-
Notifications
You must be signed in to change notification settings - Fork 0
/
analyzer.py
487 lines (346 loc) · 18.5 KB
/
analyzer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
# -*- coding: UTF-8 -*-
import dash
import dash_table
import plotly.graph_objects as go
import dash_core_components as dcc
import dash_html_components as html
import pandas as pd
import numpy as np
import re
external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']
app = dash.Dash(__name__, external_stylesheets=external_stylesheets)
app.title = "Visualizing Swiggy Order History"
server = app.server
get_lat = lambda x: float(x.split(',')[0])
get_lng = lambda x: float(x.split(',')[1])
def seriesToFrame(se, cols):
se=se.to_frame().reset_index(level=0, inplace=False)
se.columns=cols
return se
def dis_round(val, is_cur=False):
if is_cur:
return str(re.sub("(\d)(?=(\d{3})+(?!\d))", r"\1,", "%d" % np.round_(val, decimals=2)))
else:
return str(np.round_(val, decimals=2))
def getTimeCategory(se):
sr = list()
for x in se:
if(x.hour<6):
sr.append("Late Night (12AM to 6AM)")
continue
elif(x.hour<12):
sr.append("Morning (6AM to 12PM)")
continue
elif(x.hour<18):
sr.append("Afternoon (12PM to 6PM)")
continue
else:
sr.append("Night (6PM to 12AM)")
return pd.Series(sr)
filepath= "order.json"
df=pd.read_json(filepath , dtype=False)
print("/////////////////////////")
order_total_sum = df['order_total'].sum()
print("df['order_total'].sum()",order_total_sum)
cum_se = df['order_total'].cumsum()
print("cum_se")
df['cum_order_sum'] = (cum_se.sort_values(ascending =False, inplace=False)).reset_index()['order_total']
cum_re = df['restaurant_customer_distance'].fillna(0).astype(float).cumsum()
df['restaurant_customer_distance_cum'] = (cum_re.sort_values(ascending =False, inplace=False)).reset_index()['restaurant_customer_distance']
cum_se_res = df['order_restaurant_bill'].astype(float).cumsum()
df['cum_order_sum_res'] = (cum_se_res.sort_values(ascending =False, inplace=False)).reset_index()['order_restaurant_bill']
print("*******************")
print("df['delivery_time_in_seconds']",df['delivery_time_in_seconds'].fillna(0))
df['delivery_time_in_hours']=df['delivery_time_in_seconds'].fillna(0).astype(float)/int(3600.0)
print("df['delivery_time_in_hours']",df['delivery_time_in_hours'])
total_orders = len(df)
order_time_series = df['order_time']
order_zone_series = getTimeCategory(order_time_series)
order_zone_series = order_zone_series.value_counts(dropna=False)
on_time_series = df["on_time"].astype('int64')
on_time_series = on_time_series.astype('bool')
on_time_series = on_time_series.value_counts(dropna=False)
total_duration = order_time_series[0]-order_time_series[total_orders-1]
mid_time = order_time_series[total_orders-1]+(total_duration)/2
first_half_orders = order_time_series[order_time_series<mid_time].count()
special_fee = df['special_fee'].value_counts(dropna=False)
time_fee = df['time_fee'].value_counts(dropna=False)
distance_fee = df['distance_fee'].value_counts(dropna=False)
threshold_fee = df['threshold_fee'].value_counts(dropna=False)
special_fee = seriesToFrame(special_fee, ['Money','Count'])
time_fee = seriesToFrame(time_fee, ['Money','Count'])
distance_fee = seriesToFrame(distance_fee, ['Money','Count'])
threshold_fee = seriesToFrame(threshold_fee, ['Money','Count'])
restaurant_city_name = df['restaurant_city_name'].value_counts(dropna=False)
restaurant_coverage_area = df['restaurant_coverage_area'].value_counts(dropna=False)
restaurant_name = df['restaurant_name'].value_counts(dropna=False)
