diff --git a/Assignment/Assignment_1/200124_Aniket_Sharma_Part_1.ipynb b/Assignment/Assignment_1/200124_Aniket_Sharma_Part_1.ipynb new file mode 100644 index 0000000..4939be2 --- /dev/null +++ b/Assignment/Assignment_1/200124_Aniket_Sharma_Part_1.ipynb @@ -0,0 +1,940 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.8" + }, + "colab": { + "name": "200124_Aniket-Sharma_Part-1.ipynb", + "provenance": [], + "collapsed_sections": [] + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "rvFM645NE-D2" + }, + "source": [ + "# Assignment 1 - Part 1\n", + "In this assignment, we will go through basic linear algebra, NumPy, and image manipulation using Python to get everyone on the same page.\n", + "\n", + "One of the aims of this assignment is to get you to start getting comfortable searching for useful library functions online. So in many of the functions you will implement, you will have to look up helper functions.\n", + "\n", + "\\\n", + "\n", + "## Instructions\n", + "* This notebook contain blocks of code, you are required to complete those blocks(where required)\n", + "* You are required to copy this notebook (\"copy to drive\" above) and complete the code.(DO NOT CHANGE THE NAME OF THE FUNCTIONS)\n", + "\n", + "\\\n", + "\\\n", + "Also, I'd like to acknowledge the Stanford CS131. This assignment is highly based on the assignments from that course." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "UhSVK4RoK9q5" + }, + "source": [ + "First Let's import some dependencies" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "cCKqyfhIE-EQ" + }, + "source": [ + "# Imports the print function from newer versions of python\n", + "from __future__ import print_function\n", + "\n", + "# Setup\n", + "\n", + "# The Random module implements pseudo-random number generators\n", + "import random \n", + "\n", + "# Numpy is the main package for scientific computing with Python. \n", + "# This will be one of our most used libraries in this project\n", + "import numpy as np\n", + "\n", + "# The Time library helps us time code runtimes\n", + "import time\n", + "\n", + "\n", + "# Some more magic so that the notebook will reload external python modules;\n", + "# see http://stackoverflow.com/questions/1907993/autoreload-of-modules-in-ipython\n", + "%load_ext autoreload\n", + "%autoreload 2\n", + "%reload_ext autoreload" + ], + "execution_count": 1, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true, + "id": "QLtp15rqE-EU" + }, + "source": [ + "# Part 1: Linear Algebra and NumPy Review\n", + "In this section, we will review linear algebra and learn how to use vectors and matrices in python using numpy." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "E8HDYpc0E-EV" + }, + "source": [ + "## Part 1.1 (5 points)\n", + "First, let's test whether you can define the following matrices and vectors using numpy. Look up `np.array()` for help. In the next code block, define $M$ as a $(4, 3)$ matrix, $a$ as a $(1, 3)$ row vector and $b$ as a $(3, 1)$ column vector:\n", + "\n", + "$$M = \\begin{bmatrix}\n", + "1 & 2 & 3 \\\\\n", + "4 & 5 & 6 \\\\\n", + "7 & 8 & 9 \\\\\n", + "10 & 11 & 12 \\end{bmatrix}\n", + "$$\n", + "\n", + "$$a = \\begin{bmatrix}\n", + "1 & 1 & 0\n", + "\\end{bmatrix}\n", + "$$\n", + "\n", + "$$b = \\begin{bmatrix}\n", + "-1 \\\\ 2 \\\\ 5\n", + "\\end{bmatrix} \n", + "$$ " + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "mETk2NCME-EX", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "f765f76f-71c5-47d6-bb71-5ceeee628b4d" + }, + "source": [ + "### YOUR CODE HERE\n", + "M = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]])\n", + "a = np.array([[1, 1, 0]])\n", + "b = np.reshape(np.array([-1, 2, 3]), (3, 1))\n", + "### END CODE HERE\n", + "print(\"M = \\n\", M)\n", + "print(\"The size of M is: \", M.size)\n", + "print()\n", + "print(\"a = \", a)\n", + "print(\"The size of a is: \", a.size)\n", + "print()\n", + "print(\"b = \", b)\n", + "print(\"The size of b is: \", b.size)" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "M = \n", + " [[ 1 2 3]\n", + " [ 4 5 6]\n", + " [ 7 8 9]\n", + " [10 11 12]]\n", + "The size of M is: 12\n", + "\n", + "a = [[1 1 0]]\n", + "The size of a is: 3\n", + "\n", + "b = [[-1]\n", + " [ 2]\n", + " [ 3]]\n", + "The size of b is: 3\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "rSta4NheE-EZ" + }, + "source": [ + "## Part 1.2 (5 points)\n", + "Implement the `dot_product()` method below and check that it returns the correct answer for $a^Tb$." + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "C5ZRjCE2MVOU" + }, + "source": [ + "def dot_product(a, b):\n", + " \"\"\"Implement dot product between the two vectors: a and b.\n", + " (optional): While you can solve this using for loops, we recommend\n", + " that you look up `np.dot()` online and use that instead.\n", + " Args:\n", + " a: numpy array of shape (x, n)\n", + " b: numpy array of shape (n, x)\n", + " Returns:\n", + " out: numpy array of shape (x, x) (scalar if x = 1)\n", + " \"\"\"\n", + " out = None\n", + " ### YOUR CODE HERE\n", + " out = np.dot(a, b)\n", + " ### END YOUR CODE\n", + " return out" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "pbLIS5vIE-Ea", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "23024e52-97b3-4891-e74a-ec25b776a4a3" + }, + "source": [ + "# Now, let's test out this dot product. Your answer should be [[1]].\n", + "aDotB = dot_product(a, b)\n", + "print(aDotB)\n", + "\n", + "print(\"The size is: \", aDotB.shape)" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[[1]]\n", + "The size is: (1, 1)\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "0rGfcRU1E-Eb" + }, + "source": [ + "## Part 1.3 (5 points)\n", + "Implement the `complicated_matrix_function()` method and use it to compute $(ab)Ma^T$\n", + "\n", + "IMPORTANT NOTE: The `complicated_matrix_function()` method expects all inputs to be two dimensional numpy arrays, as opposed to 1-D arrays. This is an important distinction, because 2-D arrays can be transposed, while 1-D arrays cannot.\n", + "\n", + "To transpose a 2-D array, you can use the syntax `array.T` " + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "dglQmbuLNOk6" + }, + "source": [ + "def complicated_matrix_function(M, a, b):\n", + " \"\"\"Implement (a * b) * (M * a.T).\n", + " (optional): Use the `dot_product(a, b)` function you wrote above\n", + " as a helper function.\n", + " Args:\n", + " M: numpy matrix of shape (x, n).\n", + " a: numpy array of shape (1, n).\n", + " b: numpy array of shape (n, 1).\n", + " Returns:\n", + " out: numpy matrix of shape (x, 1).\n", + " \"\"\"\n", + " \n", + " ### YOUR CODE HERE\n", + " out = dot_product(a, b)* dot_product(M, a.T)\n", + " ### END YOUR CODE\n", + " return out" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "da_uQQLhE-Ec", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "e146210a-524b-47ae-d227-80708cae720d" + }, + "source": [ + "# Your answer should be $[[3], [9], [15], [21]]$ of shape(4, 1).\n", + "ans = complicated_matrix_function(M, a, b)\n", + "print(ans)\n", + "print()\n", + "print(\"The size is: \", ans.shape)" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[[ 3]\n", + " [ 9]\n", + " [15]\n", + " [21]]\n", + "\n", + "The size is: (4, 1)\n" + ] + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "6CWXxSSOE-Ed", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "4926ca6c-cbbe-4f50-f204-103d8447f9d5" + }, + "source": [ + "M_2 = np.array(range(4)).reshape((2,2))\n", + "a_2 = np.array([[1,1]])\n", + "b_2 = np.array([[10, 10]]).T\n", + "print(M_2.shape)\n", + "print(a_2.shape)\n", + "print(b_2.shape)\n", + "print()\n", + "\n", + "# Your answer should be $[[20], [100]]$ of shape(2, 1).\n", + "ans = complicated_matrix_function(M_2, a_2, b_2)\n", + "print(ans)\n", + "print()\n", + "print(\"The size is: \", ans.shape)" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "(2, 2)\n", + "(1, 2)\n", + "(2, 1)\n", + "\n", + "[[ 20]\n", + " [100]]\n", + "\n", + "The size is: (2, 1)\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "4fHLxLl4E-Ee" + }, + "source": [ + "## Part 1.4 (10 points) [Optional/Bonus]\n", + "Implement `eigen_decomp()` and `get_eigen_values_and_vectors()` methods. In this method, perform eigenvalue decomposition on the following matrix and return the largest k eigen values and corresponding eigen vectors (k is specified in the method calls below).\n", + "\n", + "$$M = \\begin{bmatrix}\n", + "1 & 2 & 3 \\\\\n", + "4 & 5 & 6 \\\\\n", + "7 & 8 & 9 \\end{bmatrix}\n", + "$$\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "RfaCSoRMOIc8" + }, + "source": [ + "def eigen_decomp(M):\n", + " \"\"\"Implement eigenvalue decomposition.\n", + " (optional): You might find the `np.linalg.eig` function useful.\n", + " Args:\n", + " matrix: numpy matrix of shape (m, n)\n", + " Returns:\n", + " w: numpy array of shape (m, m) such that the column v[:,i] is the eigenvector corresponding to the eigenvalue w[i].\n", + " v: Matrix where every column is an eigenvector.\n", + " \"\"\"\n", + " w = None\n", + " v = None\n", + " ### YOUR CODE HERE\n", + " pass\n", + " ### END YOUR CODE\n", + " return w, v" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "YB120rb4ONBH" + }, + "source": [ + "def get_eigen_values_and_vectors(M, k):\n", + " \"\"\"Return top k eigenvalues and eigenvectors of matrix M. By top k\n", + " here we mean the eigenvalues with the top ABSOLUTE values (lookup\n", + " np.argsort for a hint on how to do so.)\n", + " (optional): Use the `eigen_decomp(M)` function you wrote above\n", + " as a helper function\n", + " Args:\n", + " M: numpy matrix of shape (m, m).\n", + " k: number of eigen values and respective vectors to return.\n", + " Returns:\n", + " eigenvalues: list of length k containing the top k eigenvalues\n", + " eigenvectors: list of length k containing the top k eigenvectors\n", + " of shape (m,)\n", + " \"\"\"\n", + " eigenvalues = []\n", + " eigenvectors = []\n", + " ### YOUR CODE HERE\n", + " pass\n", + " ### END YOUR CODE\n", + " return eigenvalues, eigenvectors" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "t0_GkrJwE-Ee", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 235 + }, + "outputId": "b9e28385-8adf-42e6-d43c-12dbc6410d1a" + }, + "source": [ + "# Let's define M.\n", + "M = np.array([[1,2,3],[4,5,6],[7,8,9]])\n", + "\n", + "# Now let's grab the first eigenvalue and first eigenvector.\n", + "# You should get back a single eigenvalue and a single eigenvector.\n", + "val, vec = get_eigen_values_and_vectors(M[:,:3], 1)\n", + "print(\"First eigenvalue =\", val[0])\n", + "print()\n", + "print(\"First eigenvector =\", vec[0])\n", + "print()\n", + "assert len(vec) == 1\n", + "\n", + "# Now, let's get the first two eigenvalues and eigenvectors.\n", + "# You should get back a list of two eigenvalues and a list of two eigenvector arrays.\n", + "val, vec = get_eigen_values_and_vectors(M[:,:3], 2)\n", + "print(\"Eigenvalues =\", val)\n", + "print()\n", + "print(\"Eigenvectors =\", vec)\n", + "assert len(vec) == 2" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "error", + "ename": "IndexError", + "evalue": "ignored", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mIndexError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;31m# You should get back a single eigenvalue and a single eigenvector.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0mval\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvec\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mget_eigen_values_and_vectors\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mM\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;36m3\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 7\u001b[0;31m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"First eigenvalue =\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mval\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 8\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 9\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"First eigenvector =\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvec\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mIndexError\u001b[0m: list index out of range" + ] + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Yeh-V5x1PYz5" + }, + "source": [ + "## Part 1.5 (10 points)\n", + "In this section, you'll implement a gaussian elimination.\n", + "\n", + "The algorithm to to reduce a matrix to rref using gaussian elimination contains 2 parts, First reducing the matrix to partial reduced form, then back substituting to calculate the rref. First algorithm can be summed up as:\n", + "1. Partial pivoting: Find the kth pivot by swapping rows, to move the entry with the largest absolute value to the pivot position. This imparts computational stability to the algorithm.\n", + "2. For each row below the pivot, calculate the factor f which makes the kth entry zero, and for every element in the row subtract the fth multiple of the corresponding element in the kth row.\n", + "3. Repeat above steps for each unknown. We will be left with a partial r.e.f. matrix.\n", + "\n", + "$$\\begin{bmatrix}\n", + "1 & 2 & 3 \\\\\n", + "4 & 5 & 6 \\\\\n", + "7 & 8 & 9 \\end{bmatrix}\n", + "=>\n", + "\\begin{bmatrix}\n", + "7 & 8 & 9 \\\\\n", + "4 & 5 & 6 \\\\\n", + "1 & 2 & 3 \\end{bmatrix}\n", + "=>\n", + "\\begin{bmatrix}\n", + "7 & 8 & 9 \\\\\n", + "0 & 0.42 & 0.85 \\\\\n", + "0 & 0.85 & 1.71 \\end{bmatrix}\n", + "=>\n", + "\\begin{bmatrix}\n", + "7 & 8 & 9 \\\\\n", + "0 & 0.85 & 1.71 \\\\\n", + "0 & 0.45 & 0.85 \\end{bmatrix}\n", + "=>\n", + "\\begin{bmatrix}\n", + "7 & 8 & 9 \\\\\n", + "0 & 0.42 & 0.85 \\\\\n", + "0 & 0 & -0.05 \\end{bmatrix}\n", + "$$\n", + "Second algorithm:\n", + "1. Take a pivot from the last row.\n", + "2. For each row above the pivot, calculate the factor f which makes the kth entry zero, and for every element in the row subtract the fth multiple of the corresponding element in the kth row\n", + "3. Repeat the above step untill the matrix is in rref\n", + "$$\\begin{bmatrix}\n", + "7 & 8 & 0 \\\\\n", + "0 & 0.42 & 0 \\\\\n", + "0 & 0 & -0.05 \\end{bmatrix}\n", + "=>\n", + "\\begin{bmatrix}\n", + "7 & 0 & 0 \\\\\n", + "0 & 0.42 & 0 \\\\\n", + "0 & 0 & -0.05 \\end{bmatrix}\n", + "$$\n", + "\n", + "Steps for implementation:\n", + "1. Complete the function `swap_rows()`\n", + "2. Complete the function `apply_row()`\n", + "3. Complete `forward()` and `backward()`\n", + "4. Finally implement `rref()` using the `forward()` and `backward()`\n", + "\n", + "Note: You can skip this part if you want." + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "qUFujiFAPYz6" + }, + "source": [ + "def swap_rows(M):\n", + " \"\"\"Implement row swapping to make the largest element in the pivotial column to be the first row.\n", + " Args:\n", + " matrix: numpy matrix of shape (m, n)\n", + " Returns:\n", + " Ms: matrix with swapped row\n", + " \"\"\"\n", + " out = None\n", + " ### YOUR CODE HERE\n", + " m = 0\n", + " max = M[0][0]\n", + " for i in range(len(M)):\n", + " if M[i][0] > max and M[i][0] != 0:\n", + " m = i \n", + " max = M[i][0]\n", + " elif max == 0 and M[i][0] < 0:\n", + " m = i\n", + " max = M[i][0]\n", + " if max != 0:\n", + " M[[0, i]] = M[[i, 0]]\n", + " out = M\n", + " ### END YOUR CODE\n", + " return out" + ], + "execution_count": 59, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "S8lbAUSWWpyO" + }, + "source": [ + "def apply_rows(M):\n", + " \"\"\"For each row below the pivot, calculate the factor f which makes the kth\n", + " entry zero, and for every element in the row subtract the fth multiple of the\n", + " corresponding element in the kth row.\n", + " Args:\n", + " matrix: numpy matrix of shape (m, n)\n", + " Returns:\n", + " Ms: matrix with all other entries of the pivotal col zero\n", + " \"\"\"\n", + " out = None\n", + " ### YOUR CODE HERE\n", + " m = M.astype(float)\n", + " for j in range(len(m)):\n", + " if j > 0:\n", + " c = m[j, 0] / m[0, 0]\n", + " m[j] = m[j] - c*m[0]\n", + " out = m\n", + " ### END YOUR CODE\n", + " return out" + ], + "execution_count": 60, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "GnE_-JLxPYz7" + }, + "source": [ + "def forward(M):\n", + " \"\"\"Return a partial ref using the algo described above\n", + " Args:\n", + " M: numpy matrix of shape (m, n).\n", + " Returns:\n", + " Ms: ref of M\n", + " \"\"\"\n", + " out = None\n", + " ### YOUR CODE HERE\n", + " for k in range(len(M)):\n", + " if k <= len(M[0]):\n", + " M[k:, k:] = apply_rows(swap_rows(M[k:, k:]))\n", + " out = M \n", + " return out" + ], + "execution_count": 61, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "Wb7pPGP4XmJu" + }, + "source": [ + "def backward(M):\n", + " \"\"\"Return a rref using the algo described above\n", + " Args:\n", + " M: numpy matrix of shape (m, n).