXq1ePbb7/l9OnTxeYdMmQIQ4YMMdq/VatWLF26lB9++IHXX3+94pUX4v8k3NBRUEyc8LAAEm4qjGgnQwFELXXsEmgKjNNVKujXserrI8pEJ0+sLrcyXaHHxMQwd+5cwsLCOHPmDDExMWRkZDBr1iy8vb1RFIVt27axc+dOrl69ipmZGR06dCAgIMBo/kBsbCxbtmwhJSUFrVaLo6MjnTt3Ztq0aTRo0AAonHcQGxvL8ePHDfb95ZdfWLp0KUlJSdjY2ODp6cnw4cOLrW94eLhR+YGBgaSnpxvcNT58+DDR0dH8+uuv3LlzB0tLSzp27Mj48eNxd3cvS1OVyokTJ/jyyy85d+4cWq0WV1dXRowYwbBhwwzynT17lq1bt3L69Glu3bqFubk5bm5ujB07lgEDBhgdt7TtY0pgYCAnTpwAYO7cucydOxeAXbt20bRpU9RqNatXr+bAgQNkZmZSv359evfuzaRJk3B2dtYf5/jx4wQFBRESEoJarSYqKoqbN2/y3nvv6YcH7d+/n82bN3Px4kUKCgr05zRw4ECjeh0/fpwNGzZw9uxZ1Go1Tk5OuLu788EHH+Dg4ABAVFQU8fHxXLlyhbt372Jvb0+vXr2YNGkSTZs2NTjeoUOHiIiI4PLly+Tn5+Pg4ECHDh0IDg7GxcXFoB0e/+wUN4To8Xzp6ekG+xS1XUU4OjpWaH9A//e5d+9ehY8lRJFrOQoTvim5p8HNQX6kRS227nvT6X+wLZwvIUQtVa7b/EuWLEGr1eLj44ONjQ0uLi4AzJ49m2+++QZPT0+8vb3RaDTs3buXKVOmsHDhQvr16wfA7t27mTNnDt26dSMoKAgrKytu3bpFYmIiWVlZ+iDClLNnzzJ58mSsra0ZN24cdnZ27N+/n5CQkPKcioGYmBhycnIYPHgwjRs3JjMzk+joaCZPnkx4eDjdunWrcBlFDh48yIwZM3B0dGTMmDFYW1uzf/9+5s+fT2pqKlOmTNHnjY+P59q1awwcOBBnZ2dycnKIjY1lxowZzJ8/nzfffFOft6LtM378eF5++WXWrl2Lj4+P/pwbNGiAVqslODiYU6dO4enpyZgxY0hJSWHbtm0cOXKEiIgIGjdubHC8TZs2kZOTw7Bhw3B0dNRvX7ZsGWvWrOHVV18lKCgIMzMz4uLi+OSTT5g5cyYjR47UH2Pbtm0sWLCARo0aMXz4cJydncnIyOCHH37g1q1b+iDiq6++olOnTowaNQp7e3suX77Mzp07OXbsGJGRkfp8P//8Mx9//DFt2rTB398fW1tb7ty5w9GjR7lx4wYuLi6MHz8eRVE4efIk8+bN09elS5cuxbbdvHnzWLRoEQ4ODowfP16fXtLn+VnKz8/Xv86fP88XX3yBpaUlvXv3rpb6iNrp/x3RkX6/5DwamWEtaquc+/BVgultdU1MthaiNlHKYNeuXYq7u7vi4+OjqNVqg23ff/+94u7urmzbts0gXaPRKGPGjFG8vb0VnU6nKIqiTJ8+XfHw8FA0Gk2J5YWEhCju7u4Gaf7+/krv3r2Va9eu6dMePXqkjB07VnF3d1fCw8ON6nvs2DGjYwcEBChDhgwxSHvw4IFRvjt37ih//vOflb/85S9PrVtxnixLq9UqXl5eSr9+/ZTMzEyD8/D391d69uypXL9+vcR6qdVqxcfHR/H19TVIL0v7FOfYsWOKu7u7smvXLoP07du3K+7u7srixYsN0n/44QfF3d1dmTVrltExBgwYoPz2228G+c+fP6+4u7sroaGhRmV//PHHioeHh5KXl6coiqJkZGQor7zyiuLr66vcu3fPKH9BQYH+/02105EjRxR3d3dl3bp1+rR///vfiru7u1G9nlSWv3GRIUOGKAEBAaXOHxAQUKb8iqIoBw4cMPn3edJ//vMfxd3dXf8aMWKE8tNPP5WprGftt99+U/Lz8/Xvc3NzDf7ODx8+VO7cuWOwT1paWonv09PT9d81UsazL6PXugcKn2tKfDkv0yiPtLrn+jyquoxHjx4p0dHRyooVK5RHjx7V2PN40cvI+/GsouBj+tXovRpzHjWhjGdl7JjLpX4JQ+WaWO3r62s0B2LPnj3Y2NjQv39/srOz9a+8vDz69u1LWloaKSkpANja2pKfn8+hQ4dQlNJPuMvKyuL06dP069dP3/sBYGlpyejRo8tzKgbq1aun//8HDx6QnZ2Nubk5nTp14ty5yluq7fz582RkZDB06FCcnJz06ZaWlowbNw6dTkdCwu93Nh6vV35+PtnZ2eTn59OzZ0+uXr1KXl7hE52edfvExcVhZmaGv7+/QXqfPn1o27YtBw8eRKczvOXo5eVFw4YNDdL27t2LSqXCy8vL4LOSnZ2Nh4cH9+/f58yZMwB8++23aDQaAgICsLMz7hY2M/v9I1zUTjqdjry8PLKzs2nbti22tracPXtWn69odaLvv/8erVZbgRYpm6LP1OMvrVaLVqs1Sn/w4EGFy3v77bcJCwtjwYIF/Pd//zd16tQhOzu74idSiRo2bIiV1e9362xtbQ3+znXq1DEayvX4sDlT75s0aYLqsTGuUsazLeMttzo8Tfp9+PnW830e1VFGRobhpNuaeh4vchk2PdpBw2JWvHuQX2POoyaU8azoVKpSv4Shcg1natmypVHatWvXuH//Pm+88Uax+2VlZeHi4oK/vz8nTpxg+vTp2Nvb0717d1577TVef/11bGxsit0/NTUVAFdXV6NtrVu3LvuJPOHmzZuEhYVx+PBhcnNzDbapKvHDk5ZW+FRLU3Vu06YN8Pu5QmG7LV++nISEBP2SnY/Ly8vD1tb2mbdPWloaTk5O1K9f32S9k5OTyc7ONggaTH1Wrl69iqIo+Pr6FltW0eTuGzcKH+DTrl27p9bv2LFjrFq1inPnzvHw4UODbY//PUeOHElCQgILFizgiy++4OWXX+bVV19l0KBBz3To0cKFC4mNjTW57cl5IEOGDGHOnDkVKq9ly5b69h84cCA//fQTf/nLXwAMhsAJURF/7WXG2Ts6tl0s/oaQmQqay9BwURtZWsB7A2CRiVX58h5Cnhps6xlvE6IWKFcQYWolJkVRaNCgAfPnzy92v6IL5JYtWxIVFcXRo0c5duwYJ06cYP78+axYsYJVq1bRvHnz8lTLSEkX/gUFhispPHjwgICAANRqNe+88w5ubm7Y2NigUqlYt24dx44dq5Q6lZWiKAQHB3P16lX8/Pzo0KEDtra2mJmZERMTw759+4zu/j9Pilu1S6VSsXTpUoOehMcVfVZK69y5cwQHB9O8eXOCg4Np2rQpVlZWqFQqPv30U4M2cnBwICIigpMnT3LkyBFOnjzJokWLWLFiBUuWLClx3kNFjBs3jrfeessgbfHixQBMnTrVIP3xHqrK8qc//QlHR0e2bt0qQYSoNPUsVWz9L3NcV2i5nms6z1+6qWhuJ3fxRC3VtVXx27TP7++zEBVVaeuntmjRgpSUFDp37lyqJTzr1KlDnz596NOnD1C4Ws7UqVP5+uuv+etf/2pyn6IVbq5du2a07coV4zWai+6Ym1qNJi0tzWD52KNHj3L79m1mz57N0KFDDfIuX778qedTFs2aNQNM17korSjPxYsXSU5OJiAgwOihZzt37jR4X9b2KatmzZrx008/kZubazS06MqVK9jY2OgnL5ekRYsW/PjjjzRp0oRWrUr48uX3nozk5GSDIVpP2rdvHwUFBSxdulTfdgBqtdqoVwnA3NycHj166FdRunjxImPGjGH16tUsWbIEKF/vU0n7tG7d2qhHqKgdq2qy88OHD2V1JlHptDql2AAifKCKiV3Nq7ZCQlSloT1NpzdrCA7Fj64Qzwed3N8ot0p72JyXlxc6nY7Q0FCT24uGpwAmx2W3b98egJycnGLLKFoGNiEhgevXr+vTNRoNGzduNMpfdAF69OhRg/R9+/Zx+/ZtgzRz88IfuSfnaBw+fNhgPH1laN++PU2aNCEmJoY7d+7o07VaLRs2bEClUulXsiq6U/9kvS5dukR8fLxBWlnbp6z69++PTqdj3bp1BumJiYkkJSXh4eFRbM/C4wYPHgxAWFiYUY8QGH5WPD09sbS0ZNWqVfq5H48rapfi/n5r1qwx6qkx9flzdXWlbt26BhfYRXMsSvpMPqlevXrVfpH++GfqcbGxseTl5dGpU6cqrpGo7SzMVDgUMzXipYbyCy1qOXsbsDARKHdsUfV1EaIKVVpPxMCBA/H29mbLli1cuHCBvn374uDgQGZmJqdPn+bmzZtER0cDMGXKFOzs7OjWrRuNGzcmNzeXmJgYVCqV/gKzOB999BETJ05kwoQJjBgxQr+EqamLUVdXV3r16sX27dtRFIW2bduSnJxMfHw8LVq0MJhU27VrVxwdHVm8eDHp6ek0atSI5ORk9uzZg5ubG5cuXaqspsLc3JyZM2cyY8YM3n33XXx8fLC2tubAgQOcOXMGf39/fQDUqlUrWrduTUREBPn5+bi4uJCSksL27dtxc3Pj/Pnz5W6fsvL29iY2Npb169eTlpZG9+7duXHjBlu3bsXR0dFgWdqSdOzYkcDAQFauXMno0aMZOHAgTk5O3Llzh/Pnz5OYmMjhw4cBaNy4MdOmTeOzzz7Dz88PLy8vnJ2dyczMJCEhgdmzZ9OuXTv69+/Pxo0b+fDDD/Hx8cHS0pIjR45w6dIlo96R+fPnk5mZSe/evXF2dubhw4ccOHCA+/fv4+Xlpc/XuXNntmzZwoIFC+jTpw8WFhZ06tTJoKfjSZ07dyY6Oprly5fTqlUrVCoVHh4eBpPjyyM9PZ3du3cDv/cqHTx4kFu3CmerFrULwIcffoi9vT1dunShSZMm5OXl8csvv5CQkEDjxo31D7gTorIk/aYj+5Hpbc42EkSIF0BbZ/j1pmFanz9WT12EqCKV+jjokJAQevTowY4dO1i3bh0ajQZHR0fat29vcIHp6+vLgQMH2L59Ozk5Odjb29OuXTtmzpxp9FC4J3Xp0oWwsDBCQ0NZv349tra2+oep+fn5GeWfN28en3/+Ofv27WPPnj1069aN8PBw/vnPf5Kenq7PZ2dnR2hoKEuXLmXz5s0UFBTQvn17lixZQnR0dKUGEQAeHh4sW7aM1atXs2HDBjQaDa6ursyaNcvgYXPm5uYsWbKExYsXExsbi1qtpk2bNsyZM4fk5GSjIKKs7VMWFhYWhIaG6h82FxcXh52dHZ6enkyePJkmTZqU+liBgYF06NCByMhINm3ahFqtpmHDhrRp04bp06cb5PX19aV58+ZEREQQGRmJRqPBycmJnj176p870bVrVxYuXMiXX35JeHg4VlZW9OrVi5UrVxIQEGBwvMGDBxMTE8Pu3bu5e/cuNjY2tG7dms8++wxPT099vkGDBpGUlMT+/fv57rvv0Ol0hISElBhETJ48mZycHKKiosjNzUVRFHbt2lXhICI1NZXw8HCDtLi4OOLi4vTnXxRE+Pj48P3337Nz506ys7OxsLCgefPmvPvuu4wZM6ZUQ86EKIvPj5meVN3lD/BHRwkixAvgn2PA5zPQ/d+/heaOEFj8QjNC1AYqpSxrrAohhBBP8IjU8sNN4/SGdSEl0BybOhJIPEmj0bB27VoA/P39sbS0rOYaiQo7cx22/gQNbGBsf3ladQ3h9+61UueNXO/6zOpRE1VqT4QQQogXzyvOKn64aXw/Kisfvr+h4N1GggjxAujsUvgS4gVRaROrhRBCvJim9VAV+2Pyh3oSQAghRG0kPRFCCCEqZPtFMLUafjNb+FNTCSKEEM8vRZ5EXW7SEyGEEKJCjqSbnlr3sbv8OAshRG0lQYQQQogKcW9sOli4UvpHrAghhKhhJIgQQghRIQFdVNiYWFzIoW7V10UIIcpCpyr9SxiSIEIIIUSF1LVQsXyg4c9Jw7oQ0Fl+YoQQoraSidVCCCEqbGxHM5rZweYLCg3qQtDLZrjYy607IYSorSSIEEIIUSn+3NKMP7es7loIIYSoChJECCGEEEKIF5JOlngtNxmwKoQQQgghhCgTCSKEEEIIIYQQZSLDmYQQQgghxAtJhwxnKi/piRBCCCGEEEKUiQQRQgghhBBCiDKRIEIIIYQQQghRJjInQgghRJn9mKqw96qOVvYq3mmvop6ljCsWQtQ8BfLVVW4SRAghhCiTJT/rmBqn+793Cst/gcTR5tQxl19jIYR4UchwJiGEEKWmKVCY86POIO34LdhxUammGgkhhKgOEkQIIYQoNbUWsh8apyemShAharhHGoiIg2lrYcdhUOQz/SLQqVSlfglDMpxJCCFEqW1JMn1hlV8gF1yihvuvBbDvZOH/L4qBSYNg2cTqrZMQzzHpiRBCCFFqTw5lKtKtkfyciBrscNLvAUSRFfshPat66iNEDSDf+kIIIUot475xmpU5jOkgXf2iBjuTYpymU+BObtXXRVQpnar0L2FIggghhBCl1trBOO1RAVjL4FhRkz3SmE7XFlRtPYSoQSSIEEIIUWrvtDe+HacA31yTORGiBnNtbDp9z4mqrYcQNYgEEUIIIUrtD/VMp99RV209hKhU8WdNp997ULX1EKIGqVVBxJw5c+jRo0ep8qalpdGjRw9WrFjxjGtVqCx1CwwMxNvb+xnXqGRlbZ+kpCQmTZrEgAEDqrRdhRBV6/xvptMLdNITIWqwXUdNp494tWrrIaqcDlWpX8KQjGIVFabVapk5cyZarZagoCDs7Ox46aWXqrtaVS4+Pp6kpCQmTiz9koAbN27Ezs6u0oPGs2fPsnfvXs6fP8/FixdRq9WEhIRUe3Aqar5W9qbTl/2i4N+5ausiRKXJNzEnwsEGerhVfV2EqCFqVU/ErFmzSExMrO5qvHBSU1NJTU3lnXfeYdSoUQwePPiFDSJWrVpVpn02bdpETExMpdclMTGRqKgo8vLyXsi/hXh27j0y3eNwW0Z9iJqsga1xWu4DUJt4sqIQAqiGIKKgoID8/PxncmwLCwusrKyeybFF8X77rXB8g719Mbcoy0lRFB48kCuTxwUGBhIYGPjUfL6+viQkJLBlyxZGjx5dBTUTL4oVp0ynp9+XIU2ihrqbBxfTjNMLFPD636qvj6hSBSpVqV/C0DMdzhQTE8PcuXMJCwvjzJkzxMTEkJGRwaxZs/D29kZRFLZt28bOnTu5evUqZmZmdOjQgYCAAKP5A7GxsWzZsoWUlBS0Wi2Ojo507tyZadOm0aBBA6Bw3kFsbCzHjx832PeXX35h6dKlJCUlYWNjg6enJ8OHDy+2vuHh4UblBwYGkp6ebnDX+PDhw0RHR/Prr79y584dLC0t6dixI+PHj8fd3b2ymlHvxIkTfPnll5w7dw6tVourqysjRoxg2LBhBvnOnj3L1q1bOX36NLdu3cLc3Bw3NzfGjh3LgAEDjI5b2vYxJTAwkBMnClevmDt3LnPnzgVg165dNG3aFLVazerVqzlw4ACZmZnUr1+f3r17M2nSJJydnfXHOX78OEFBQYSEhKBWq4mKiuLmzZu89957+uFB+/fvZ/PmzVy8eJGCggL9OQ0cONCoXsePH2fDhg2cPXsWtVqNk5MT7u7ufPDBBzg4OAAQFRVFfHw8V65c4e7du9jb29OrVy8mTZpE06ZNDY536NAhIiIiuHz5Mvn5+Tg4ONChQweCg4NxcXExaIfHPzslDSEqypeenm6wT1HbVYSjo2OF9hfClIt3FW4XM4H6kQ5WnSogqJuMkhU1zMYf4MEj09vizsLhZHilbdXWSYgaoEq+7ZcsWYJWq8XHxwcbGxtcXFwAmD17Nt988w2enp54e3uj0WjYu3cvU6ZMYeHChfTr1w+A3bt3M2fOHLp160ZQUBBWVlbcunWLxMREsrKy9EGEKWfPnmXy5MlYW1szbtw47Ozs2L9/PyEhIRU+r5iYGHJychg8eDCNGzcmMzOT6OhoJk+eTHh4ON26datwGUUOHjzIjBkzcHR0ZMyYMVhbW7N//37mz59PamoqU6ZM0eeNj4/n2rVrDBw4EGdnZ3JycoiNjWXGjBnMnz+fN998U5+3ou0zfvx4Xn75ZdauXYuPj4/+nBs0aIBWqyU4OJhTp07h6enJmDFjSElJYdu2bRw5coSIiAgaNzZcVm/Tpk3k5OQwbNgwHB0d9duXLVvGmjVrePXVVwkKCsLMzIy4uDg++eQTZs6cyciRI/XH2LZtGwsWLKBRo0YMHz4cZ2dnMjIy+OGHH7h165Y+iPjqq6/o1KkTo0aNwt7ensuXL7Nz506OHTtGZGSkPt/PP//Mxx9/TJs2bfD398fW1pY7d+5w9OhRbty4gYuLC+PHj0dRFE6ePMm8efP0denSpUuxbTdv3jwWLVqEg4MD48eP16eX9HkWojrduFdyT0P8DQiqvK89IarGkeSSty/eBZHTq6YuQtQgVRJE5Ofns3HjRurWratPi4uLY+/evXz66ae8/fbb+nQ/Pz/8/f3597//jYeHByqVivj4eGxsbFi+fDkWFr9XOSgo6KllL1q0CJ1Ox+rVq/XBy4gRI5gwYUKFz2vWrFnUq2e43uHw4cMZOXIka9eurbQgoqCggIULF1KvXj3Wr1+Pk5MTACNHjmTixImsX78eb29vWrZsCcCECRMIDg42OIafnx+jR49m9erVBkFERdvnlVdewcLCgrVr19KlSxcGDx6s37Zjxw5OnTrF2LFj+fDDD/XpvXv3ZurUqYSGhvKPf/zD4HgZGRls3bqVhg0b6tMuXLjAmjVr8Pf3NwiW/Pz8mDZtGmFhYXh5eWFjY8OtW7f417/+haurK2vWrMHOzk6ff9KkSeh0Ov37yMhIo7+fh4cHkydPJjo6mnfffReAhIQEdDodYWFhBvV6//33Ddph3759nDx50qANSjJ48GCWL19Ow4YNS72PENVp0wVdidtt6lRRRYSoTGZPGdl9wcRQJ1FryJOoy69K5kT4+voaBBAAe/bswcbGhv79+5Odna1/5eXl0bdvX9LS0khJKXwMva2tLfn5+Rw6dAhFKf2Y26ysLE6fPk2/fv30F8gAlpaWlTJO/PEL0AcPHpCdnY25uTmdOnXi3LlzFT5+kfPnz5ORkcHQoUP1AQQUnse4cePQ6XQkJCSYrFd+fj7Z2dnk5+fTs2dPrl69Sl5eHvDs2ycuLg4zMzP8/f0N0vv06UPbtm05ePCgwUU9gJeXl8GFOsDevXtRqVR4eXkZfFays7Px8PDg/v37nDlzBoBvv/0WjUZDQECAQQBRxOyxH4uidtLpdOTl5ZGdnU3btm2xtbXl7Nnf1wy3tS2ccPf999+j1Wor0CJlU/SZevyl1WrRarVG6TV17khWVhYPH/4+cTEvL4/c3Fz9+0ePHunn3BRJT08v8X1GRobB94SUUXll7LlS8vdv98ZmNeI8npcymjRpUivOo8aX8Vp7StSpZc04j1pehnj+VElPRNEd8sddu3aN+/fv88YbbxS7X1ZWFi4uLvj7+3PixAmmT5+Ovb093bt357XXXuP111/Hxsam2P1TU1MBcHV1NdrWunXrsp/IE27evElYWBiHDx82+McBoKrECThpaYV3QUzVuU2bNsDv5wqF7bZ8+XISEhLIysoy2icvLw9bW9tn3j5paWk4OTlRv359k/VOTk4mOzvbIGgw9Vm5evUqiqLg6+tbbFlFX0Y3btwAoF27dk+t37Fjx1i1ahXnzp0z+LIDDP6eI0eOJCEhgQULFvDFF1/w8ssv8+qrrzJo0KBnOvRo4cKFxMbGmtz25DyQIUOGMGfOnGdWl2flyYCxKGArUqdOHaP5HY/PpTH1/skLMymj8srQKsV/r/2pKfh3UmFt+fyfx/NSRkZGxjMvo7a01TMtY2w/mLoGHphYiamhLcwZVTPOo5aXIZ4/VRJEPNkLAYUr7zRo0ID58+cXu1/RBXLLli2Jiori6NGjHDt2jBMnTjB//nxWrFjBqlWraN68eaXUs6QL/4KCAoP3Dx48ICAgALVazTvvvIObmxs2NjaoVCrWrVvHsWPHKqVOZaUoCsHBwVy9ehU/Pz86dOiAra0tZmZmxMTEsG/fPqO7/88TU58VKPzbLF261KAn4XFFn5XSOnfuHMHBwTRv3pzg4GCaNm2KlZUVKpWKTz/91KCNHBwciIiI4OTJkxw5coSTJ0+yaNEiVqxYwZIlS0qc91AR48aN46233jJIW7x4MQBTp041SH+8h0qIZ+W9jioWHjPdG7FsoBnWljIuQNRAdevAXD+Ysd5427sDwE0uZoUwpdqW0WjRogUpKSl07twZa2vrp+avU6cOffr0oU+fPkDhajlTp07l66+/5q9//avJfYpWuLl27ZrRtitXrhilFd0xv3fvntG2tLQ0g/kYR48e5fbt28yePZuhQ4ca5F2+fPlTz6csmjVrBpiuc1FaUZ6LFy+SnJxMQECA0UPPdu7cafC+rO1TVs2aNeOnn34iNzfXaGjRlStXsLGx0U9eLkmLFi348ccfadKkCa1atSoxb1FPRnJyssEQrSft27ePgoICli5dqm87ALVabdSrBGBubk6PHj30qyhdvHiRMWPGsHr1apYsWQKUr/eppH1at25t1CNU1I69e/cuc1lCVNT/9jXjp7QCfkg13rb6jMIXnlVfJyEqxRsvwwwT6fb1TCSK2qRAnkRdbtX2sDkvLy90Oh2hoaEmtz8+Vi47O9toe/v2hWMYc3Jyii2jaBnYhIQErl+/rk/XaDRs3LjRKH/RBejRo0cN0vft28ft27cN0szNzQGM5mgcPnzYYDx9ZWjfvj1NmjQhJiaGO3fu6NO1Wi0bNmxApVLpV7IqulP/ZL0uXbpEfHy8QVpZ26es+vfvj06nY926dQbpiYmJJCUl4eHhUWzPwuOKJh2HhYUZ9QiB4WfF09MTS0tLVq1apZ/78biidinu77dmzRqjnhpTnz9XV1fq1q1rEHAWzbEo6TP5pHr16pkMWoV4HlmYqfhTMasPPzL+pylEzfHrDdPprz5lvoQQL7Bq64kYOHAg3t7ebNmyhQsXLtC3b18cHBzIzMzk9OnT3Lx5k+joaACmTJmCnZ0d3bp1o3HjxuTm5hITE4NKpXrqqjYfffQREydOZMKECYwYMUK/hKmpi1FXV1d69erF9u3bURSFtm3bkpycTHx8PC1atDCYVNu1a1ccHR1ZvHgx6enpNGrUiOTkZPbs2YObmxuXLl2qtLYyNzdn5syZzJgxg3fffRcfHx+sra05cOAAZ86cwd/fXx8AtWrVitatWxMREUF+fj4uLi6kpKSwfft23NzcOH/+fLnbp6y8vb2JjY1l/fr1pKWl0b17d27cuMHWrVtxdHQ0WGmpJB07diQwMJCVK1cyevRoBg4ciJOTE3fu3OH8+fMkJiZy+PBhABo3bsy0adP47LPP8PPzw8vLC2dnZzIzM0lISGD27Nm0a9eO/v37s3HjRj788EN8fHywtLTkyJEjXLp0yah3ZP78+WRmZtK7d2+cnZ15+PAhBw4c4P79+3h5eenzde7cmS1btrBgwQL69OmDhYUFnTp1MujpeFLnzp2Jjo5m+fLltGrVCpVKhYeHh9GqUWWVnp7O7t27gd97lQ4ePMitW7cA9O0iRFmdzFQBxkOaejnL3TxRg2UXszjFS/I9KURxqvWpQCEhIfTo0YMdO3awbt06NBoNjo6OtG/f3uAC09fXlwMHDrB9+3ZycnKwt7enXbt2zJw50+ihcE/q0qULYWFhhIaGsn79emxtbfUPU/Pz8zPKP2/ePD7//HP27dvHnj176NatG+Hh4fzzn/80WCnAzs6O0NBQli5dyubNmykoKKB9+/YsWbKE6OjoSg0ioHDp0WXLlrF69Wo2bNiARqPB1dWVWbNmGTxsztzcnCVLlrB48WJiY2NRq9W0adOGOXPmkJycbBRElLV9ysLCwoLQ0FD9w+bi4uKws7PD09OTyZMnG03EKklgYCAdOnQgMjKSTZs2oVaradiwIW3atGH6dMP1u319fWnevDkRERFERkai0WhwcnKiZ8+e+udOdO3alYULF/Lll18SHh6OlZUVvXr1YuXKlQQEBBgcb/DgwcTExLB7927u3r2LjY0NrVu35rPPPsPT8/fxG4MGDSIpKYn9+/fz3XffodPpCAkJKTGImDx5Mjk5OURFRZGbm4uiKOzatavCQURqairh4eEGaXFxccTFxenPX4IIUR7dGsGB68bpR9IVJnSu+voIUSmKmyuYcgdcG5veJmqFArn/UW4qpSxrpgohhHihZd7X0Xi58QXX0DYqon3Mq6FGNZNGo2Ht2rUA+Pv7Y2lpWc01esGN/g9s+sE4/Yf/hT5/rPr6iCrTN6j0S8n+EC433x5XbXMihBBC1DzFLfOap5H7UaIGu3rLOM3GCl59+nLhQryoJIgQQghRavZ1FMxMxBEpsj6AqMl6uhmnvTfg6U+zFuIFJv86hBBClNq6c6Az0elgW6fq6yJEpfn7COj22BLivV6Cee9UX31EldGpVKV+CUPVOrFaCCFEzfLzLdPDliZ3lXtSogZzsoef/wXHLoGZCnqY6JkQQhiQb30hhBCl9oqJpVzdG0NAF/k5ETWcSlXYAyEBhBClIt/6QgghSs2/kwrftr8HEu0awhZvWZVJCFEzFahUpX4JQzKcSQghRKlZmquIGmrOpbsK2Q+he2Mwkx9XIYR44UgQIYQQoszcGkjgIIQQLzIJIoQQQgghxAtJW90VqMFkToQQQgghhBCiTCSIEEIIIYQQQpSJBBFCCCGEEEKIMpE5EUIIIYQQ4oUkS7eWn/RECCGEEEIIIcpEggghhBBCCCFEmchwJiGEEEII8ULSymimcpOeCCGEEEIIIUSZSBAhhBBCCCGEKBMZziSEEEIIIV5IWmQ8U3lJT4QQQgghhBCiTCSIEEKIKnYyQ8d/RWnovErD9O+03H+kVHeVRBXLPn0Xm6/rUT/UhrP/ewbtA211V+m5k787mdsD1pPZfSW5//4JRamB/07Uj+Bvm6HzJzDkX3D0cnXXSIhKI8OZhBCiCt2+rzDgay05Dwvfn72tcOMebPaRr+MXRX6mmkOjDlInzxKAS+HJPMp8SO9lf6rmmj0/Hv54g9+GbgZdYeCgOZkBmgLsPulTzTUro0lrYf0Phf9/9iYkXIALC6FZw+qtlxCVQHoihBCiCm1P0ukDiCJbL+i497AG3mUV5XIz9ibaPMOehxvRKWjvS29EkQcRp/UBRJH7a36pnsqU10MNbPzRMC0vH6KOVk99hEkaVelfwpAEEUIIUYXqmuhwsDQDC/k2fmGY1zX+Y5vVMUNlLlcpRVQm/qGYSnuumamgjok617Ws+roI8QzIz5YQQlSht9uZ0aK+YVpgNzOsLeUC8kXRfEgL6japZ5DWepwb5nXNq6lGzx+bwO6orA0vtm2n9q6m2pSTpQVMed0wzdkBRr1SLdURorJJECGEEP8n56HCxP0FuKzQMmBzAYmpTx9i9KhA4ZODBbRepaX3V1qiL+lKzG9npeKndy2Z4q7CpT40rFs4L+KnmyXvJ2oPy/p16PCPl3nYEDR1of5rjfjjxx2rrT5pS85yokMUJzttJX3Zr8+sHPXBG9zst4lrLivInLQf3b2HxeY1b2aH1VtuqGzrYOZkjd2CP2Mzvlul1ke7+QRq98954PYPHs3Zi6ItqNTjA7BgFIx9DezqQgMbeL9/4X9N0Whh1kZo9B5Y+0GzCfDZdqiJE8prEI1KVeqXMCRBxHPo+PHj9OjRg5iYmGqrQ1JSEpMmTWLAgAH06NGDFStWVFtdhKgq7+7VsfK0QkouxN9QeCOqgLS8kn/APzmo47OjCldz4GgGvB2t43hGyfs0s1NxLQeu34OsfIi7rvBGpJZbTylL1A730x/ww99+4eGjOqgt6nDzVDaHPj1RLXXJ+PICV6f+hPp8Ng/O3eXKlEQyv75U6eVobtwj7c2t5B+8iTblHvfCT3Frwr5i8999N5r8bedR8h6hu/2AvHk/UJCWW2n1KUi4xMN3ItCduIly+Q6aufvQ/OObSju+XuRPsCERcvPh7n34x05Y+b3pvLMj4X+3wu17has6pd2FT76CJbGVXy8hKoEEEcKIVqtl5syZpKSkEBQUxLx58/jzn/9c3dWqcvHx8WUOnjZu3PhMgr+zZ8/y+eefM378ePr27VtikHnhwgUWL17Mf//3fzNgwAAGDBjAuHHjiIqKQquViZvFyX2ksOuS4UX8Ay3suFjyhf1Xvxpu1ykQeaHkXoW7aoU9T5SV9wh2JktvxIvg2oF0CvIN/9bXD6ShqYaJ1bdNBAy3v7pY6eXc334RRa01StM90Bjl1d17SP6uJIM05YEG9Y4LlVYf7dfHje7wa7/+udKOr/f1j8ZpXyUWk/eg6fSvikkXoppJEPEc6t69O4mJiQwePLhayk9NTSU1NZV33nmHUaNGMXjwYF566aVqqUt1io+PZ9WqVWXaZ9OmTc8kiEhMTCQqKoq8vLyn/i3Wr19PTEwM7du3Z8qUKQQFBWFvb89nn33G1KlTa+Za61XA0gzqmZgDWb9OyfvVtzK1T8nd3lYWha/SHEvUPpY2xn9887rmmFlU/XAJczvjSb4W9k/50JeDmZ3xMVXWFqgsjS9DVHXMUdUzrpeZfSX+A6lf17hcE2kVZmfimPbWxeStZzq9fjHpQlQzCSKeI/fv3wfAzMwMKysrzM2rZ5Ldb7/9BoC9vX2lHldRFB48eFCpx6zpAgMDCQwMfGo+X19fEhIS2LJlC6NHjy4x76hRo9izZw9///vf8fX1ZdSoUXzxxRe89dZbHD58mEOHDlVW9WuVuhYqPuhueBHXxgHefqnkC7uZPQ2/Rh3rwfjOJe9jbaki2N1wv7YNYVhb+Up+EbR6sxm2LQwvJDu+64a5VdV/5zf7uDOqx4IXVR0znD/sVOnl2I5oh0Urw98Uh6k9UFkan7OqrgU2H/QySDN3a0jdt/9YafWxDHrNKJCwnPEMetynvmm4QpOFOXz0pum8M4cZp5mpYPp/VX69hJ6mDC9hqIatl/b8iomJYe7cuYSFhfHLL78QExPDb7/9houLC/7+/gwaNMggv7e3N87Oznz88ceEhoZy5swZ7O3t2bVrF8ePHycoKIiQkBC8vb31+yiKws6dO9m5cydXrlwBoGnTpgwYMICgoCB9vkePHvHVV1+xb98+bt68SZ06dejWrRsTJ06kffv2JZ5HYGAgJ04Ujs2dO3cuc+fOBWDXrl00bdoUtVrN6tWrOXDgAJmZmdSvX5/evXszadIknJ2d9cd5/BzUajVRUVHcvHmT9957j4kTJwKwf/9+Nm/ezMWLFykoKMDNzY2xY8cycOBAo3odP36cDRs2cPbsWdRqNU5OTri7u/PBBx/g4OAAQFRUFPHx8Vy5coW7d+9ib29Pr169mDRpEk2bNjU43qFDh4iIiODy5cvk5+fj4OBAhw4dCA4OxsXFxaAdevTood/vyb/J44rypaenG+xT1HYV4ejoWOq8Xbt2NZn++uuvs3fvXi5fvkzfvn0rVJ/a6t2OKvZcUTifBc1s4ctBZtg8pVfhnT+q2H4R4m+ArSXMe1VFc7uS9/nqbAGxl3TUrwPOtjDyj2Z80NOcepW0QtO64xr+X9xDbuYoKIBrAxVzBlox6mVZWvJ5YGljQbep7Tk4+zjkq2jUpSGd/N0qfNwrC89yY3kS6BSaB7Sl9f90RvWUyaD1+znT6P123N5wCVTQeHw76v+pcYn7aG49IPWDBPIO3KCOmz1NP3sN2wHNi82fHXqCrJBEdNn5YGmG5R8dafhJb+zeKT4osPvfAWgvZfFwzyWwNKPe6I6YWRf/+VUePCLv/e1otp6FAh1m7Z2w/XoUFl1Nf/eauTlh+enraD77FtQazAd3wNynS4nnDVCwIgHd5/shMxfMVWBlidnYVzD7f8NQWZq4pOrZGsZ7FM6LUKnAvy/8uZhJ9O8OAGsr+GgNpN8tDCAsLWDFfujYAlwaPbV+QlQlCSIq2RdffIFarcbX1xcoDC7+53/+h0ePHhldfN66dYtJkyYxcOBA/vznPz/1Lv3s2bPZu3cvnTp1Yvz48djZ2XHt2jW+++47fRCh1Wr5y1/+wunTpxk8eDAjR44kLy+PHTt2MGHCBFatWkWHDh2KLWP8+PG8/PLLrF27Fh8fH7p1K1wNo0GDBmi1WoKDgzl16hSenp6MGTOGlJQUtm3bxpEjR4iIiKBxY8Mfn02bNpGTk8OwYcNwdHTUb1+2bBlr1qzh1VdfJSgoCDMzM+Li4vjkk0+YOXMmI0eO1B9j27ZtLFiwgEaNGjF8+HCcnZ3JyMjghx9+4NatW/og4quvvqJTp06MGjUKe3t7Ll++zM6dOzl27BiRkZH6fD///DMff/wxbdq0wd/fH1tbW+7cucPRo0e5ceMGLi4ujB8/HkVROHnyJPPmzdPXpUuX4n9k5s2bx6JFi3BwcGD8+PH69AYNGpT4d60qmZmZADRsKE9KNaVApzBkh47L2YXvr92D0bE6rgaosCphmMlfvtPxzbXC/39YAH/5XuFPTRW6NTa9z6EbOsbtKqBoUNm9LLibD3+wrpwA4vtLWvy35hukXbit8E5kPq0bmtGzhSwjWt1yb94n8ZNfUGkKe55un7zLwb/+zBurXi33MW+uucjFv/0+OftSyC9YNKiDy5SSbxxlLPuVW+G/zzVIX3oOmy4NaTyh+P1SRn9D3vc3AVAfy+SKVwx/vDwOS2fjVYfydiRz5y/f/Z6g06E5fZuCW/dLrNeDZcfJ33r+9+PM+wEL1wbY+Hc1mf/+R7FoNp36vZhfM8n1/BKH1L+hMvFchoKES2g++X3oacH20zz6WwxW/3m72Drpdp9GF/T1E6lqdP/aD/UsMZ9nosfgi/0Q/thE6i8OgHsreNfDdCEr9kNq1v8VqID2Eew6Btdvwy+Liq2bENVBgohKlp2dTWRkJLa2tkDhMBQ/Pz/+85//8Prrr1O37u/dp6mpqcyaNYthw4Y99bgHDhxg7969vPXWW8ydOxczs9+HPeh0v0/Q27x5Mz///DNffPEFf/rTn/TpRcNaFi9ezMqVK4st55VXXsHCwoK1a9fSpUsXg3kZO3bs4NSpU4wdO5YPP/xQn967d2+mTp1KaGgo//jHPwyOl5GRwdatWw0uXC9cuMCaNWvw9/dnypQp+nQ/Pz+mTZtGWFgYXl5e2NjYcOvWLf71r3/h6urKmjVrsLOz0+efNGmSwblHRkZSr57h2FEPDw8mT55MdHQ07777LgAJCQnodDrCwsIM6vX+++8btMO+ff+/vfsOj6L6Gjj+3d30QkJCIKGG3nsg1IACUgIKPyIgIghKpBfxtYuAqIBK70gRkY70IsUQFOkGBKQJREJIQkvvuzvvHyGbbHZTCSTI+TxPHti7M3PvzLY5c++5s4+goKA856Z069aNRYsW4eLiUmT5LNlJSEjgxx9/xMHBgXbt2hV1c4qlMxEYAoh0YfHwW6hCx0rZn+BvvGKaWL3lmp7GZcyfrG+6pCdrVsqGS3rmdTa7eL5tPG8+OVdRYPMFrQQRxcC/B8LQpxonVoccDiclLhUrh4L1FoVv+tekLGJTcK5BxP2NN8yWZRdEaO8nGgKIdEqilpgdN3F9x3QYVNyGKyZlALEbLuM8zsvscwCJGy6aLcsuiEhZe86kTHmYSOrhG1h1qWnynHZjkEmZbkMQ5BREbMw+8Vq/4bT5IGLjCfNl5oKIB7Fw6C/zFZwLhqt3oMbj9WoLUwkydWuByQDcQubn52cIIAAcHBzo3bs3MTExnDlj/AXk5OSU7dCYrPbu3QvAuHHjjAIIwOjx3r178fT0pHbt2kRFRRn+tFot3t7enDt3jqQk46uUeRUQEIBarWbw4MFG5W3atKFGjRocOXLE6KQewNfX1+TK9969e1GpVPj6+hq1MSoqCh8fH+Lj4zl//jwABw8eJDU1laFDhxoFEOb2PT2A0Ov1xMXFERUVRY0aNXBwcODChQuG5dJfn19//fWpzlaUkJBgsr9arRatVmtSXpi5Izqdjs8++4zQ0FA+/PDDQs91eRwPHz4kOTljrvi4uDhiYzOmcUxJSTHk6KQLCwvL8XF4eLhR8nhe63DNJnfR1UaVYx2lzKznoErJdj/M9TiUsi28/cipR8NSazxFZkHryOxJvR7/5TpsSpomGVvaW3A/8l6B67AqZZp0bOlinet+KI5mTgNKZASaWfdDbWcBtqaBqKZUxgWyzHVozH1AAMU54xiYO1YpDmbu6l0qI48k635Q0nzStbqUvdk6VKVMe020zsbbyFpHsn32AbiqlIPZ/UiyNxMUumb8lhnVYWuFYpdNUrtGDc52Rf7eLco6RPEjPRGFzNPT06SscuXKQFrPQ2blypXLc/J0SEgIpUqVynVs/M2bN0lOTjabV5AuKioKd3f3PNWb2Z07d3Bzc6NEiRImz1WtWpWrV68SFRVlFDRUrFjRbBsVRTEM+TIn/cslJCQEgJo1Ta8kZXXq1CmWLVvGxYsXjb68AKMvrz59+hAYGMi0adOYN28eDRs2pFWrVnTu3PmJDj2aMWMGu3aZn+876+vVvXt3Jk2a9Nh16vV6pkyZQmBgICNGjKBLl2wS+opI1gAzcwAOYGVlZfKez5x7Y+5x1vd2XutwBfrXVrH2UsYPoW8V1aNhSdnX8WkLNe8cyAieKzqCfxMbHG0zTuYz78fbjdQsPKMj/NFoDhXwaRtNoe3HO956lp5M5V68cX9HeScVY18w3kZB68jsSb0e/+U6PLuU4+yiy0RfjzM818C/BmUrGF9lzk8dnu/W4e62EHQJaRdG1NZqKv9fPZw93HLcj8qfenH+4G6U5LQbraltNVT6sEm2+6G2s6T0hCbcnXrKUGbTsBQlelQ2W4fTmCbE/HABJS5TWqqFGrePM4ZumTtWpT57kfsBq9PGCAIqO0scJmTc6Tnrfth/0Zn4NzcblVm8WAULr/Jm67Dwb0Xq4qNw99FroFJhN8nXaP2sddi91xXt+j8hMstFHo0a9cddsTCzHzaf+0HgV5Dy6IKVvTW829V8HXbWqCa8Al9swoR/JyjtjBWmOXL/tc9Hdo9F8SNBRBHKPLSpMFWrVo3x48dn+/zTHKOf3T6qVCrmzp1r0quSrmrVqvmq5+LFi4waNYry5cszatQoypYti7W1NSqVio8//tioh8TZ2ZnVq1cTFBTEiRMnCAoKYubMmSxZsoQ5c+bkmPfwOAYOHEjXrl2NymbPng2k9TBl5uZm/MNfEHq9ni+++ILdu3czdOhQozwNYd4PXdV08VQ4HqbQtIyKAXVy7+b2b6impouKn6/p8bBX8VZ9FS622a/n4aBiha+Gt/fouBMHdUtBnVKF151ewVlN0Bg7lp9K5WKEDpUKGnhoeLuZJW5mru6Kp8/CRkPjIVX5Y+JplCQ1bvWcqNm70mNts0RjV1qe6U7oD/+g6BTKDaqKQ23nXNdzbFGGRkG9uPvDNVRqFaXfrI5tjZzX8/iiBXbNyxD7y79YV3fGZUgd1FbmL4hZ1XCh4vnBRH57iuTT4VjWcqHk/zXHum6pHOuwblUBp+kdiZkUiBKdhKV3OTTuDtkvP6gpKs+SJH19GCUqCau+9bEZ0TLb5dXlnLENeh/t8uMoD+Ox6NsETQvPHNukquKGxdnP0K84ihIaBSpQOdqi7t8cVVMzr1+KFjYcT0vAtrGE5lXh+7eheg4X8aa8Bs2qwe4z8DAubTrYTg3h1YLny4icJcpopgKTIKKQBQcHm5TdvHkTSOt5KKiKFSsSGBiYNuwih96IChUqEBkZSbNmzbI9QS+ocuXKcezYMWJjY02GFt24cQN7e3tD8nJOKlSowB9//IG7u7uhlyY76T0ZV69epVKl7H9k9+3bh06nY+7cuUbHOTEx0agXIp1Go8HLy8swi9K1a9cYMGAAy5cvZ86cOQC5zmpiTk7rVKlShSpVqhiVpR9Hb2/vfNeVk/QAYufOnbz11luGGbFEzizUKt6oq+KNbCZPyU67Cira5THXIDFVYeBOHfcT0x5fuA89Nmq5OdISC3Xh/JqVc1IzsaPcdKK4ir0RS9CE09hoFUBH3JmHnBx1nHabXnis7drXKEGNL5vkvmAWdrVL4jmtee4LZuLUozJOPXL+/k5n6elE6fnZ946bk3r1AdET9oMurUctJSCYyEHbKbV/QLbrWLWrglW7Ktk+n5W6rBNWn+UvGUlV0RXNpJfztvCX29MSq9MduQwnr+ccRAD0aJb2J0QxJ5elCtnmzZuJi8vooo6Li2PLli04OjrStGnTAm83/Qr23LlzTfIOMo9D9PX15cGDB/z0U9YZJNJkHYOYH+3bt0ev17Nq1Sqj8qNHj3LlyhV8fHzyFLikJx0vWLAAnU6XYxs7dOiApaUly5YtMzqu6Qzjbh8NC8t6I7UVK1aYHK+oqCiT7Xh6emJjY0NMTIyhLD3HIjo6Otd9yrxO5m0UBUVRmDp1Kjt37mTw4MEMHz68SNsjjB29rRgCiHS3Y+HUHbkJ4PMi7MAdFK3x6333twhSY2Um+nRJu64aAoh0yQduoI9LKaIWFcDW03krE+IZJT0RhczZ2ZlBgwYZEqZ37txJeHg4n3766WMNX+rYsSOdOnVi9+7dhISE4OPjg6OjI7du3eLYsWNs3LgRgNdee40TJ04wZ84cTp06RbNmzbC3tyc8PJxTp05hZWXFkiVLCtSGHj16sGvXLn744Qfu3LlDkyZNCAkJYfPmzbi6uhrNtJSTunXr4u/vz9KlS+nfvz8dO3bEzc2N+/fvc+nSJY4ePcrx48cBKFOmDBMmTGD69On069cPX19fPDw8uHv3LoGBgUycOJGaNWvSvn171q5dy9ixY+nVqxeWlpacOHGCf/75x6R3ZOrUqdy9exdvb288PDxITk7mwIEDxMfH4+ubMSa2fv36bNy4kWnTptGmTRssLCyoV69ejj1K9evXZ/v27SxatIjKlSujUqnw8fExmTUqv8LCwti9ezeA4R4hR44cISIiAsBwXADmzJnDjh07qFGjBpUrV2bPnj1G2ypfvvwTG7IlcudhZkSGCnB3kD7154VNGdPfAktnKzQ2MnNWOo2H6UQaKhdbVDbP0GlLWWc4H5KlrHhM+S1EYXiGPo3PhtGjR3P27Fk2bdrEw4cPqVixIlOnTi2UhNYvv/ySxo0bs337dpYtW4ZGo6Fs2bJGSbkWFhbMnj2bzZs3s2fPHkPA4ObmRt26denevXuB67ewsGD+/PmGm80FBATg6OhIhw4dGDFiRL6Stf39/alTpw7r169n3bp1JCYm4uLiQtWqVXnvvfeMlvXz86N8+fKsXr2a9evXk5qaipubG82aNTPcd6JRo0bMmDGD77//nsWLF2NtbU3z5s1ZunQpQ4cONdpet27d2LlzJ7t37yYyMhJ7e3uqVKnC9OnT6dChg2G5zp07c+XKFfbv38+hQ4fQ6/V8/vnnOQYRI0aMIDo6mk2bNhEbG4uiKOzYseOxg4jQ0FAWL15sVBYQEEBAQIBh/9ODiL///htIGwI2ceJEk211795dgogiVNdNTd/aajZcyughG9xQTWVnCSKeF+W6lsepvjPR56MMZXXerYvaUgYHpLP9Xy3iGruTGhRuKCsx0QeVxTN0jD55BQIvQ9KjHiZXBxhbSHM5i0KTgnz3FpRKyTr+QxRI+h2rFy9ebHS3YiGEyEyvKLx7UMeiP/Xo9PBCJRU7XtVgKyeQz5Vrq6/y52dnUCerKFHHiTY/+GBfwXTa0eeZPiGVxJ/Oo70ZiU236li3MZ3tr9i7Fg7rjqUlVr/RGjykJ6K4UY17mOdlldlys9bMpCdCCCGeosV/6plzKqMX4mCwwozjCp+3LcJGiacq5ko0Zz/8E7U+7QpozN/RnBx9nBe2dchlzeeL2s4S+6H5TxQvVqq7w8ReRd0KIZ4IufQlhBBP0a5/9HkqE/9dYb+GQZaX/P7xe5JYLURRUOXjTxiRIEIIIZ6iSiVMf4k8i89NxMVTYF/edNiSlYs1GjN3ghZCiOJKgohC0qNHD06fPi35EEKIHL3XQkNpu4zHJazhk9Zy8vg8KdulHC7NMt3vRwX1P6qP+llKGhZCPPcksVoIIZ6yBwkKGy7pSdVBnzpqPGR61+dOcnwyaz/8CXWkmm7v+eLW6PHvUi+EyD/V+HwkVs+SxOrMJLFaCCGeMlc7FSOaSu/D80xtpSa1vhYA57rORdsYIZ5nKrmIU1DSdyqEEEIIIYTIFwkihBBCCCGEEPkiQYQQQgghhBAiXySIEEIIIYQQQuSLBBFCCCGEEEKIfJHZmYQQQgghxPNJZmcqMOmJEEIIIYQQQuSLBBFCCCGEEEKIfJEgQgghhBBCCJEvkhMhhBBCCCGeT5ISUWDSEyGEEEIIIYTIFwkihBBCCCGEEPkiw5mEEEIIIcRzSsYzFZT0RAghhBBCCCHyRXoihBDikbA4hSXn9EQkQO8aKjpWkuss4slIjkrB8qg1qigNoeXu4Olbqaib9MRog6OIX/on+pgU7PrXxbpVhaJukhCiEKgURVGKuhFCCFHU7sYrNP5Rx524jLLFndS801ACCVG4tAla9nQ9QOzNjDdb/fF1aDC+bhG26snQ3ogkwms5SmRSWoEKXDb2xs6vdtE2TIhHVP8XnedllW+cnmBLnj3y6yiEEMCqi4pRAAHw1XF90TRG/Kfd2nPbKIAAuLTsKrqU/977LW7RmYwAAkCB2Gl/FF2DhBCFRoIIIYQAIpNMO2Ujk4ugIeI/LyU61aRMG69Fn/rfCyL0mQMIQ1liEbRECFHYJIgQQgigT0016iyTdLxWS2btEIWvQpdyaKyNf37LdyyLpf1/L03Rrl8d07LX/nvDtoR4HklOhBDiP0erV1h+XiHglkJtVxWjG6twsc09IFhyVs/Eo3piU6F9Bdj8sgY7y8IPJPR6hVVndez/R091VxVjWljgZi8BS3F07+9o/t78L3qtQq2eFfBo4lIo272+PZg/PjqBKlGFW2NX2i1vg01J6wJt6+76GzzYcQur8vaUG10bmwoOhdLGrPSxKUTOP0vyuXvYtvTAaVgD1Na5Bz5xS/8kZmIgSmwyVi3K47rtVdSOOe+r/n48iXOPobt6H6uOVbEe3BSV5sld99QfvoL+h2NgY4l6mA/qhtknfyuhD2Hufgh5CN0boerfKm+VHL8CY5bD3Wh4uRnMGgwaTc7r/HkdluyHVB0MfhHamgZl4vGo3s9HTsQMyYnITIKIYuj06dMMGzaMzz//nB49ehRJG65cucLs2bO5fPkysbGxDB06lHfeeadI2iJEfr21T8eKCxlfbXVdIWigBktN9ifq4fEKDVbpuJdppMW37dRMaFb4Jy6jd6cw/4TO8Liai4rzI62xeQIBiyi4iL8i2Tb4mGGYkUoN3eY3p2Kb0o+13dS4VHZ1+oWE0Iw3W51hNWn8cYN8b+vfL84SPPFPw2MrD1u8zvfC0tXmsdqYlaIo3Gq9nqRjYYYyh55VKbf1lVzXvdtuNSlHbhke2/hWo9SuftnXlawlqsE8dFfvZ6wzvDkOC3OvqyD028+i7bUY0k+