restaurant_name = seriesToFrame(restaurant_name, ['Restaurant Name','Order Count'])
restaurant_type = df['restaurant_type'].value_counts(dropna=False)
restaurant_type = seriesToFrame(restaurant_type, ['Restaurant Category Code','Order Count'])
is_coupon_applied = df['is_coupon_applied'].value_counts(dropna=False)
coupon_type = df['coupon_type'].value_counts(dropna=True)
coupon_applied = df['coupon_applied'].value_counts(dropna=False)
coupon_applied = seriesToFrame(coupon_applied, ['Coupon Code','Order Count'])
payment_method = df['payment_method'].value_counts(dropna=False)
payment_method = seriesToFrame(payment_method, ['Payment Method','Order Count'])
order_payment_method = df['order_payment_method'].value_counts(dropna=False)
order_payment_method = seriesToFrame(order_payment_method, ['Specific Payment Method','Order Count'])
customer_user_agent = df['customer_user_agent'].value_counts(dropna=False)
customer_user_agent = seriesToFrame(customer_user_agent, ['Client Type','Order Count'])
lat=list()
lng=list()
for x in df['restaurant_lat_lng']:
try:
lat.append(float(x.split(',')[0]))
except:
lat.append(0.0)
try:
lng.append(float(x.split(',')[1]))
except:
lng.append(0.0)
lat = pd.Series(lat).value_counts()
lng = pd.Series(lng).value_counts()
fig_map = go.Figure(go.Densitymapbox(lat=list(lat.index), lon=list(lng.index), z=lat.tolist(), radius=15))
fig_map.update_layout(mapbox_style="stamen-terrain", mapbox_center_lon=180, mapbox={'zoom':12, 'center':{'lat':lat.index[0], 'lon':lng.index[0]}})
fig_map.update_layout(margin={"r":0,"t":0,"l":0,"b":0})
order_item_list=list()
for x in df['order_items']:
order_item_list.extend(x)
order_df=pd.DataFrame.from_records(order_item_list)
item_name = order_df['name'].value_counts(dropna=False).head(10)
item_name = seriesToFrame(item_name, ['Item Name','Count'])
is_veg = order_df['is_veg']
is_veg_list = list()
for elem in is_veg:
if elem == "0":
is_veg_list.append("Non Veg")
continue
elif elem == "1":
is_veg_list.append("Veg")
continue
else:
is_veg_list.append("Other")
is_veg = pd.Series(is_veg_list).value_counts(dropna=False)
charges_list=list()
for x in df['charges']:
charges_list.append(x)
charges_df=pd.DataFrame.from_records(charges_list)
fee_names = ["Vat","Service Charges","Service Tax","Delivery Charges","Packing Charges","Convenience Fee","Cancellation Fee","GST"]
fee_amount = list()
for fee_name in fee_names:
fee_amount.append(charges_df[fee_name].astype(float).sum())
fee_df = pd.DataFrame(list(zip(fee_names, fee_amount)), columns =['Charge Type', 'Amount'])
delivery_boy_list=list()
for x in df['delivery_boy']:
if isinstance(x, dict):
delivery_boy_list.append(x)
delivery_boy_list_df=pd.DataFrame.from_records(delivery_boy_list)
delivery_boy_name = delivery_boy_list_df['name'].value_counts(dropna=False)
delivery_boy_name = seriesToFrame(delivery_boy_name, ['Delivery Partner Name','Delivery Count']).head(10)
app.layout = html.Div(children=[
html.H2(children='Swiggy Data Analyzer', style={'textAlign': 'center'}),
html.H6(children='Visualizing Swiggy Order History of myself Ashwin Joseph', style={'textAlign': 'center'}),
html.A([
html.Img(
src='https://image.flaticon.com/icons/svg/1384/1384014.svg',
style={
'height' : '36px',
'width' : '36px',
},
),
], target='_blank', href='https://www.linkedin.com/in/ashwinjoseph/', style={
'height' : '36px',
'width' : '36px',
'float' : 'right',
},),
html.A([
html.Img(
src='https://image.flaticon.com/icons/svg/69/69366.svg',
style={
'height' : '36px',