\n", + " Returns:\n", + " Ms: rref of M\n", + " \"\"\"\n", + " out = None\n", + " ### YOUR CODE HERE\n", + " m = M.astype(float)\n", + " for k in range(len(M)):\n", + " l = len(M) - 1 - k\n", + " if l > 0:\n", + " m = M[:(l + 1), :(l + 1)]\n", + " for j in range(l):\n", + " z = m[j, l]/m[l, l]\n", + " m[j] = m[j] - z*m[l]\n", + " M[:l + 1, :l + 1] = m\n", + " out = M\n", + " ### END YOUR CODE\n", + " return out" + ], + "execution_count": 62, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "XLq81xzXYR85" + }, + "source": [ + "def rref(M):\n", + " \"\"\"Return a rref using the algo descrbed above\n", + " Args:\n", + " M: numpy matrix of shape (m, n).\n", + " Returns:\n", + " Ms: ref of M\n", + " \"\"\"\n", + " out = None\n", + " ### YOUR CODE HERE\n", + " out = forward(M)\n", + " out_1 = backward(out)\n", + " ### END YOUR CODE\n", + " return out_1" + ], + "execution_count": 63, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "Eiz6EbsWPYz8", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "adcb3464-f10e-437d-fb58-5361177048db" + }, + "source": [ + "# Let's define M.\n", + "M = np.array([[1,2,3],[4,5,6],[7,8,9]])\n", + "\n", + "# Now let's calculate it's rref.\n", + "# Note that your code may be evaluated on other test cases as well\n", + "M = M.astype(float)\n", + "Mrref = rref(M)\n", + "print(Mrref)" + ], + "execution_count": 64, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[[ nan nan 0.00000000e+00]\n", + " [0.00000000e+00 0.00000000e+00 0.00000000e+00]\n", + " [0.00000000e+00 5.55111512e-17 1.11022302e-16]]\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:16: RuntimeWarning: divide by zero encountered in double_scalars\n", + " app.launch_new_instance()\n", + "/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:17: RuntimeWarning: invalid value encountered in multiply\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "G46pyDzAE-Ef" + }, + "source": [ + "## Part 1.6 (10 points)\n", + "\n", + "To wrap up our overview of NumPy, let's implement something fun — a helper function for computing the Euclidean distance between two $n$-dimensional points!\n", + "\n", + "In the 2-dimensional case, computing the Euclidean distance reduces to solving the Pythagorean theorem $c = \\sqrt{a^2 + b^2}$. where, given two points $(x_1, y_1)$ and $(x_2, y_2)$, $a = x_1 - x_2$ and $b = y_1 - y_2$.\n", + "\n", + "\n", + "More generally, given two $n$-dimensional vectors, the Euclidean distance can be computed by:\n", + "\n", + "1. Performing an elementwise subtraction between the two vectors, to get $n$ difference values.\n", + "2. Squaring each of the $n$ difference values, and summing the squares.\n", + "4. Taking the square root of our sum.\n", + "\n", + "Alternatively, the Euclidean distance between length-$n$ vectors $u$ and $v$ can be written as:\n", + "\n", + "$\n", + "\\quad\\textbf{distance}(u, v) = \\sqrt{\\sum_{i=1}^n (u_i - v_i)^2}\n", + "$\n", + "\n", + "\n", + "Try implementing this function: first using native Python with a `for` loop in the `euclidean_distance_native()` function, then in NumPy **without any loops** in the `euclidean_distance_numpy()` function.\n", + "We've added some `assert` statements here to help you check functionality (if it prints nothing, then your implementation is correct)!" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "5xvHopPqO29C" + }, + "source": [ + "def euclidean_distance_native(u, v):\n", + " \"\"\"Computes the Euclidean distance between two vectors, represented as Python\n", + " lists.\n", + " Args:\n", + " u (List[float]): A vector, represented as a list of floats.\n", + " v (List[float]): A vector, represented as a list of floats.\n", + " Returns:\n", + " float: Euclidean distance between `u` and `v`.\n", + " \"\"\"\n", + " # First, run some checks:\n", + " assert isinstance(u, list)\n", + " assert isinstance(v, list)\n", + " assert len(u) == len(v)\n", + "\n", + " # Compute the distance!\n", + " # Notes:\n", + " # 1) Try breaking this problem down: first, we want to get\n", + " # the difference between corresponding elements in our\n", + " # input arrays. Then, we want to square these differences.\n", + " # Finally, we want to sum the squares and square root the\n", + " # sum.\n", + " out = None\n", + " ### YOUR CODE HERE\n", + " sub = []\n", + " for i in range(len(u)):\n", + " sub.append(u[i] - v[i])\n", + " sq_arr = [x**2 for x in sub]\n", + " sum = 0\n", + " for x in sq_arr:\n", + " sum = sum + x\n", + " from math import sqrt\n", + " out = sqrt(sum)\n", + " ### END YOUR CODE\n", + " return out" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "wvLuK8MuO3LH" + }, + "source": [ + "def euclidean_distance_numpy(u, v):\n", + " \"\"\"Computes the Euclidean distance between two vectors, represented as NumPy\n", + " arrays.\n", + " Args:\n", + " u (np.ndarray): A vector, represented as a NumPy array.\n", + " v (np.ndarray): A vector, represented as a NumPy array.\n", + " Returns:\n", + " float: Euclidean distance between `u` and `v`.\n", + " \"\"\"\n", + " # First, run some checks:\n", + " assert isinstance(u, np.ndarray)\n", + " assert isinstance(v, np.ndarray)\n", + " assert u.shape == v.shape\n", + "\n", + " # Compute the distance!\n", + " # Note:\n", + " # 1) You shouldn't need any loops\n", + " # 2) Some functions you can Google that might be useful:\n", + " # np.sqrt(), np.sum()\n", + " # 3) Try breaking this problem down: first, we want to get\n", + " # the difference between corresponding elements in our\n", + " # input arrays. Then, we want to square these differences.\n", + " # Finally, we want to sum the squares and square root the\n", + " # sum.\n", + "\n", + " ### YOUR CODE HERE\n", + " sub = u - v\n", + " sq_arr = np.square(sub)\n", + " from math import sqrt\n", + " sum = np.sum(sq_arr)\n", + " out = sqrt(sum)\n", + " ### END YOUR CODE\n", + " return out" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "wu9MimVJE-Eg" + }, + "source": [ + "## Testing native Python function\n", + "assert euclidean_distance_native([7.0], [6.0]) == 1.0\n", + "assert euclidean_distance_native([7.0, 0.0], [3.0, 3.0]) == 5.0\n", + "assert euclidean_distance_native([7.0, 0.0, 0.0], [3.0, 0.0, 3.0]) == 5.0" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "kJDk88g1E-Ej" + }, + "source": [ + "## Testing NumPy function\n", + "assert euclidean_distance_numpy(\n", + " np.array([7.0]),\n", + " np.array([6.0])\n", + ") == 1.0\n", + "assert euclidean_distance_numpy(\n", + " np.array([7.0, 0.0]),\n", + " np.array([3.0, 3.0])\n", + ") == 5.0\n", + "assert euclidean_distance_numpy(\n", + " np.array([7.0, 0.0, 0.0]),\n", + " np.array([3.0, 0.0, 3.0])\n", + ") == 5.0" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "n = 1000\n", + "\n", + "# Create some length-n lists and/or n-dimensional arrays\n", + "a = [0.0] * n\n", + "b = [10.0] * n\n", + "a_array = np.array(a)\n", + "b_array = np.array(b)\n", + "\n", + "# Compute runtime for native implementation\n", + "start_time = time.time()\n", + "for i in range(10000):\n", + " euclidean_distance_native(a, b)\n", + "print(\"Native:\", (time.time() - start_time), \"seconds\")\n", + "\n", + "# Compute runtime for numpy implementation\n", + "# Start by grabbing the current time in seconds\n", + "start_time = time.time()\n", + "for i in range(10000):\n", + " euclidean_distance_numpy(a_array, b_array)\n", + "print(\"NumPy:\", (time.time() - start_time), \"seconds\")" + ], + "metadata": { + "id": "E7Z38WwHhoNl", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "1accb12f-d68a-479e-8904-c8e6c672d5bc" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Native: 2.6894943714141846 seconds\n", + "NumPy: 0.10685563087463379 seconds\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Mjik4mQXE-Ek" + }, + "source": [ + "Next, let's take a look at how these two implementations compare in terms of runtime:" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "t4e6MfhHE-Em" + }, + "source": [ + "As you can see, doing vectorized calculations (i.e. no for loops) with NumPy results in significantly faster computations! " + ] + }, + { + "cell_type": "markdown", + "source": [ + "Congrats You've come to the end of this notebook. If you solved everything above, impressive. If not, you might need to read/think a bit more. You can always ask doubts. Also, Note that you should submit it even if you cannot solve everything. We might evaluate these using a script later." + ], + "metadata": { + "id": "XvFE0Q5bhx6-" + } + } + ] +} \ No newline at end of file diff --git a/Assignment/Assignment_1/200124_Aniket_Sharma_Part_2.ipynb b/Assignment/Assignment_1/200124_Aniket_Sharma_Part_2.ipynb new file mode 100644 index 0000000..5361069 --- /dev/null +++ b/Assignment/Assignment_1/200124_Aniket_Sharma_Part_2.ipynb @@ -0,0 +1,11926 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "200124_Aniket-Sharma_Part-2.ipynb", + "provenance": [], + "collapsed_sections": [] + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "language_info": { + "name": "python" + } + }, + "cells": [ + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "id": "InMKnYtP7epX", + "colab": { + "resources": { + "http://localhost:8080/nbextensions/google.colab/files.js": { + "data": "Ly8gQ29weXJpZ2h0IDIwMTcgR29vZ2xlIExMQwovLwovLyBMaWNlbnNlZCB1bmRlciB0aGUgQXBhY2hlIExpY2Vuc2UsIFZlcnNpb24gMi4wICh0aGUgIkxpY2Vuc2UiKTsKLy8geW91IG1heSBub3QgdXNlIHRoaXMgZmlsZSBleGNlcHQgaW4gY29tcGxpYW5jZSB3aXRoIHRoZSBMaWNlbnNlLgovLyBZb3UgbWF5IG9idGFpbiBhIGNvcHkgb2YgdGhlIExpY2Vuc2UgYXQKLy8KLy8gICAgICBodHRwOi8vd3d3LmFwYWNoZS5vcmcvbGljZW5zZXMvTElDRU5TRS0yLjAKLy8KLy8gVW5sZXNzIHJlcXVpcmVkIGJ5IGFwcGxpY2FibGUgbGF3IG9yIGFncmVlZCB0byBpbiB3cml0aW5nLCBzb2Z0d2FyZQovLyBkaXN0cmlidXRlZCB1bmRlciB0aGUgTGljZW5zZSBpcyBkaXN0cmlidXRlZCBvbiBhbiAiQVMgSVMiIEJBU0lTLAovLyBXSVRIT1VUIFdBUlJBTlRJRVMgT1IgQ09ORElUSU9OUyBPRiBBTlkgS0lORCwgZWl0aGVyIGV4cHJlc3Mgb3IgaW1wbGllZC4KLy8gU2VlIHRoZSBMaWNlbnNlIGZvciB0aGUgc3BlY2lmaWMgbGFuZ3VhZ2UgZ292ZXJuaW5nIHBlcm1pc3Npb25zIGFuZAovLyBsaW1pdGF0aW9ucyB1bmRlciB0aGUgTGljZW5zZS4KCi8qKgogKiBAZmlsZW92ZXJ2aWV3IEhlbHBlcnMgZm9yIGdvb2dsZS5jb2xhYiBQeXRob24gbW9kdWxlLgogKi8KKGZ1bmN0aW9uKHNjb3BlKSB7CmZ1bmN0aW9uIHNwYW4odGV4dCwgc3R5bGVBdHRyaWJ1dGVzID0ge30pIHsKICBjb25zdCBlbGVtZW50ID0gZG9jdW1lbnQuY3JlYXRlRWxlbWVudCgnc3BhbicpOwogIGVsZW1lbnQudGV4dENvbnRlbnQgPSB0ZXh0OwogIGZvciAoY29uc3Qga2V5IG9mIE9iamVjdC5rZXlzKHN0eWxlQXR0cmlidXRlcykpIHsKICAgIGVsZW1lbnQuc3R5bGVba2V5XSA9IHN0eWxlQXR0cmlidXRlc1trZXldOwogIH0KICByZXR1cm4gZWxlbWVudDsKfQoKLy8gTWF4IG51bWJlciBvZiBieXRlcyB3aGljaCB3aWxsIGJlIHVwbG9hZGVkIGF0IGEgdGltZS4KY29uc3QgTUFYX1BBWUxPQURfU0laRSA9IDEwMCAqIDEwMjQ7CgpmdW5jdGlvbiBfdXBsb2FkRmlsZXMoaW5wdXRJZCwgb3V0cHV0SWQpIHsKICBjb25zdCBzdGVwcyA9IHVwbG9hZEZpbGVzU3RlcChpbnB1dElkLCBvdXRwdXRJZCk7CiAgY29uc3Qgb3V0cHV0RWxlbWVudCA9IGRvY3VtZW50LmdldEVsZW1lbnRCeUlkKG91dHB1dElkKTsKICAvLyBDYWNoZSBzdGVwcyBvbiB0aGUgb3V0cHV0RWxlbWVudCB0byBtYWtlIGl0IGF2YWlsYWJsZSBmb3IgdGhlIG5leHQgY2FsbAogIC8vIHRvIHVwbG9hZEZpbGVzQ29udGludWUgZnJvbSBQeXRob24uCiAgb3V0cHV0RWxlbWVudC5zdGVwcyA9IHN0ZXBzOwoKICByZXR1cm4gX3VwbG9hZEZpbGVzQ29udGludWUob3V0cHV0SWQpOwp9CgovLyBUaGlzIGlzIHJvdWdobHkgYW4gYXN5bmMgZ2VuZXJhdG9yIChub3Qgc3VwcG9ydGVkIGluIHRoZSBicm93c2VyIHlldCksCi8vIHdoZXJlIHRoZXJlIGFyZSBtdWx0aXBsZSBhc3luY2hyb25vdXMgc3RlcHMgYW5kIHRoZSBQeXRob24gc2lkZSBpcyBnb2luZwovLyB0byBwb2xsIGZvciBjb21wbGV0aW9uIG9mIGVhY2ggc3RlcC4KLy8gVGhpcyB1c2VzIGEgUHJvbWlzZSB0byBibG9jayB0aGUgcHl0aG9uIHNpZGUgb24gY29tcGxldGlvbiBvZiBlYWNoIHN0ZXAsCi8vIHRoZW4gcGFzc2VzIHRoZSByZXN1bHQgb2YgdGhlIHByZXZpb3VzIHN0ZXAgYXMgdGhlIGlucHV0IHRvIHRoZSBuZXh0IHN0ZXAuCmZ1bmN0aW9uIF91cGxvYWRGaWxlc0NvbnRpbnVlKG91dHB1dElkKSB7CiAgY29uc3Qgb3V0cHV0RWxlbWVudCA9IGRvY3VtZW50LmdldEVsZW1lbnRCeUlkKG91dHB1dElkKTsKICBjb25zdCBzdGVwcyA9IG91dHB1dEVsZW1lbnQuc3RlcHM7CgogIGNvbnN0IG5leHQgPSBzdGVwcy5uZXh0KG91dHB1dEVsZW1lbnQubGFzdFByb21pc2VWYWx1ZSk7CiAgcmV0dXJuIFByb21pc2UucmVzb2x2ZShuZXh0LnZhbHVlLnByb21pc2UpLnRoZW4oKHZhbHVlKSA9PiB7CiAgICAvLyBDYWNoZSB0aGUgbGFzdCBwcm9taXNlIHZhbHVlIHRvIG1ha2UgaXQgYXZhaWxhYmxlIHRvIHRoZSBuZXh0CiAgICAvLyBzdGVwIG9mIHRoZSBnZW5lcmF0b3IuCiAgICBvdXRwdXRFbGVtZW50Lmxhc3RQcm9taXNlVmFsdWUgPSB2YWx1ZTsKICAgIHJldHVybiBuZXh0LnZhbHVlLnJlc3BvbnNlOwogIH0pOwp9CgovKioKICogR2VuZXJhdG9yIGZ1bmN0aW9uIHdoaWNoIGlzIGNhbGxlZCBiZXR3ZWVuIGVhY2ggYXN5bmMgc3RlcCBvZiB0aGUgdXBsb2FkCiAqIHByb2Nlc3MuCiAqIEBwYXJhbSB7c3RyaW5nfSBpbnB1dElkIEVsZW1lbnQgSUQgb2YgdGhlIGlucHV0IGZpbGUgcGlja2VyIGVsZW1lbnQuCiAqIEBwYXJhbSB7c3RyaW5nfSBvdXRwdXRJZCBFbGVtZW50IElEIG9mIHRoZSBvdXRwdXQgZGlzcGxheS4KICogQHJldHVybiB7IUl0ZXJhYmxlPCFPYmplY3Q+fSBJdGVyYWJsZSBvZiBuZXh0IHN0ZXBzLgogKi8KZnVuY3Rpb24qIHVwbG9hZEZpbGVzU3RlcChpbnB1dElkLCBvdXRwdXRJZCkgewogIGNvbnN0IGlucHV0RWxlbWVudCA9IGRvY3VtZW50LmdldEVsZW1lbnRCeUlkKGlucHV0SWQpOwogIGlucHV0RWxlbWVudC5kaXNhYmxlZCA9IGZhbHNlOwoKICBjb25zdCBvdXRwdXRFbGVtZW50ID0gZG9jdW1lbnQuZ2V0RWxlbWVudEJ5SWQob3V0cHV0SWQpOwogIG91dHB1dEVsZW1lbnQuaW5uZXJIVE1MID0gJyc7CgogIGNvbnN0IHBpY2tlZFByb21pc2UgPSBuZXcgUHJvbWlzZSgocmVzb2x2ZSkgPT4gewogICAgaW5wdXRFbGVtZW50LmFkZEV2ZW50TGlzdGVuZXIoJ2NoYW5nZScsIChlKSA9PiB7CiAgICAgIHJlc29sdmUoZS50YXJnZXQuZmlsZXMpOwogICAgfSk7CiAgfSk7CgogIGNvbnN0IGNhbmNlbCA9IGRvY3VtZW50LmNyZWF0ZUVsZW1lbnQoJ2J1dHRvbicpOwogIGlucHV0RWxlbWVudC5wYXJlbnRFbGVtZW50LmFwcGVuZENoaWxkKGNhbmNlbCk7CiAgY2FuY2VsLnRleHRDb250ZW50ID0gJ0NhbmNlbCB1cGxvYWQnOwogIGNvbnN0IGNhbmNlbFByb21pc2UgPSBuZXcgUHJvbWlzZSgocmVzb2x2ZSkgPT4gewogICAgY2FuY2VsLm9uY2xpY2sgPSAoKSA9PiB7CiAgICAgIHJlc29sdmUobnVsbCk7CiAgICB9OwogIH0pOwoKICAvLyBXYWl0IGZvciB0aGUgdXNlciB0byBwaWNrIHRoZSBmaWxlcy4KICBjb25zdCBmaWxlcyA9IHlpZWxkIHsKICAgIHByb21pc2U6IFByb21pc2UucmFjZShbcGlja2VkUHJvbWlzZSwgY2FuY2VsUHJvbWlzZV0pLAogICAgcmVzcG9uc2U6IHsKICAgICAgYWN0aW9uOiAnc3RhcnRpbmcnLAogICAgfQogIH07CgogIGNhbmNlbC5yZW1vdmUoKTsKCiAgLy8gRGlzYWJsZSB0aGUgaW5wdXQgZWxlbWVudCBzaW5jZSBmdXJ0aGVyIHBpY2tzIGFyZSBub3QgYWxsb3dlZC4KICBpbnB1dEVsZW1lbnQuZGlzYWJsZWQgPSB0cnVlOwoKICBpZiAoIWZpbGVzKSB7CiAgICByZXR1cm4gewogICAgICByZXNwb25zZTogewogICAgICAgIGFjdGlvbjogJ2NvbXBsZXRlJywKICAgICAgfQogICAgfTsKICB9CgogIGZvciAoY29uc3QgZmlsZSBvZiBmaWxlcykgewogICAgY29uc3QgbGkgPSBkb2N1bWVudC5jcmVhdGVFbGVtZW50KCdsaScpOwogICAgbGkuYXBwZW5kKHNwYW4oZmlsZS5uYW1lLCB7Zm9udFdlaWdodDogJ2JvbGQnfSkpOwogICAgbGkuYXBwZW5kKHNwYW4oCiAgICAgICAgYCgke2ZpbGUudHlwZSB8fCAnbi9hJ30pIC0gJHtmaWxlLnNpemV9IGJ5dGVzLCBgICsKICAgICAgICBgbGFzdCBtb2RpZmllZDogJHsKICAgICAgICAgICAgZmlsZS5sYXN0TW9kaWZpZWREYXRlID8gZmlsZS5sYXN0TW9kaWZpZWREYXRlLnRvTG9jYWxlRGF0ZVN0cmluZygpIDoKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgJ24vYSd9IC0gYCkpOwogICAgY29uc3QgcGVyY2VudCA9IHNwYW4oJzAlIGRvbmUnKTsKICAgIGxpLmFwcGVuZENoaWxkKHBlcmNlbnQpOwoKICAgIG91dHB1dEVsZW1lbnQuYXBwZW5kQ2hpbGQobGkpOwoKICAgIGNvbnN0IGZpbGVEYXRhUHJvbWlzZSA9IG5ldyBQcm9taXNlKChyZXNvbHZlKSA9PiB7CiAgICAgIGNvbnN0IHJlYWRlciA9IG5ldyBGaWxlUmVhZGVyKCk7CiAgICAgIHJlYWRlci5vbmxvYWQgPSAoZSkgPT4gewogICAgICAgIHJlc29sdmUoZS50YXJnZXQucmVzdWx0KTsKICAgICAgfTsKICAgICAgcmVhZGVyLnJlYWRBc0FycmF5QnVmZmVyKGZpbGUpOwogICAgfSk7CiAgICAvLyBXYWl0IGZvciB0aGUgZGF0YSB0byBiZSByZWFkeS4KICAgIGxldCBmaWxlRGF0YSA9IHlpZWxkIHsKICAgICAgcHJvbWlzZTogZmlsZURhdGFQcm9taXNlLAogICAgICByZXNwb25zZTogewogICAgICAgIGFjdGlvbjogJ2NvbnRpbnVlJywKICAgICAgfQogICAgfTsKCiAgICAvLyBVc2UgYSBjaHVua2VkIHNlbmRpbmcgdG8gYXZvaWQgbWVzc2FnZSBzaXplIGxpbWl0cy4gU2VlIGIvNjIxMTU2NjAuCiAgICBsZXQgcG9zaXRpb24gPSAwOwogICAgZG8gewogICAgICBjb25zdCBsZW5ndGggPSBNYXRoLm1pbihmaWxlRGF0YS5ieXRlTGVuZ3RoIC0gcG9zaXRpb24sIE1BWF9QQVlMT0FEX1NJWkUpOwogICAgICBjb25zdCBjaHVuayA9IG5ldyBVaW50OEFycmF5KGZpbGVEYXRhLCBwb3NpdGlvbiwgbGVuZ3RoKTsKICAgICAgcG9zaXRpb24gKz0gbGVuZ3RoOwoKICAgICAgY29uc3QgYmFzZTY0ID0gYnRvYShTdHJpbmcuZnJvbUNoYXJDb2RlLmFwcGx5KG51bGwsIGNodW5rKSk7CiAgICAgIHlpZWxkIHsKICAgICAgICByZXNwb25zZTogewogICAgICAgICAgYWN0aW9uOiAnYXBwZW5kJywKICAgICAgICAgIGZpbGU6IGZpbGUubmFtZSwKICAgICAgICAgIGRhdGE6IGJhc2U2NCwKICAgICAgICB9LAogICAgICB9OwoKICAgICAgbGV0IHBlcmNlbnREb25lID0gZmlsZURhdGEuYnl0ZUxlbmd0aCA9PT0gMCA/CiAgICAgICAgICAxMDAgOgogICAgICAgICAgTWF0aC5yb3VuZCgocG9zaXRpb24gLyBmaWxlRGF0YS5ieXRlTGVuZ3RoKSAqIDEwMCk7CiAgICAgIHBlcmNlbnQudGV4dENvbnRlbnQgPSBgJHtwZXJjZW50RG9uZX0lIGRvbmVgOwoKICAgIH0gd2hpbGUgKHBvc2l0aW9uIDwgZmlsZURhdGEuYnl0ZUxlbmd0aCk7CiAgfQoKICAvLyBBbGwgZG9uZS4KICB5aWVsZCB7CiAgICByZXNwb25zZTogewogICAgICBhY3Rpb246ICdjb21wbGV0ZScsCiAgICB9CiAgfTsKfQoKc2NvcGUuZ29vZ2xlID0gc2NvcGUuZ29vZ2xlIHx8IHt9OwpzY29wZS5nb29nbGUuY29sYWIgPSBzY29wZS5nb29nbGUuY29sYWIgfHwge307CnNjb3BlLmdvb2dsZS5jb2xhYi5fZmlsZXMgPSB7CiAgX3VwbG9hZEZpbGVzLAogIF91cGxvYWRGaWxlc0NvbnRpbnVlLAp9Owp9KShzZWxmKTsK", + "ok": true, + "headers": [ + [ + "content-type", + "application/javascript" + ] + ], + "status": 200, + "status_text": "" + } + }, + "base_uri": "https://localhost:8080/", + "height": 73 + }, + "outputId": "e1982f37-5241-4174-e02e-37ebedb61243" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "" + ], + "text/html": [ + "\n", + " \n", + " \n", + " Upload widget is only available when the cell has been executed in the\n", + " current browser session. Please rerun this cell to enable.