HbCyx+ON91I0rmrYtMh7qfwShkRmFE3uimtw750r+DoH640Cf6ZSrfT0ImJL9OievQdtPIEWb9lithp0fQbemedsxkScSRBScDGcSJrRaLe+//z63bt1i2LBhTJkyhRdffLGom/XUHT58mCVLluRrnbVr17Jz585Cb8uFCxf45ptvGDJkCG3btsXLyyvbehISEli6dCnjx4+nW7dueHl54e/vX+htKq7uJSj8cNH42sjFB7AvOOfrJT9cUIwCCIBvTxf+GPXYZIWlp3VGZf88VNh+WZfNGqKonF8XbJSnoOjhrzU3H3u7t/bcNgogAK788A+65Py9BxRF4fbMC0ZlKWGJ3F1747HbmFXiH3eMAgiAuG3XSbkeleN6KSdDjQIIgKTd/5B6+X42a0DKzstGAQRA0vdn0Eeb5lcUBt3MgxkBBEBSKvr5h80vvP6YcQABMPsXFF0u3xUfrzEOIAAOX4Do+OzXmbcnI4AA0OthVuH/vghRUBJEFENNmjTh6NGjdOvWrUjqDw0NJTQ0lNdee42+ffvSrVs3qlevXiRtKUqHDx9m2bJl+Vpn3bp1TySIOHr0KJs2bSIuLi7X1yIqKoqlS5fy999/U716dTS5dZf/xyTrQGcmXog3zWXN8rzpSrmtUxApOjCXP/sk6hKPR5uoNSlLNVOW7+0mmAYL+hQ9irk3bk70CroE0/bonsCbSclmm/pc6sru+ey2l/Zcimlhqg6SH//YmxVvZgYFc2XZlSempJ3g5yQum+0l53D84s0ETdm1SzwGVT7+RGYSRBQj8fFpVyTUajXW1tZFdvL34MEDAJycCrfbTlEUEhISCnWbzzp/f/889RL4+fkRGBjIxo0b6d+/f47LlipVit27d/PLL78wZ84crKysCqu5z4TyjipeqGD8Ze9qC75Vcv4BeK22Gsss34gD6xT+j4arnQrf6sYVOdnAK7Wer2DvWVCjR3mTsppmyvKrQpdyWNgZv94VupbDwi5/idUqjZoyA6oalaltNLj1qfzYbczKrn0FLCo4GpVZN3LDpoFbjutZt62IprKzUZlFPTcsm7hnu45Vj1qonI2HY1l2rYG69JPJ9VAPbGmmrIX5hf2ag22W79R+LVBZ5vLavd/TtKyqO5R2zn6dge3zViZEEZEgopDs3LkTLy8vTpw4wZIlS+jevTstW7akX79+/PLLLybL9+jRA39/fy5fvsyoUaNo164dr732GpCWE2FuuIqiKGzdupVBgwbRtm1b2rZtS9++fVm8eLHRcikpKaxYsYI+ffrQqlUr2rdvz/jx47l8+XKu+5H5pHby5Ml4eXnh5eXFnTt3AEhMTGT+/Pm88sortGzZks6dOzNx4kTCwoy7uTPvw8aNG3n11Vdp1aoVP/74o2GZ/fv389Zbb+Hj40Pr1q0ZNGgQBw8eNNuu06dPM3bsWDp06ECrVq145ZVXmDJlClFRUYZlNm3axMiRI+natSstWrSgc+fOfPbZZ4a2Z/b777/j7+9Phw4daN26Nb6+vvzf//0f//77r+E47Nq1C8BwDHIaQpS+XFhYGH/++afROubqzy9XV1dsbW3ztKyVlRVlypR57DqfZd+0U1HHFewsoH4pOPiqGkernAOC2q4qVndTU84B7C2hQ0WY1vbJXHma72tJ07Iq7CzT8iF29LfC1U6uchU3VTp40PSd6lg7WWJpb0GtXhWo4/f4d5a2c7fF+5smYK8FjZ4yTV3wnlawce5V57Wg5EtlUdtbYFXWjurft8a2Sok8rZtw7j7Bbx7i+it7eLj+Wo7Lqqw0OI9siMrREjQqLKo64fFj19wr0aiwf6sRag8HVCWssOlRnVJ7+qFSZf9+V7vY4fjz66iruoCdJRbNy+GwrGeO1Sj340j+cCfxDb8hvvbXJL25Ft3FsBzXAdD9dALdwUuomntCtdKovCqhWTMEdbf6ZpdXebrBt/2gTAmwtYRyJSE+GSXg75wreqkRdG8K6ftdtiQc+yrndXp6ww+joUZZcLKDRp5Q5fn+bhfFy39vPrkiNm/ePBITE/Hz8wPSgotPPvmElJQUkyTpiIgIhg8fTseOHXnxxRdzvUo/ceJE9u7dS7169RgyZAiOjo4EBwdz6NAhhg0bBqTlM4wePZq//vqLbt260adPH+Li4ti6dStvvfUWy5Yto06d7Gd3GDJkCA0bNmTlypX06tWLxo0bA1CyZEm0Wi2jRo3i3LlzdOjQgQEDBnDr1i22bNnCiRMnWL16tcnJ67p164iOjqZnz564uroanl+4cCErVqygVatWDBs2DLVaTUBAAB9++CHvv/8+ffr0MWxjy5YtTJs2jdKlS9O7d288PDwIDw/nt99+IyIiAmdnZwDWrFlDvXr16Nu3L05OTly/fp1t27Zx6tQp1q9fb1juzJkzvPvuu1StWpXBgwfj4ODA/fv3OXnyJCEhIVSqVIkhQ4agKApBQUFMmZKR+NagQfaJj1OmTGHmzJk4OzszZMgQQ3nJkiVzfF1F4XqYqNDtZz13H32czt+H1RcVGuWSC5uYqvDRET2hj+4BdugWjPpVYVUezpPyq++mFM7cSRu68s9DhYm/ajk8RHoiipv7l6M5u/K64SZwl7eG4NHEhVqvZD9zT16kRqVwdfwZSkToAT2JB8O5+sVf1PvGK9/bCvnyHJH70y5UpMRruT7mBC4dymLlbpfjekmXI7na6mf0j4ZDRe8IRns/idKjzJ88R879k/sf/m54rL0eTej/dlD50ps5zpoU80kAsV9n3Fwu5Y/bqKxyfq8rej3x43ajv/4wra6TocT5b8Np9yDzy+v0JL6wEP2FjKBBe/ku2p//wu6v91F7mp9RSzfzALoJm9O2AeBgjcW+MaiqZt+7ovx2BcasgfQciNBI+Pk0bDuD8sv7qDrWM7/iRz/CrjMZj+9EwpRNMG9otnUBUKEU/BOeNlzqbDB0+QJ2fATd8/9eEaKwSRBRyKKioli/fj0ODmndrn5+fvTr149Zs2bRqVMnbGwyumhDQ0P59NNP6dmzZ67bPXDgAHv37qVr165MnjwZtTrjS1ufaSzmhg0bOHPmDPPmzaNly4wuWj8/P/r27cvs2bNZunRptvW0aNECCwsLVq5cSYMGDYzyMrZu3cq5c+d44403GDt2rKHc29ubcePGMX/+fL744guj7YWHh7N582ZcXDK+xC9fvsyKFSsYPHgwI0eONJT369ePCRMmsGDBAnx9fbG3tyciIoJvv/0WT09PVqxYgaNjRnf68OHDjfZ9/fr1JlfrfXx8GDFiBNu3b2fQoLQfoMDAQPR6PQsWLDBq19tvv210HPbt20dQUFCec1O6devGokWLcHFxKbJ8FgHrLyuGACLd4nMK032UHGdn2nFdITjGuGzN3woz2yt5mh42r06E6Dlx23jse2Cwnr/C9TRwl87h4uTiplsmd5E+/9PNxw4i7my9RXKE8Xj3f1f9Q+0vGqOxyXswqSgKofMvGZVpHyYTsfYGFd7N5mT2kfvLLxkCiHT35v6VbRDxcOafJmWp16JIOHwb+w6msxilty9u/mmjMv2DRBLWXsRxvHe2bUs9fBPdX+HGZXuuorv+AE1VV5PldQHXjAIIg9hkUledxHpSF7P16OYGGBfEJaNbcRSLL3tm2zYWHswIIDLTKzD/AGQXRMzfa1q27CDMfTujd8KcBXuN8y0UJS3hWoKIwiOdwAUmv1iFzM/PzxBAADg4ONC7d29iYmI4c+aM0bJOTk55nsJ17960L6Bx48YZBRCA0eO9e/fi6elJ7dq1iYqKMvxptVq8vb05d+4cSUkFm+EiICAAtVrN4MGDjcrbtGlDjRo1OHLkiNFJPYCvr6/RiXp6G1UqFb6+vkZtjIqKwsfHh/j4eM6fPw/AwYMHSU1NZejQoUYBhLl9Tw8g9Ho9cXFxREVFUaNGDRwcHLhwIWMGk/TX59dff0WrfUKJemYkJCSY7K9Wq0Wr1ZqUPy+5Iw8fPiQ5OSNRMC4ujtjYWMPjlJQUQ45OuqxD57I+fhCdJRIAdHrFMDFKdnWYS3bWK2lJ2lnrCA8PJ/Ps2PnZj9SsM7Sk78dd49loHqcOwzZzOVZSR8516LWmbwrdowT8x6lDMbNdRasnPCz/+2HuLtdKSkbidnbHSjG3Xqo++/0w0+b0urJ9PRTM1pMcm5Dzscrmzt2Zt2X0mud0p+9Hx8Lc66FPziaB21wdpL0e+hwSofXJqdm/r8wFHjpdru9dbaJpInVqvPHMXv/lz6Ao3qQnopB5enqalFWunJbkFhoaalRerly5PCdPh4SEUKpUKVxdTa/CZHbz5k2Sk5Pp2LFjtstERUXh7p59Ult27ty5g5ubGyVKmI63rVq1KlevXiUqKsooaKhY0fQK1c2bN1EUxTDky5z0L5eQkBAAatasmWv7Tp06xbJly7h48aLRlxdg9OXVp08fAgMDmTZtGvPmzaNhw4a0atWKzp07P9GhRzNmzDDkWWSV9fXq3r07kyZNemJtKS6yBpiZA3BIy+/I+p738PDI8fHbXk58+5eOmEznBwPqqLG2UOVYx8sOCm62GE3z+ko1FW52KrAzriPr5yc/+9Gqgprabiou3cv4wW3soaJzA+PxVo9TR7rcjpXUkUsdPa25sj0EJdP5X53eFR67Do+eFbk06SzamIwT0nKvelKucrl87Ye1tTUeQ2pwZ0FGb4Ta3oLSr2UkW2d3rFwH1eTeggtGwYHr27Wz3Q/lnQY8mPiH0XMWHvbYd6iIQ5bhSYbXQwX2gxsSvyjjAprK3hLnN5tgkemiUNZjZfliFdSVS6K/mTGVqkXrSljUyhhmlPk113SojsrTBSX4oVE7sLbAcqCX2ToALIb6oP9id6adtTBKqDb3vlKGvgBbjS8IplP7v5j9++qNdrD0gPEKfdvgnuX1yfqaW7zTGfYEGZVZjjAeY/mf/gyKYk2CiCKUeWhTYapWrRrjx4/P9vmnOUY/u31UqVTMnTvXpFclXdWqVc2WZ+fixYuMGjWK8uXLM2rUKMqWLYu1tTUqlYqPP/7YqIfE2dmZ1atXExQUxIkTJwgKCmLmzJksWbKEOXPm5Jj38DgGDhxI167GX/6zZ88G0nqYMnNzy3nGE5E9DwcVh/tqmHpcz78xCr5VVHzsnXunawlrFQdfVTNgj54b0VDZCT5vVfj93Gq1igODrJkUkMqZO3qal1Mz+UXLQq9HPD6Pxi50ndecv9bcIDVBR43u5ajX1/Oxt2vtZkOdxc05+n/HUCWpKNPYjbrfNivQtqrO8saqjG3aHavL2VHx44bYVMp9FiO7xm5U/6U7Ed+cRRuZjEu/ariNyf67z/UTb1RqiJx3Fn2CFtuWHrgv6ZhrfoPTrE7oQmJIPvwvqhJWOH31AhYVc575T2WpwSngLRIm/Yr2XBiWrSthN6lD9stbWWAbMJLkiXvRH7oKWj3qRuWw+rQT6lrZJyJrJnVH5WSLfuNpcHVA80Fn1PXKZbs8gKprQ5T1I+GjjRAeBZYaqFUW3u2KqlcOQ4wW+oOFBtb+ljYk6dVWaWW5ebk5bHwPFu4DrQ78O0F/n9zXE/kg45kKSoKIQhYcHGxSdvNm2s2JypXL+cspJxUrViQwMJAHDx7k2BtRoUIFIiMjadasWbYn6AVVrlw5jh07RmxsrMnQohs3bmBvb29IXs5JhQoV+OOPP3B3dzf00mQnvSfj6tWrVKqU/awo+/btQ6fTMXfuXKPjnJiYaNQLkU6j0RhmTwK4du0aAwYMYPny5cyZMwcgx9lDspPTOlWqVKFKlSpGZenH0ds7+/HBIv8al1Gx5ZX8Jyp/e1rh/KNRRRfuQ+fNeq6+pcLJunB/ZMqVULHsledr6t1nVaW2panU9vHuUJ1VcmQyJz89h5JggQKEnXnIn1PP0WJG/se5qy3VVPqsEZU+a5TvdR1fLI/ji3mbslalVuH6SQtcP8lm6tNsxM04RtKutJmflLgUoobvxapFeSxr5tyrrqlUEseVudwFOhO1pwu2q1/PV9tUajWaCZ3QTOiUr/XYcw5u3kv7f2IqBN+HzuZzSQw0Gljgn/aXX6+2SvsTopiRnIhCtnnzZuLi4gyP4+Li2LJlC46OjjRtWvBb1adfwZ47d65J3kHmcYi+vr48ePCAn376yex2so5BzI/27duj1+tZtWqVUfnRo0e5cuUKPj4+eQpc0pOOFyxYgE5netOlzG3s0KEDlpaWLFu2zOi4pkvf9/RhYZmPBcCKFStMjlfmaWHTeXp6YmNjQ0xMxnj69ByL6OjoXPcp8zqZtyGeHTHJCmsvGb9/7ibAz1fzeQMwIXLx767bpEQaj8e/uSUYbdJ/767lcYuNE7KVRC0JP5wrotY8PiU2EdYeMy68G5M2Q5MQzxnpiShkzs7ODBo0yJAwvXPnTsLDw/n0008fa/hSx44d6dSpE7t37yYkJAQfHx8cHR25desWx44dY+PGjQC89tprnDhxgjlz5nDq1CmaNWuGvb094eHhnDp1CisrK5YsWVKgNvTo0YNdu3bxww8/cOfOHZo0aUJISAibN2/G1dXVaKalnNStWxd/f3+WLl1K//796dixI25ubty/f59Lly5x9OhRjh8/DkCZMmWYMGEC06dPp1+/fvj6+uLh4cHdu3cJDAxk4sSJ1KxZk/bt27N27VrGjh1Lr169sLS05MSJE/zzzz8mvSNTp07l7t27eHt74+HhQXJyMgcOHCA+Ph5fX1/DcvXr12fjxo1MmzaNNm3aYGFhQb169XLsUapfvz7bt29n0aJFVK5cGZVKhY+PT57v8ZCdsLAwdu9OG7t748YNAI4cOUJERASA4bik27Bhg6EHRqvVEh4ezvfffw9AjRo18PGR7vCsVKpHk6QopuVCFCaz76n/6BvtudnX/+I+PS/kpSswCSIK2ejRozl79iybNm3i4cOHVKxYkalTp9Kli/kp5vLjyy+/pHHjxmzfvp1ly5ah0WgoW7asUVKuhYUFs2fPZvPmzezZs8cQMLi5uVG3bl26d+9e4PotLCyYP38+y5cv58CBAwQEBODo6EiHDh0YMWJEvpK1/f39qVOnDuvXr2fdunUkJibi4uJC1apVee+994yW9fPzo3z58qxevZr169eTmpqKm5sbzZo1M9x3olGjRsyYMYPvv/+exYsXY21tTfPmzVm6dClDhxrPw92tWzd27tzJ7t27iYyMxN7enipVqjB9+nQ6dMgYd9u5c2euXLnC/v37OXToEHq9ns8//zzHIGLEiBFER0ezadMmYmNjURSFHTt2PHYQERoaanJTwYCAAAICAgz7nzmIWLNmjdHMFnfu3DGs3717dwkizHC0UvF6bRU/XMyIIsrYQa/q8gsjCldF3/Kc+/YCyQ8zeiOq+HlikY/pXZ8V9sObEvPpYcNjla0Fdm82LLoGPSaVoy3KgFaw6reMwjJO8D+ZclU8f1RK1vEfokB27tzJ5MmTWbx4sWGcvRDi2XIsVM9bv+i5FQvVneEnXzV1SsmoT1H4Hl6NZMeE3aij1DTu24i679RCbfnfe68pikL8siASN/6N2s0Ox/daYtX02Z51R0nRwsy9sO8vqFYGPuyBqprcSfpZpfrQNG8yO8o006nmn2fSEyGEEMDtWIVOm/XEP5p18+w9mHVGYVnnom2X+G9yrOxASo+0+8HUGlz9PxlAQNpkEw7+TXDwb1LUTSk0KisL+LBH2p8Qz7H/5reWEELk04bLiiGASPfj3wqpOumsFUKI/yxVPv6EEQkihBACsDYzHN1SDWr54RBCCCFMSBBRSHr06MHp06clH0KIZ1S/WipK2xmXjWysQiNRhBBCCGFCciKEEAIoZafieH8NM8/ouRUDPaqqeKu+BBBCCPHfJt/zBSVBhBBCPFLZWcW8Dv+9aTaFEEKIwibDmYQQQgghhBD5IkGEEEIIIYQQIl9kOJMQQgghhHg+SUpEgUlPhBBCCCGEECJfJIgQQgghhBBC5IsMZxJCCCGEEM8nlYxnKijpiRBCCCGEEELkiwQRQgghhBBCiHyRIEIIIYQQQgiRLxJECCGEEEIIIfJFggghhBBCCCFEvkgQIYQQQgghhMgXmeJVCCGEEEI8n2SG1wKTngghhBBCCCFEvkgQIYR4pv1+W2HVBT23YpSibooQ+WJ9VYX9MQ1JtxOKuik5SjoVRszK86RciyzqphSd5FTYego2HIe4pKJujRDFggxnEkI8kxRFoc9OPZuvpgUPGhX80FXN63Xk2ogo3hS9wl9+R3DfZQ3AsXU7afBjG9xf9Szahplxd8QBYhadTXugglKzX8R5TNMibdNTFx4Fbb+AfyLSHpdxgsBPoGbZIm2WKCwynqmg5NdWCPFMOnRLMQQQADoF3j2sJ1UnPRKieLu3J5T7u0INj5VUPZcnnEbRF6/3bvJfdzMCCAAFHnz0G7ro5CJrU5H4bk9GAAEQEQ2Tfi669ghRTEgQIYR4Jl1+YFp2NwEeykgDUczFX4k2KUsOTUAbk1oErcleyqWHJmVKQiraWzFF0JoidOlO3sqEeM5IECGEeCa1r2DaBV3HFcrYS9e0KN5c2rublDk2dsHS2aoIWpM927blwcL4NEHjYY9VLZcialERebFO3srEs0mVjz9hRIIIIcQzqZ6bitkvqLB7lNlV0RHWdNM8sfqCI/XMP6Hl5791MmTqGRB/P5nzm29xdV8Y2mRdntZJuJvIpbU3uL4zBG1S3tYpCKemrlT9siFqCx2Wig47Tzvqr2r9xOoDSAi6x705Z4n9NQRFydv716KsA6Vm+KB69CHTlHfAfV0PVJbZf850d+OJX3KGhDV/oY9PyXP7FJ2elF2XSJr3B7qr9/K8nu6366TOOYzuRHDe67oSjm7uIfS7/kLR6XNf4a320LoGqB6dRXZtCJP+l7fK7kbBkl/gp0BIyOMwsIu3YO5u2Pcn6PPQPiGKiCRWCyGeWSfDIUGb9v9bsfBLsELjMoV/uWj7ZR2vbkwh9dF5ZbNyKgIHW2NrKZemiqPQoEh2jD5jCARKetrjt7w5Nk7ZX+kPP32fXwYfRZuYto5TFQe6b2iHTUnrQm+fotWTeCAEu5RHb97gKBL/vIdjvZKFXhdAxNenCf/4mOGx8+s1qbTmpVzXi9t+jfsfHIHUtBNZC3cHrJub9qKkSzkVyv0OP6LEpgUPmsrOuB0bgqaMQ471KFodsV1Woj10Pa1ArcJ+pR/WA5vkuF7yyE1oF/5ueGz5YUesvu6R4zr6VX+ge+sHeJR/oupYG82+sag02VxTvR8LrSbDtfC0x7ZW8OkrUMIux3oAOHkNOk6C2MS0x1XWw7GvobRz9uss3Asjl2U87uEF2z/KCGCEKEakJ6IYOn36NF5eXuzcubPI2nDlyhWGDx/OCy+8gJeXF0uWLCmytghhzqkwhbWXjK+oTjmmJyqp8HsJ3t+fagggAE6FKqz968ldqRaP5/jCa0Y9CZHB8Vz4+XaO65z57m9DAAEQfSOOy+tuPpH2Pdx1i5hfwzIK9ArB75/M21XxfNJGJhEx5aRRWdRPV0g4czfXdR+8H2gIIACST4cTt/ZStsvHfB5oCCAAdDejiJt7Mtvl06XuupwRQADoFRI+2Jfj8dBfvWsUQACkfvMr+jum+SbpFK0O3ftbDAEEgHLwEsruv7Jv3KKDGQEEQGIKfLIp++Uzm7guI4AAuBEBc/dkv3xSCnz8k3HZztPw6/m81SfEUyY9EcKEVqvl/fffR6vVMmzYMBwdHalevXpRN+upO3z4MFeuXOGdd97J8zpr167F0dGRHj1yvhqWXxcuXGDv3r1cunSJa9eukZiYyOeff55tPSkpKaxYsYI9e/Zw7949SpcuTY8ePXjzzTexsPhvfOyvR5sGC4lauBMHzjaFXFekaV3mykTxEB1iet8Fc2WZxdyKM1MWX2htyizpumlicmpEIro4LRY59JYUhPZOPIqZoVnJ/0Rh17R0juumXo/KU5mhrn9ME7F1ZspMlrluJoE7PBYlLgWVk/kPs/6GmZkVdHqU4IdQ1sl8RbFJcC/WtK7rOQyfum4m2DJXZnbdCDNl4aZl6e7HQLSZ9+n1cOjQIG91ivyTTp4Ck56IYqhJkyYcPXqUbt26FUn9oaGhhIaG8tprr9G3b1+6dev23AYRy5Yty33BTNatW/dEepCOHj3Kpk2biIuLy9Nr8dFHH/H999/j5eXFBx98QNOmTVm8eDFTp04t9LYVlfYVVFhlGZpdqQTUci38ujpXNf2q7FxNvj6Lq4otS5mWtTIty6x82zJ5KisMzp3KmZy4OLYoXegBBIB1rZJYVnQ0KlNZa3B4oXyu69p1rmxa1sW0LJ1Nl2qm9Zspy8qyUzWT4TqaFhVQZxNAAGhaVQaHLEPN3BxQN62Q7TqqkvaomnlmKVShfqlu9o3rXN+0rEseT+g7NzKzbuPsly9fCupmab9aDR0lgBDFk/wKFiPx8WlXvdRqNdbW1mg0Ty5JNCcPHqRd4XFyyuZqTgEpikJCQvG+M+vT5u/vj7+/f67L+fn5ERgYyMaNG+nfv3+Oy/7+++8EBgby+uuvM3HiRHr27MnEiRN5/fXX2bVrF+fOnSus5hcpd3sVa33VlH40NLmsPazppkb9BMYOL+lhRatHs0FZa+CD1hraeRbN51Pkrs24GpRt7AyA2kJF4zc8qd4x+7H8AM0/rE+FF9xBBSoLFRU7euDZ+cncTMy+gSsVZ3mTbK0iBQ1WtZ2pvrr9E6lLpVHjubkrluXT8hJUthrcp7XEsnTuY/pdp/lgUc05bT0HS1xntMPWJ/uT9BJTX8CmVy1Qq8BCjXXHytj41c69kSk6LHvUAntLADRe5XBY3Sfn/Sphg/WmwagqPsojcbXH4vWmkJBzMrdmzVvQ8FEAZW2BqmMtlH8fZJ9s3q8lvN89LRcCoKYHtK+dt4Tnr16Hns3TAkYLDfzPGwa2z3md9e9mBBIONvDdIKiS83tXiKIiQUQh2blzJ15eXpw4cYIlS5bQvXt3WrZsSb9+/fjll19Mlu/Rowf+/v5cvnyZUaNG0a5dO1577TUg+5wIRVHYunUrgwYNom3btrRt25a+ffuyePFio+XSh7L06dOHVq1a0b59e8aPH8/ly5dz3Y/MJ7WTJ0/Gy8sLLy8v7txJmxM7MTGR+fPn88orr9CyZUs6d+7MxIkTCQsLM9pO5n3YuHEjr776Kq1ateLHH380LLN//37eeustfHx8aN26NYMGDeLgwYNm23X69GnGjh1Lhw4daNWqFa+88gpTpkwhKirKsMymTZsYOXIkXbt2pUWLFnTu3JnPPvvM0PbMfv/9d/z9/enQoQOtW7fG19eX//u//+Pff/81HIddu3YBGI5BbnkqXl5ehIWF8eeffxqtY67+/HJ1dcXW1jZPy6a/39LfT+nSH+/du/ex21NcaPVw71Fceicehh/UE5dS+MOMLNRw+9EIlGQdzD6hI+Cm5EQUV7eOPyDsXBQAeq3CreP3SU3U5riOtbMVpRu7gAKKVuHWwTAO+B/L80xG+aFP1XN7421SU61IUVvw8Eoi9w/lMMzlMUVtuErq7bThWkqijrB3fyd66/Uc10kNjuZOp41o/4lKK1DAtl32AQSAuoQ1doMbpp00a/UkH7zJfa/v0UcmZrtO0oJjxDRbQOqOSxCfiqZ5eUocG46mes49RwAWXWpjteYNsLGAB/FoZweSWH8a+ttROTRSBaGPnk/Wohy4hM53HrrBq8wvr1LB9H7g/0La4yth8PpC6L8w1/ZRwi7tTwG0Ovj5BIxdnvM6jrbw4NGQq7gk+HQdHL+Se13iMcgcrwX13xgcXYzMmzePxMRE/Pz8gLTg4pNPPiElJcVk/HpERATDhw+nY8eOvPjii7lepZ84cSJ79+6lXr16DBkyBEdHR4KDgzl06BDDhg0D0vIZRo8ezV9//UW3bt3o06cPcXFxbN26lbfeeotly5ZRp07281sPGTKEhg0bsnLlSnr16kXjxmldryVLlkSr1TJq1CjOnTtHhw4dGDBgALdu3WLLli2cOHGC1atXU6aMcff/unXriI6OpmfPnri6uhqeX7hwIStWrKBVq1YMGzYMtVpNQEAAH374Ie+//z59+mRchdqyZQvTpk2jdOnS9O7dGw8PD8LDw/ntt9+IiIjA2dkZgDVr1lCvXj369u2Lk5MT169fZ9u2bZw6dYr169cbljtz5gzvvvsuVatWZfDgwTg4OHD//n1OnjxJSEgIlSpVYsiQISiKQlBQEFOmTDG0pUGD7LuVp0yZwsyZM3F2dmbIkCGG8pIln8yMK9m5ePEipUuXxt3d+OqVu7s7bm5u/P3330+1PU/Sx7/pyXyKd+E+rPlbYVijwv2yX3hKy61MORjJWvg8QMsLlaU3ojg6tuAaSqYLxQ+uxXFlXxj1emV/EpwSl8rZhcYna7ePRBB2/D5lW7oVavvubrtFzPH7RmXXPj9Lubero7Yo3Gt72vuJ3JudpfdRgdB3f8epV9Vs14uadRpdRMZvkhKfysMvjlF2Z85Tm8Z8ejjt9vHp9V99QPyKszhOaGmyrJKqI3HiAaMy3cnbpO64hNX/6uVYT7rUKfsgKSNAVEKj0c47gtX0l80ur/92P9w3zX9RfjiG8kEXVLU9TFcKj4L5xu1kw3H4sAc0qpR94y7egtWHjcsW7IP/6wkVsgmSZu9Kqy9dfBJ8sQl2f5p9PUIUEQkiCllUVBTr16/HwSGt69jPz49+/foxa9YsOnXqhI1NxhjP0NBQPv30U3r27Jnrdg8cOMDevXvp2rUrkydPRq3O+KHRZ+pW3bBhA2fOnGHevHm0bJnxpe3n50ffvn2ZPXs2S5cuzbaeFi1aYGFhwcqVK2nQoIFRXsbWrVs5d+4cb7zxBmPHjjWUe3t7M27cOObPn88XX3xhtL3w8HA2b96Mi0vGzYkuX77MihUrGDx4MCNHjjSU9+vXjwkTJrBgwQJ8fX2xt7cnIiKCb7/9Fk9PT1asWIGjY8bY3uHDhxvt+/r1602u1vv4+DBixAi2b9/OoEGDAAgMDESv17NgwQKjdr399ttGx2Hfvn0EBQXlOTelW7duLFq0CBcXlyLLZwG4f/8+lSubH7fs5ubG3bt5TAp8Ch4+fIi9vT3W1mljm+Pi4lAUxfA6p6SkEBsbi6trRqJDWFgYHh5pP/QhpjmS/B0Wh9LQEdWjYU2PWwfAlbAEwHi8+q2ojPdeYdSR9XF4eDhlypQp1P14XuqIDTe98v3g34xkZnN1hFy5jc5MAnJ8WEKh70fSbdMLRqn3kwm7eYey1coV7rG68K/RSX06bXh8jnVozXy4tP9Gm68j02PdLdPZkeKvRGCVnGxSh73OAuWh6WulvxWV59dcuRVluv6/D7M9Vk4h2Sd6Pzj7D6Vqm3lf3YkEMzNFJV65jbaqS/avR8h9k3XQ6yH0gSGIyPq+SvnnDlkzY3Q3I0i/XPGsfAafRB2i+JHhTIXMz8/PEEAAODg40Lt3b2JiYjhz5ozRsk5OTnmexSd9CMq4ceOMAgjA6PHevXvx9PSkdu3aREVFGf60Wi3e3t6cO3eOpKSkAu1bQEAAarWawYMHG5W3adOGGjVqcOTIEaOTegBfX1+jE/X0NqpUKnx9fY3aGBUVhY+PD/Hx8Zw/nzal3cGDB0lNTWXo0KFGAYS5fU8PIPR6PXFxcURFRVGjRg0cHBy4cOGCYbn01+fXX39Fq815iENhSkhIMNlfrVaLVqs1KX+c3JGkpCSsrMwnaFpbWxf49X8SXFxcDD8ykPbaZH6draysjH5kAKMfle5VTXsc+jXICCAKow6APo1N57nvXjOjF6Iw6sj62N3dvdD343mpw7Ot6axDNTuWy7GOqk0r41y9hFGZ2lJNuTalC30/SnUpmzasJpOSPmUoV718oR+r8j41sfCwJyvHrpVyrMO+u2kvhX2PambryPzYpkcNk/WcX61vtg61sy0WrbNcydeosexWM8+vuaaHaVK0RY962R4rVfdsepNL2uH6cnOzddCgIlTIMmODow22XRrn/Hq0qQ3OWY69R0lomnFss76vrHq3Mmma5hXv7OugeH4Gn0QdoviRnohC5unpaVKWflU4NDTUqLxcuXJ5Tp4OCQmhVKlSJh+6rG7evElycjIdO3bMdpmoqCiToS55cefOHdzc3ChRooTJc1WrVuXq1atERUUZBQ0VK1Y020ZFUQxDvsxJT+4OCQkBoGbNmrm279SpUyxbtoyLFy+SnGx8Z9DY2Iyran369CEwMJBp06Yxb948GjZsSKtWrejcufMTHXo0Y8YMQ55FVllfr+7duzNp0qQC1WNjY0NKivnkwuTkZKPesGfdp94q/r6vcCUSXG3gizZqWpUr/HGrveto+OJFC779Q0t8CvSpq2FaR8tCr0cUjhc/qcMhnULw0XvYlrSixTvVcK/nnOt6HRZ4c2jEcaL+icW6pCWtJjXCrnTecpHyw6G2MzUXNePv8SfQJKiwb1yS+j88mTtWq9Qqqux7mZvdd5IakjaMx66lOxWWvZjjeo6D65F87i7Ri8+CVsHulWqU/Mx0SFJWznM6o8SnkLTtCuqSNjh+0habTtkPm7L/qS/xgzejDbiBurwTtjO6oKmR9+FjVlO6wb04tOv+BFtLLMe1w+J1r2yXV3Wvj2pdNZQ/bmT0LtT2QLP4dVT22dxY0EIDs1+HUashLAqqloYlQ8Apl+R0B1vY9iEMXwKXbkNDT1g2HCxzOPUa9AJcC0u7Y3WKFga0g89zTjIXj0lSHQpMgogi9KRO5qpVq8b48eOzff5pjtHPbh9VKhVz58416VVJV7Vq9j865ly8eJFRo0ZRvnx5Ro0aRdmyZbG2tkalUvHxxx8b9ZA4OzuzevVqgoKCOHHiBEFBQcycOZMlS5YwZ86cHPMeHsfAgQPp2rWrUdns2bOBtB6mzNzcCj4Gu1SpUty7Z37e8/R7RvwXXLin8MJGPTGP4qVELXg9gbtVp/u0nSUftbVApwcrC/nVKc7sXKzpMbsJuhQ9agsVKnXeXq+QX8OJ+iftgkNyZCrnFl+lUseyaKwLN/dFl6Tj6rqbxNtZgR3E3I4nZM9tagyrVaj1pLNtUIo6twajS0hFZaFGnXVuZDO0t2KIW38ZUtK+OxN2XScxMAR7M9O+ZqYuaYvrlj4oKTqwUOd67DWVSlLi16EoyVqw0hhdzc4LlZ0V1j8MwOr710Ctyv7O04ByLQKd99cQ+ain19oC9c5RaDplnycIwJHL0H8RJKemPY5MgEq5J34D0K4u/D037UZyNnmYwlelgi9fhyn90m6Kl1PAIUQRk3dnIQsODjYpu3kz7a6n5cqVM3kurypWrEhgYCAPHjzIsTeiQoUKREZG0qxZs2xP0AuqXLlyHDt2jNjYWJOhRTdu3MDe3t6QvJyTChUq8Mcff+Du7p7t2P106T0ZV69epVKl7BPY9u3bh06nY+7cuUbHOTEx0agXIp1GozHMngRw7do1BgwYwPLly5kzZw5Avn/MclunSpUqVKlSxags/Th6e3ubW6VA6taty969ewkPDzfqcQoPD+fevXv4+PgUWl1F6dvTGQEEQIIWpp/Us/mVJ5fsrFGryOEcRRQzGqu8v1j6VD1nFxrPYPfwUjTBB+5QtXvOsxLlV+je20RfjDa6N8Lfsy5S7a0aqC2f3BtMY5f33rPoBUHo7mYaVpmqJ3LqsVyDiHSqPAQqRstbP97piMoy9/r0sw9lBBCQNjvTdwcgtyDiy+0ZAQTAwziY/QvMH5T3BuYlgMhMo4En91UmRKGQn8NCtnnzZuLiMmZ+iIuLY8uWLTg6OtK0adMCbzf9CvbcuXNN8g4yT0Ho6+vLgwcP+Omnn8xuJ32YUEG0b98evV7PqlWrjMqPHj3KlStX8PHxyVPgkp50vGDBAnQ600TGzG3s0KEDlpaWLFu2zOi4pkvf9/RhYVmnY1yxYoXJ8co8LWw6T09PbGxsiInJSL5Mz7GIjjZNFMyOra2t0TaKQufOnYG0mbEyS3+ctTfkWRVu5mbCYfFyF2lRMNokHSkxqSbliXcLP4coycw2U6NT0SUXn2mDdWY+YObKniVKuOl3ubkyE+aWCYt6/AYJ8YyTnohC5uzszKBBgwwJ0zt37iQ8PJxPP/30sYYvdezYkU6dOrF7925CQkLw8fHB0dGRW7ducezYMTZu3Aik3QvgxIkTzJkzh1OnTtGsWTPs7e0JDw/n1KlTWFlZsWTJkgK1oUePHuzatYsffviBO3fu0KRJE0JCQti8eTOurq5GMy3lpG7duvj7+7N06VL69+9Px44dcXNz4/79+1y6dImjR49y/PhxAMqUKcOECROYPn06/fr1w9fXFw8PD+7evUtgYCATJ06kZs2atG/fnrVr1zJ27Fh69eqFpaUlJ06c4J9//jHpHZk6dSp3797F29sbDw8PkpOTOXDgAPHx8fj6+hqWq1+/Phs3bmTatGm0adMGCwsL6tWrl2OPUv369dm+fTuLFi2icuXKqFQqfHx88nyPh+yEhYWxe/duIK3XB+DIkSNEREQAGI4LpCW6t23blp9++om4uDjq16/P+fPn2b59O127dqVRo0aP1Zbi4n/VVfwSrGQpk+siomCsHC0p27o0d45mzF6mslBRsUPhJ3eWfaksf31xFkWb8f4t064Mlg7FJ8/G/n81iP3xb5OyZ5n6f03Q/RxkUpar/3nBX7eMy3o3K8SWCfFskiCikI0ePZqzZ8+yadMmHj58SMWKFZk6dSpdunR57G1/+eWXNG7cmO3bt7Ns2TI0Gg1ly5Y1Ssq1sLBg9uzZbN68mT179hgCBjc3N+rWrUv37t0LXL+FhQXz589n+fLlHDhwgICAABwdHenQoQMjRozIV7K2v78/derUYf369axbt47ExERcXFyoWrUq7733ntGyfn5+lC9fntWrV7N+/XpSU1Nxc3OjWbNmhvtONGrUiBkzZvD999+zePFirK2tad68OUuXLmXo0KFG2+vWrRs7d+5k9+7dREZGYm9vT5UqVZg+fTodOnQwLNe5c2euXLnC/v37OXToEHq9ns8//zzHIGLEiBFER0ezadMmYmNjURSFHTt2PHYQERoaanJTwYCAAAICAgz7n3kmi2nTprF8+XL27t3Lnj17KF26NMOGDePNN998rHYUJ0MbqAiNUzHvT4VELdR3gxdM8/iFyLN233px9LMgbgdG4FjRnmbv1aVEJdOZuR6XQ2VHmi3y5thHR1FHqvHoUJZm3zbPfcWnyKFndUrNfIHIb06ij03B8Y26uEx+MsnfT4v6dW+UWw/Rzz4ISamoh7RG/VEefps/fhmiEmBFINhYwrgu0N90FiUhnjcq5UncjvM5tHPnTiZPnszixYsN4+yFEE/W+XsKLdfqiH80CsVSDb/4qXmhovRIiOItNTWVlStXAjB48GAsLYtPL4QQzxPVpOzvqJ6VMqnwZ2t7lskvrRDimTX7jN4QQACk6mHGSbkuIoQQQjxpEkQIIZ5ZD83kvD5IkiBCCCGEeNIkiBBCPLP61jJzx+pa8rUmhBBCPGmSWF1IevToYZiRSQjxdPSrpeZuAsz9U0+KDt6qr2ZcU7kRnBBCiDwqwD2hRBoJIoQQz7QxTdSMaSK9D0IIIcTTJL+8QgghhBBCiHyRIEIIIYQQQgiRLxJECCGEEEIIIfJFggghhBBCCCFEvkhitRBCCCGEeD7J5EwFJj0RQgghhBBCiHyRIEIIIYQQQgiRLxJECCGEEEIIIfJFciKEEEIIIcRzSpIiCkp6IoQQQgghhBD5IkGEEEIIIYQQIl9kOJMQQgghhHg+yWimApOeCCGEEEIIIUS+SBAhhBBCCCGEyBcJIoQQQuTLrSg94bHKU60zIUlPSLgWvf7p1iuEEMI8yYkQQgiRJ5GJCq9uSOHQDT0qFfStp+GHXpZYWTzZQcVbDsaxYkcsSckK7q4aPvMvSS1PqydapxBCiJxJT4QQQog8mfhrKodu6AFQFFh/Xsf8E9onWufN0FQWboohKTmtByL8gY5pK6JQFOmREEKIoiRBhBBCiDwJDNablB02U1aY/rqWYlIWEqHlYcyTrVcIIUTOJIgQQgiRJ3XcTH8yzJUVpkoepqNunR3VODnIz5cQohCo8vEnjMi3sBBCPEPuxCmcCVfQ5THBWK8o/BmhcDuXRGhFUTgbric4KvvlprxogYdDxuNapVRMaG16kh+brHAyREdscu5tjErQ8+e/WhJSzC/bqKY1HZrbGh6r1fCGrwMWmsf7RU+I03Hrn0RSkqVH43EkX3pAypWHOS6juxdPyqk7KMmFM/RN0evRBd1GfyuycLZ3Pxbl1A2U5NScF7zzELb8ARdu5b7RB7Fw6hokmfakCfFfIYnVQgjxjBj3q475QQo6BSo6wvZeGhqVzv5k+vIDhe5bdVyPSruI9nYDFYs7qVGrjNe5GaXguyGVS/fTlutfT82qHhos1MbLxaVA+qpqFXSppsbN3niZn4JSGfZzInEp4GAFC3vZ8EYT80nQy35LYuL2eBJTwclWxaLXHehW33TZj98qSfN61izcGE10nMKCDTHcCtcyup8TKlX+g4nf9jxgx48RpKYo2NqreX10eeo1c8z3dp5nuqgkQl/eTuJvoQDYvViBsltfRlPC2mi5mKm/ETPlN0jVo3azw2Xj/7Bp71ngevX/3CPRdxnK1XugUmEx0Avr5f1QaQp2TVT5agdM3gopWnBzRNkwCtULdUwXHLkUFu2D9Fi3cRX4dTI425su++02+HQdJKeCqyOsHQ8vNSpQ+4QozqQnohg6ffo0Xl5e7Ny5s8jacOXKFYYPH84LL7yAl5cXS5YsKbK2CCHgl5t65vyZFkAA3IoF//26HNcZcVDP9ai0/yvAsr8Utl4zveI//oCWS/czlvvpgp4fz5teoX97ewp3YtP+r1dg9nEdv97IaENkgsLQLWkBBKQFHe/8nMTDBNM6b0fq+PDntAACIDpRYeTaOBKz6ZHYERhPdJxiqHv74QSOn0/Ocf/NeXg3hZ9XhpP6qJ7EeD3rFoSSmiI9EvnxYOoJQwABkPBrCA+nnzJaJuWvCGI+C4TUtGOrv5dA5Js7UR5jmt7k0T+nBRAAioL2h1NoNwQVaFvKhRD4ZFNaAAFwLxbeXIqiy/Je2H8WFmYKIACCbsCXm003eiUU3v8xLYCAtB6JN+dB6pOdgECIoiBBhDCh1Wp5//33uXXrFsOGDWPKlCm8+OKLRd2sp+7w4cP5Dp7Wrl37RIK/Cxcu8M033zBkyBDatm2bpyAzIiKCL7/8El9fX1q2bEnnzp0ZM2YMN27cKPT2iSfv2B3TE69T4aDN4YTsWJjpc3+Emim7bVp2LEtZUqpCkLnt3co44TobpjMEBekSUyHojmmwc+ZfLVnP1SITFK7dNV1WURT+vmE61OTvG/kfKnLrn0SULPXGx+q4e0eGneRH4h93ci1L+eO2yTK6f6PRpUeiBaA7FmxSpv/DtCxP/rhmWnbrAYRmGZ517Ir59X+/ZFp2/Gra1GWZhUVC8N2CtVGIYkyCiGKoSZMmHD16lG7duhVJ/aGhoYSGhvLaa6/Rt29funXrRvXq1YukLUXp8OHDLFu2LF/rrFu37okEEUePHmXTpk3ExcXl6bW4fPky/fv35/jx47z88st8+OGHDBgwAHt7eyIjC2ccsXi6GpoZtlTXFZMhR0bruJmWmRv+1KhM7mU2lipqljJdrrFHxs9IndJqLDXGz1tqoG4Z05+aemUtyDoSycEaKpfSmCyrUqmoWt509G21CpYmZbnxqGRjUmZtq6ZUmfxv63lm06i0aVlj4zLLRmVMllG7O6ApY2YIUB6pG5YzLWtsWpYnjSqZlpVxAg9n47KGnubXb1LFtMzcsq6OUKFUPhsnRPEnQUQxEh8fD4Barcba2hqNxvTH9Gl48OABAE5OToW6XUVRSEhIKNRtPuv8/f3x9/fPdTk/Pz8CAwPZuHEj/fv3z3HZ5ORkPvroI8qUKcO6det45513eOWVV3jjjTf4+uuvadq0aWE1XzxFL1dV8WqNjLNuJ2tY0DHn74g5L2pwzchJpoUHmDn349sOGlwynVt7l1VRw8W0l2Nhd0scMw1571dPTdfqGT8jZRzVTO9qTfrwdLUKPnvRCndH05+aqqU1vPeSrWHCE0sNfP0/exxtzAdF/bs6YJOp7jaNbGjTyDQgyE2Zcta85FcqI7dDA/8b4o61bdF83z6rXD/1xqqWi+GxZR0XXD5sbrSMdYvy2I/I9H1jo6Hkgi6oskaaj+gfJpBy6Dr6iLhs67We9Qq4ZQQhmpdqYjHAy+yyiqKgP3kT/cmbZp9XNa8KozplFFiq4Z0XMoY3pXu5WdpfZmVd4FM/0402qgzje2RqsCXMexts5OaI4r9HEqsLyc6dO5k8eTILFizg7Nmz7Ny5kwcPHlCpUiUGDx5M586djZbv0aMHHh4evPvuu8yfP5/z58/j5OTEjh07OH36NMOGDePzzz+nR4+MLyNFUdi2bRvbtm0zDEkpW7YsL7zwAsOGDTMsl5KSwpo1a9i3bx+3b9/GysqKxo0b884771CrVq0c98Pf358///wTgMmTJzN58mQAduzYQdmyZUlMTGT58uUcOHCAu3fvUqJECby9vRk+fDgeHh6G7WTeh8TERDZt2sTt27d58803eeeddwDYv38/GzZs4Nq1a+h0OqpVq8Ybb7xBx44dTdp1+vRpfvzxRy5cuEBiYiJubm40bdqUMWPG4OzsDMCmTZs4fPgwN27cIDIyEicnJ5o3b87w4cMpW7as0fZ+//13Vq9ezfXr10lKSsLZ2Zk6deowatQoKlWqZHQcvLwyfqCyviaZpS8XFhZmtE76sXscrq6ueV72wIEDhISEMHPmTBwcHEhJSRumYWUlP2LPsuAY+PNuxkm9Vxlo7p7zOt4eKv4dqmHFBT1fHFM4HgYNftDTp6bCT75qLNQqHiYqDNyh42FSxnon7ih0WqfD00nHL69ZUsM17Yy7eTk1Dcuo+P1WWjvOhiuExipUcMo48R/f1proJIWpv6ag08NXASlUcFbzppfx+09RFO7G6A3DzB2soHpp8yeXSzZHs/lgPHoFbKxUvP0/R3q94GB22byo3diR3/Y9JDFOj14HN68k0PwF5wIlaT+vNKVssazuTMrltKE/SrwW3YNELErbGS1nUckJLNSg1YNKhZJkPjcgaXUQce9sgyQtWGqwn94Z2/GtTRe0tgCrTKcu9lZp0WoWyv04tF3moJxJm0lJ1bQiFvvGoiqV5X3zRW/47Qqcu5WWuzFlG8z+BWXzaFSd6qcto1ZD+3qw+wyGMXhhkfDTEXivp/H2Qh/AL2czHjeqDL5y4aZYk899gUkQUcjmzZtHYmIifn5pVyh27tzJJ598QkpKisnJZ0REBMOHD6djx468+OKLuV6lnzhxInv37qVevXoMGTIER0dHgoODOXTokCGI0Gq1jB49mr/++otu3brRp08f4uLi2Lp1K2+99RbLli2jTh0zM088MmTIEBo2bMjKlSvp1asXjRs3BqBkyZJotVpGjRrFuXPn6NChAwMGDODWrVts2bKFEydOsHr1asqUMe6+XrduHdHR0fTs2RNXV1fD8wsXLmTFihW0atWKYcOGoVarCQgI4MMPP+T999+nT58+hm1s2bKFadOmUbp0aXr37o2Hhwfh4eH89ttvREREGIKINWvWUK9ePfr27YuTkxPXr19n27ZtnDp1ivXr1xuWO3PmDO+++y5Vq1Zl8ODBODg4cP/+fU6ePElISAiVKlViyJAhKIpCUFAQU6ZMMbSlQYMG2R67KVOmMHPmTJydnRkyZIihvGTJkjm+roXt6NGjADg6OjJ06FDOnj2LoijUqFGD0aNH07Jly6faHlE43g/MSJIGOHQLlp1XGNMk5x9AeysVm68q3EvMKNt4ReGVagr9a6uY9oeOc3fN51UER8OEg1p29k0b6jP3uNYQQABcvq/wyUEtq3tnBAih0Xq+fBRAQNo54chtSfSqa4mTbUZbf72cyg/HMhKjIxNh/IZ4jn3kbNSGyzdT2Hgg3vA4KUVh4y/xvNzOHk0OQ7lysnHJHRLjMhIjjh+MooF3Ceo0kRma8ir6h4vE78zIr9L+G8O9dwMpv/d/GWXBUUR/FJCWCQ+QqCVy+F5sXqmB2j7jPaOPSSJuxI60NwtAqo74/9uH1av10JQ37hFPGb8NQqMNj3Vbz6NdcxrLwd5Gy+m+2mMIIACUM7fQfbUHi5l9jJbj2z1pAURmMYngvwLl+neo1GoIuQ//9wNGSTyKkpZA/WorqJSpe++zdfB3SMbjE1dhzi74LEu9QvwHSBBRyKKioli/fj0ODmlXO/z8/OjXrx+zZs2iU6dO2NhkdL+Hhoby6aef0rNnz1y3e+DAAfbu3UvXrl2ZPHkyanXG8AC9PuOLbcOGDZw5c4Z58+YZnSz6+fnRt29fZs+ezdKlS7Otp0WLFlhYWLBy5UoaNGhglJexdetWzp07xxtvvMHYsWMN5d7e3owbN4758+fzxRdfGG0vPDyczZs34+KS0e19+fJlVqxYweDBgxk5cqShvF+/fkyYMIEFCxbg6+uLvb09ERERfPvtt3h6erJixQocHTN+5IcPH2607+vXr8fWNtPYDcDHx4cRI0awfft2Bg0aBEBgYCB6vZ4FCxYYtevtt982Og779u0jKCgoz7kp3bp1Y9GiRbi4uBRZPgvAv//+C8D7779PvXr1+Oqrr4iOjmblypWMHTuWefPm4e3tnctWno6HDx9ib2+PtXXaOJW4uDgURTG8zikpKcTGxhr1xISFhRn1emV9HB4eTpkyZQxXlf8rdZy4oyPrCNQ/QlIY08Qm1zpOhZse+1PhCi+WDOfUnZx7uU7eyfiMnbhtehX5+K0UIOOE8NCF+2j1xsOMElLh77s6WlayMByrP2+ZJlBfCtcRHZ+MNinOsB+Xg00Tqu9G6oiM0VPKOa3nIj+vR2qKnrBbprM6/X32nlEQ8TRec3d3d8LDw59oHU9qP1SnIkyOYdLpCKM6Us6EZQQQjygxycScvY2mgZuhjqS/7kB8lsR2nR7tn3cMQUT6fuhOhZCV7lQIsa9UN9oP7fEbJuO1U45dNzrpCQsLw/2U+aFOBN/n3sXruNWrhiroBiazAAAoColHL2L7KIhISUlBffyK6YnVqX+M6izq75JntQ5R/EhORCHz8/MzBBAADg4O9O7dm5iYGM6cOWO0rJOTU7ZDY7Lau3cvAOPGjTMKIACjx3v37sXT05PatWsTFRVl+NNqtXh7e3Pu3DmSkpIoiICAANRqNYMHDzYqb9OmDTVq1ODIkSNGJ/UAvr6+Rifq6W1UqVT4+voatTEqKgofHx/i4+M5f/48AAcPHiQ1NZWhQ4caBRDm9j09gNDr9cTFxREVFUWNGjVwcHDgwoULhuXSX59ff/0VrfbpTbuXkJBgsr9arRatVmtS/ji5I+nrenp6MnPmTDp16oSfnx+LFi1CpVKxcOHCwtqlx+bi4mL4kYG01ybz62xlZWUylCvrj0rWx+7u7kbDUv4rdbQoazrUp1WFjJP3nOowN+ypubsKd3d3mpfL+Wq+d7mMz1iLCqbXnVpWMh6m1KFeKSyy/LLYW0GdR0OV0o9V00qm26rjocHJ3tpoP2pVNk14Ll1SQ8kSGZXk5/WwtFLjUdH4XgYAdRsbZ6E/jdc8cwDxpOp4UvthY+ZNZdOsjFEdVk09TIYaqZysKdGovFEdNg3KonLIMtxSo8aiScYw0PT90DSvaFKvpnlFk/2waFnVZDmrVtVM9oPmZpKjATxL4Va3atqxalIFzN2HQq3Ctk29jO1bWWHR0syQ4WYZ9RaH75JntY4nRu5YXWDSE1HIPD09TcoqV64MpPU8ZFauXLk8J0+HhIRQqlSpXMfG37x5k+TkZLN5BemioqJwd89lMLUZd+7cwc3NjRIlSpg8V7VqVa5evUpUVJRR0FCxoukX/s2bN1EUxTDky5z05O6QkLSrTjVr1sy1fadOnWLZsmVcvHiR5GTjK42xsRlTCvbp04fAwECmTZvGvHnzaNiwIa1ataJz585PdOjRjBkz2LVrl9nnsr5e3bt3Z9KkSQWqJ/2L29fX1+hLvWLFijRs2JCgoCASExNNem1E8TajnZpz93T8E5X2uIunCv8GeftVm9tBQ7ctOkIf5av2q6WiT820dT9oqWH/DYWzEaZDmio7w3cdM34mxrSw4Oe/dZx+NN1sbTcVX3YwPskv56Tmu+7W/N/uZFJ0YGsJC3raGA1lAnihpiWDW1mz6lgyigKu9ipm9TWdtaeWpxV9X3Jg4/44FMDWBiYMdCrwUCaAPsPKsnzaLeJidKhU0KJjSWo1KniOxfPIaWAd4nfdIG77dQAsPUvgNrO90TIWns44TX+R6I8D0vINbCwoubib0VAmAHUJG+wXvUKc/7a0OYEtNdjP6GwylAnAenYvErssQXl0t2pN7wZYvG6ac6D5uCvKkWsop9N6ZlVeldB83NV0R97rBocuwrGM3gKcbGHZW2lDmQDKl4JvB8F7mYY0adQwYyBUzDIF2pR+aUOYLj7qMfGpA+PydrFQiGeNBBFFKPPQpsJUrVo1xo8fn+3zT3OMfnb7qFKpmDt3rkmvSrqqVU2vIuXk4sWLjBo1ivLlyzNq1CjKli2LtbU1KpWKjz/+2KiHxNnZmdWrVxMUFMSJEycICgpi5syZLFmyhDlz5uSY9/A4Bg4cSNeuxj9is2fPBtJ6mDJzczMzN2celSlThuvXr5sNOF1dXVEUhbi4OAkinjFVnFVcHqLhRBiUsIJ6bnk/iW7gpuLmUA3Hw6C0HdR0yXTF0FZF0NuWnLqj56+7Cs08VGjUEJUELcqpDCfrWp3C65tTDAGEvRUs7mFBeSfTdoxpbU2/hpZcjNDT0EODi53pMiqVill9HRjbwZbbUXq8KllgY2l+n1TpVwEVSE2FB9GPd2O4yjXt+HxJDf69loizqyWl3GXSgfxSWWkot+0Vkv9+gC4yCVtvD1RZu6AA605VUE37A+VBIiRpiV/yJ7av1EBlaxx82gxohJVvTbRnw7CoUxp1GfNBnbp2Geyuf4L++L+oXO1R1zadRhZA5eqA5amP0Z8OTlvPy9P8ck528MfnKH8GQ8gDKGEL3lVR2WXprRrXA15rmxYgADSvDu5mfkvLucL52WnL2VilJVYL8R8lQUQhCw4ONim7eTNtzGW5cgWcy5q0q8iBgYE8ePAgx96IChUqEBkZSbNmzbI9QS+ocuXKcezYMWJjY02GFt24cQN7e3tD8nJOKlSowB9//IG7u7uhlyY76T0ZV69epVIlM3N6P7Jv3z50Oh1z5841Os6JiYlGvRDpNBoNXl5ehlmUrl27xoABA1i+fDlz5swBKNBMLTmtU6VKFapUMe46Tz+OhZmjULduXf744w8iIkzHLN+9exeNRmO2N0kUfxq1ilYF/Bqx1KhoWz7755uVVdMsh0nEtvytY/vljJP3+BQYu0dL0AjzPyOlHdSUdsj9O8izlAZPM/eGSBd8J5X1v2RM+anVwYIN0bRraoONVcG/4yyt1FSrW/D7FYg01nVy7h2PnnAgLYB4JPnwv8SvOIfDSNNpWdUlbbF6IZvhRZmoLDRo2uS+HGQfPJhss4knNMll2TLO8HLznJeBtKi3Re6950I86yQnopBt3ryZuLiMH7y4uDi2bNmCo6PjY83Pn34Fe+7cuSZ5B0qmu2P6+vry4MEDfvrpJ7PbSR8mVBDt27dHr9ezatUqo/KjR49y5coVfHx88hS4pCcdL1iwAJ3ONLkycxs7dOiApaUly5YtMzqu6dL3PX1YmJLlTqErVqwwOV5RUVEm2/H09MTGxoaYmBhDWfqV+ujoaJPls2Nra2u0jaLQuXNnNBoN27dvN8r5uHr1KufPn8fLy8torKoQeXEu3HS40zkzQ6AK243bponV8YkK4fdNvztE8ZP6l+mdmlPPmV7gEEI8e6QnopA5OzszaNAgQ8L0zp07CQ8P59NPP32s4UsdO3akU6dO7N69m5CQEHx8fHB0dOTWrVscO3aMjRs3AvDaa69x4sQJ5syZw6lTp2jWrBn29vaEh4dz6tQprKysWLJkSYHa0KNHD3bt2sUPP/zAnTt3aNKkCSEhIWzevBlXV1ejmZZyUrduXfz9/Vm6dCn9+/enY8eOuLm5cf/+fS5dusTRo0c5fvw4kDY0Z8KECUyfPp1+/frh6+uLh4cHd+/eJTAwkIkTJ1KzZk3at2/P2rVrGTt2LL169cLS0pITJ07wzz//mPSOTJ06lbt37+Lt7Y2HhwfJyckcOHCA+Ph4fH19DcvVr1+fjRs3Mm3aNNq0aYOFhQX16tXLsUepfv36bN++nUWLFlG5cmVUKhU+Pj6PPXQoLCyM3bt3AxjuEXLkyBFDb0P6cYG0gGjgwIGsXLkSf39/XnrpJWJiYtiwYQM2NjYmQ6eEyItWFU0vELSq8OSvQ9WuYoVaZTzJj7OjmnKl5efrWWDVqjxJ268al7XOoUtMCPHMkG/hQjZ69GjOnj3Lpk2bePjwIRUrVmTq1Kl06dLlsbf95Zdf0rhxY7Zv386yZcvQaDSULVvWKCnXwsKC2bNns3nzZvbs2WMIGNzc3Khbty7du3cvcP0WFhbMnz/fcLO5gIAAHB0d6dChAyNGjMhXsra/vz916tRh/fr1rFu3jsTERFxcXKhatSrvvfee0bJ+fn6UL1+e1atXs379elJTU3Fzc6NZs2aG+040atSIGTNm8P3337N48WKsra1p3rw5S5cuZejQoUbb69atGzt37mT37t1ERkZib29PlSpVmD59Oh06dDAs17lzZ65cucL+/fs5dOgQer2ezz//PMcgYsSIEURHR7Np0yZiY2NRFIUdO3Y8dhARGhrK4sWLjcoCAgIICAgw7H/mmSxGjhyJh4cHmzZtYu7cuVhbW+Pl5cWwYcPynW8iBIBvDTWjvDUsOqVDp4cqJVUs7mE6c1Jh8yhlwfA+JVi2JYYULdhaqxg/wAlLC5kq5VngPKsT9/+JRHvxHqjAbkB97AbUL+pmCSEKgUrJOv5DFEj6HasXL15sdLdiIYT4LwmLVQiPU2hYRoX6MWZIyo97kTrGzrhPxMO0IUylS2qY9Z4r7qWe3etgqamprFy5EoDBgwdjafnkA7KioigKqefvona2waKi6YxLQhQl1dcpuS/0iPKRTMKQmeRECCGEyDMPRxWNPdRPLYAAWLcv1hBAQNrN5tbsMc2REsWTSqXCqkEZCSCE+I+RIEIIIUSx9m+Y6U0h/w0zTbgWQgjx9EgQIYQQolhrWMN0NrFGNWWGMSFEYZBbVhfUszugtJjp0aOHYUYmIYQQhafvSw5cD0nl6LkkFAVa1Lemfxe5w7QQQhQlCSKEEEIUa9ZWKiYPd+FBtA69HtxKZn9zOiGEEE+HBBFCCCGeCa5OEjwIIURxIUGEEEIIIYR4PkmqQ4FJYrUQQgghhBAiXySIEEIIIYQQQuSLBBFCCCGEEEKIfJEgQgghhBBCCJEvEkQIIYQQQggh8kVmZxJCCCGEEM8nmZ2pwKQnQgghhBBCCJEvEkQIIYQQQggh8kWCCCGEEEIIIUS+SBAhhBBCCCGEyBcJIoQQQgghhBD5IkGEEEIIIYQQIl9kilchhBBCCPF8kileC0x6IoQQQgghhBD5IkGEEEIIIYQQIl8kiBBCCCGEEELkiwQRQgghhBBCiHyRIEIIIYQQQgiRLxJECCGEEEIIIfJFpngVQgghhBDPJ5XM8VpQ0hMhhBBCCCFEAU2aNAkHB4eibsZTJ0GEEEIIIYQQIl9kOJMQQgghhHg+yWimApOeCCGEEEIIIZ6Q8+fP07lzZ+zt7XFycsLPz49bt24Znn/rrbdo27at4fH9+/dRq9U0a9bMUBYXF4elpSWbNm16qm3PiQQRQgghhBBCPAEhISH4+Pjw4MED1qxZw+LFi/nzzz9p164dsbGxAPj4+HDq1CmSkpIAOHLkCNbW1gQFBRmW+eOPP9Bqtfj4+BTZvmQlw5mEEEVCURTDl6MQz5vU1FQSExMBiImJwdLSsohbJETx5ejoiOoZnUVp1qxZpKamsn//flxcXABo3LgxderUYdWqVYwePRofHx+Sk5M5ceIE7dq148iRI/Tq1Yv9+/dz9OhRunTpwpEjR6hRowZlypQp4j3KIEGEEKJIxMbG4uTkVNTNEKLIjRs3rqibIESxFh0dTYkSJZ7ItpX3nuyp8G+//caLL75oCCAAatWqRcOGDfn9998ZPXo0lStXpnz58hw5csQQRAwbNozExEQCAwMNQURx6oUACSKEEEXE0dGR6Ojoom7GUxMXF4evry+7d+9+LqcCzEyORRo5DhnkWKSR45Ah87FwdHQs6uYUWGRkJI0aNTIpL1OmDA8fPjQ8Tg8eYmJiOHfuHD4+PsTHx7N582aSk5M5efIkQ4cOfYotz50EEUKIIqFSqZ7YlaXiSK1Wo9FoKFGixHN/ciDHIo0chwxyLNLIcciQ+Vg8q0OZAFxcXLh7965JeUREBDVq1DA89vHx4d133+Xw4cOUKlWKWrVqER8fzwcffEBAQADJyclGydfFgSRWCyGEEEII8QS0adOGQ4cOERkZaSi7cuUKf/31F23atDGUpfc8zJw50zBsqVGjRtja2jJt2jQqVKiAp6fn025+jqQnQgghhBBCiMeg0+nYvHmzSfnYsWNZuXIlL730Ep988glJSUl8+umnVKxYkTfffNOwXK1atShdujSBgYHMnTsXAI1GQ+vWrdm7dy+vv/7609qVPJMgQgghngIrKyuGDh2KlZVVUTelyMmxSCPHIYMcizRyHDI8a8ciKSmJV1991aT8xx9/JDAwkPfee4/XX38djUZDp06dmDlzpkmuh4+PD5s3bzZKoG7Xrh179+4tdknVACpFUZSiboQQQgghhBDi2SE5EUIIIYQQQoh8kSBCCCGEEEIIkS8SRAghhBBCCCHyRRKrhRCiiF26dIlBgwZhbW3Nb7/9VtTNefpetuMAAB26SURBVGp0Oh1r1qzh999/58aNGyiKQvXq1Rk2bBiNGzcu6uY9McHBwcyYMYO//voLe3t7unXrxogRI7C0tCzqpj1VBw8eZM+ePVy+fJmYmBgqVqxI3759efnll5/p+wI8roSEBPz8/Lh79y6rV6+mTp06Rd2kp27Xrl2sXbuW4OBgbG1tqVu3LjNmzMDGxqaomyYykSBCCCGKkKIozJgxg5IlS5KQkFDUzXmqkpOTWbVqFd27d2fQoEGo1Wq2bt3KsGHDmD9/Ps2aNSvqJha6mJgYhg0bRsWKFfnmm2+4e/cus2bNIikpiQ8++KCom/dU/fTTT3h4eDBu3DhKlizJiRMn+PLLL4mIiMDf37+om1dkvv/+e3Q6XVE3o8gsX76c1atXM3jwYOrXr09UVBSnTp1Cr9cXddNEFhJECCFEEdqxYwdRUVG8/PLLrF+/vqib81RZW1uzfft2ozuXe3t707dvX9auXfufDCK2bNlCfHw833zzDU5OTkBaj8z06dMZMmQIbm5uRdzCp2fWrFk4OzsbHjdr1ozo6Gh++ukn3n77bdTq52/EdXBwMJs2bWLcuHF8/fXXRd2cpy44OJilS5cyc+ZMWrdubSjv0KFDEbZKZOf5+4QKIUQxERsby/z583n33XexsHj+ruloNBqjACK9rHr16ty7d6+IWvVk/fHHHzRv3twQQAB06tQJvV7P8ePHi7BlT1/mACJdzZo1iY+PJzEx8ek3qBiYMWMGvXv3plKlSkXdlCKxc+dOypUrZxRAiOJLggghhCgiCxcupHbt2rRt27aom1JsaLVazp8/T+XKlYu6KU9EcHAwnp6eRmWOjo6UKlWK4ODgImlTcXL27FlKly6Nvb19UTflqTt48CDXr1/n7bffLuqmFJnz589TtWpVvv/+ezp16kSLFi0YMmQIFy5cKOqmCTMkiBBCiCJw5coVduzYwbvvvlvUTSlWVq9ezb179+jfv39RN+WJiImJMblLLaQFEjExMUXQouLj7Nmz7N+/nwEDBhR1U566pKQkZs2axYgRI3BwcCjq5hSZBw8ecOLECfbs2cMHH3zAt99+i0qlYuTIkTx8+LComyeyeP76z4UQ4gmIi4vj/v37uS5Xrlw5LCwsmD59On5+fiZXpZ91+TkOWWcjOn78OEuWLOHtt9+mdu3aT6qJohiKiIjgo48+wsvLi379+hV1c5665cuX4+rqyssvv1zUTSlSiqKQkJDA9OnTqV69OgD169fn5ZdfZuPGjQwbNqyIWygykyBCCCEKwcGDB5k6dWquy23evJkrV64QHBzMl19+SWxsLAApKSlAWp6ElZUV1tbWT7S9T0p+jkPmAOry5ct88MEHdOnShaFDhz7BFhatEiVKEBcXZ1IeGxtrkh/yvIiNjWXMmDE4OTkxY8aM5y6hOiwsjDVr1vDNN98Y3hvpOSEJCQkkJCRgZ2dXlE18ahwdHXFycjIEEABOTk7UrFmT69evF2HLhDkSRAghRCHo2bMnPXv2zNOyv/zyCzExMfTo0cPkuRdeeIFBgwYxevToQm7h05Gf45AuJCSEMWPG0KBBAz777LMn07BiwtPT0yT3Ib335r/WK5UXSUlJjBs3jri4OFauXPlcDuUJDQ0lNTWVcePGmTw3bNgw6tWrx6pVq556u4pClSpVuH37ttnn0i+0iOJDggghhHjKevToQdOmTY3Kdu3axYEDB5gzZw7u7u5F1LKn7/79+4waNQp3d3emT5/+n5+lqlWrVqxcuZLY2FhDbsTBgwdRq9W0aNGiiFv3dGm1Wj766COCg4NZtmwZpUuXLuomFYmaNWuyePFio7KrV68yc+ZMPvroI+rWrVtELXv62rZty86dO7ly5Qo1a9YEICoqisuXL/9n86SeZf/tb2shhCiGypYtS9myZY3Kzpw5g1qtxsvLq4ha9fQlJSUxZswYoqKimDBhgtFwBUtLS2rVqlWErXsyevfuzYYNG5gwYQJDhgzh7t27zJkzh//973/P1T0iAKZPn85vv/3GuHHjiI+P5/z584bnatasiZWVVRG27ulxdHTM9nNfu3bt/+TnIDvt27enTp06fPDBB4wYMQJra2tWrVqFpaUlfn5+Rd08kYUEEUIIIYrEw4cPuXr1KoDJLFUeHh7s3LmzKJr1RJUoUYJFixbxzTffMGHCBOzt7enZsycjRowo6qY9den3xZg9e7bJczt27DAJtMV/n1qtZu7cuXz33Xd89dVXpKam0rhxY5YtW0apUqWKunkiC5WiKEpRN0IIIYQQQgjx7Hi+pkAQQgghhBBCPDYJIoQQQgghhBD5IkGEEEIIIYQQIl8kiBBCCCGEEELkiwQRQgghhBBCiHyRIEIIIYQQQgiRLxJECCGEEEIIIfJFggghhBBmvfnmm6hUqqJuBgAXLlzAwsKCAwcOGMoOHz6MSqVi1apVRdcwUSysWrUKlUrF4cOHC7S+vJfS/Pnnn4wfP54uXbrg5eXFypUrUavVBAYGPpH6lixZgpeXl9Ff7969n0hdovBJECGEeK7cuHEDf39/atWqhZ2dHSVLlqR27doMGjSIgIAAo2U9PT2pV69etttKP8m+f/++2ecvXbqESqVCpVLx22+/Zbud9GXS/2xsbKhevTrvvvsuDx8+LNiO/se8++67tG7dmk6dOhV1U56K4OBgJk2axNmzZ4u6KeIpiYqKYtKkSQUOhAoq83stMTGR6tWr88EHHwBQuXJlevbsyYQJE3hS9yauUqUK+/btM/wtX778idQjCp9FUTdACCGeltOnT9OuXTssLS0ZOHAgdevWJTExkWvXrrF//34cHR154YUXCq2+5cuX4+joiK2tLStWrKBt27bZLtuoUSMmTJgAwMOHD9mzZw+zZs3iwIEDnDlzBisrq0Jr17Pm2LFjHDhwgG3bthmV+/j4kJiYiKWlZdE07AkKDg5m8uTJeHp60qhRo6JujngKoqKimDx5MgDt27d/avVmfq+9+eabtG7d2uj5cePG0a5dO/bs2UOnTp1YuHAhv/zyC7GxsVStWpXRo0fj5eVV4PotLCwoVarU4+6GKAISRAghnhuTJ08mISGBs2fP0rBhQ5Pnw8PDC62u1NRUfvzxR1599VWcnJxYunQpc+fOxdHR0ezy5cqVY8CAAYbHY8aMoUePHuzatYvt27fz6quvFlrbnjULFy6kVKlSdOvWzahcrVZjY2NTRK0S4vnQtm1bPD09Wbx4MUFBQdy4cYOvvvoKNzc3AgICGDNmDOvXr6dixYoF2v6tW7fo0qUL1tbW1K9fn1GjRuHu7l7IeyGeBBnOJIR4bly7dg1XV1ezAQRQqD9cO3fu5O7duwwaNIg333yT+Ph4NmzYkK9tdO7cGYB//vkn22UWLVqESqVix44dJs/p9XrKly9vdCV7//799O3blypVqmBra4uzszMvvfRSnsc8t2/fHk9PT5Py4OBgVCoVkyZNMipXFIVFixbRtGlT7OzscHBw4IUXXjAZOpYdrVbLtm3b6Nixo0mPg7lx7JnLFi5cSM2aNbGxsaF+/frs2rULgPPnz9OlSxdKlCiBq6srY8aMITU11ex+3rhxg1deeQUnJydKlChBr169uHHjhtGyer2eL7/8Eh8fH9zd3bGysqJixYoMHz6cBw8emN2vLVu20L59e5ydnbGzs6NmzZqMGTOGlJQUVq1aZegRGzx4sGGYW16uTgcHB/PGG29QpkwZrK2tqVq1Kh9//DEJCQlGy02aNAmVSsWVK1f4+OOPKV++PNbW1jRs2JA9e/bkWg9k5CEcOnSIKVOmUKlSJWxtbfH29ub48eMABAYG0qZNG+zt7fHw8OCLL74wu61t27bRunVr7O3tcXBwoHXr1mzfvt3sssuWLaNWrVpYW1tTrVo1Zs+ene1Qm+joaD744AOqVauGtbU1bm5uvPbaayavYX7l9TjnlFekUql48803gbT3beXKlYG0ix3pr3n6Zy3z52vdunU0aNAAGxsbKlasyKRJk9BqtUbbzuvnNC/vNZVKRefOnTl06BA7duxg+vTpNG7cmPLly/PGG2/QqFEjdu7cmc8jmKZevXpMmjSJefPm8eGHH3Lnzh3efvtt4uPjC7Q98XRJT4QQ4rlRtWpVrly5ws8//8z//ve/PK2j0+myzXlITk7Odr3ly5dTuXJl2rZti0qlonHjxqxYsYK33347z+29du0aQI5d/f369WP8+PGsXr2al19+2ei5Q4cOERoaahgmBWknDQ8fPmTgwIGUL1+e0NBQvv/+ezp06EBAQECOQ64K4o033mDdunX4+fkxePBgkpOT+emnn+jUqRM///yzSZuzOnPmDHFxcTRv3jxf9S5YsIDIyEjefvttbGxsmDt3Lr169WLTpk0MHTqU1157jZ49e7J//37mzZtH6dKl+fTTT422ER8fT/v27fH29ubrr7/m2rVrLFy4kOPHjxMUFGQIOlNSUvjmm2/o3bs3r7zyCvb29pw6dYrly5fz+++/mwxH++STT/jqq6+oU6cO48ePx8PDg+vXr7NlyxamTJmCj48PH3/8MV999RX+/v6G16RMmTI57vO///5L8+bNiY6OZsSIEVSvXp3Dhw/z9ddfc/ToUQ4dOoSFhfHP/qBBg7C0tOS9994jJSWF2bNn07NnT65evWr2JNScDz/8EJ1Ox9ixY0lJSeG7777jpZdeYvXq1bz11lv4+/vz+uuvs3HjRiZOnEjlypWNet0WLlzIyJEjqVWrFhMnTgTS3qc9e/ZkyZIl+Pv7G5adPXs248ePp2HDhnz11VckJCTw7bffUrp0aZN2RUdH06pVK27dusWQIUOoW7cuYWFhLFy4EG9vb06fPk2lSpXytI+Pe5xzU7t2bWbNmsX48ePp1auX4fvJwcHBaLkdO3Zw48YNRo4cibu7Ozt27GDy5Mn8+++/rFy5Mt/7ktN77aOPPjIs17JlS9atW4derzf57kxJScHJyQlIC1L8/PxyrHPQoEGMHj0awGjoVPXq1alXrx7du3fnwIED9OzZM9/7I54yRQghnhN//PGHYmlpqQBK9erVlcGDBysLFy5U/v77b7PLV6pUSQFy/bt3757ReqGhoYpGo1E+//xzQ9ns2bMVwGxdgPLSSy8p9+7dU+7du6dcvXpVmTlzpmJpaak4OTkpEREROe6Xn5+fYm1trTx8+NCofMCAAYqFhYXR+nFxcSbrh4eHK66urkrXrl2NygcNGqRk/Zlo166dUqlSJZNt3Lx5UwGM9vnnn39WAGXJkiVGy6ampipNmzZVPD09Fb1en+O+rVixQgGU7du3mzwXEBCgAMrKlStNysqWLatERUUZys+dO6cAikqlUrZs2WK0nSZNmiju7u4m+wkoY8eONSpP36d33nnHUKbX65WEhAST9n3//fcKoGzYsMFQduLECQVQXnjhBSUxMdFoeb1ebzge5vYtN/3791cAZffu3Ubl7733ngIo33//vaHs888/VwDF19fX6DU4efKkAigffvhhrvWtXLlSAZTGjRsrycnJhvLt27crgGJhYaGcOnXKUJ6cnKy4u7srLVq0MJQ9fPhQsbe3V6pWrapER0cbyqOjo5UqVaooDg4OSmRkpKIoihIZGanY2dkptWvXVuLj4w3LhoSEKPb29gqgBAQEGMrHjBmj2NjYKGfPnjVqd3BwsOLo6KgMGjTIUJaf452f42zuM5QOMGqDuc9Q1ufUarVy5swZQ7ler1d69uypAMqxY8cM5fn5nGa3702bNjUcz99++00pWbKk4uXlpdy8eVO5deuW0V/6d2BKSopy8+bNHP+yfk9l9cYbbyjz5s3LcRlRPMhwJiHEc6Nly5acOXOGQYMGER0dzcqVKxkxYgR16tTBx8fH7BAHT09PDhw4YPbvpZdeMlvPqlWr0Ov1DBw40FD2+uuvY2lpyYoVK8yus3//ftzc3HBzc6NGjRq8++671KlTh/3795u9yprZoEGDSE5ONhouFRcXx9atW+nSpYvR+vb29kbLPHjwAI1Gg7e3NydOnMixnvxas2YNjo6O9OzZk/v37xv+oqKi6NGjB8HBwYbeluzcu3cPABcXl3zV/eabbxqujgI0aNCAEiVKULZsWZMrqW3atCE8PJy4uDiT7Xz44YdGj3v16kXNmjWNkrxVKhW2trZAWs9VVFQU9+/f58UXXwQwOq4//fQTAF9//bVJPkf6UJKC0Ov17Nixg8aNG5vkjnz00Ueo1Wq2bt1qst7YsWON6mzWrBkODg65vi6ZDR8+3KinJf1qtre3t1HCrZWVFc2bNzfa9oEDB4iPj2fMmDGUKFHCUF6iRAnGjBlDXFwcBw8eBNI+IwkJCYwcORI7OzvDsuXLl+f11183apOiKPz000/4+PhQrlw5o/efvb09LVq0YP/+/Xnex3QFPc6FpVOnTjRp0sTwWKVS8f777wM80XpdXV1JSEhAURQiIyOpUKGC0V96b6mlpSWenp45/pUsWTLbehISErh9+7YkWj8jZDiTEOK5Ur9+fcMY+n///ZfAwEC+//57fvvtN1555RWToSf29vZ07NjR7LbWrFljUqYoCitWrKBBgwbo9XqjfIbWrVvz448/8vXXX5sMd/D29mbq1KkAWFtbU6lSpTwnKqYHCqtXr2bYsGFA2pj7+Ph4o0AG4Pr163zyySf88ssvREVFGT1X2PeEuHTpErGxsTkOw4mIiKBGjRrZPp/eJiWf00tWqVLFpKxkyZJUqFDBbDnAgwcPjIaPODs7m82TqV27Ntu2bSM+Pt4QlG3cuJHvvvuOoKAgk/yKyMhIw/+vXbuGSqXKNi+noO7du0dcXBx169Y1ec7FxQUPDw+zQbK54+Tq6pptLoc5WbeRfjzTx/hnfS7ztm/evAlgtt3pZentTv+3Vq1aJsvWqVPH6PG9e/d48OCBITg3R63O/3XUgh7nwlK7dm2TsvR9L4x6ExISCAkJMTwODQ3lypUr3Lt3j+TkZNzd3fn8888ZN24cNWvWJDIyklOnTlG9enXatGmT7/pmz55N27Zt8fDw4N69eyxZsgS1Wm3IBxPFmwQRQojnVqVKlRg4cCBvvPEGbdu25ejRo5w8ebJAP4bpAgMDuX79OpA2xtecXbt2mYz3LVWqVLbBSm4sLCzo378/s2fP5p9//qFatWqsXr2akiVLGuUcxMXF4ePjQ3x8POPGjaN+/fo4OjqiVqv5+uuv+fXXX3OtK7tAI2tiJ6Sd+Lu5ubF27dpst5fTfTgAwwlgfu+XodFo8lUO+Q9U0v3888/07duX5s2bM2fOHCpUqICNjQ06nY4uXbqg1+uNln+cHofClt3xyM+xKMixftLS29+xY0fDPQ+KQn4+L8Wh3r///ttwIQJg1qxZQFoPFUC7du0oUaIEs2fP5u7duzg7O1O/fv0C51JFRETwySefEB0dTcmSJWnYsCGrVq3KsbdCFB8SRAghnnsqlQpvb2+OHj1KaGjoY21rxYoVWFtbs3r1arNXOt955x2WL19e6EmDgwYNYvbs2axevZqhQ4dy+PBh/P39sba2Nixz6NAh7ty5w4oVKxg8eLDR+lmTirPj4uLCmTNnTMrNXQWtXr06V69epUWLFiYJonmVHmTkZ3hNYYmKiiI8PNykN+LSpUuULl3a0Avx448/YmNjQ0BAgNEwm8uXL5tss0aNGuzdu5dz587lmCye3yDDzc0NR0dHLl68aPJcZGQkYWFhxfJ+E+m9GBcvXqRDhw5Gz/39999Gy6T/e/ny5WyXTefm5oazszMxMTEFDs7Nye9xTh+G9/DhQ6MheeY+L3l5zS9dumRSlvU4pdeb189p5nq9vLw4ffq0yTKrVq1i8eLFNGjQgM6dO/POO+/k2ta8+PrrrwtlO6JoSE6EEOK5ceDAAbNX4hITEw3jo7MOi8iP6OhoNm/ezEsvvUSfPn3w8/Mz+Xv55ZfZu3cvYWFhBa7HnEaNGtGgQQPWrFnDjz/+iF6vZ9CgQUbLpF8ZznqVef/+/XnOh6hRowaxsbGcPHnSUKbX6w1XLDMbOHAger3eaJaXzCIiInKtr3HjxpQoUcIwZejTNm3aNKPHW7du5cqVK0ZBoEajQaVSGfU4KIpiGJ6WWf/+/QH4+OOPSUlJMXk+/bVJD7ry2gOjVqvp0aMHQUFB7Nu3z2Qf9Ho9vXr1ytO2nqZOnTphb2/PvHnziI2NNZTHxsYyb948HBwcDHcp79SpE7a2tixYsMBoKtXbt2+b9Hap1Wpef/11Tp48yebNm83Wfffu3Xy3N7/HOX2oXnpeR7rvvvvOZNt5ec0PHDjAn3/+aXisKAozZswAMHpP5udzmpd6jx8/joWFhcmN6MTzTXoihBDPjfHjx/PgwQNefvll6tevj52dHSEhIaxdu5arV68ycOBA6tevX+Dtr1u3jsTERHr37p3tMr1792bVqlX88MMPJkm7j2vQoEFMmDCB6dOnU6NGDVq0aGH0fJs2bXB3d2fChAkEBwdTvnx5zp49y48//kj9+vU5f/58rnX4+/vz3Xff0atXL8aOHYuVlRWbN282G5ylT+s6f/58/vzzT7p3706pUqW4ffs2x44d459//sl1HLdGo+F///sf27ZtIzk52ahn5UkrVaoUP//8M3fu3KF9+/aGKV7LlCljdD8MPz8/tmzZwosvvsjAgQNJTU1l27ZtJvcMAGjevDkffPAB06dPp0mTJvTt2xd3d3du3rzJ5s2bOXnyJM7OztSpUwdHR0cWLlyInZ0dzs7OlC5d2pCsbc5XX31lmBpzxIgRVKtWjSNHjrBhwwZ8fHxMgsriwNnZmRkzZjBy5Ei8vb0N901YtWoV//zzD0uWLDEkyJcsWZIvvviC9957j1atWjFw4EASEhJYvHgx1atXJygoyGjbX375JUePHqVPnz706dOHFi1aYGVlxb///suePXto2rSp0T1G8io/x/m1117j448/xt/fn8uXL+Pi4sK+ffvMThvt6upKtWrVWL9+PVWrVqVMmTLY29vTo0cPwzINGzbkxRdfZOTIkXh4eLB9+3YOHjzIG2+8QcuWLQ3L5edzmtt7TVEU9u3bR5cuXQrcoyj+o4pkTighhCgCv/zyizJixAilQYMGiqurq6LRaBQXFxelffv2yvLlyxWdTme0fKVKlZS6detmu7306RvTpzf08vJSLCwscpzCMCkpSXF0dFRq1KhhKOPRVJuPKzw8XLGwsFAAZerUqWaXOXfunNK5c2fF2dlZcXBwUNq1a6ccOXLE7FSU2U1PuXv3bqVhw4aKlZWV4uHhobz//vvK5cuXs52ecvXq1UqbNm0UR0dHxdraWqlUqZLSq1cvZf369Xnar/RpUTdv3mxUntMUr+am6qxUqZLSrl07k/L06U5v3rxpKEufIvP69evKyy+/rDg6OioODg7Kyy+/rFy7ds1kG0uXLlVq166tWFtbK+7u7srQoUOVBw8emEzjmW7t2rVKq1atFAcHB8XOzk6pWbOmMnbsWKOpUnfv3q00btxYsba2VgCzbc/qxo0byoABAxQ3NzfF0tJSqVy5svLRRx8ZTYma3T7ndpyySp/iNfO0qumy2+/s3lM///yz0rJlS8XOzk6xs7NTWrZsqWzdutVsvYsXL1Zq1KihWFlZKVWrVlVmzZplmAo4a1vi4+OVKVOmKPXq1VNsbGwUBwcHpVatWsrbb7+tHD9+3LBcfqfUzetxVhRFOX78uNKqVSvF2tpacXV1VYYOHapERkaaPUYnTpxQWrVqpdjZ2SmAYZrWzFOzrl27Vqlfv75iZWWllC9fXvnss8+UlJQUk3rz8znN6b12+PBhBVB27dqVp2Mjnh8qRSlgJpkQQgjxlHTp0oX4+Hh+++23p1Jf+/btCQ4OJjg4+KnUJ0ROgoODqVy5Mp9//rnJXeGftF69ehESEsKpU6eKzYQAoniQnAghhBDF3nfffcexY8cKNLe/EKJggoKC2L59O999950EEMKE5EQIIYQo9urWrfvEp8UUQhhr3LixyRTFQqSTngghhBBCCCFEvkhOhBBCCCGEECJfpCdCCCGEEEIIkS8SRAghhBBCCCHyRYIIIYQQQgghRL5IECGEEEIIIYTIFwkihBBCCCGEEPkiQYQQQgghhBAiXySIEEIIIYQQQuSLBBFCCCGEEEKIfJEgQgghhBBCCJEv/w/KtPKSlBAEHgAAAABJRU5ErkJggg==",
- "text/plain": [
- "