'width' : '36px',
},
),
], target='_blank', href='https://www.instagram.com/ashwinjosephk/', style={
'height' : '36px',
'width' : '36px',
'float' : 'right',
},),
html.A([
html.Img(
src='https://image.flaticon.com/icons/svg/69/69407.svg',
style={
'height' : '36px',
'width' : '36px',
},
),
], target='_blank', href='https://www.facebook.com/ashwin.joseph/', style={
'height' : '36px',
'width' : '36px',
'float' : 'right',
},),
html.A([
html.Img(
src='https://image.flaticon.com/icons/svg/109/109476.svg',
style={
'height' : '36px',
'width' : '36px',
},
),
], target='_blank', href='hhttps://ashwinjoseph95.github.io/profile/', style={
'height' : '36px',
'width' : '36px',
'float' : 'right',
},),
dcc.Markdown('''
---
> You ordered a tolal of **'''+ str(total_orders) +'''** times.
> Your first order was on **'''+ str(df['order_time'][total_orders-1]) +'''** from **'''+ str(df['restaurant_name'][total_orders-1]) +''', '''+str(df['restaurant_area_name'][total_orders-1])+'''** and your last order was on **'''+ str(df['order_time'][0]) +'''** from **'''+ str(df['restaurant_name'][0]) +''', '''+str(df['restaurant_area_name'][0])+'''**
'''),
html.Div([
html.Div([
dcc.Graph(id='order_v_time', figure=go.Figure([go.Scatter(x=df['order_time'], y=df['order_total'])], layout=go.Layout(title=go.layout.Title(text="Order Amount vs Time"))))
], className="six columns"),
html.Div([
dcc.Graph(id='cum_order_v_time', figure=go.Figure([go.Scatter(x=df['order_time'], y=df['cum_order_sum'])], layout=go.Layout(title=go.layout.Title(text="Cumulative Order Amount vs Time"))))
], className="six columns"),
], className="row", style={'margin-top': '20px'}),
dcc.Markdown('''
> The minimum order amount is **Rs. ''' + dis_round(df['order_total'].min()) + '''**, maximum order amount **Rs. ''' + dis_round(df['order_total'].max()) + '''** with an average of **Rs.''' + dis_round(df['order_total'].mean()) + '''**. The ordering frequency in first half is **'''+ str(first_half_orders) +'''** and in second half is **'''+ str(total_orders-first_half_orders) +'''**
> The total amount spent in past **'''+dis_round(total_duration.days/365.0)+''' years** is ** Rs. '''+dis_round(df['cum_order_sum'][0], True)+'''**
> The total restaurant bill is ** Rs. '''+dis_round(df['cum_order_sum_res'][0], True)+'''**. Total money saved via discounts is **'''+ dis_round(df['cum_order_sum_res'][0]-df['cum_order_sum'][0], True) +'''**
---
'''),
html.Div([
html.Div([
dcc.Graph(id='restaurant_city_name', figure=go.Figure([go.Pie(labels=list(restaurant_city_name.index), values=restaurant_city_name.tolist(), name='restaurant_city_name')], layout=go.Layout(title=go.layout.Title(text="City Wise Order Breakdown"))))
], className="six columns"),
html.Div([
dcc.Graph(id='restaurant_coverage_area', figure=go.Figure([go.Pie(labels=list(restaurant_coverage_area.index), values=restaurant_coverage_area.tolist(), name='restaurant_coverage_area')], layout=go.Layout(title=go.layout.Title(text="Area Wise Order Breakdown"))))
], className="six columns"),
], className="row", style={'margin-top': '20px'}),
html.Div([
html.H6('Restaurant Density Map'),
html.Div([
dcc.Graph(id='fig_map', figure=fig_map)
], className="twelve columns"),
], className="row", style={'margin-top': '20px'}),
dcc.Markdown('''
---
'''),
html.Div([
html.Div([
dcc.Graph(id='restaurant_customer_distance_cum', figure=go.Figure([go.Scatter(x=df['order_time'], y=df['restaurant_customer_distance_cum'])], layout=go.Layout(title=go.layout.Title(text="Cumulative Distance Travelled by Delivery Partners vs Time"))))