\n", + " \n", + " " + ] + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Saving House_prediction.csv to House_prediction.csv\n" + ] + } + ], + "source": [ + "from google.colab import files\n", + "uploaded = files.upload()" + ] + }, + { + "cell_type": "code", + "source": [ + "import io\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt" + ], + "metadata": { + "id": "bzTklvvJRdiX" + }, + "execution_count": 4, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "df = pd.read_csv(io.BytesIO(uploaded['House_prediction.csv']))\n", + "print(df.to_string())" + ], + "metadata": { + "id": "tpnVlAJvYHjU", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "a3e87398-2fa5-4130-cb63-6da1f0c243c7" + }, + "execution_count": 5, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + " city area rooms bathroom parking spaces floor animal furniture hoa (R$) rent amount (R$) property tax (R$) fire insurance (R$) total (R$)\n", + "0 São Paulo 70 2 1 1 7 acept furnished 2065 3300 211 42 5618\n", + "1 São Paulo 320 4 4 0 20 acept not furnished 1200 4960 1750 63 7973\n", + "2 Porto Alegre 80 1 1 1 6 acept not furnished 1000 2800 0 41 3841\n", + "3 Porto Alegre 51 2 1 0 2 acept not furnished 270 1112 22 17 1421\n", + "4 São Paulo 25 1 1 0 1 not acept not furnished 0 800 25 11 836\n", + "5 São Paulo 376 3 3 7 - acept not furnished 0 8000 834 121 8955\n", + "6 Rio de Janeiro 72 2 1 0 7 acept not furnished 740 1900 85 25 2750\n", + "7 São Paulo 213 4 4 4 4 acept not furnished 2254 3223 1735 41 7253\n", + "8 São Paulo 152 2 2 1 3 acept furnished 1000 15000 250 191 16440\n", + "9 Rio de Janeiro 35 1 1 0 2 acept furnished 590 2300 35 30 2955\n", + "10 São Paulo 26 1 1 0 2 acept furnished 470 2100 150 27 2747\n", + "11 Campinas 46 1 1 1 10 acept not furnished 550 580 43 8 1181\n", + "12 São Paulo 36 1 1 0 11 acept not furnished 359 2100 70 27 2556\n", + "13 São Paulo 55 1 1 1 2 acept furnished 790 4200 224 54 5268\n", + "14 São Paulo 100 2 2 2 24 acept furnished 900 4370 17 56 5343\n", + "15 Campinas 330 4 6 6 - acept furnished 680 8000 328 121 9129\n", + "16 São Paulo 110 2 2 1 1 acept not furnished 700 3000 122 39 3861\n", + "17 Rio de Janeiro 88 2 3 1 9 not acept furnished 1614 3500 221 16 5351\n", + "18 Rio de Janeiro 56 2 1 0 8 acept not furnished 800 1220 0 16 2036\n", + "19 São Paulo 600 4 5 6 - acept not furnished 0 12000 9500 181 21680\n", + "20 São Paulo 100 7 4 0 - acept not furnished 0 3800 118 58 3976\n", + "21 Belo Horizonte 42 1 1 1 17 not acept furnished 470 2690 172 36 3368\n", + "22 São Paulo 160 3 2 2 18 acept furnished 1530 1900 167 25 3622\n", + "23 São Paulo 35 1 1 0 - acept not furnished 0 1100 3 14 1117\n", + "24 Rio de Janeiro 90 3 2 1 7 acept not furnished 800 1800 118 24 2742\n", + "25 São Paulo 49 1 1 1 10 acept not furnished 480 3500 42 45 4067\n", + "26 São Paulo 41 1 1 1 5 not acept furnished 600 3000 0 39 3639\n", + "27 Belo Horizonte 64 2 2 1 11 acept not furnished 352 1500 80 20 1952\n", + "28 Campinas 208 3 2 4 - acept not furnished 0 3180 100 48 3328\n", + "29 São Paulo 20 1 1 0 5 acept furnished 602 1800 130 23 2555\n", + "30 São Paulo 55 2 2 2 6 acept not furnished 780 1068 142 14 2004\n", + "31 São Paulo 32 1 1 0 3 acept not furnished 515 1700 29 22 2266\n", + "32 São Paulo 80 2 2 1 11 acept not furnished 1208 2550 216 33 4007\n", + "33 Rio de Janeiro 45 1 1 1 10 acept furnished 2450 2500 593 33 5576\n", + "34 São Paulo 350 4 4 3 8 acept not furnished 2100 4000 500 51 6651\n", + "35 Porto Alegre 38 1 1 2 11 not acept not furnished 450 1750 0 26 2226\n", + "36 São Paulo 30 1 1 0 1 acept not furnished 460 1600 0 21 2081\n", + "37 Belo Horizonte 80 3 2 1 - acept not furnished 0 11000 425 181 11610\n", + "38 São Paulo 70 2 1 0 - not acept not furnished 0 1150 59 18 1227\n", + "39 Porto Alegre 40 1 1 1 6 acept furnished 390 2990 0 44 3424\n", + "40 São Paulo 300 4 6 4 20 acept not furnished 3700 12000 1584 153 17440\n", + "41 São Paulo 240 3 2 3 - acept not furnished 0 3500 292 53 3845\n", + "42 Belo Horizonte 200 4 2 1 7 not acept not furnished 850 2550 9 34 3443\n", + "43 Belo Horizonte 45 1 1 1 5 acept not furnished 500 1631 192 12 2335\n", + "44 São Paulo 360 4 5 0 1 acept not furnished 4000 6410 2000 82 12490\n", + "45 São Paulo 40 1 1 1 10 acept furnished 978 2829 0 33 3840\n", + "46 Belo Horizonte 100 3 1 0 13 not acept not furnished 700 1220 10 17 1947\n", + "47 Porto Alegre 42 1 1 2 2 acept furnished 190 1770 17 26 2003\n", + "48 Campinas 250 3 3 2 1 acept not furnished 2200 1700 256 22 4178\n", + "49 Campinas 48 1 1 1 2 acept furnished 505 1600 59 21 2185\n", + "50 Rio de Janeiro 90 3 3 1 10 acept not furnished 1250 3800 147 49 5246\n", + "51 São Paulo 45 1 2 1 15 acept furnished 856 3900 150 50 4956\n", + "52 Rio de Janeiro 150 2 3 4 6 acept not furnished 1700 4000 700 52 6452\n", + "53 São Paulo 60 2 1 0 2 acept not furnished 200 1445 0 19 1664\n", + "54 São Paulo 31 1 1 0 4 acept not furnished 370 2350 56 30 2806\n", + "55 São Paulo 210 4 5 4 4 not acept not furnished 1650 9000 772 115 11540\n", + "56 São Paulo 280 3 1 2 - acept not furnished 0 6000 113 91 6204\n", + "57 Campinas 93 2 3 2 9 acept not furnished 663 5500 133 70 6366\n", + "58 Porto Alegre 75 3 2 1 9 acept not furnished 340 1800 109 27 2276\n", + "59 São Paulo 194 3 4 3 - acept not furnished 0 4000 70 61 4131\n", + "60 São Paulo 41 1 1 1 6 acept furnished 523 4000 131 51 4705\n", + "61 Rio de Janeiro 65 1 1 1 8 acept furnished 2000 5100 250 66 7416\n", + "62 São Paulo 70 2 1 1 13 acept not furnished 761 2150 67 28 3006\n", + "63 São Paulo 278 4 5 2 16 acept furnished 4052 9000 1261 115 14430\n", + "64 Rio de Janeiro 35 1 1 0 5 acept not furnished 306 1521 21 20 1868\n", + "65 Campinas 300 4 4 3 2 acept not furnished 2300 6000 417 77 8794\n", + "66 São Paulo 61 2 1 1 4 acept not furnished 459 1850 0 24 2333\n", + "67 Rio de Janeiro 130 3 2 1 7 acept not furnished 1660 1700 475 22 3857\n", + "68 Rio de Janeiro 80 2 1 1 20 acept not furnished 500 900 90 12 1502\n", + "69 São Paulo 164 4 4 2 6 not acept not furnished 2159 5000 386 64 7609\n", + "70 Belo Horizonte 220 4 2 3 3 acept not furnished 450 2422 125 33 3030\n", + "71 São Paulo 45 1 1 0 - acept not furnished 0 1050 46 16 1112\n", + "72 São Paulo 108 3 2 2 7 acept not furnished 1290 5600 435 71 7396\n", + "73 Belo Horizonte 128 1 1 0 4 acept furnished 418 2100 182 28 2728\n", + "74 Rio de Janeiro 60 1 1 0 10 not acept not furnished 450 1800 48 24 2322\n", + "75 São Paulo 250 4 5 4 6 acept not furnished 2050 9800 998 125 12970\n", + "76 Porto Alegre 47 1 1 1 1 not acept furnished 400 2200 0 33 2633\n", + "77 Belo Horizonte 170 4 3 4 9 not acept not furnished 744 2700 296 36 3776\n", + "78 São Paulo 45 1 1 0 1 not acept not furnished 300 1240 0 16 1556\n", + "79 São Paulo 42 1 1 1 15 acept not furnished 686 3500 123 45 4354\n", + "80 São Paulo 164 4 4 3 1 acept not furnished 1840 6000 550 77 8467\n", + "81 São Paulo 70 3 1 1 1 acept not furnished 700 1020 200 13 1933\n", + "82 Porto Alegre 100 4 3 1 8 acept not furnished 600 2200 159 33 2992\n", + "83 São Paulo 64 2 2 2 4 acept furnished 1300 4500 440 58 6298\n", + "84 Belo Horizonte 68 2 1 1 3 acept not furnished 320 1200 27 16 1563\n", + "85 Belo Horizonte 75 2 2 2 14 not acept not furnished 620 2500 264 34 3418\n", + "86 São Paulo 600 4 4 4 9 acept not furnished 7400 8500 3368 108 19380\n", + "87 São Paulo 63 2 2 0 15 not acept not furnished 590 1550 152 20 2312\n", + "88 São Paulo 145 3 4 3 1 not acept not furnished 1200 6000 750 77 8027\n", + "89 São Paulo 85 2 2 2 3 not acept not furnished 1500 2800 292 36 4628\n", + "90 São Paulo 254 4 4 4 7 acept not furnished 3366 9000 1800 115 14280\n", + "91 Porto Alegre 350 4 4 4 - acept furnished 1 9000 359 160 9520\n", + "92 São Paulo 300 4 4 3 - acept not furnished 0 3500 584 53 4137\n", + "93 Belo Horizonte 296 4 3 2 - acept not furnished 0 13500 423 222 14150\n", + "94 São Paulo 64 2 2 2 8 acept not furnished 450 2800 30 36 3316\n", + "95 São Paulo 133 3 2 0 6 acept not furnished 813 2957 38 38 3846\n", + "96 Campinas 44 1 1 0 7 acept not furnished 350 550 12 7 919\n", + "97 Campinas 240 3 4 2 - acept not furnished 0 3000 250 46 3296\n", + "98 Porto Alegre 70 3 2 1 4 acept not furnished 490 2500 8 37 3035\n", + "99 São Paulo 22 1 1 0 26 acept not furnished 302 2050 45 26 2423\n", + "100 Porto Alegre 50 1 1 1 1 acept not furnished 350 950 50 14 1364\n", + "101 Porto Alegre 67 3 2 2 4 acept not furnished 600 2200 50 33 2883\n", + "102 São Paulo 31 1 1 0 6 acept furnished 430 2300 0 30 2760\n", + "103 Rio de Janeiro 90 2 1 1 1 acept furnished 850 3468 191 45 4554\n", + "104 Rio de Janeiro 109 3 3 1 1 acept not furnished 2000 3800 300 49 6149\n", + "105 Belo Horizonte 400 4 2 2 - not acept not furnished 0 2500 74 41 2615\n", + "106 São Paulo 300 4 5 4 - acept furnished 0 14000 1167 211 15380\n", + "107 Campinas 284 4 3 3 4 acept not furnished 2340 6000 483 77 8900\n", + "108 Porto Alegre 70 2 1 1 3 acept furnished 360 2400 30 36 2826\n", + "109 Rio de Janeiro 309 4 5 4 7 acept not furnished 2661 6500 682 84 9927\n", + "110 São Paulo 70 2 1 0 - acept not furnished 0 2100 134 32 2266\n", + "111 São Paulo 360 3 4 1 10 acept not furnished 2300 10000 584 127 13010\n", + "112 São Paulo 30 1 1 1 10 not acept not furnished 886 1500 0 20 2406\n", + "113 Campinas 80 2 2 2 11 acept not furnished 832 2200 171 28 3231\n", + "114 Belo Horizonte 133 4 4 3 6 not acept not furnished 1500 7000 800 94 9394\n", + "115 São Paulo 38 1 1 1 14 not acept furnished 1620 2800 279 36 4735\n", + "116 São Paulo 73 2 2 1 7 acept not furnished 1100 3500 100 45 4745\n", + "117 São Paulo 155 3 4 2 4 acept not furnished 1500 2000 150 26 3676\n", + "118 São Paulo 63 2 2 1 15 acept not furnished 357 3200 50 41 3648\n", + "119 São Paulo 58 2 1 1 1 acept not furnished 0 1400 0 18 1418\n", + "120 São Paulo 48 1 1 0 9 not acept furnished 377 3450 0 44 3871\n", + "121 São Paulo 210 3 4 3 7 acept not furnished 1700 2790 834 36 5360\n", + "122 Belo Horizonte 100 3 2 2 2 acept not furnished 340 1600 183 22 2145\n", + "123 São Paulo 94 3 2 2 1 acept not furnished 1337 3570 140 46 5093\n", + "124 São Paulo 94 3 3 2 3 acept furnished 1220 5010 395 64 6689\n", + "125 São Paulo 76 3 1 1 4 acept not furnished 1200 2500 267 32 3999\n", + "126 São Paulo 192 3 3 2 13 acept not furnished 2100 7800 634 99 10630\n", + "127 São Paulo 217 3 4 3 1 acept not furnished 2884 6500 0 83 9467\n", + "128 São Paulo 68 2 1 1 5 acept not furnished 610 1400 35 18 2063\n", + "129 São Paulo 110 3 2 2 2 acept not furnished 1145 2400 247 31 3823\n", + "130 Belo Horizonte 95 2 2 1 3 acept not furnished 660 1600 164 22 2446\n", + "131 São Paulo 900 4 6 8 - acept not furnished 0 15000 4417 226 19640\n", + "132 São Paulo 34 1 1 0 5 not acept not furnished 347 1200 45 16 1608\n", + "133 São Paulo 192 3 4 3 5 acept not furnished 2000 8000 0 102 10100\n", + "134 Porto Alegre 62 2 2 1 9 acept not furnished 350 1800 75 27 2252\n", + "135 São Paulo 180 3 3 4 - acept not furnished 0 3700 184 56 3940\n", + "136 Campinas 44 1 1 0 3 acept furnished 350 916 12 12 1290\n", + "137 Belo Horizonte 100 2 1 1 1 not acept not furnished 250 1700 116 23 2089\n", + "138 Rio de Janeiro 140 3 3 1 24 not acept not furnished 900 1370 100 18 2388\n", + "139 São Paulo 170 3 3 3 8 acept furnished 1570 2800 648 36 5054\n", + "140 São Paulo 100 3 2 2 - not acept not furnished 0 1600 150 25 1775\n", + "141 São Paulo 75 3 2 2 4 acept not furnished 652 1600 82 21 2355\n", + "142 Rio de Janeiro 52 2 1 0 2 acept not furnished 200 1200 43 16 1459\n", + "143 Campinas 999 5 7 8 - acept not furnished 0 14000 667 211 14880\n", + "144 São Paulo 270 4 4 4 8 acept not furnished 2200 7000 1500 89 10790\n", + "145 Belo Horizonte 50 2 1 1 1 acept not furnished 160 930 60 13 1163\n", + "146 Campinas 200 3 3 2 - acept not furnished 650 2210 184 34 3078\n", + "147 São Paulo 71 2 2 0 16 acept not furnished 430 1920 100 25 2475\n", + "148 São Paulo 500 5 4 6 - acept not furnished 0 13000 250 196 13450\n", + "149 São Paulo 60 2 1 0 - acept not furnished 0 1080 94 17 1191\n", + "150 São Paulo 110 2 1 0 8 acept not furnished 1100 1300 84 17 2501\n", + "151 São Paulo 210 3 3 4 - acept not furnished 0 3294 276 50 3620\n", + "152 São Paulo 220 3 4 3 8 acept not furnished 2021 6000 996 77 9094\n", + "153 Belo Horizonte 200 3 2 5 - not acept not furnished 0 4000 204 66 4270\n", + "154 São Paulo 130 3 4 3 2 acept not furnished 2300 4250 502 54 7106\n", + "155 São Paulo 65 2 2 2 7 acept furnished 1037 4000 245 51 5333\n", + "156 São Paulo 96 3 2 2 17 acept not furnished 804 3200 250 41 4295\n", + "157 São Paulo 660 4 5 5 12 acept furnished 4800 20000 1750 254 26800\n", + "158 Rio de Janeiro 107 3 2 0 7 acept furnished 1460 3200 270 42 4972\n", + "159 Rio de Janeiro 105 3 2 0 1 acept not furnished 740 2200 9 29 2978\n", + "160 Rio de Janeiro 100 3 2 0 7 acept not furnished 900 3290 109 43 4342\n", + "161 São Paulo 287 3 4 4 - acept furnished 0 9000 430 136 9566\n", + "162 Campinas 24 1 1 0 1 not acept furnished 230 1180 9 15 1434\n", + "163 São Paulo 22 1 1 0 - not acept not furnished 0 976 0 15 991\n", + "164 São Paulo 70 1 1 1 - not acept not furnished 0 2529 142 39 2710\n", + "165 Porto Alegre 44 1 1 1 2 acept furnished 250 1500 17 22 1789\n", + "166 São Paulo 150 3 2 2 - not acept not furnished 0 2500 0 38 2538\n", + "167 São Paulo 90 1 2 2 9 acept furnished 998 2900 220 37 4155\n", + "168 São Paulo 200 4 4 2 8 acept furnished 3000 2800 830 36 6666\n", + "169 São Paulo 320 8 4 0 - acept not furnished 450 10500 350 158 11460\n", + "170 Porto Alegre 90 2 1 1 2 not acept not furnished 550 1700 110 25 2385\n", + "171 São Paulo 240 4 4 3 9 acept not furnished 2500 2144 834 28 5506\n", + "172 São Paulo 154 4 3 3 21 acept not furnished 1684 7000 1020 89 9793\n", + "173 São Paulo 60 2 2 2 2 acept not furnished 2340 3230 284 41 5895\n", + "174 Campinas 101 3 2 0 5 acept not furnished 780 2380 91 31 3282\n", + "175 Porto Alegre 140 3 4 2 - not acept not furnished 0 3090 0 55 3145\n", + "176 São Paulo 500 4 5 8 - acept not furnished 0 15000 1850 226 17080\n", + "177 São Paulo 110 3 3 3 4 acept not furnished 1195 2350 687 30 4262\n", + "178 São Paulo 110 3 3 2 - acept not furnished 0 4800 50 73 4923\n", + "179 Belo Horizonte 90 2 2 2 3 acept not furnished 200 2000 84 27 2311\n", + "180 São Paulo 384 4 6 4 3 not acept furnished 3500 15000 344 191 19040\n", + "181 São Paulo 57 2 1 1 7 acept not furnished 570 1500 67 20 2157\n", + "182 São Paulo 160 3 3 2 5 acept furnished 1650 1500 419 20 3589\n", + "183 São Paulo 39 1 1 0 8 acept not furnished 330 1250 19 16 1615\n", + "184 Campinas 78 1 2 1 4 acept not furnished 0 2290 143 30 2463\n", + "185 Porto Alegre 36 1 1 1 - acept not furnished 0 762 15 14 791\n", + "186 Campinas 70 2 1 1 1 acept not furnished 558 1200 0 16 1774\n", + "187 Belo Horizonte 45 1 1 1 4 not acept furnished 300 3200 0 43 3543\n", + "188 São Paulo 200 3 4 3 1 acept not furnished 3500 8500 1250 108 13360\n", + "189 São Paulo 100 3 3 3 - acept not furnished 0 4300 120 65 4485\n", + "190 São Paulo 42 1 1 1 14 not acept not furnished 0 5000 0 64 5064\n", + "191 São Paulo 280 4 4 1 1 acept furnished 3000 8000 292 102 11390\n", + "192 São Paulo 28 1 1 1 13 not acept furnished 615 2800 42 36 3493\n", + "193 São Paulo 30 1 1 0 - not acept furnished 296 1826 30 24 2176\n", + "194 Belo Horizonte 85 3 2 1 1 acept not furnished 337 1500 88 20 1945\n", + "195 Campinas 83 1 1 1 4 not acept not furnished 500 1080 59 14 1653\n", + "196 Campinas 85 3 2 2 16 acept furnished 550 3300 150 42 4042\n", + "197 Belo Horizonte 90 3 2 2 3 acept not furnished 325 1600 105 22 2052\n", + "198 Belo Horizonte 50 2 1 0 5 acept not furnished 0 900 100 12 1012\n", + "199 Rio de Janeiro 50 1 1 0 8 acept not furnished 600 2900 134 38 3672\n", + "200 Belo Horizonte 300 3 2 3 - not acept not furnished 0 6700 539 110 7349\n", + "201 Porto Alegre 39 1 1 0 7 acept not furnished 350 850 27 13 1240\n", + "202 São Paulo 750 4 4 6 - acept not furnished 0 15000 2084 226 17310\n", + "203 Porto Alegre 60 2 1 0 1 acept not furnished 222 1100 46 17 1385\n", + "204 Rio de Janeiro 68 2 1 0 4 not acept not furnished 750 1250 9 17 2026\n", + "205 São Paulo 70 2 1 1 - acept not furnished 230 1250 50 16 1546\n", + "206 São Paulo 90 2 2 1 6 acept furnished 900 6500 89 83 7572\n", + "207 Rio de Janeiro 258 5 6 0 - acept not furnished 0 8700 670 133 9503\n", + "208 São Paulo 200 2 2 6 - acept not furnished 0 4500 292 68 4860\n", + "209 São Paulo 123 2 2 2 6 acept not furnished 1800 2990 625 38 5453\n", + "210 São Paulo 127 3 2 2 - acept furnished 220 2150 67 33 2470\n", + "211 Belo Horizonte 180 4 2 2 - acept not furnished 0 1800 210 30 2040\n", + "212 São Paulo 110 3 2 0 - not acept not furnished 0 2900 384 44 3328\n", + "213 Rio de Janeiro 70 2 2 1 7 acept furnished 585 1719 77 23 2404\n", + "214 São Paulo 35 1 1 1 8 acept furnished 720 3000 130 39 3889\n", + "215 São Paulo 219 3 2 2 - acept not furnished 0 2900 150 44 3094\n", + "216 Rio de Janeiro 25 1 1 0 - acept not furnished 50 700 0 10 760\n", + "217 Rio de Janeiro 170 4 5 0 10 acept not furnished 1200 7100 639 92 9031\n", + "218 Rio de Janeiro 45 1 1 0 8 acept not furnished 900 1570 98 21 2589\n", + "219 Belo Horizonte 420 4 4 2 - not acept not furnished 0 7000 200 115 7315\n", + "220 Porto Alegre 46 1 1 0 4 acept not furnished 0 1040 48 16 1104\n", + "221 São Paulo 145 3 3 2 1 acept furnished 1088 5800 250 74 7212\n", + "222 Belo Horizonte 59 2 2 1 2 acept not furnished 190 1100 59 15 1364\n", + "223 Belo Horizonte 225 4 3 0 8 acept not furnished 1850 7500 466 100 9916\n", + "224 São Paulo 210 4 4 3 3 acept not furnished 2270 4675 1110 60 8115\n", + "225 Porto Alegre 76 1 1 0 - acept not furnished 209 1249 52 19 1529\n", + "226 São Paulo 220 3 4 3 2 not acept not furnished 2500 5150 1250 66 8966\n", + "227 São Paulo 109 3 2 2 7 acept not furnished 1746 2500 134 32 4412\n", + "228 Belo Horizonte 95 2 1 1 3 acept not furnished 646 1000 120 14 1780\n", + "229 São Paulo 32 1 1 0 - not acept not furnished 280 1500 50 20 1850\n", + "230 São Paulo 480 4 6 5 9 acept not furnished 6660 15000 3063 191 24910\n", + "231 São Paulo 53 1 1 1 3 acept not furnished 694 4390 200 56 5340\n", + "232 São Paulo 40 1 1 0 - not acept not furnished 0 780 17 12 809\n", + "233 São Paulo 50 1 1 1 4 acept furnished 500 3223 100 41 3864\n", + "234 São Paulo 60 1 1 0 - acept not furnished 0 1300 255 20 1575\n", + "235 Porto Alegre 64 2 2 2 7 not acept not furnished 450 1500 50 22 2022\n", + "236 Rio de Janeiro 140 3 3 2 4 acept furnished 2280 12000 535 155 14970\n", + "237 São Paulo 121 3 3 1 12 acept not furnished 800 2040 334 26 3200\n", + "238 Campinas 43 1 1 1 4 acept furnished 498 2100 84 27 2709\n", + "239 São Paulo 20 1 1 1 3 not acept furnished 1700 1360 0 18 3078\n", + "240 Campinas 58 2 1 1 3 acept not furnished 289 950 11 13 1263\n", + "241 Belo Horizonte 570 5 6 7 - acept furnished 0 8330 873 137 9340\n", + "242 São Paulo 88 2 1 1 2 acept not furnished 980 2790 0 36 3806\n", + "243 São Paulo 89 3 2 2 19 acept not furnished 900 6000 184 77 7161\n", + "244 Porto Alegre 47 1 1 1 1 not acept furnished 400 2200 0 33 2633\n", + "245 São Paulo 40 1 1 0 - acept not furnished 0 1100 50 17 1167\n", + "246 Rio de Janeiro 40 1 1 0 1 acept furnished 386 1950 91 26 2453\n", + "247 Rio de Janeiro 60 1 2 1 3 acept not furnished 400 750 80 10 1240\n", + "248 São Paulo 25 1 1 0 14 acept not furnished 257 1650 0 21 1928\n", + "249 Porto Alegre 50 2 1 0 13 acept not furnished 340 1130 30 17 1517\n", + "250 Porto Alegre 90 3 1 0 1 acept not furnished 145 1130 55 17 1347\n", + "251 São Paulo 173 3 3 3 2 acept not furnished 3000 2000 825 26 5851\n", + "252 Campinas 91 3 2 2 12 acept not furnished 700 2250 175 29 3154\n", + "253 São Paulo 90 3 2 2 6 not acept not furnished 1710 1200 109 16 3035\n", + "254 São Paulo 530 5 6 4 2 acept furnished 8300 15000 5000 191 28490\n", + "255 Belo Horizonte 155 1 4 0 4 not acept not furnished 1117000 2790 64 38 1120000\n", + "256 São Paulo 40 1 1 0 - not acept not furnished 0 1300 0 17 1317\n", + "257 São Paulo 296 4 5 3 3 acept not furnished 0 15000 0 191 15190\n", + "258 São Paulo 87 3 2 1 17 acept not furnished 850 1400 200 18 2468\n", + "259 São Paulo 300 3 3 5 - acept not furnished 0 5000 584 76 5660\n", + "260 São Paulo 136 3 3 3 13 acept not furnished 1430 4206 364 54 6054\n", + "261 São Paulo 52 2 1 0 4 acept not furnished 0 1340 0 17 1357\n", + "262 Porto Alegre 94 2 2 2 8 acept not furnished 600 2900 230 43 3773\n", + "263 Rio de Janeiro 300 4 5 3 7 acept not furnished 3850 12750 750 165 17520\n", + "264 Rio de Janeiro 100 3 3 1 3 acept not furnished 850 3229 100 42 4221\n", + "265 São Paulo 500 4 6 3 - acept not furnished 6466 7300 2536 110 16410\n", + "266 São Paulo 240 3 4 3 3 acept furnished 3600 4950 1000 63 9613\n", + "267 Belo Horizonte 308 2 3 3 - acept not furnished 0 2000 171 33 2204\n", + "268 São Paulo 350 4 5 4 15 acept furnished 2700 4590 1334 59 8683\n", + "269 São Paulo 75 2 2 0 2 acept not furnished 570 1450 0 19 2039\n", + "270 São Paulo 155 3 2 3 4 acept furnished 2600 11700 667 149 15120\n", + "271 São Paulo 260 3 5 4 12 acept not furnished 2227 6000 1468 77 9772\n", + "272 São Paulo 80 2 2 1 - not acept not furnished 0 1500 184 23 1707\n", + "273 Rio de Janeiro 85 3 1 1 6 acept not furnished 810 1998 87 26 2921\n", + "274 São Paulo 120 2 2 2 22 not acept furnished 1400 3500 375 45 5320\n", + "275 São Paulo 100 2 2 1 - acept not furnished 0 1970 0 30 2000\n", + "276 São Paulo 240 4 5 4 6 not acept not furnished 1869 3500 717 45 6131\n", + "277 São Paulo 360 7 6 6 - acept not furnished 0 5270 245 80 5595\n", + "278 São Paulo 42 1 1 0 - not acept not furnished 0 1100 0 17 1117\n", + "279 São Paulo 33 1 1 1 14 acept furnished 600 2800 112 36 3548\n", + "280 Rio de Janeiro 48 1 1 0 1 not acept not furnished 626 1020 53 14 1713\n", + "281 Rio de Janeiro 36 1 1 0 5 acept not furnished 350 1130 42 15 1537\n", + "282 São Paulo 270 6 3 6 - acept not furnished 0 4500 417 68 4985\n", + "283 Campinas 75 2 1 1 2 acept not furnished 670 1200 121 16 2007\n", + "284 Rio de Janeiro 46 2 1 0 3 not acept not furnished 270 1600 0 21 1891\n", + "285 São Paulo 350 3 3 3 - not acept not furnished 0 10000 1292 151 11440\n", + "286 Porto Alegre 131 3 3 1 10 acept furnished 1625 1750 121 26 3522\n", + "287 Campinas 90 3 2 1 3 acept not furnished 920 1300 129 17 2366\n", + "288 Rio de Janeiro 26 1 1 0 4 not acept not furnished 390 1650 120 22 2182\n", + "289 Rio de Janeiro 44 1 1 0 3 acept furnished 400 1100 14 15 1529\n", + "290 São Paulo 70 2 2 0 - acept not furnished 0 1880 0 29 1909\n", + "291 Belo Horizonte 40 1 1 0 - not acept not furnished 0 900 0 15 915\n", + "292 Belo Horizonte 320 4 2 4 - acept not furnished 0 3200 206 53 3459\n", + "293 São Paulo 213 2 2 3 - acept not furnished 0 5150 0 78 5228\n", + "294 São Paulo 80 2 1 0 1 not acept not furnished 0 1100 0 14 1114\n", + "295 Campinas 70 1 1 0 6 acept not furnished 500 800 30 11 1341\n", + "296 Rio de Janeiro 60 2 1 1 5 acept not furnished 690 1500 25 20 2235\n", + "297 São Paulo 270 4 4 4 5 acept not furnished 4500 12850 1834 163 19350\n", + "298 Rio de Janeiro 70 2 1 1 3 acept not furnished 800 1300 44 17 2161\n", + "299 Porto Alegre 300 6 2 2 - acept not furnished 0 6000 242 107 6349\n", + "300 São Paulo 220 4 5 3 14 acept furnished 2050 12000 750 153 14950\n", + "301 Porto Alegre 64 2 2 2 7 acept not furnished 450 1600 34 24 2108\n", + "302 Rio de Janeiro 80 3 3 1 7 not acept not furnished 1100 1470 0 19 2589\n", + "303 São Paulo 56 1 1 0 9 acept furnished 625 2500 81 32 3238\n", + "304 São Paulo 161 4 3 2 1 acept not furnished 1450 10000 467 127 12040\n", + "305 São Paulo 35 1 1 0 - acept not furnished 350 1350 0 18 1718\n", + "306 São Paulo 720 4 6 5 - acept furnished 0 12750 2613 192 15560\n", + "307 São Paulo 280 4 5 4 6 not acept not furnished 2500 3200 750 41 6491\n", + "308 Porto Alegre 96 3 2 0 2 acept not furnished 408 2100 84 31 2623\n", + "309 Campinas 236 3 4 4 10 acept not furnished 1600 11000 440 140 13180\n", + "310 São Paulo 81 3 2 1 4 acept not furnished 204 1510 0 20 1734\n", + "311 São Paulo 62 2 1 1 1 acept not furnished 580 1650 92 21 2343\n", + "312 Belo Horizonte 125 3 2 0 2 acept not furnished 150 1200 69 16 1435\n", + "313 São Paulo 37 1 1 1 6 acept furnished 890 4150 110 53 5203\n", + "314 São Paulo 60 2 2 1 11 acept not furnished 1680 4000 200 51 5931\n", + "315 São Paulo 230 4 2 3 1 acept not furnished 3600 5000 1551 64 10220\n", + "316 São Paulo 210 4 5 2 1 acept furnished 3800 8500 0 108 12410\n", + "317 São Paulo 450 4 3 8 - acept not furnished 0 14000 175 211 14390\n", + "318 São Paulo 234 3 5 4 - acept furnished 0 3680 400 56 4136\n", + "319 Belo Horizonte 135 4 3 2 2 not acept not furnished 868 2450 308 33 3659\n", + "320 São Paulo 395 4 5 3 - acept not furnished 0 6000 122 91 6213\n", + "321 Porto Alegre 92 2 2 1 2 acept not furnished 450 1700 67 25 2242\n", + "322 São Paulo 412 3 5 6 21 acept not furnished 2000 3952 459 51 6462\n", + "323 São Paulo 42 1 1 1 27 acept not furnished 560 5300 100 68 6028\n", + "324 São Paulo 33 1 1 0 12 not acept furnished 385 3000 125 39 3549\n", + "325 Porto Alegre 28 2 1 1 - acept not furnished 0 600 0 11 611\n", + "326 São Paulo 190 4 4 2 - not acept not furnished 0 4450 223 67 4740\n", + "327 São Paulo 165 4 3 3 10 acept furnished 2440 6300 1292 80 10110\n", + "328 Porto Alegre 44 1 1 0 5 acept not furnished 355 1200 20 18 1593\n", + "329 São Paulo 60 2 1 1 4 acept not furnished 603 1275 109 17 2004\n", + "330 São Paulo 380 3 3 2 1 acept not furnished 3580 11000 1084 140 15800\n", + "331 Rio de Janeiro 73 2 1 0 4 acept not furnished 375 830 120 11 1336\n", + "332 Belo Horizonte 19 1 1 0 5 acept not furnished 620 1100 85 15 1820\n", + "333 Campinas 230 3 5 4 6 acept not furnished 1800 7500 0 96 9396\n", + "334 Porto Alegre 37 1 1 1 2 acept not furnished 500 2500 0 37 3037\n", + "335 São Paulo 124 3 2 3 7 acept not furnished 1450 6600 300 84 8434\n", + "336 Rio de Janeiro 115 3 2 1 8 acept furnished 1090 2680 114 35 3919\n", + "337 Campinas 600 3 3 4 - acept not furnished 0 5500 384 83 5967\n", + "338 Rio de Janeiro 700 5 5 4 - acept furnished 1380 15000 1667 229 18280\n", + "339 Porto Alegre 35 1 1 0 1 acept not furnished 100 815 17 12 944\n", + "340 Belo Horizonte 15 1 1 0 3 not acept furnished 0 1100 0 15 1115\n", + "341 Campinas 80 3 2 1 2 acept not furnished 570 1450 125 19 2164\n", + "342 Porto Alegre 48 1 1 0 4 acept not furnished 200 700 38 11 949\n", + "343 Belo Horizonte 96 3 2 1 2 acept not furnished 922 1500 137 20 2579\n", + "344 São Paulo 150 3 2 1 7 acept furnished 1843 6715 340 86 8984\n", + "345 Belo Horizonte 105 3 2 2 2 not acept not furnished 1681 3300 390 44 5415\n", + "346 Belo Horizonte 204 4 4 4 22 not acept furnished 2701 10000 760 134 13600\n", + "347 Rio de Janeiro 125 3 1 2 11 acept not furnished 1317 2600 170 33 4120\n", + "348 Rio de Janeiro 50 2 1 0 3 not acept not furnished 490 2300 50 30 2870\n", + "349 São Paulo 250 3 4 3 - not acept not furnished 0 3740 234 57 4031\n", + "350 São Paulo 300 3 4 3 7 acept furnished 3000 2000 1250 26 6276\n", + "351 São Paulo 80 2 1 1 - acept not furnished 0 1500 55 23 1578\n", + "352 Rio de Janeiro 130 3 4 1 2 not acept not furnished 1200 1400 334 19 2953\n", + "353 São Paulo 120 2 3 0 2 acept not furnished 904 3300 195 42 4441\n", + "354 São Paulo 540 3 3 4 9 acept not furnished 6200 15000 3500 191 24890\n", + "355 São Paulo 23 1 1 0 23 acept not furnished 392 2100 41 27 2560\n", + "356 São Paulo 15 1 1 0 - not acept furnished 0 2500 0 32 2532\n", + "357 São Paulo 72 1 2 2 19 acept not furnished 900 4000 200 51 5151\n", + "358 Rio de Janeiro 95 3 2 2 7 acept not furnished 985 2300 122 30 3437\n", + "359 São Paulo 330 4 5 4 13 acept not furnished 2870 10000 1119 127 14120\n", + "360 São Paulo 75 2 2 2 7 not acept furnished 1600 6600 400 84 8684\n", + "361 São Paulo 53 1 1 1 4 acept not furnished 690 4398 200 56 5344\n", + "362 São Paulo 178 3 2 1 2 not acept not furnished 1200 1900 180 25 3305\n", + "363 São Paulo 150 3 2 0 - acept not furnished 0 4000 24 61 4085\n", + "364 São Paulo 50 2 1 1 4 acept not furnished 520 1200 30 16 1766\n", + "365 São Paulo 150 3 2 1 - not acept not furnished 0 2500 59 38 2597\n", + "366 Porto Alegre 25 1 1 0 - acept furnished 286 984 11 15 1296\n", + "367 São Paulo 210 3 4 4 13 not acept not furnished 3150 12000 1155 153 16460\n", + "368 Belo Horizonte 75 3 2 1 4 acept not furnished 600 1500 75 20 2195\n", + "369 Belo Horizonte 200 2 4 3 12 acept not furnished 1897 15000 827 200 17920\n", + "370 São Paulo 350 4 4 0 - acept not furnished 0 8000 989 121 9110\n", + "371 Porto Alegre 49 2 1 1 7 acept not furnished 360 1150 30 17 1557\n", + "372 Porto Alegre 40 1 1 0 4 not acept furnished 0 2000 0 30 2030\n", + "373 São Paulo 45 1 1 1 2 not acept furnished 1900 4200 350 54 6504\n", + "374 São Paulo 46 1 1 1 8 not acept furnished 900 7600 118 97 8715\n", + "375 São Paulo 80 2 2 2 15 acept not furnished 2000 11000 0 140 13140\n", + "376 São Paulo 30 1 1 0 3 acept furnished 400 2850 0 37 3287\n", + "377 São Paulo 80 2 2 2 - acept not furnished 50 2200 173 34 2457\n", + "378 Rio de Janeiro 105 2 2 1 10 acept not furnished 1780 1530 134 20 3464\n", + "379 Belo Horizonte 105 3 2 2 7 acept not furnished 1170 2000 219 27 3416\n", + "380 São Paulo 114 3 1 0 - acept not furnished 0 2570 150 39 2759\n", + "381 São Paulo 200 3 3 4 - acept not furnished 0 7000 425 106 7531\n", + "382 Porto Alegre 120 3 3 2 5 acept not furnished 800 3000 167 44 4011\n", + "383 São Paulo 60 2 2 1 11 acept not furnished 647 4000 21 51 4719\n", + "384 São Paulo 90 2 1 1 1 acept not furnished 1000 3000 50 39 4089\n", + "385 Rio de Janeiro 53 2 1 0 3 not acept not furnished 535 1800 50 24 2409\n", + "386 São Paulo 80 2 2 5 - acept not furnished 0 3000 59 46 3105\n", + "387 Campinas 87 4 2 2 4 acept not furnished 784 1600 106 21 2511\n", + "388 Rio de Janeiro 110 3 1 1 1 acept not furnished 557 5000 188 65 5810\n", + "389 Belo Horizonte 113 4 2 1 3 acept not furnished 1587 4000 429 54 6070\n", + "390 São Paulo 170 3 2 2 5 not acept not furnished 2199 5000 423 64 7686\n", + "391 São Paulo 150 3 2 0 1 not acept not furnished 700 3000 42 39 3781\n", + "392 Porto Alegre 60 2 2 1 11 acept not furnished 469 1500 51 22 2042\n", + "393 Porto Alegre 43 1 1 0 4 not acept furnished 290 2100 66 31 2487\n", + "394 São Paulo 130 3 2 2 4 acept furnished 800 3500 0 45 4345\n", + "395 São Paulo 69 3 2 0 7 acept furnished 650 1900 185 25 2760\n", + "396 Campinas 306 3 2 2 - acept not furnished 0 2500 422 38 2960\n", + "397 São Paulo 187 3 2 3 - acept not furnished 500 3500 193 53 4246\n", + "398 São Paulo 385 3 4 3 - acept not furnished 0 9000 1500 136 10640\n", + "399 São Paulo 355 4 4 3 - acept not furnished 0 7300 660 110 8070\n", + "400 Porto Alegre 90 2 1 1 2 acept not furnished 405 1100 380 17 1902\n", + "401 São Paulo 190 3 4 4 - acept not furnished 0 5000 275 76 5351\n", + "402 Campinas 181 2 1 2 - acept not furnished 0 1400 132 22 1554\n", + "403 São Paulo 350 3 5 4 13 acept not furnished 4000 3490 1750 45 9285\n", + "404 Belo Horizonte 168 5 3 2 2 acept not furnished 1443 2900 408 39 4790\n", + "405 Rio de Janeiro 73 2 1 0 1 acept not furnished 1600 2800 204 37 4641\n", + "406 São Paulo 378 5 5 4 4 acept not furnished 4000 3000 2000 39 9039\n", + "407 Campinas 60 2 1 1 - acept not furnished 0 1300 180 20 1500\n", + "408 Belo Horizonte 362 4 5 0 19 not acept not furnished 4138 15000 1975 200 21310\n", + "409 São Paulo 90 3 2 0 - acept not furnished 0 1700 136 26 1862\n", + "410 Rio de Janeiro 42 1 1 0 4 not acept furnished 500 1973 79 26 2578\n", + "411 Rio de Janeiro 56 2 1 1 18 acept not furnished 568 1000 88 13 1669\n", + "412 São Paulo 16 1 1 0 1 not acept not furnished 0 850 30 11 891\n", + "413 São Paulo 90 2 2 2 15 not acept furnished 1400 10000 0 127 11530\n", + "414 Belo Horizonte 67 1 1 0 13 acept not furnished 375 850 55 12 1292\n", + "415 São Paulo 488 4 3 3 - acept not furnished 14130 6400 1214 82 21820\n", + "416 Rio de Janeiro 30 1 1 0 10 acept not furnished 850 1100 60 15 2025\n", + "417 São Paulo 290 6 3 4 - acept not furnished 0 8000 1525 121 9646\n", + "418 São Paulo 266 3 3 4 10 acept not furnished 4700 6400 1500 82 12680\n", + "419 Campinas 47 2 1 1 4 acept not furnished 260 900 25 12 1197\n", + "420 Rio de Janeiro 590 6 6 2 - acept furnished 750 8000 975 122 9847\n", + "421 São Paulo 900 4 9 8 1 acept not furnished 0 15000 5700 226 20930\n", + "422 São Paulo 86 2 1 1 - acept not furnished 0 2200 110 34 2344\n", + "423 São Paulo 290 3 3 2 - acept furnished 0 15000 1000 226 16230\n", + "424 Porto Alegre 84 3 2 2 4 acept not furnished 750 3300 100 49 4199\n", + "425 São Paulo 160 3 1 2 - acept not furnished 0 5000 225 76 5301\n", + "426 São Paulo 37 1 1 0 3 not acept furnished 470 3500 127 45 4142\n", + "427 Campinas 73 3 1 1 4 acept not furnished 308 850 46 11 1215\n", + "428 São Paulo 350 4 5 5 17 acept furnished 2400 15000 2400 191 19990\n", + "429 Rio de Janeiro 57 1 1 0 2 acept not furnished 200 1100 10 15 1325\n", + "430 Campinas 48 1 1 0 9 acept not furnished 350 650 21 9 1030\n", + "431 Rio de Janeiro 30 1 1 0 8 acept not furnished 390 800 25 11 1226\n", + "432 Campinas 198 6 3 4 - acept not furnished 0 2000 145 31 2176\n", + "433 Porto Alegre 47 1 1 0 2 not acept not furnished 300 1000 59 15 1374\n", + "434 Porto Alegre 60 2 1 1 3 acept not furnished 250 800 22 12 1084\n", + "435 São Paulo 230 3 3 0 9 acept furnished 1700 5000 109 64 6873\n", + "436 Belo Horizonte 90 2 1 1 - not acept not furnished 0 1520 0 25 1545\n", + "437 Rio de Janeiro 129 3 2 1 8 acept furnished 1200 3255 167 42 4664\n", + "438 São Paulo 240 4 4 4 22 acept not furnished 1980 6672 417 85 9154\n", + "439 Porto Alegre 55 1 1 0 14 acept not furnished 700 1020 29 15 1764\n", + "440 Porto Alegre 52 1 1 0 - acept not furnished 150 1200 42 18 1410\n", + "441 São Paulo 250 3 4 3 8 acept not furnished 1610 6000 1089 77 8776\n", + "442 São Paulo 200 3 2 2 19 acept not furnished 2573 10000 1121 127 13820\n", + "443 Belo Horizonte 312 4 3 3 1 acept not furnished 1498 2300 463 31 4292\n", + "444 São Paulo 230 5 5 3 - acept not furnished 0 9900 620 149 10670\n", + "445 São Paulo 72 2 2 2 9 acept not furnished 750 2480 209 32 3471\n", + "446 São Paulo 55 2 1 0 5 acept furnished 620 2400 24 31 3075\n", + "447 Rio de Janeiro 72 2 2 1 2 not acept furnished 914 3600 133 47 4694\n", + "448 São Paulo 50 2 1 0 - acept not furnished 0 1200 83 19 