], className="six columns"),
html.Div([
html.H6('Delivery Partner Delivery Count'),
dash_table.DataTable(id='delivery_boy_name',columns=[{"name": i, "id": i} for i in delivery_boy_name.columns],data=delivery_boy_name.to_dict('records'),css=[{
'selector': '.dash-cell div.dash-cell-value',
'rule': 'display: inline; white-space: inherit; overflow: inherit; text-overflow: inherit;'
}],
style_cell={
'whiteSpace': 'no-wrap',
'overflow': 'hidden',
'textOverflow': 'ellipsis',
'maxWidth': 0,
'textAlign': 'center',
},)
], className="three columns"),
html.Div([
html.H6('User Client Type'),
dash_table.DataTable(id='customer_user_agent',columns=[{"name": i, "id": i} for i in customer_user_agent.columns],data=customer_user_agent.to_dict('records'),css=[{
'selector': '.dash-cell div.dash-cell-value',
'rule': 'display: inline; white-space: inherit; overflow: inherit; text-overflow: inherit;'
}],
style_cell={
'whiteSpace': 'no-wrap',
'overflow': 'hidden',
'textOverflow': 'ellipsis',
'maxWidth': 0,
'textAlign': 'center',
},)
], className="three columns"),
], className="row", style={'margin-top': '20px'}),
dcc.Markdown('''
> The total distance travelled by delivery partners in past **'''+dis_round(total_duration.days/365.0)+''' years** is **'''+dis_round(df['restaurant_customer_distance_cum'][0], True)+''' kms**
> The total delivery time is **'''+dis_round(df['delivery_time_in_hours'].sum(), True)+''' hours** with maximum delivery time of **'''+dis_round(df['delivery_time_in_hours'].max()*60, True)+''' minutes** and average delivery time of **'''+dis_round(df['delivery_time_in_hours'].mean()*60, True)+''' minutes**
> **'''+str(delivery_boy_name['Delivery Partner Name'][0])+'''** has delivered to you **'''+ str(delivery_boy_name['Delivery Count'][0]) +''' times**
---
'''),
html.Div([
html.Div([
html.H6('Most Ordered Items'),
dash_table.DataTable(id='item_name',columns=[{"name": i, "id": i} for i in item_name.columns],data=item_name.to_dict('records'),style_cell={'textAlign': 'center'},)
], className="six columns"),
html.Div([
dcc.Graph(id='is_veg', figure=go.Figure([go.Pie(labels=list(is_veg.index), values=is_veg.tolist(), name='is_veg')], layout=go.Layout(title=go.layout.Title(text="Item Type"))))
], className="six columns"),
], className="row", style={'margin-top': '20px'}),
dcc.Markdown('''
> Your favorite item is **'''+str(item_name['Item Name'][0])+'''**
---
'''),
html.Div([
html.Div([
html.H6('Restaurant Wise Order Breakdown'),
dash_table.DataTable(id='restaurant_name',columns=[{"name": i, "id": i} for i in restaurant_name.columns],data=restaurant_name.head(n=10).to_dict('records'),style_cell={'textAlign': 'center'},)
], className="four columns"),
html.Div([
dcc.Graph(id='restaurant_name_bar', figure=go.Figure([go.Bar(x=restaurant_name.head(n=20)['Restaurant Name'].tolist(), y=restaurant_name.head(n=20)['Order Count'].tolist())]))
], className="four columns"),
html.Div([
html.H6('Restaurant Types'),
dash_table.DataTable(id='restaurant_type',columns=[{"name": i, "id": i} for i in restaurant_type.columns],data=restaurant_type.head(n=10).to_dict('records'),style_cell={'textAlign': 'center'},)
], className="four columns"),
], className="row", style={'margin-top': '20px'}),
dcc.Markdown('''
> Your favorite restaurant is **'''+ str(restaurant_name['Restaurant Name'][0]) +'''**
> Turns out they also have category codes for restaurants. Not sure what these codes actually mean. Let me know if anyone figures it out.