1302\n", + "449 São Paulo 17 1 1 0 1 acept not furnished 0 2700 5 35 2740\n", + "450 Belo Horizonte 160 3 3 2 4 acept not furnished 150 2400 263 32 2845\n", + "451 São Paulo 214 4 4 3 5 acept not furnished 2638 6520 1187 83 10430\n", + "452 Rio de Janeiro 65 1 1 0 - acept not furnished 300 1800 30 24 2154\n", + "453 São Paulo 136 3 2 1 10 not acept furnished 1300 6500 267 47 8114\n", + "454 Porto Alegre 70 2 2 1 6 acept not furnished 440 1900 57 28 2425\n", + "455 Porto Alegre 38 1 1 0 2 acept not furnished 340 650 350 10 1350\n", + "456 São Paulo 450 8 5 5 - acept not furnished 0 8000 1000 121 9121\n", + "457 Rio de Janeiro 67 2 1 1 2 acept not furnished 1217 2200 130 29 3576\n", + "458 São Paulo 20 1 1 0 1 not acept not furnished 0 1100 35 14 1149\n", + "459 São Paulo 41 1 1 0 12 acept not furnished 290 1530 60 20 1900\n", + "460 São Paulo 50 2 1 1 7 acept not furnished 500 1550 7 20 2077\n", + "461 São Paulo 205 3 3 3 - acept not furnished 0 5525 575 84 6184\n", + "462 São Paulo 100 3 2 1 - acept not furnished 0 3300 500 50 3850\n", + "463 São Paulo 190 3 4 4 16 acept furnished 2849 15000 1160 191 19200\n", + "464 Belo Horizonte 45 2 1 0 - acept not furnished 0 1350 0 23 1373\n", + "465 Campinas 57 1 1 1 2 acept not furnished 605 800 66 11 1482\n", + "466 Porto Alegre 88 1 2 2 3 acept not furnished 340 1600 40 24 2004\n", + "467 São Paulo 70 1 1 1 10 acept furnished 459 3400 80 44 3983\n", + "468 São Paulo 76 2 2 0 11 acept furnished 646 2800 0 36 3482\n", + "469 Rio de Janeiro 36 1 1 0 10 acept not furnished 450 1370 29 18 1867\n", + "470 Porto Alegre 61 2 2 2 11 acept not furnished 445 2500 42 37 3024\n", + "471 São Paulo 280 4 3 6 - acept furnished 0 12500 706 188 13390\n", + "472 São Paulo 480 5 6 3 - acept not furnished 0 5000 1000 76 6076\n", + "473 Campinas 45 1 1 1 17 acept furnished 0 1950 0 25 1975\n", + "474 São Paulo 42 1 1 0 9 acept furnished 1290 1500 184 20 2994\n", + "475 Porto Alegre 62 2 1 0 4 acept not furnished 352 736 28 11 1127\n", + "476 São Paulo 38 2 1 0 2 acept not furnished 90 1500 0 20 1610\n", + "477 São Paulo 44 1 1 1 8 not acept furnished 578 2400 0 31 3009\n", + "478 São Paulo 75 3 2 2 11 acept not furnished 630 2800 167 36 3633\n", + "479 Rio de Janeiro 66 2 1 1 2 acept not furnished 650 1250 0 17 1917\n", + "480 São Paulo 125 3 3 2 - acept not furnished 0 2800 38 43 2881\n", + "481 Campinas 62 2 1 2 7 acept not furnished 609 1500 90 20 2219\n", + "482 São Paulo 77 2 1 1 5 acept not furnished 1148 3100 464 40 4752\n", + "483 São Paulo 136 2 4 2 7 acept not furnished 1540 4800 242 61 6643\n", + "484 São Paulo 200 4 2 1 5 acept not furnished 2115 5000 328 64 7507\n", + "485 São Paulo 35 1 1 0 1 not acept not furnished 250 1305 0 17 1572\n", + "486 São Paulo 250 4 3 2 - acept furnished 10 4500 100 68 4678\n", + "487 São Paulo 90 2 2 2 - acept furnished 0 4100 0 62 4162\n", + "488 Campinas 72 2 2 1 7 acept not furnished 480 850 9 11 1350\n", + "489 São Paulo 168 3 3 5 16 acept not furnished 1675 3500 184 45 5404\n", + "490 Porto Alegre 360 3 4 3 5 acept furnished 4000 13200 500 193 17890\n", + "491 Campinas 38 1 1 1 9 acept not furnished 500 740 30 10 1280\n", + "492 São Paulo 23 1 1 1 26 acept not furnished 487 2300 59 30 2876\n", + "493 Porto Alegre 440 3 3 3 7 not acept not furnished 100 10500 84 154 10840\n", + "494 São Paulo 120 3 3 2 9 acept furnished 1200 3500 109 45 4854\n", + "495 Rio de Janeiro 90 2 2 0 5 acept not furnished 830 2500 84 33 3447\n", + "496 Porto Alegre 125 4 2 0 7 acept not furnished 1006 1632 150 14 2802\n", + "497 São Paulo 200 3 4 3 6 acept furnished 1800 5058 1200 65 8123\n", + "498 São Paulo 190 3 3 2 5 acept not furnished 1800 3260 292 42 5394\n", + "499 Belo Horizonte 123 3 2 1 3 acept not furnished 363 2600 143 35 3141\n", + "500 Campinas 53 2 1 1 - acept not furnished 284 2000 41 26 2351\n", + "501 Rio de Janeiro 70 2 1 1 2 acept not furnished 560 2180 60 29 2829\n", + "502 São Paulo 90 2 2 2 17 acept furnished 1500 12200 454 155 14310\n", + "503 São Paulo 95 3 2 0 - acept not furnished 0 1590 0 24 1614\n", + "504 Campinas 74 3 1 1 4 acept not furnished 474 900 40 12 1426\n", + "505 São Paulo 64 1 1 1 15 not acept not furnished 620 3600 0 46 4266\n", + "506 São Paulo 155 4 5 3 14 not acept not furnished 1850 6000 625 77 8552\n", + "507 Rio de Janeiro 125 3 1 2 3 not acept not furnished 1000 2200 159 29 3388\n", + "508 São Paulo 40 1 1 1 9 acept furnished 350 1580 25 21 1976\n", + "509 Porto Alegre 350 3 2 4 - acept furnished 0 6522 492 116 7130\n", + "510 Belo Horizonte 417 3 5 8 - acept not furnished 0 7650 450 126 8226\n", + "511 Porto Alegre 350 4 4 4 - acept not furnished 0 6000 192 107 6299\n", + "512 São Paulo 40 1 1 1 8 not acept not furnished 440 2800 100 36 3376\n", + "513 São Paulo 30 1 1 1 15 not acept furnished 668 3500 127 45 4340\n", + "514 São Paulo 142 3 4 2 4 acept not furnished 1100 4500 375 58 6033\n", + "515 Porto Alegre 110 3 3 2 5 acept furnished 1300 4000 300 59 5659\n", + "516 São Paulo 100 4 4 1 - acept not furnished 0 10000 9 151 10160\n", + "517 São Paulo 377 5 4 3 - acept not furnished 0 8000 900 121 9021\n", + "518 São Paulo 230 2 3 3 17 acept furnished 2575 8000 633 102 11310\n", + "519 São Paulo 35 1 1 0 5 not acept furnished 450 1800 91 7 2348\n", + "520 São Paulo 32 1 1 1 16 acept not furnished 533 2900 0 37 3470\n", + "521 São Paulo 74 2 1 1 5 acept not furnished 569 2024 71 8 2672\n", + "522 São Paulo 147 2 3 4 19 acept not furnished 2600 1200 375 16 4191\n", + "523 São Paulo 35 1 1 0 3 acept furnished 480 2500 60 32 3072\n", + "524 Rio de Janeiro 26 1 1 0 7 acept furnished 630 1500 84 20 2234\n", + "525 São Paulo 70 2 2 1 5 acept furnished 517 1700 5 22 2244\n", + "526 São Paulo 150 3 3 3 19 acept furnished 1800 2800 740 36 5376\n", + "527 São Paulo 200 3 3 2 - acept not furnished 0 8000 292 121 8413\n", + "528 Campinas 60 1 1 1 14 acept not furnished 583 1100 49 14 1746\n", + "529 São Paulo 250 4 5 3 2 acept not furnished 1700 2550 334 33 4617\n", + "530 São Paulo 44 1 2 0 12 not acept furnished 3300 3300 126 42 6768\n", + "531 São Paulo 250 7 5 2 - acept furnished 0 6000 0 91 6091\n", + "532 São Paulo 157 3 2 0 7 acept not furnished 1325 4500 347 58 6230\n", + "533 São Paulo 97 2 2 0 1 acept not furnished 1200 5600 0 71 6871\n", + "534 Belo Horizonte 548 4 7 6 17 acept not furnished 5905 15000 2484 200 23590\n", + "535 São Paulo 28 1 1 0 1 acept not furnished 0 1325 0 17 1342\n", + "536 São Paulo 250 3 4 0 1 acept furnished 2000 10000 1667 127 13790\n", + "537 Belo Horizonte 193 4 2 2 - acept not furnished 0 8900 255 146 9301\n", + "538 Belo Horizonte 428 5 5 4 - acept furnished 0 9600 667 158 10430\n", + "539 São Paulo 50 2 1 0 2 not acept not furnished 200 950 0 13 1163\n", + "540 São Paulo 135 2 3 2 5 not acept not furnished 2000 12300 542 156 15000\n", + "541 Rio de Janeiro 103 2 2 1 8 acept not furnished 530 1600 221 21 2372\n", + "542 Campinas 103 3 2 2 2 acept not furnished 1500 1360 292 18 3170\n", + "543 São Paulo 80 3 2 1 - acept not furnished 740 1500 150 20 2410\n", + "544 São Paulo 160 3 3 2 10 acept not furnished 1229 4000 390 51 5670\n", + "545 São Paulo 238 4 3 4 24 acept not furnished 2980 10200 1816 130 15130\n", + "546 Belo Horizonte 500 7 4 4 - acept not furnished 0 5500 167 91 5758\n", + "547 São Paulo 580 5 5 4 4 acept not furnished 9900 15000 2200 191 27290\n", + "548 São Paulo 80 1 1 0 - acept not furnished 0 1370 50 21 1441\n", + "549 São Paulo 210 4 5 3 12 acept furnished 2620 2975 1184 38 6817\n", + "550 Porto Alegre 106 3 3 1 7 acept not furnished 900 2250 186 33 3369\n", + "551 Rio de Janeiro 30 1 1 0 11 acept not furnished 500 1200 21 16 1737\n", + "552 São Paulo 156 3 2 1 - acept not furnished 0 2000 147 31 2178\n", + "553 São Paulo 60 1 1 1 - acept not furnished 0 1250 0 19 1269\n", + "554 São Paulo 200 3 4 0 2 acept not furnished 3672 3600 780 46 8098\n", + "555 São Paulo 70 2 2 0 1 acept not furnished 280 1000 138 13 1431\n", + "556 São Paulo 177 4 5 4 5 acept not furnished 1500 9200 959 117 11780\n", + "557 São Paulo 103 3 3 2 - acept not furnished 735 2500 19 38 3292\n", + "558 São Paulo 440 4 4 4 - acept not furnished 0 12000 2500 181 14680\n", + "559 São Paulo 65 2 1 1 8 acept furnished 600 1700 92 22 2414\n", + "560 Belo Horizonte 260 5 3 3 12 acept not furnished 2000 4000 487 54 6541\n", + "561 São Paulo 200 4 4 6 - acept not furnished 0 4320 375 65 4760\n", + "562 São Paulo 96 3 2 1 12 acept not furnished 1122 3050 231 39 4442\n", + "563 São Paulo 68 2 2 1 2 acept furnished 690 2900 137 37 3764\n", + "564 Belo Horizonte 300 5 5 5 - not acept not furnished 0 4500 450 74 5024\n", + "565 São Paulo 34 1 1 0 2 acept not furnished 305 750 27 10 1092\n", + "566 Campinas 398 5 6 0 2 acept not furnished 3500 8500 700 108 12810\n", + "567 Belo Horizonte 100 1 1 0 1 acept not furnished 0 2600 0 35 2635\n", + "568 Belo Horizonte 176 4 5 3 6 acept furnished 2136 6500 704 87 9427\n", + "569 Belo Horizonte 90 2 2 2 4 not acept furnished 500 4000 250 54 4804\n", + "570 Belo Horizonte 680 7 6 8 - acept not furnished 0 8000 428 132 8560\n", + "571 Belo Horizonte 220 4 3 0 9 acept furnished 3000 15000 1138 200 19340\n", + "572 São Paulo 110 2 2 2 - not acept not furnished 0 2120 174 32 2326\n", + "573 São Paulo 180 3 2 1 2 acept furnished 1260 5500 255 70 7085\n", + "574 São Paulo 36 1 1 1 8 acept not furnished 410 1800 93 8 2311\n", + "575 Belo Horizonte 450 4 4 4 8 acept not furnished 2394 12700 836 170 16100\n", + "576 Rio de Janeiro 103 3 2 0 1 acept not furnished 812 3300 336 43 4491\n", + "577 Porto Alegre 101 2 2 2 5 acept not furnished 480 1800 500 27 2807\n", + "578 São Paulo 196 4 4 0 11 acept not furnished 2450 6000 1458 77 9985\n", + "579 Rio de Janeiro 28 1 1 0 - acept not furnished 495 1980 68 26 2569\n", + "580 São Paulo 260 3 4 4 - acept not furnished 0 4500 0 68 4568\n", + "581 São Paulo 330 4 2 5 - acept not furnished 0 1870 400 29 2299\n", + "582 Rio de Janeiro 70 3 2 1 6 acept not furnished 607 1189 96 16 1908\n", + "583 Rio de Janeiro 33 1 1 0 3 acept not furnished 500 1200 13 16 1729\n", + "584 São Paulo 160 3 3 2 3 acept not furnished 2200 10500 505 134 13340\n", + "585 São Paulo 60 2 1 1 9 acept not furnished 506 1350 42 18 1916\n", + "586 São Paulo 36 1 1 1 1 acept not furnished 130 1379 99 10 1618\n", + "587 São Paulo 20 1 1 0 1 acept furnished 0 2060 0 27 2087\n", + "588 Porto Alegre 70 2 1 0 1 acept not furnished 375 750 26 11 1162\n", + "589 São Paulo 180 3 4 4 - acept furnished 0 4700 2 71 4773\n", + "590 São Paulo 105 3 3 1 5 acept not furnished 980 2150 0 28 3158\n", + "591 São Paulo 275 4 5 4 1 acept not furnished 4200 9700 1334 123 15360\n", + "592 Belo Horizonte 450 2 2 5 - acept not furnished 0 1512 71 25 1608\n", + "593 Campinas 360 4 6 4 - acept not furnished 864 7700 300 116 8980\n", + "594 São Paulo 140 2 2 1 5 not acept furnished 700 1900 150 25 2775\n", + "595 São Paulo 900 3 5 8 - acept not furnished 0 8000 2250 121 10370\n", + "596 Porto Alegre 152 3 5 3 9 acept not furnished 1600 6000 321 88 8009\n", + "597 São Paulo 280 3 4 3 - acept furnished 0 8000 500 121 8621\n", + "598 São Paulo 230 4 4 3 5 not acept not furnished 2564 2500 934 32 6030\n", + "599 Campinas 92 3 2 3 6 acept not furnished 700 2100 167 27 2994\n", + "600 Belo Horizonte 58 1 1 1 - acept not furnished 0 1100 34 19 1153\n", + "601 Campinas 41 2 1 1 5 not acept not furnished 248 1193 0 16 1457\n", + "602 São Paulo 206 4 4 3 10 acept not furnished 1890 12000 917 153 14960\n", + "603 Campinas 214 3 3 2 1 acept not furnished 2016 5900 227 75 8218\n", + "604 São Paulo 110 2 2 1 18 acept not furnished 1286 1710 0 22 3018\n", + "605 Belo Horizonte 100 2 1 0 - acept not furnished 0 777 25 13 815\n", + "606 Belo Horizonte 80 2 2 1 4 acept not furnished 250 1200 0 16 1466\n", + "607 Belo Horizonte 311 3 4 3 20 not acept not furnished 3075 13000 1753 174 18000\n", + "608 São Paulo 200 2 3 2 1 acept furnished 1700 15000 667 191 17560\n", + "609 Campinas 96 3 2 2 10 acept not furnished 800 3200 189 41 4230\n", + "610 Rio de Janeiro 140 4 2 1 1 not acept not furnished 1700 6000 380 78 8158\n", + "611 São Paulo 138 3 3 2 17 acept not furnished 1100 7070 382 90 8642\n", + "612 São Paulo 140 3 3 1 6 acept furnished 2200 3900 359 50 6509\n", + "613 Rio de Janeiro 60 2 2 1 2 not acept not furnished 592 1250 0 17 1859\n", + "614 São Paulo 40 1 1 0 - not acept not furnished 0 600 34 10 644\n", + "615 São Paulo 178 3 4 4 6 acept furnished 2700 10200 667 130 13700\n", + "616 São Paulo 140 3 3 2 - acept furnished 0 4900 25 74 4999\n", + "617 São Paulo 72 2 1 0 1 acept not furnished 864 1020 0 13 1897\n", + "618 São Paulo 117 2 1 1 5 not acept furnished 720 2700 11 35 3466\n", + "619 São Paulo 35 1 1 1 1 acept not furnished 0 977 30 13 1020\n", + "620 Porto Alegre 42 1 1 0 1 acept furnished 360 890 0 13 1263\n", + "621 Belo Horizonte 29 1 1 0 1 acept not furnished 0 1100 8 15 1123\n", + "622 São Paulo 130 2 1 0 1 acept not furnished 650 2150 9 28 2837\n", + "623 Rio de Janeiro 100 3 2 1 4 acept not furnished 2350 5000 333 65 7748\n", + "624 Rio de Janeiro 39 1 1 0 4 acept not furnished 450 609 44 8 1111\n", + "625 São Paulo 61 1 1 0 9 not acept not furnished 394 1600 0 21 2015\n", + "626 Campinas 750 4 5 5 - not acept not furnished 0 10400 667 157 11220\n", + "627 Belo Horizonte 142 4 3 2 3 acept not furnished 900 2700 277 36 3913\n", + "628 Campinas 650 4 4 8 - acept not furnished 0 7500 200 113 7813\n", + "629 São Paulo 69 2 2 0 - acept not furnished 0 1700 73 26 1799\n", + "630 São Paulo 100 2 2 4 - acept not furnished 0 2600 46 40 2686\n", + "631 Belo Horizonte 300 4 2 2 3 acept not furnished 1750 8000 500 107 10360\n", + "632 São Paulo 190 3 4 3 14 acept furnished 1700 2740 900 35 5375\n", + "633 Rio de Janeiro 115 2 2 0 13 acept not furnished 950 4500 2731 58 8239\n", + "634 Campinas 119 3 1 1 5 acept not furnished 926 1200 100 16 2242\n", + "635 São Paulo 100 2 3 1 4 acept furnished 1200 1890 42 24 3156\n", + "636 São Paulo 55 2 1 1 3 acept not furnished 400 1087 0 14 1501\n", + "637 São Paulo 44 1 1 1 2 acept furnished 724 3000 89 39 3852\n", + "638 São Paulo 316 4 6 4 18 acept furnished 4767 8000 1963 102 14830\n", + "639 São Paulo 83 2 3 2 - acept not furnished 200 3500 167 53 3920\n", + "640 Belo Horizonte 1000 5 7 8 - acept not furnished 0 14980 1904 246 17130\n", + "641 São Paulo 150 3 2 1 8 acept not furnished 1172 4800 0 61 6033\n", + "642 São Paulo 53 2 1 1 7 acept not furnished 450 4200 42 54 4746\n", + "643 São Paulo 49 2 1 1 - acept not furnished 400 970 4 13 1387\n", + "644 Campinas 185 3 3 2 6 acept not furnished 1200 2200 100 28 3528\n", + "645 Rio de Janeiro 40 1 1 0 - acept not furnished 0 1200 20 19 1239\n", + "646 São Paulo 65 2 1 0 3 acept not furnished 654 1140 9 15 1818\n", + "647 São Paulo 67 3 2 1 10 not acept not furnished 496 1560 72 20 2148\n", + "648 São Paulo 46 1 1 1 9 acept not furnished 500 2200 35 28 2763\n", + "649 Campinas 205 3 2 1 2 acept not furnished 950 2200 156 28 3334\n", + "650 Porto Alegre 550 5 5 3 - acept not furnished 0 9000 500 160 9660\n", + "651 Campinas 50 1 1 1 3 acept not furnished 393 650 33 9 1085\n", + "652 São Paulo 266 4 5 4 7 acept not furnished 2900 10900 1167 139 15110\n", + "653 Rio de Janeiro 280 3 2 2 10 acept furnished 3140 8000 1126 104 12370\n", + "654 São Paulo 1600 6 6 6 - acept furnished 0 7600 1834 115 9549\n", + "655 São Paulo 70 1 1 0 4 acept not furnished 760 2400 156 31 3347\n", + "656 São Paulo 84 3 2 2 8 not acept not furnished 700 2340 250 30 3320\n", + "657 Belo Horizonte 40 1 1 0 3 not acept not furnished 496 1000 116 14 1626\n", + "658 Rio de Janeiro 117 3 2 1 7 acept not furnished 750 4110 384 53 5297\n", + "659 São Paulo 68 2 2 2 8 acept furnished 1030 3430 236 44 4740\n", + "660 Belo Horizonte 140 2 2 2 11 acept furnished 692 2800 104 38 3634\n", + "661 São Paulo 450 4 2 3 - acept not furnished 0 13000 1000 196 14200\n", + "662 Porto Alegre 44 1 2 0 3 acept not furnished 140 1350 100 20 1610\n", + "663 São Paulo 40 1 1 1 3 acept furnished 686 3200 52 41 3979\n", + "664 São Paulo 70 1 2 1 1 acept furnished 1300 8250 209 105 9864\n", + "665 São Paulo 50 1 2 0 - acept not furnished 0 900 50 14 964\n", + "666 Belo Horizonte 405 2 3 0 7 acept not furnished 3500 4000 699 54 8253\n", + "667 São Paulo 75 2 2 1 1 acept not furnished 700 3160 165 41 4066\n", + "668 Belo Horizonte 80 3 3 1 3 acept not furnished 560 1501 0 20 2081\n", + "669 São Paulo 450 4 5 6 - acept not furnished 0 12000 1334 181 13520\n", + "670 São Paulo 225 4 5 4 10 acept furnished 1600 7106 0 91 8797\n", + "671 São Paulo 250 3 2 3 35 acept furnished 2500 15000 1084 191 18780\n", + "672 São Paulo 60 2 1 1 5 not acept not furnished 965 2200 165 28 3358\n", + "673 São Paulo 31 1 1 1 9 not acept furnished 1500 3400 150 44 5094\n", + "674 São Paulo 100 3 1 3 - acept not furnished 0 2000 164 31 2195\n", + "675 Belo Horizonte 20 1 1 0 6 not acept not furnished 420 1050 79 14 1563\n", + "676 São Paulo 200 3 4 8 - acept not furnished 0 7000 25 106 7131\n", + "677 Campinas 50 1 1 1 8 acept not furnished 780 1690 62 22 2554\n", + "678 São Paulo 61 3 2 2 15 acept not furnished 712 2200 90 28 3030\n", + "679 São Paulo 200 3 4 2 3 acept not furnished 4475 9800 820 125 15220\n", + "680 Belo Horizonte 100 2 2 0 - acept not furnished 0 11000 100 181 11280\n", + "681 São Paulo 365 4 5 6 4 acept not furnished 3722 13900 2588 177 20390\n", + "682 São Paulo 38 1 1 0 13 acept not furnished 414 3000 64 39 3517\n", + "683 Rio de Janeiro 49 2 1 0 4 acept not furnished 362 1350 58 18 1788\n", + "684 São Paulo 207 3 5 4 6 acept not furnished 2400 12000 934 153 15490\n", + "685 Campinas 82 3 2 1 6 acept not furnished 825 1500 142 20 2487\n", + "686 São Paulo 400 5 4 3 - acept not furnished 0 4000 250 61 4311\n", + "687 Rio de Janeiro 170 4 2 2 6 acept not furnished 2420 9000 834 116 12370\n", + "688 Porto Alegre 105 3 2 2 3 acept furnished 370 2890 217 43 3520\n", + "689 São Paulo 383 4 4 5 2 acept not furnished 2189 3004 709 39 5941\n", + "690 São Paulo 168 3 3 3 3 acept not furnished 1605 2700 322 35 4662\n", + "691 São Paulo 53 2 2 1 10 acept furnished 1940 2400 389 31 4760\n", + "692 Porto Alegre 320 4 3 2 - acept not furnished 0 4500 125 80 4705\n", + "693 São Paulo 300 3 4 3 18 acept not furnished 3500 9900 834 126 14360\n", + "694 Campinas 100 3 2 3 - acept not furnished 0 2200 0 34 2234\n", + "695 São Paulo 40 1 1 0 - acept not furnished 0 900 80 12 992\n", + "696 São Paulo 180 3 1 0 - acept not furnished 0 2500 334 38 2872\n", + "697 São Paulo 257 4 5 4 8 acept furnished 2730 7500 1107 96 11430\n", + "698 São Paulo 178 2 4 2 2 acept not furnished 2300 7000 891 89 10280\n", + "699 São Paulo 179 3 3 0 9 not acept furnished 1828 12000 472 153 14450\n", + "700 Porto Alegre 64 2 1 0 1 acept not furnished 300 1750 42 26 2118\n", + "701 Porto Alegre 60 2 1 0 1 acept not furnished 326 990 25 15 1356\n", + "702 São Paulo 55 1 1 1 11 not acept not furnished 696 2200 148 28 3072\n", + "703 São Paulo 50 1 1 0 8 not acept not furnished 470 1970 0 25 2465\n", + "704 São Paulo 82 3 2 2 19 not acept not furnished 470 1994 0 26 2490\n", + "705 Rio de Janeiro 60 1 1 1 7 acept not furnished 650 1210 106 16 1982\n", + "706 Porto Alegre 40 1 1 1 9 not acept furnished 1300 1200 68 18 2586\n", + "707 Campinas 230 4 4 8 - acept not furnished 0 5100 320 77 5497\n", + "708 São Paulo 73 2 1 1 2 acept not furnished 680 1300 20 17 2017\n", + "709 São Paulo 79 2 2 1 1 acept furnished 600 2000 75 26 2701\n", + "710 São Paulo 230 3 4 2 3 acept not furnished 2000 4800 292 61 7153\n", + "711 Rio de Janeiro 214 3 3 3 4 acept not furnished 3575 14000 1050 181 18810\n", + "712 São Paulo 120 2 1 0 - acept not furnished 0 1500 90 23 1613\n", + "713 São Paulo 200 4 2 1 - not acept not furnished 0 2500 334 38 2872\n", + "714 Porto Alegre 85 3 2 2 9 not acept furnished 940 3300 102 49 4391\n", + "715 São Paulo 45 1 1 1 1 not acept furnished 3000 5520 0 70 8590\n", + "716 Porto Alegre 30 1 1 0 4 acept not furnished 198 755 22 12 987\n", + "717 São Paulo 57 2 2 1 3 acept not furnished 476 2300 0 30 2806\n", + "718 São Paulo 500 4 7 3 - acept not furnished 0 15000 2500 226 17730\n", + "719 São Paulo 322 4 5 5 17 acept furnished 2700 15000 1875 191 19770\n", + "720 São Paulo 20 1 1 0 3 not acept not furnished 224 1530 0 20 1774\n", + "721 Porto Alegre 100 2 2 1 - not acept not furnished 0 1346 0 24 1370\n", + "722 São Paulo 620 4 6 4 1 acept not furnished 8133 15000 4520 191 27840\n", + "723 Porto Alegre 240 4 3 5 - acept not furnished 0 2500 120 45 2665\n", + "724 São Paulo 95 3 2 2 10 acept not furnished 900 7000 142 89 8131\n", + "725 São Paulo 35 1 1 1 6 acept not furnished 542 2100 99 27 2768\n", + "726 Belo Horizonte 325 5 4 7 - acept furnished 0 8900 417 146 9463\n", + "727 São Paulo 58 3 1 1 1 acept furnished 456 2800 21 36 3313\n", + "728 São Paulo 200 4 4 3 6 not acept not furnished 1400 9000 1000 115 11520\n", + "729 São Paulo 92 3 2 2 2 acept not furnished 1407 1100 250 14 2771\n", + "730 Belo Horizonte 65 2 1 1 9 acept not furnished 450 1545 94 7 2096\n", + "731 Campinas 57 2 1 0 2 acept not furnished 378 800 31 11 1220\n", + "732 São Paulo 50 2 1 1 2 acept not furnished 400 1600 0 21 2021\n", + "733 São Paulo 165 4 5 2 4 acept furnished 2500 9500 315 121 12440\n", + "734 Rio de Janeiro 70 2 1 1 6 acept not furnished 900 1900 122 25 2947\n", + "735 São Paulo 230 4 3 1 1 not acept not furnished 2400 4000 513 51 6964\n", + "736 Rio de Janeiro 34 1 1 0 3 not acept furnished 820 2000 114 26 2960\n", + "737 Rio de Janeiro 25 1 1 0 - not acept not furnished 0 660 0 11 671\n", + "738 São Paulo 50 2 1 1 2 acept not furnished 0 1800 0 23 1823\n", + "739 Porto Alegre 120 3 2 2 2 acept furnished 700 2975 155 44 3874\n", + "740 Porto Alegre 60 2 1 1 - acept not furnished 0 1400 96 25 1521\n", + "741 São Paulo 67 2 2 1 8 acept not furnished 980 2240 215 29 3464\n", + "742 São Paulo 22 1 1 0 26 acept not furnished 384 2100 40 27 2551\n", + "743 São Paulo 197 3 1 2 - acept not furnished 0 2100 290 32 2422\n", + "744 Porto Alegre 105 3 3 1 3 acept furnished 1300 2300 130 34 3764\n", + "745 São Paulo 80 2 2 1 - not acept not furnished 0 1556 0 8 1564\n", + "746 Belo Horizonte 140 4 2 2 5 not acept not furnished 820 2500 253 34 3607\n", + "747 Rio de Janeiro 70 2 2 1 9 acept not furnished 1200 4000 184 52 5436\n", + "748 Porto Alegre 383 5 5 4 - acept not furnished 0 10000 250 178 10430\n", + "749 São Paulo 172 3 4 3 5 acept not furnished 1650 9000 900 115 11670\n", + "750 Porto Alegre 57 2 2 1 6 not acept not furnished 425 1800 75 27 2327\n", + "751 São Paulo 32 1 1 1 23 acept not furnished 1800 2000 416 26 4242\n", + "752 Belo Horizonte 341 10 6 7 - acept not furnished 0 5500 459 91 6050\n", + "753 Belo Horizonte 600 5 6 8 - acept furnished 0 10500 642 173 11320\n", + "754 São Paulo 43 2 1 1 13 not acept not furnished 307 2000 18 26 2351\n", + "755 Campinas 98 3 2 1 1 acept not furnished 727 1233 84 16 2060\n", + "756 São Paulo 36 2 1 0 6 acept not furnished 590 1790 0 23 2403\n", + "757 Rio de Janeiro 42 1 1 0 4 acept furnished 500 2800 79 37 3416\n", + "758 Campinas 120 3 3 3 8 not acept not furnished 700 2700 167 35 3602\n", + "759 Rio de Janeiro 78 2 2 1 8 acept not furnished 720 1400 290 19 2429\n", + "760 São Paulo 113 3 4 2 7 acept not furnished 1600 4000 591 51 6242\n", + "761 São Paulo 47 2 1 1 1 not acept not furnished 560 1390 0 18 1968\n", + "762 São Paulo 60 2 2 1 5 acept not furnished 478 1300 0 17 1795\n", + "763 Porto Alegre 77 2 1 0 1 not acept not furnished 0 1130 25 17 1172\n", + "764 Porto Alegre 75 2 2 1 3 acept not furnished 200 1500 142 22 1864\n", + "765 São Paulo 60 3 1 1 3 acept not furnished 470 1550 0 20 2040\n", + "766 São Paulo 240 3 4 3 9 acept not furnished 2100 5800 825 74 8799\n", + "767 São Paulo 48 1 1 1 4 acept not furnished 633 3400 114 44 4191\n", + "768 Belo Horizonte 70 3 1 1 8 acept not furnished 395 1300 71 18 1784\n", + "769 Belo Horizonte 345 3 3 0 - not acept furnished 0 3500 150 58 3708\n", + "770 São Paulo 250 4 2 3 2 not acept furnished 3000 15000 100 191 18290\n", + "771 São Paulo 158 4 4 3 4 acept furnished 1990 3500 589 45 6124\n", + "772 Porto Alegre 55 2 1 1 - acept furnished 0 1300 34 24 1358\n", + "773 Rio de Janeiro 80 2 1 1 17 acept not furnished 866 1820 235 24 2945\n", + "774 Porto Alegre 42 1 1 1 11 acept not furnished 500 2200 50 33 2783\n", + "775 São Paulo 80 3 3 2 20 acept not furnished 600 4450 242 57 5349\n", + "776 São Paulo 50 1 1 0 1 acept not furnished 519 1550 28 20 2117\n", + "777 Rio de Janeiro 380 4 3 2 9 acept not furnished 3220 15000 1348 194 19760\n", + "778 São Paulo 85 2 2 1 6 acept furnished 1200 5300 67 68 6635\n", + "779 Belo Horizonte 120 4 3 2 1 acept not furnished 0 3250 0 44 3294\n", + "780 São Paulo 214 4 5 4 6 acept not furnished 2235 3251 1026 42 6554\n", + "781 São Paulo 277 4 4 6 5 acept not furnished 4200 3800 1947 49 9996\n", + "782 Campinas 50 2 1 1 4 acept not furnished 330 1080 0 14 1424\n", + "783 Belo Horizonte 90 3 2 2 2 not acept not furnished 530 2000 159 27 2716\n", + "784 São Paulo 287 4 5 2 - acept furnished 0 6000 317 91 6408\n", + "785 São Paulo 11 1 1 0 1 not acept furnished 300 2000 42 26 2368\n", + "786 Porto Alegre 62 2 1 1 7 not acept not furnished 485 1620 54 24 2183\n", + "787 São Paulo 45 1 1 1 7 not acept furnished 522 3100 120 40 3782\n", + "788 Porto Alegre 80 2 1 1 1 acept not furnished 200 1650 70 25 1945\n", + "789 São Paulo 115 3 3 2 5 not acept not furnished 1000 4890 234 62 6186\n", + "790 Porto Alegre 110 2 2 1 3 acept furnished 600 1800 152 27 2579\n", + "791 São Paulo 162 3 3 2 4 acept not furnished 1756 7000 367 89 9212\n", + "792 Rio de Janeiro 85 3 2 1 4 acept not furnished 1250 1800 306 24 3380\n", + "793 Belo Horizonte 105 4 3 3 5 acept not furnished 1148 1900 228 26 3302\n", + "794 São Paulo 180 2 2 5 - acept not furnished 1 3000 1 46 3048\n", + "795 Rio de Janeiro 80 2 1 0 9 acept not furnished 330 831 159 11 1331\n", + "796 São Paulo 56 2 1 1 6 acept not furnished 680 2200 11 28 2919\n", + "797 São Paulo 70 2 1 1 15 acept not furnished 1049 1200 35 16 2300\n", + "798 Rio de Janeiro 70 1 2 1 6 not acept not furnished 1100 1200 85 16 2401\n", + "799 Belo Horizonte 75 3 1 1 4 not acept not furnished 482 1000 145 14 1641\n", + "800 São Paulo 420 4 6 4 - acept not furnished 300 6500 417 98 7315\n", + "801 São Paulo 279 3 3 8 - acept furnished 0 3500 182 53 3735\n", + "802 São Paulo 160 4 4 2 - acept not furnished 0 2400 0 37 2437\n", + "803 São Paulo 41 1 1 0 - acept not furnished 250 1100 0 14 1364\n", + "804 São Paulo 97 2 2 2 3 acept not furnished 1400 2200 42 28 3670\n", + "805 Porto Alegre 40 1 1 1 7 acept furnished 400 1400 36 21 1857\n", + "806 São Paulo 110 3 2 1 5 acept furnished 1217 3600 215 46 5078\n", + "807 Belo Horizonte 298 4 3 2 3 acept furnished 330 2500 300 34 3164\n", + "808 Belo Horizonte 87 4 2 2 2 acept not furnished 370 1600 160 22 2152\n", + "809 São Paulo 150 5 5 4 3 not acept furnished 1800 3700 917 47 6464\n", + "810 São Paulo 113 3 2 2 8 acept not furnished 1750 2975 359 38 5122\n", + "811 Belo Horizonte 293 6 2 3 - acept not furnished 0 2600 138 43 2781\n", + "812 São Paulo 90 3 2 2 1 acept not furnished 1017 2000 165 26 3208\n", + "813 Belo Horizonte 305 4 3 3 14 acept not furnished 2500 9000 660 120 12280\n", + "814 Campinas 50 2 1 1 - not acept not furnished 0 1040 277 14 1331\n", + "815 São Paulo 150 3 3 2 - acept not furnished 0 3300 135 50 3485\n", + "816 Porto Alegre 367 3 4 4 8 not acept not furnished 7000 15000 1032 220 23250\n", + "817 Rio de Janeiro 50 2 1 0 9 acept furnished 505 2350 64 31 2950\n", + "818 São Paulo 230 3 4 3 7 not acept not furnished 3200 8000 1167 102 12470\n", + "819 São Paulo 125 3 3 1 6 acept furnished 1600 5500 247 70 7417\n", + "820 Rio de Janeiro 140 3 2 1 4 acept not furnished 1100 1350 95 18 2563\n", + "821 São Paulo 63 3 2 0 18 acept not furnished 550 1800 0 23 2373\n", + "822 São Paulo 110 2 1 1 21 acept not furnished 975 3300 234 42 4551\n", + "823 São Paulo 54 2 1 1 13 acept not furnished 480 1610 0 21 2111\n", + "824 Porto Alegre 67 2 1 0 3 acept not furnished 330 1523 50 23 1926\n", + "825 São Paulo 296 3 4 4 2 acept not furnished 1860 8864 0 113 10840\n", + "826 Belo Horizonte 70 2 1 1 - acept not furnished 0 1000 75 17 1092\n", + "827 São Paulo 50 2 1 0 - not acept not furnished 50 1100 0 17 1167\n", + "828 São Paulo 160 3 2 4 - not acept not furnished 0 3500 0 53 3553\n", + "829 São Paulo 60 2 2 1 14 not acept not furnished 460 2200 20 28 2708\n", + "830 São Paulo 220 3 4 3 12 acept furnished 3120 8000 1034 102 12260\n", + "831 São Paulo 340 4 3 8 - acept not furnished 0 13000 1167 196 14360\n", + "832 São Paulo 52 2 1 0 1 not acept not furnished 50 1150 34 15 1249\n", + "833 Belo Horizonte 50 2 1 1 1 acept not furnished 100 915 63 13 1091\n", + "834 Belo Horizonte 60 2 1 0 3 acept not furnished 290 2200 80 30 2600\n", + "835 São Paulo 125 3 3 3 - acept not furnished 100 2450 15 37 2602\n", + "836 São Paulo 36 2 1 0 - not acept not furnished 0 1080 0 17 1097\n", + "837 Belo Horizonte 100 3 2 1 5 acept not furnished 730 1500 120 20 2370\n", + "838 São Paulo 550 4 7 3 - acept furnished 0 11500 1650 173 13320\n", + "839 São Paulo 60 3 1 2 4 not acept not furnished 383 1105 0 14 1502\n", + "840 Campinas 48 1 1 0 4 not acept not furnished 490 500 17 7 1014\n", + "841 São Paulo 164 3 3 1 3 acept furnished 1795 9000 210 115 11120\n", + "842 Belo Horizonte 90 3 2 1 2 acept not furnished 280 1200 100 16 1596\n", + "843 Porto Alegre 78 3 2 1 4 acept not furnished 450 2800 75 41 3366\n", + "844 São Paulo 44 2 1 0 1 acept not furnished 260 1125 0 15 1400\n", + "845 Belo Horizonte 180 3 3 2 1 acept not furnished 1500 2950 267 40 4757\n", + "846 Campinas 82 3 2 1 1 acept not furnished 650 1200 100 16 1966\n", + "847 São Paulo 49 1 1 1 7 acept furnished 830 2900 139 37 3906\n", + "848 São Paulo 400 5 4 5 - not acept not furnished 0 13970 417 210 14590\n", + "849 São Paulo 74 2 3 2 26 acept not furnished 450 3200 40 41 3731\n", + "850 São Paulo 110 2 1 1 - acept not furnished 0 1500 163 23 1686\n", + "851 São Paulo 58 1 1 1 1 acept furnished 475 3500 70 45 4090\n", + "852 Rio de Janeiro 23 1 1 0 5 not acept not furnished 320 1540 0 20 1880\n", + "853 Rio de Janeiro 95 3 2 1 3 acept not furnished 1061 2500 67 33 3661\n", + "854 São Paulo 196 4 3 3 13 not acept not furnished 2420 5000 931 64 8415\n", + "855 São Paulo 70 2 1 0 - acept not furnished 0 2300 123 35 2458\n", + "856 Porto Alegre 148 2 1 2 3 acept not furnished 385 1650 880 25 2940\n", + "857 São Paulo 70 2 1 0 2 acept not furnished 1100 1280 0 17 2397\n", + "858 São Paulo 30 1 1 1 5 not acept not furnished 610 2300 134 30 3074\n", + "859 São Paulo 300 3 2 4 - acept not furnished 0 2700 250 41 2991\n", + "860 São Paulo 53 1 1 1 5 not acept furnished 1132 2600 0 33 3765\n", + "861 São Paulo 96 3 2 2 5 acept furnished 920 3148 81 40 4189\n", + "862 São Paulo 190 3 4 2 10 not acept not furnished 1764 6000 48 77 7889\n", + "863 São Paulo 250 3 5 8 - acept furnished 0 6000 7 91 6098\n", + "864 Belo Horizonte 130 4 1 3 - not acept not furnished 0 2150 0 36 2186\n", + "865 São Paulo 250 3 3 6 - acept not furnished 0 4250 519 64 4833\n", + "866 Campinas 50 1 1 0 7 acept not furnished 305 650 13 9 977\n", + "867 Belo Horizonte 840 5 6 5 - acept not furnished 0 8000 511 132 8643\n", + "868 Rio de Janeiro 95 3 3 0 5 acept not furnished 750 1999 291 26 3066\n", + "869 São Paulo 33 1 1 0 1 not acept not furnished 250 1305 0 17 1572\n", + "870 Rio de Janeiro 60 2 1 0 2 acept not furnished 380 1350 0 18 1748\n", + "871 São Paulo 51 1 1 0 11 acept furnished 900 4950 125 63 6038\n", + "872 Rio de Janeiro 200 4 3 2 2 acept not furnished 1900 8000 756 104 10760\n", + "873 São Paulo 212 4 5 6 7 acept not furnished 2850 4500 1067 58 8475\n", + "874 Belo Horizonte 66 3 1 0 - acept not furnished 15 1525 0 26 1566\n", + "875 São Paulo 150 3 5 2 14 acept not furnished 1423 3102 452 40 5017\n", + "876 Rio de Janeiro 48 2 1 1 12 acept not furnished 400 1270 9 17 1696\n", + "877 São Paulo 90 2 2 1 - acept not furnished 0 2500 274 38 2812\n", + "878 Porto Alegre 136 4 3 2 3 not acept not furnished 750 4000 327 59 5136\n", + "879 São Paulo 40 1 1 1 14 acept not furnished 557 3000 95 39 3691\n", + "880 São Paulo 100 1 2 2 - not acept not furnished 0 1700 0 26 1726\n", + "881 São Paulo 32 1 1 0 18 acept not furnished 330 1200 100 16 1646\n", + "882 São Paulo 30 1 1 1 13 acept furnished 700 3300 9 42 4051\n", + "883 São Paulo 170 2 2 5 - acept not furnished 0 5500 600 83 6183\n", + "884 Campinas 184 4 3 4 - acept not furnished 0 3240 220 49 3509\n", + "885 São Paulo 368 4 5 4 1 acept not furnished 4210 5000 2661 64 11940\n", + "886 São Paulo 230 3 4 4 12 acept not furnished 3300 7000 917 89 11310\n", + "887 São Paulo 214 4 6 4 4 acept furnished 2000 11000 780 140 13920\n", + "888 Belo Horizonte 37 1 1 1 7 not acept not furnished 425 2000 0 27 2452\n", + "889 São Paulo 450 5 5 4 - not acept not furnished 0 5540 520 84 6144\n", + "890 São Paulo 87 3 2 0 6 acept not furnished 1284 2000 231 26 3541\n", + "891 São Paulo 70 2 1 1 - acept not furnished 0 1300 25 20 1345\n", + "892 São Paulo 54 2 1 1 - acept not furnished 480 1250 7 16 1753\n", + "893 Belo Horizonte 155 4 3 3 7 acept not furnished 1200 3300 356 44 4900\n", + "894 São Paulo 35 1 1 0 - acept not furnished 0 1100 30 14 1144\n", + "895 São Paulo 160 4 4 5 - acept not furnished 0 4500 0 68 4568\n", + "896 Belo Horizonte 95 3 2 2 1 acept not furnished 210 1400 122 19 1751\n", + "897 São Paulo 113 2 1 1 5 acept not furnished 1000 3000 50 39 4089\n", + "898 Rio de Janeiro 70 3 2 1 9 acept not furnished 1002 850 255 11 2118\n", + "899 São Paulo 131 3 2 2 1 acept not furnished 1497 1800 600 23 3920\n", + "900 Belo Horizonte 130 3 3 1 2 acept not furnished 690 3200 150 43 4083\n", + "901 Porto Alegre 72 2 1 0 1 acept not furnished 80 1300 40 19 1439\n", + "902 Belo Horizonte 130 2 1 1 - acept not furnished 0 1280 59 21 1360\n", + "903 Rio de Janeiro 80 2 3 1 7 acept furnished 850 1300 320 10 2480\n", + "904 São