---
'''),
html.Div([
html.Div([
dcc.Graph(id='is_coupon_applied', figure=go.Figure([go.Pie(labels=list(is_coupon_applied.index), values=is_coupon_applied.tolist(), name='is_coupon_applied')], layout=go.Layout(title=go.layout.Title(text="Coupons Applied"))))
], className="six columns"),
html.Div([
dcc.Graph(id='coupon_type', figure=go.Figure([go.Pie(labels=list(coupon_type.index), values=coupon_type.tolist(), name='coupon_type')], layout=go.Layout(title=go.layout.Title(text="Coupon Types"))))
], className="six columns"),
], className="row", style={'margin-top': '20px'}),
html.Div([
html.Div([
dcc.Graph(id='coupon_applied', figure=go.Figure([go.Bar(x=coupon_applied['Coupon Code'].tolist(), y=coupon_applied['Order Count'].tolist())], layout=go.Layout(title=go.layout.Title(text="Detailed Applied Coupon Breakdown"))))
], className="twelve columns"),
], className="row", style={'margin-top': '20px'}),
dcc.Markdown('''
> Out of **'''+ str(total_orders) +''' orders**, coupons were applied on **'''+str(is_coupon_applied[True])+''' orders**
> Coupon **'''+str(coupon_applied['Coupon Code'][0])+'''** was used **'''+str(coupon_applied['Order Count'][0])+'''** times
---
'''),
html.Div([
html.Div([
dcc.Graph(id='order_zone_series', figure=go.Figure([go.Pie(labels=list(order_zone_series.index), values=order_zone_series.tolist(), name='order_zone_series')], layout=go.Layout(title=go.layout.Title(text="Time Wise Order Breakdown"))))
], className="six columns"),
html.Div([
dcc.Graph(id='on_time', figure=go.Figure([go.Pie(labels=list(on_time_series.index), values=on_time_series.tolist(), name='on_time')], layout=go.Layout(title=go.layout.Title(text="On Time Delivery"))))
], className="six columns"),
], className="row", style={'margin-top': '20px'}),
dcc.Markdown('''
> Most orders were placed during **'''+str(list(order_zone_series.index)[0])+'''**
> Out of **'''+str(total_orders)+''' orders**, **'''+ str(on_time_series[True])+''' orders** were delivered on time
---
'''),
html.Div([
html.Div([
dcc.Graph(id='payment_method', figure=go.Figure([go.Bar(x=payment_method['Payment Method'].tolist(), y=payment_method['Order Count'].tolist())], layout=go.Layout(title=go.layout.Title(text="Payment Method"))))
], className="four columns"),
html.Div([
dcc.Graph(id='order_payment_method', figure=go.Figure([go.Bar(x=order_payment_method['Specific Payment Method'].tolist(), y=order_payment_method['Order Count'].tolist())], layout=go.Layout(title=go.layout.Title(text="Specific Payment Method"))))
], className="four columns"),
html.Div([
html.H6('Charges/Fee Breakdown'),
dash_table.DataTable(id='fee_df',columns=[{"name": i, "id": i} for i in fee_df.columns],data=fee_df.to_dict('records'),style_cell={'textAlign': 'center'},)
], className="three columns"),
], className="row", style={'margin-top': '20px'}),
], style={'padding': '20px'})
if __name__ == '__main__':
app.run_server(debug=True)