Paulo 50 3 2 2 - acept not furnished 150 2800 30 43 3023\n", + "905 São Paulo 54 2 1 1 4 not acept not furnished 570 2000 10 26 2606\n", + "906 São Paulo 130 3 3 3 23 acept not furnished 1290 2800 489 36 4615\n", + "907 Porto Alegre 230 4 1 1 3 acept not furnished 1287 3500 370 52 5209\n", + "908 São Paulo 50 2 1 1 1 acept not furnished 300 1100 0 14 1414\n", + "909 Belo Horizonte 100 3 2 3 - acept not furnished 0 2800 0 46 2846\n", + "910 Belo Horizonte 40 1 1 1 2 not acept furnished 0 970 0 13 983\n", + "911 Campinas 75 3 1 1 1 not acept not furnished 296 12000 0 181 12480\n", + "912 São Paulo 30 1 1 1 4 not acept furnished 1787 1200 144 16 3147\n", + "913 Porto Alegre 68 2 2 1 3 acept not furnished 400 1800 82 27 2309\n", + "914 São Paulo 117 3 3 2 - acept not furnished 0 2700 16 41 2757\n", + "915 Porto Alegre 600 5 4 5 - acept furnished 0 12000 1167 214 13380\n", + "916 São Paulo 126 3 2 2 18 not acept not furnished 990 1610 0 21 2621\n", + "917 Porto Alegre 290 4 4 3 - acept not furnished 0 2500 262 45 2807\n", + "918 Porto Alegre 120 3 1 0 4 acept not furnished 1090 1500 125 22 2737\n", + "919 Rio de Janeiro 35 1 1 0 3 acept furnished 450 1600 0 21 2071\n", + "920 Belo Horizonte 40 1 1 1 2 not acept furnished 0 970 0 13 983\n", + "921 São Paulo 56 2 2 1 4 acept not furnished 500 2000 0 26 2526\n", + "922 Campinas 53 2 1 1 1 acept not furnished 0 800 65 11 876\n", + "923 São Paulo 270 4 4 4 11 acept furnished 2800 15000 100 191 18090\n", + "924 Porto Alegre 150 4 2 2 - acept not furnished 600 1100 0 20 1720\n", + "925 São Paulo 40 1 1 0 1 not acept not furnished 0 980 0 13 993\n", + "926 São Paulo 31 1 1 0 9 acept furnished 400 3280 109 42 3831\n", + "927 São Paulo 50 2 2 1 1 acept not furnished 450 1275 23 17 1765\n", + "928 São Paulo 347 5 5 4 - acept not furnished 0 7000 500 106 7606\n", + "929 São Paulo 70 3 1 1 14 not acept not furnished 428 1800 42 23 2293\n", + "930 Rio de Janeiro 75 2 1 0 4 acept not furnished 440 1200 0 16 1656\n", + "931 Porto Alegre 90 3 2 0 3 not acept not furnished 405 1105 31 17 1558\n", + "932 São Paulo 200 3 4 1 10 acept not furnished 1600 1190 550 16 3356\n", + "933 São Paulo 201 4 4 4 13 acept not furnished 2600 5933 900 76 9509\n", + "934 São Paulo 37 1 1 0 1 acept not furnished 0 1400 0 18 1418\n", + "935 São Paulo 75 3 1 1 8 not acept not furnished 837 2200 70 28 3135\n", + "936 São Paulo 42 1 1 0 6 acept not furnished 1290 1650 184 21 3145\n", + "937 Campinas 148 3 2 0 14 acept not furnished 610 1700 102 22 2434\n", + "938 São Paulo 200 2 2 0 - acept not furnished 0 3000 9 46 3055\n", + "939 São Paulo 216 3 3 3 16 acept not furnished 2328 13000 1230 165 16720\n", + "940 São Paulo 300 3 2 0 - acept furnished 0 8300 217 125 8642\n", + "941 São Paulo 73 1 1 0 2 acept not furnished 0 1350 62 18 1430\n", + "942 Rio de Janeiro 77 3 1 0 2 acept furnished 1163 4200 269 55 5687\n", + "943 Belo Horizonte 50 2 1 0 - acept not furnished 0 850 30 12 892\n", + "944 São Paulo 480 4 7 8 - acept not furnished 0 14000 2186 211 16400\n", + "945 São Paulo 300 5 5 2 - acept not furnished 0 4000 220 61 4281\n", + "946 Rio de Janeiro 180 3 2 1 9 acept not furnished 1600 4900 459 64 7023\n", + "947 Porto Alegre 68 3 2 1 10 acept not furnished 600 1600 76 24 2300\n", + "948 São Paulo 62 2 2 1 1 acept not furnished 560 1550 17 20 2147\n", + "949 São Paulo 62 2 2 2 6 not acept not furnished 1000 3230 230 41 4501\n", + "950 Campinas 212 4 1 2 - acept not furnished 0 1500 88 23 1611\n", + "951 São Paulo 340 3 4 4 - acept not furnished 0 10000 1584 151 11740\n", + "952 Porto Alegre 280 5 4 8 - acept not furnished 0 10000 417 178 10600\n", + "953 São Paulo 250 4 3 4 - acept not furnished 0 7200 434 109 7743\n", + "954 São Paulo 64 2 1 0 8 acept not furnished 500 1600 100 21 2221\n", + "955 São Paulo 25 1 1 0 12 acept not furnished 318 2100 41 27 2486\n", + "956 São Paulo 37 1 1 0 11 not acept not furnished 346 3250 69 42 3707\n", + "957 Campinas 51 3 1 1 - acept not furnished 246 1100 71 14 1431\n", + "958 Rio de Janeiro 75 2 3 1 2 acept not furnished 862 1600 260 21 2743\n", + "959 São Paulo 40 1 1 1 - not acept not furnished 0 972 0 15 987\n", + "960 Rio de Janeiro 25 1 1 0 1 acept not furnished 50 700 0 10 760\n", + "961 Porto Alegre 340 5 4 4 - acept not furnished 0 4800 300 86 5186\n", + "962 Rio de Janeiro 60 2 1 0 2 acept not furnished 880 2650 209 35 3774\n", + "963 Campinas 90 1 1 1 7 not acept furnished 1750 1680 100 22 3552\n", + "964 São Paulo 120 3 3 2 - acept not furnished 0 8900 371 134 9405\n", + "965 São Paulo 200 1 2 0 - acept not furnished 0 8000 700 121 8821\n", + "966 São Paulo 168 4 4 3 6 acept not furnished 1400 3250 234 42 4926\n", + "967 São Paulo 212 4 5 4 16 acept not furnished 4000 10000 834 127 14960\n", + "968 São Paulo 40 1 1 1 7 acept not furnished 450 2400 0 31 2881\n", + "969 São Paulo 78 1 2 1 10 not acept not furnished 900 2440 167 31 3538\n", + "970 São Paulo 340 3 4 3 - acept furnished 0 9800 392 148 10340\n", + "971 Belo Horizonte 300 4 4 4 4 acept not furnished 2200 10000 1114 134 13450\n", + "972 Belo Horizonte 181 3 3 3 - acept not furnished 0 5500 148 91 5739\n", + "973 São Paulo 68 2 2 0 6 not acept furnished 630 6443 20 82 7175\n", + "974 São Paulo 600 6 7 4 - acept furnished 10000 15000 84 226 25310\n", + "975 São Paulo 138 3 3 2 - acept not furnished 0 2700 141 41 2882\n", + "976 Belo Horizonte 65 2 1 1 6 not acept not furnished 486 1200 101 16 1803\n", + "977 São Paulo 44 1 1 1 6 not acept not furnished 571 2000 130 26 2727\n", + "978 São Paulo 600 5 7 8 - acept furnished 0 9000 1875 136 11010\n", + "979 Belo Horizonte 53 1 1 0 1 acept not furnished 398 1300 89 18 1805\n", + "980 Belo Horizonte 340 4 5 4 20 acept not furnished 2260 12000 872 160 15290\n", + "981 São Paulo 183 6 5 2 2 not acept not furnished 800 3800 25 58 4683\n", + "982 São Paulo 80 2 3 0 6 acept not furnished 1312 3300 427 42 5081\n", + "983 Campinas 50 1 1 1 7 not acept furnished 406 2800 123 36 3365\n", + "984 São Paulo 293 4 3 3 5 acept not furnished 3300 1050 500 14 4864\n", + "985 Belo Horizonte 80 3 2 1 2 acept not furnished 413 1800 124 24 2361\n", + "986 São Paulo 30 1 1 0 1 acept furnished 143 1318 0 17 1478\n", + "987 São Paulo 150 3 4 2 - acept not furnished 0 2000 200 31 2231\n", + "988 Campinas 70 3 2 2 2 acept furnished 359 2010 74 26 2469\n", + "989 São Paulo 85 2 1 1 1 acept not furnished 500 2300 97 30 2927\n", + "990 Rio de Janeiro 500 5 5 1 - acept not furnished 0 7900 486 121 8507\n", + "991 Porto Alegre 49 2 1 1 - acept not furnished 150 1220 6 22 1398\n", + "992 São Paulo 325 4 5 7 - acept furnished 0 11500 825 173 12500\n", + "993 Rio de Janeiro 35 1 1 0 6 not acept furnished 0 2570 58 34 2662\n", + "994 São Paulo 270 4 3 3 2 acept not furnished 3260 7500 550 96 11410\n", + "995 São Paulo 540 4 7 5 11 acept not furnished 4922 15000 3565 191 23680\n", + "996 São Paulo 150 3 5 3 2 acept furnished 990 11000 284 140 12410\n", + "997 Belo Horizonte 300 3 3 2 - acept not furnished 0 5000 690 82 5772\n", + "998 São Paulo 42 1 1 1 21 not acept furnished 2406 2500 202 32 5140\n", + "999 São Paulo 126 2 1 0 - acept not furnished 0 1700 314 26 2040\n", + "1000 São Paulo 67 2 1 1 4 acept not furnished 1500 2099 250 27 3876\n", + "1001 São Paulo 80 3 3 2 4 acept furnished 1374 2000 283 26 3683\n", + "1002 São Paulo 85 3 1 2 4 acept not furnished 1600 1900 139 25 3664\n", + "1003 Porto Alegre 290 5 5 3 4 not acept not furnished 3500 5600 49 82 9231\n", + "1004 São Paulo 274 2 3 4 - acept not furnished 0 3000 323 46 3369\n", + "1005 Campinas 46 2 1 1 3 acept not furnished 250 970 42 13 1275\n", + "1006 Belo Horizonte 50 2 1 1 4 acept not furnished 250 860 69 12 1191\n", + "1007 São Paulo 42 1 1 0 - not acept not furnished 0 1600 50 25 1675\n", + "1008 Campinas 55 1 1 1 2 acept not furnished 0 1195 0 16 1211\n", + "1009 Rio de Janeiro 55 1 2 1 2 acept not furnished 650 1200 55 16 1921\n", + "1010 Belo Horizonte 80 2 3 2 6 acept not furnished 980 3260 350 44 4634\n", + "1011 São Paulo 42 1 1 1 5 acept not furnished 460 2300 95 30 2885\n", + "1012 Campinas 70 2 1 1 3 acept not furnished 500 1275 74 17 1866\n", + "1013 Campinas 78 3 2 1 15 acept not furnished 542 1935 73 25 2575\n", + "1014 Belo Horizonte 55 2 1 1 2 acept not furnished 200 1100 91 15 1406\n", + "1015 São Paulo 63 2 1 1 3 acept not furnished 600 1120 34 15 1769\n", + "1016 São Paulo 57 2 2 1 8 acept not furnished 358 2550 132 33 3073\n", + "1017 Porto Alegre 78 2 1 0 2 acept not furnished 80 1330 91 20 1521\n", + "1018 São Paulo 140 2 2 2 7 acept not furnished 1260 6740 0 86 8086\n", + "1019 Belo Horizonte 71 3 2 2 3 acept not furnished 270 1300 101 18 1689\n", + "1020 São Paulo 845 5 9 6 - acept furnished 0 8499 1000 128 9627\n", + "1021 Belo Horizonte 70 2 1 1 3 not acept not furnished 344 1100 107 15 1566\n", + "1022 Campinas 40 1 1 0 8 not acept not furnished 327 595 12 8 942\n", + "1023 São Paulo 82 2 2 1 2 acept furnished 750 3100 51 40 3941\n", + "1024 São Paulo 31 1 1 1 4 acept not furnished 272 3200 64 41 3577\n", + "1025 Porto Alegre 62 2 2 1 7 not acept furnished 800 3900 100 57 4857\n", + "1026 São Paulo 156 4 4 3 9 acept furnished 1531 3510 995 45 6081\n", + "1027 São Paulo 300 3 4 7 - not acept not furnished 0 4340 550 66 4956\n", + "1028 Rio de Janeiro 35 1 1 0 - acept not furnished 0 750 0 10 760\n", + "1029 São Paulo 40 1 1 1 13 not acept not furnished 1100 1600 160 21 2881\n", + "1030 São Paulo 39 1 1 1 5 acept furnished 300 1700 50 22 2072\n", + "1031 Belo Horizonte 100 3 3 2 6 not acept not furnished 720 1800 143 24 2687\n", + "1032 Rio de Janeiro 60 2 1 0 7 acept not furnished 528 1100 86 15 1729\n", + "1033 São Paulo 43 2 1 0 1 not acept not furnished 0 1250 120 16 1386\n", + "1034 Rio de Janeiro 120 2 2 0 8 acept furnished 990 12000 125 155 13270\n", + "1035 Belo Horizonte 90 3 1 1 - acept not furnished 0 1360 1 23 1384\n", + "1036 São Paulo 170 3 2 1 14 acept furnished 1670 10500 84 134 12390\n", + "1037 Belo Horizonte 154 4 2 3 4 not acept furnished 2150 5400 647 72 8269\n", + "1038 São Paulo 108 3 3 2 3 acept not furnished 1800 4800 393 61 7054\n", + "1039 São Paulo 20 1 1 0 4 acept furnished 602 1800 130 23 2555\n", + "1040 Rio de Janeiro 200 4 3 2 7 acept not furnished 1940 2300 467 30 4737\n", + "1041 Belo Horizonte 800 7 7 4 - acept furnished 0 8900 943 146 9989\n", + "1042 São Paulo 43 2 2 0 - not acept furnished 0 1750 70 23 1843\n", + "1043 Campinas 125 2 1 0 4 acept not furnished 778 850 120 11 1759\n", + "1044 Campinas 28 1 1 0 - not acept furnished 0 1390 0 18 1408\n", + "1045 São Paulo 37 1 1 1 1 not acept furnished 604 2600 252 33 3489\n", + "1046 São Paulo 60 3 2 1 - acept furnished 0 2430 0 37 2467\n", + "1047 São Paulo 121 2 3 1 20 acept not furnished 825 2560 170 33 3588\n", + "1048 Belo Horizonte 600 5 5 2 - acept not furnished 0 7500 158 123 7781\n", + "1049 São Paulo 161 3 3 2 10 acept not furnished 1500 2750 418 35 4703\n", + "1050 Campinas 60 2 1 1 2 acept not furnished 497 1350 67 18 1932\n", + "1051 São Paulo 60 3 1 1 7 acept not furnished 630 1700 8 22 2360\n", + "1052 Rio de Janeiro 55 2 1 0 2 acept not furnished 523 2300 109 30 2962\n", + "1053 São Paulo 90 3 1 1 2 acept not furnished 1000 3000 50 39 4089\n", + "1054 São Paulo 65 2 1 0 - acept not furnished 0 1500 84 23 1607\n", + "1055 Porto Alegre 18 1 1 0 16 acept not furnished 480 700 15 11 1206\n", + "1056 São Paulo 345 3 3 5 2 acept not furnished 3000 12750 834 162 16750\n", + "1057 Porto Alegre 50 2 1 1 4 acept not furnished 600 1190 42 18 1850\n", + "1058 São Paulo 230 4 5 4 7 acept not furnished 3240 12500 917 159 16820\n", + "1059 São Paulo 100 2 2 1 3 acept not furnished 299 1850 60 24 2233\n", + "1060 São Paulo 136 3 3 3 13 acept not furnished 1430 4206 364 54 6054\n", + "1061 Porto Alegre 263 3 3 0 2 acept furnished 30 3500 150 52 3732\n", + "1062 Belo Horizonte 65 2 2 2 3 acept not furnished 230 1700 115 23 2068\n", + "1063 Belo Horizonte 166 2 2 2 6 not acept not furnished 300 2100 253 28 2681\n", + "1064 São Paulo 20 1 1 0 5 acept furnished 602 1800 130 23 2555\n", + "1065 Campinas 308 4 3 4 - acept not furnished 0 3900 381 59 4340\n", + "1066 São Paulo 400 4 3 5 - acept not furnished 0 10600 459 160 11220\n", + "1067 Belo Horizonte 140 3 4 3 11 acept not furnished 525 3000 307 40 3872\n", + "1068 Campinas 47 1 1 0 1 acept furnished 380 550 14 7 951\n", + "1069 São Paulo 178 3 3 3 8 acept furnished 2500 8300 700 106 11610\n", + "1070 Belo Horizonte 100 3 2 1 1 acept not furnished 288 1500 60 20 1868\n", + "1071 São Paulo 62 3 2 1 6 not acept furnished 1550 4800 167 61 6578\n", + "1072 São Paulo 390 4 4 5 8 not acept furnished 8500 8600 3917 109 21130\n", + "1073 São Paulo 217 3 4 1 10 acept not furnished 2200 9000 458 115 11770\n", + "1074 Belo Horizonte 280 4 4 3 8 acept furnished 2850 9000 503 120 12470\n", + "1075 São Paulo 30 1 1 1 4 not acept not furnished 673 2500 62 32 3267\n", + "1076 São Paulo 39 1 1 1 11 acept furnished 390 2500 0 32 2922\n", + "1077 Belo Horizonte 118 3 3 1 1 acept not furnished 350 1230 88 17 1685\n", + "1078 São Paulo 42 1 1 1 17 not acept furnished 1352 1900 150 25 3427\n", + "1079 São Paulo 120 2 3 2 19 acept furnished 0 9920 0 126 10050\n", + "1080 São Paulo 174 4 5 4 13 acept furnished 1850 4745 567 61 7223\n", + "1081 São Paulo 450 4 4 3 7 acept not furnished 5096 10000 0 127 15220\n", + "1082 Belo Horizonte 50 2 1 1 2 acept not furnished 250 900 69 12 1231\n", + "1083 São Paulo 50 2 2 2 6 acept furnished 1720 7070 0 90 8880\n", + "1084 Rio de Janeiro 80 2 1 0 2 acept not furnished 300 2000 76 26 2402\n", + "1085 Porto Alegre 134 3 2 2 4 acept not furnished 985 2900 242 43 4170\n", + "1086 Campinas 188 5 4 0 - acept not furnished 0 4000 178 61 4239\n", + "1087 Rio de Janeiro 90 2 2 2 3 acept furnished 1100 4850 200 63 6213\n", + "1088 São Paulo 340 4 4 3 14 not acept not furnished 5000 5000 1084 64 11150\n", + "1089 São Paulo 110 3 3 2 - acept not furnished 0 2800 77 43 2920\n", + "1090 Rio de Janeiro 58 2 1 1 9 acept not furnished 500 2673 0 35 3208\n", + "1091 Rio de Janeiro 37 1 1 0 10 acept furnished 687 1840 86 24 2637\n", + "1092 São Paulo 280 3 5 3 - acept not furnished 0 8000 0 121 8121\n", + "1093 São Paulo 220 3 4 3 16 acept furnished 1500 8000 555 102 10160\n", + "1094 São Paulo 272 5 5 2 - acept not furnished 0 11000 917 166 12080\n", + "1095 São Paulo 49 2 1 1 18 acept furnished 370 2000 80 26 2476\n", + "1096 Campinas 54 1 1 1 5 acept not furnished 750 773 67 10 1600\n", + "1097 Belo Horizonte 68 2 1 1 11 acept not furnished 400 500 30 7 937\n", + "1098 São Paulo 227 3 4 4 18 not acept furnished 2100 12000 1292 153 15550\n", + "1099 Belo Horizonte 350 5 4 4 - acept not furnished 0 15000 1320 246 16570\n", + "1100 Porto Alegre 116 3 2 1 9 acept not furnished 700 2600 167 38 3505\n", + "1101 São Paulo 130 2 2 1 17 acept not furnished 993 5600 75 71 6739\n", + "1102 São Paulo 94 2 2 1 6 acept not furnished 1000 3500 92 45 4637\n", + "1103 São Paulo 330 5 4 4 - acept not furnished 0 4600 192 70 4862\n", + "1104 Rio de Janeiro 230 4 4 0 6 acept not furnished 2500 11000 900 142 14540\n", + "1105 Belo Horizonte 55 2 1 1 7 not acept not furnished 160 900 0 12 1072\n", + "1106 São Paulo 148 3 2 3 5 acept furnished 1750 3300 609 42 5701\n", + "1107 São Paulo 500 3 3 7 - acept not furnished 0 5500 84 83 5667\n", + "1108 Campinas 184 4 3 4 - acept not furnished 0 3240 220 49 3509\n", + "1109 Rio de Janeiro 250 4 4 0 1 acept not furnished 2000 5000 575 65 7640\n", + "1110 Belo Horizonte 306 3 5 0 - acept not furnished 0 8000 0 132 8132\n", + "1111 Belo Horizonte 20 1 1 0 7 acept not furnished 420 1050 79 14 1563\n", + "1112 Porto Alegre 60 1 1 0 2 not acept not furnished 300 920 0 14 1234\n", + "1113 São Paulo 130 3 2 2 15 not acept not furnished 1400 6200 4000 79 11680\n", + "1114 São Paulo 450 4 5 7 - acept furnished 0 12000 334 181 12520\n", + "1115 Rio de Janeiro 113 3 1 0 1 not acept furnished 700 2500 130 33 3363\n", + "1116 Rio de Janeiro 66 2 1 1 3 not acept not furnished 699 1170 67 16 1952\n", + "1117 Campinas 83 2 1 1 1 not acept not furnished 390 960 50 13 1413\n", + "1118 Belo Horizonte 83 3 3 2 6 acept furnished 450 3655 142 49 4296\n", + "1119 São Paulo 50 1 1 1 3 not acept not furnished 1450 4600 305 59 6414\n", + "1120 São Paulo 52 2 1 1 2 acept not furnished 789 3350 0 43 4182\n", + "1121 São Paulo 250 3 3 3 - acept not furnished 0 3210 0 49 3259\n", + "1122 São Paulo 121 2 2 1 2 acept furnished 1800 3100 292 40 5232\n", + "1123 Rio de Janeiro 85 2 3 1 5 acept not furnished 950 7100 194 92 8336\n", + "1124 São Paulo 152 4 3 3 13 not acept not furnished 1607 4700 823 60 7190\n", + "1125 São Paulo 32 1 1 1 14 not acept furnished 2000 1700 125 22 3847\n", + "1126 São Paulo 311 4 5 6 4 acept furnished 5083 14000 3461 178 22720\n", + "1127 São Paulo 97 3 2 2 1 acept not furnished 730 3000 303 39 4072\n", + "1128 São Paulo 250 4 5 4 9 acept not furnished 4000 8440 1200 107 13750\n", + "1129 Rio de Janeiro 32 1 1 0 8 acept not furnished 574 1400 66 19 2059\n", + "1130 São Paulo 360 4 9 8 - acept not furnished 0 8540 1329 129 9998\n", + "1131 São Paulo 24 1 1 0 - not acept not furnished 0 870 0 14 884\n", + "1132 São Paulo 55 1 1 1 10 acept furnished 920 3190 309 41 4460\n", + "1133 Belo Horizonte 83 3 2 2 1 acept not furnished 200 1250 112 17 1579\n", + "1134 São Paulo 87 3 2 2 9 not acept not furnished 940 2600 234 33 3807\n", + "1135 Campinas 64 2 1 1 2 acept not furnished 549 850 76 11 1486\n", + "1136 São Paulo 25 1 1 0 - not acept not furnished 0 1350 87 21 1458\n", + "1137 São Paulo 30 1 1 1 6 acept not furnished 1900 2001 125 26 4052\n", + "1138 Rio de Janeiro 500 2 5 5 - not acept not furnished 0 1810 54 28 1892\n", + "1139 Porto Alegre 75 2 2 2 4 acept furnished 400 2750 92 41 3283\n", + "1140 São Paulo 205 3 3 4 - acept not furnished 0 6500 667 98 7265\n", + "1141 Belo Horizonte 88 3 2 0 - acept not furnished 0 1200 295 20 1515\n", + "1142 Porto Alegre 60 3 2 1 3 acept not furnished 700 1800 80 27 2607\n", + "1143 Belo Horizonte 70 2 1 1 3 acept not furnished 215 1100 60 15 1390\n", + "1144 Rio de Janeiro 100 2 3 0 1 acept not furnished 0 1700 130 22 1852\n", + "1145 Porto Alegre 37 1 1 0 2 acept not furnished 220 628 13 10 871\n", + "1146 São Paulo 45 1 1 0 - not acept not furnished 50 1050 34 16 1150\n", + "1147 São Paulo 330 3 3 5 - acept not furnished 0 8500 1201 128 9829\n", + "1148 São Paulo 35 1 1 0 2 not acept furnished 726 2800 200 36 3762\n", + "1149 Belo Horizonte 144 3 1 2 - acept not furnished 483 2300 170 31 2984\n", + "1150 Belo Horizonte 70 3 2 1 3 acept not furnished 250 1200 69 16 1535\n", + "1151 São Paulo 68 2 2 1 14 acept not furnished 762 2083 154 27 3026\n", + "1152 São Paulo 101 3 2 2 6 not acept not furnished 1205 5250 316 67 6838\n", + "1153 São Paulo 33 1 1 1 5 acept not furnished 842 2000 95 26 2963\n", + "1154 São Paulo 200 4 2 2 - acept not furnished 0 5800 250 88 6138\n", + "1155 São Paulo 80 2 1 0 - acept not furnished 0 1439 52 22 1513\n", + "1156 São Paulo 74 2 1 0 - not acept not furnished 0 1290 34 20 1344\n", + "1157 Belo Horizonte 65 2 2 1 2 acept not furnished 300 1500 76 20 1896\n", + "1158 Campinas 111 3 3 3 6 not acept furnished 1000 5000 283 64 6347\n", + "1159 São Paulo 380 3 6 8 - acept furnished 0 9000 244 136 9380\n", + "1160 São Paulo 60 2 1 0 - acept not furnished 120 1720 90 26 1956\n", + "1161 São Paulo 300 3 3 5 - acept not furnished 0 4250 417 64 4731\n", + "1162 Porto Alegre 72 2 2 2 6 acept not furnished 400 2400 88 36 2924\n", + "1163 Rio de Janeiro 75 2 2 1 5 not acept furnished 1832 2750 263 36 4881\n", + "1164 São Paulo 70 2 1 2 7 acept not furnished 543 1400 156 18 2117\n", + "1165 Belo Horizonte 360 5 4 1 - acept not furnished 0 4600 158 76 4834\n", + "1166 São Paulo 23 1 1 0 1 acept not furnished 423 1580 0 21 2024\n", + "1167 São Paulo 100 3 2 2 10 not acept not furnished 2152 3500 227 45 5924\n", + "1168 São Paulo 150 4 4 3 - acept not furnished 0 4100 172 62 4334\n", + "1169 Rio de Janeiro 57 1 1 1 2 acept furnished 2480 2480 800 32 5792\n", + "1170 São Paulo 180 3 2 2 - acept not furnished 0 3270 188 50 3508\n", + "1171 Belo Horizonte 360 3 3 4 - acept not furnished 0 5000 454 82 5536\n", + "1172 São Paulo 120 3 3 2 11 acept not furnished 995 2200 100 28 3323\n", + "1173 Belo Horizonte 45 2 1 1 1 not acept not furnished 300 900 0 12 1212\n", + "1174 Rio de Janeiro 30 1 1 0 8 acept not furnished 456 900 94 12 1462\n", + "1175 São Paulo 40 1 1 1 6 not acept furnished 1300 3000 248 39 4587\n", + "1176 São Paulo 130 3 2 1 2 not acept not furnished 1100 4500 384 58 6042\n", + "1177 Campinas 68 2 1 1 3 acept not furnished 482 831 0 11 1324\n", + "1178 São Paulo 70 2 1 1 1 acept not furnished 280 1000 138 13 1431\n", + "1179 Rio de Janeiro 77 2 2 1 1 acept not furnished 1150 3000 230 39 4419\n", + "1180 São Paulo 220 4 4 1 19 acept not furnished 1800 5500 650 70 8020\n", + "1181 Campinas 55 1 1 1 10 acept not furnished 550 720 80 10 1360\n", + "1182 Porto Alegre 70 3 1 1 13 acept not furnished 500 1300 36 19 1855\n", + "1183 São Paulo 250 4 4 4 9 acept not furnished 3300 12000 1120 153 16570\n", + "1184 São Paulo 110 3 2 2 6 acept not furnished 950 5550 385 71 6956\n", + "1185 Campinas 151 2 2 1 8 acept furnished 900 2000 262 26 3188\n", + "1186 Campinas 45 1 1 0 4 acept not furnished 290 700 10 9 1009\n", + "1187 Belo Horizonte 40 1 1 1 13 acept not furnished 591 2600 272 35 3498\n", + "1188 Belo Horizonte 98 3 2 2 3 acept not furnished 260 1100 82 15 1457\n", + "1189 São Paulo 70 2 2 1 1 acept not furnished 280 1000 138 13 1431\n", + "1190 São Paulo 205 4 3 3 10 acept not furnished 3800 10000 1167 127 15090\n", + "1191 São Paulo 40 1 1 1 3 not acept not furnished 225 1080 65 14 1384\n", + "1192 São Paulo 100 3 2 1 6 acept not furnished 1684 3600 325 46 5655\n", + "1193 Belo Horizonte 55 2 1 1 1 acept not furnished 250 1200 83 16 1549\n", + "1194 São Paulo 288 3 3 3 - acept not furnished 0 12000 878 181 13060\n", + "1195 Rio de Janeiro 70 1 1 0 9 not acept furnished 776 3400 77 44 4297\n", + "1196 São Paulo 70 2 1 1 8 not acept not furnished 600 2000 0 26 2626\n", + "1197 São Paulo 100 2 2 2 15 acept not furnished 1050 2780 109 36 3975\n", + "1198 Porto Alegre 72 2 1 0 3 acept furnished 620 1600 54 24 2298\n", + "1199 Rio de Janeiro 20 1 1 0 - acept furnished 422 980 20 13 1435\n", + "1200 Porto Alegre 360 4 4 4 - not acept not furnished 0 2820 321 51 3192\n", + "1201 São Paulo 150 3 3 2 - acept not furnished 0 4680 235 71 4986\n", + "1202 São Paulo 130 3 4 0 3 acept furnished 0 2443 0 31 2474\n", + "1203 São Paulo 22 1 1 0 25 acept not furnished 385 2100 40 27 2552\n", + "1204 Campinas 53 1 1 1 8 acept furnished 1350 3110 85 40 4585\n", + "1205 Rio de Janeiro 53 2 1 0 11 not acept not furnished 500 1000 0 13 1513\n", + "1206 São Paulo 642 4 7 4 - acept not furnished 0 9050 250 137 9437\n", + "1207 São Paulo 240 4 5 5 9 acept furnished 3442 9900 1529 126 15000\n", + "1208 São Paulo 450 3 3 1 - acept not furnished 1125 6500 59 98 7782\n", + "1209 Campinas 57 2 1 1 3 not acept not furnished 343 850 67 11 1271\n", + "1210 Belo Horizonte 130 4 3 1 1 acept not furnished 350 2600 206 35 3191\n", + "1211 São Paulo 53 2 2 1 7 acept not furnished 450 2350 0 30 2830\n", + "1212 Porto Alegre 39 1 1 1 5 not acept furnished 350 2600 67 38 3055\n", + "1213 São Paulo 850 6 7 4 - not acept not furnished 15000 13000 2465 196 30660\n", + "1214 São Paulo 35 1 1 0 1 not acept not furnished 250 1305 0 17 1572\n", + "1215 São Paulo 67 1 1 0 - acept not furnished 0 1300 55 20 1375\n", + "1216 São Paulo 120 3 2 1 6 acept not furnished 850 2600 120 33 3603\n", + "1217 São Paulo 200 5 6 4 6 acept not furnished 3300 5000 1250 64 9614\n", + "1218 Belo Horizonte 69 3 1 2 4 acept not furnished 230 1300 0 18 1548\n", + "1219 Porto Alegre 60 2 1 1 - acept not furnished 0 540 0 10 550\n", + "1220 Belo Horizonte 30 1 1 1 1 acept furnished 800 890 30 12 1732\n", + "1221 Rio de Janeiro 30 1 1 0 11 acept not furnished 500 1200 21 16 1737\n", + "1222 Campinas 650 4 6 4 - acept not furnished 760 13000 1042 196 15000\n", + "1223 Porto Alegre 80 2 1 1 3 not acept not furnished 500 1500 250 22 2272\n", + "1224 São Paulo 35 1 1 1 1 acept not furnished 0 977 30 13 1020\n", + "1225 Rio de Janeiro 135 3 2 1 6 acept not furnished 1850 4100 517 53 6520\n", + "1226 São Paulo 60 2 1 0 3 acept furnished 260 1800 0 23 2083\n", + "1227 Belo Horizonte 80 2 2 1 4 acept not furnished 700 1070 100 15 1885\n", + "1228 Campinas 80 2 2 1 - acept not furnished 0 1500 41 23 1564\n", + "1229 Belo Horizonte 160 4 6 3 7 not acept not furnished 1750 4750 831 64 7395\n", + "1230 São Paulo 135 2 2 1 12 acept not furnished 1313 8700 343 111 10470\n", + "1231 Campinas 340 4 5 0 - not acept not furnished 800 4000 334 61 5195\n", + "1232 São Paulo 35 1 1 1 1 not acept furnished 444 3507 124 45 4120\n", + "1233 Porto Alegre 38 1 1 0 6 not acept not furnished 670 806 92 12 1580\n", + "1234 Porto Alegre 81 3 2 1 6 acept not furnished 490 1630 90 24 2234\n", + "1235 Belo Horizonte 150 3 3 3 - acept not furnished 0 5950 146 98 6194\n", + "1236 São Paulo 126 3 1 2 - acept not furnished 0 4200 299 64 4563\n", + "1237 São Paulo 71 1 1 0 1 acept not furnished 718 1443 0 5 2166\n", + "1238 São Paulo 20 1 1 0 - acept furnished 602 1800 130 23 2555\n", + "1239 Campinas 55 1 1 1 5 not acept not furnished 730 750 80 10 1570\n", + "1240 Campinas 76 2 2 2 9 acept furnished 1027 2800 152 36 4015\n", + "1241 Rio de Janeiro 40 1 1 0 3 acept not furnished 700 2800 100 37 3637\n", + "1242 São Paulo 400 3 5 5 - acept not furnished 0 12500 0 188 12690\n", + "1243 Belo Horizonte 70 3 1 2 2 acept not furnished 230 1000 0 14 1244\n", + "1244 São Paulo 38 1 1 1 16 acept furnished 473 2800 10 36 3319\n", + "1245 Rio de Janeiro 80 2 1 0 6 acept not furnished 1050 1500 125 20 2695\n", + "1246 Rio de Janeiro 64 1 1 0 7 acept not furnished 670 1200 105 16 1991\n", + "1247 Belo Horizonte 300 4 3 2 - acept not furnished 0 10000 695 164 10860\n", + "1248 São Paulo 71 3 4 0 - acept not furnished 0 4000 0 61 4061\n", + "1249 São Paulo 25 1 1 1 5 not acept furnished 600 3500 92 45 4237\n", + "1250 São Paulo 1000 4 7 4 10 acept furnished 6000 15000 4900 191 26090\n", + "1251 São Paulo 196 3 5 3 3 acept furnished 3338 8440 1223 60 13060\n", + "1252 Campinas 48 2 1 1 3 acept not furnished 183 1190 0 16 1389\n", + "1253 São Paulo 315 3 5 2 14 not acept not furnished 4300 20000 959 254 25510\n", + "1254 Belo Horizonte 184 3 1 2 1 acept furnished 300 4000 110 54 4464\n", + "1255 Porto Alegre 450 5 4 4 - acept furnished 0 9000 250 160 9410\n", + "1256 São Paulo 102 3 2 2 1 acept not furnished 1300 2000 284 26 3610\n", + "1257 Campinas 135 3 2 2 3 acept not furnished 1100 2040 92 26 3258\n", + "1258 São Paulo 41 1 1 1 14 not acept not furnished 707 3000 36 39 3782\n", + "1259 São Paulo 144 2 4 6 - acept not furnished 0 2196 225 34 2455\n", + "1260 Rio de Janeiro 110 3 3 1 6 not acept not furnished 1300 1000 100 13 2413\n", + "1261 Porto Alegre 43 1 1 1 4 acept not furnished 240 1870 0 28 2138\n", + "1262 São Paulo 450 4 5 2 - not acept furnished 0 15000 1400 226 16630\n", + "1263 Belo Horizonte 70 2 1 2 1 acept not furnished 222 1600 100 22 1944\n", + "1264 São Paulo 220 4 4 4 5 not acept not furnished 2056 3230 1576 41 6903\n", + "1265 São Paulo 52 1 2 1 13 acept not furnished 1100 5000 210 64 6374\n", + "1266 São Paulo 198 2 2 2 13 acept not furnished 1700 5500 320 70 7590\n", + "1267 São Paulo 30 2 1 0 - acept not furnished 0 1500 5 23 1528\n", + "1268 Rio de Janeiro 217 3 3 2 5 acept furnished 2487 10300 600 133 13520\n", + "1269 São Paulo 290 4 4 0 - acept not furnished 0 6800 1100 103 8003\n", + "1270 Porto Alegre 70 2 1 0 1 acept furnished 350 1450 120 22 1942\n", + "1271 Rio de Janeiro 45 1 1 0 5 not acept furnished 700 2500 84 33 3317\n", + "1272 São Paulo 40 1 1 1 8 not acept not furnished 800 1675 50 22 2547\n", + "1273 Campinas 180 4 3 2 - acept not furnished 1050 4348 167 66 5631\n", + "1274 Rio de Janeiro 90 2 1 0 2 acept not furnished 200 1200 142 16 1558\n", + "1275 São Paulo 26 1 1 0 4 not acept not furnished 394 1178 28 15 1615\n", + "1276 São Paulo 629 4 4 4 - acept not furnished 0 15000 2064 226 17290\n", + "1277 São Paulo 120 4 3 2 - acept not furnished 0 3000 67 46 3113\n", + "1278 Porto Alegre 49 1 1 0 1 not acept not furnished 600 600 15 9 1224\n", + "1279 São Paulo 44 2 1 1 13 acept not furnished 290 1250 0 16 1556\n", + "1280 São Paulo 427 4 6 4 13 acept not furnished 3440 10000 1350 127 14920\n", + "1281 São Paulo 286 4 5 4 12 acept furnished 3150 4000 1580 51 8781\n", + "1282 Porto Alegre 88 2 2 2 1 acept not furnished 240 1600 84 24 1948\n", + "1283 São Paulo 120 2 3 2 20 acept not furnished 2000 7000 180 89 9269\n", + "1284 São Paulo 74 1 2 2 16 acept furnished 1300 3560 285 46 5191\n", + "1285 Porto Alegre 350 3 4 4 - not acept not furnished 0 3500 167 63 3730\n", + "1286 Porto Alegre 80 2 2 1 4 acept not furnished 693 1600 92 24 2409\n", + "1287 São Paulo 63 2 2 1 18 acept not furnished 784 4300 136 55 5275\n", + "1288 São Paulo 22 1 1 0 5 acept not furnished 423 1600 0 21 2044\n", + "1289 São Paulo 94 2 3 0 9 acept not furnished 1700 1300 306 17 3323\n", + "1290 São Paulo 60 2 1 0 - acept not furnished 0 1600 25 25 1650\n", + "1291 Rio de Janeiro 190 4 4 0 4 acept not furnished 2200 4000 600 52 6852\n", + "1292 São Paulo 78 2 1 1 1 acept not furnished 410 2500 0 32 2942\n", + "1293 Belo Horizonte 300 5 4 4 - acept not furnished 0 9000 1461 148 10610\n", + "1294 São Paulo 211 4 4 4 26 not acept not furnished 1500 2880 717 37 5134\n", + "1295 Campinas 84 2 1 1 7 acept not furnished 590 1100 104 14 1808\n", + "1296 Porto Alegre 300 3 3 5 - acept not furnished 0 3825 89 68 3982\n", + "1297 Belo Horizonte 497 5 5 4 - not acept not furnished 0 8000 720 132 8852\n", + "1298 São Paulo 71 3 2 1 2 acept not furnished 530 2500 130 32 3192\n", + "1299 Rio de Janeiro 138 2 1 0 3 acept not furnished 810 1000 175 13 1998\n", + "1300 Rio de Janeiro 120 3 2 1 12 acept not furnished 1300 2480 235 32 4047\n", + "1301 Rio de Janeiro 110 2 2 1 2 acept not furnished 1000 3500 210 46 4756\n", + "1302 São Paulo 30 1 1 1 14 acept not furnished 457 2800 72 36 3365\n", + "1303 São Paulo 386 4 6 3 21 acept not furnished 3890 12750 1980 162 18780\n", + "1304 Rio de Janeiro 70 2 1 0 4 acept not furnished 680 2000 96 26 2802\n", + "1305 Belo Horizonte 120 3 2 2 2 acept not furnished 150 1700 196 23 2069\n", + "1306 São Paulo 300 2 3 2 1 acept not furnished 7000 3560 1834 46 12440\n", + "1307 São Paulo 40 1 1 0 - not acept not furnished 0 780 17 12 809\n", + "1308 São Paulo 210 3 2 1 5 acept furnished 3400 7500 450 96 11450\n", + "1309 Rio de Janeiro 62 3 2 1 4 acept furnished 800 2100 174 28 3102\n", + "1310 Rio de Janeiro 84 3 2 1 6 acept not furnished 839 1820 234 24 2917\n", + "1311 São Paulo 23 1 1 0 23 acept not furnished 385 2050 40 26 2501\n", + "1312 São Paulo 140 2 4 2 19 not acept not furnished 950 6599 375 84 8008\n", + "1313 São Paulo 40 1 1 1 5 acept not furnished 512 2100 13 27 2652\n", + "1314 São Paulo 148 3 3 0 6 acept not furnished 2056 2400 200 31 4687\n", + "1315 São Paulo 75 3 2 2 14 acept not furnished 658 2300 87 30 3075\n", + "1316 São Paulo 40 1 1 0 - acept not furnished 0 650 17 10 677\n", + "1317 Rio de Janeiro 77 2 2 2 2 acept not furnished 1039 4200 301 55 5595\n", + "1318 São Paulo 90 2 2 0 1 not acept not furnished 657 1800 0 23 2480\n", + "1319 Rio de Janeiro 300 4 4 0 - acept not furnished 0 3800 344 58 4202\n", + "1320 Rio de Janeiro 98 2 2 0 1 not acept furnished 820 3050 172 40 4082\n", + "1321 São Paulo 64 2 2 1 4 acept not furnished 750 2800 0 36 3586\n", + "1322 São Paulo 100 3 2 2 7 not acept not furnished 1400 3500 217 45 5162\n", + "1323 Belo Horizonte 80 2 1 0 2 acept not furnished 275 1500 104 20 1899\n", + "1324 São Paulo 110 3 2 1 2 not acept not furnished 1341 4400 259 56 6056\n", + "1325 São Paulo 40 1 1 0 1 acept not furnished 0 1000 56 13 1069\n", + "1326 Rio de Janeiro 80 2 1 0 3 acept not furnished 877 1800 74 24 2775\n", + "1327 São Paulo 17 1 1 0 2 acept not furnished 0 2700 42 35 2777\n", + "1328 São Paulo 137 2 2 1 - not acept not furnished 0 4600 410 70 5080\n", + "1329 São Paulo 230 4 3 4 17 not acept furnished 2217 6000 745 77 9039\n", + "1330 Rio de Janeiro 90 3 3 1 5 acept not furnished 811 1700 52 22 2585\n", + "1331 São Paulo 347 4 7 6 - acept not furnished 0 8900 1000 134 10030\n", + "1332 Belo Horizonte 200 4 3 0 - acept not furnished 0 15000 36 246 15280\n", + "1333 São Paulo 56 1 1 0 9 acept not furnished 390 1300 37 17 1744\n", + "1334 Campinas 650 5 4 8 - acept furnished 0 8500 442 128 9070\n", + "1335 Rio de Janeiro 30 1 1 0 1 acept not furnished 310 1200 45 16 1571\n", + "1336 Campinas 52 1 1 1 17 acept furnished 750 1250 123 16 2139\n", + "1337 São Paulo 120 3 2 2 5 not acept not furnished 1520 5000 0 36 6556\n", + "1338 Rio de Janeiro 50 1 1 1 5 acept not furnished 90 1010 0 14 1114\n", + "1339 São Paulo 120 3 2 1 17 acept not furnished 1250 2000 230 26 3506\n", + "1340 Belo Horizonte 80 2 2 2 12 acept furnished 1100 4800 300 64 6264\n", + "1341 São Paulo 58 2 2 1 6 acept not furnished 450 4700 42 60 5252\n", + "1342 Porto Alegre 89 3 1 0 3 acept not furnished 631 1100 85 17 1833\n", + "1343 São Paulo 250 3 4 3 1 acept furnished 2900 9800 125 125 12950\n", + "1344 São Paulo 242 5 3 2 - acept not furnished 0 4250 380 64 4694\n", + "1345 São Paulo 55 2 1 1 1 acept furnished 300 2200 84 28 2612\n", + "1346 Belo Horizonte 45 1 1 0 - acept not furnished 0 1100 127 19 1246\n", + "1347 São Paulo 204 4 6 4 8 acept furnished 3900 6800 940 87 11730\n", + "1348 Rio de Janeiro 37 1 1 0 4 acept furnished 709 1200 196 16 2121\n", + "1349 São Paulo 50 1 1 0 6 acept furnished 240 2640 0 34 2914\n", + "1350 São Paulo 73 2 2 2 1 acept not furnished 778 1200 84 16 2078\n", + "1351 Porto Alegre 180 6 2 2 2 acept not furnished 0 4100 234 60 4394\n", + "1352 Rio de Janeiro 300 4 2 0 - acept not furnished 219 6500 280 99 7098\n", + "1353 Porto Alegre 71 2 2 1 3 acept not furnished 861 1300 79 19 2259\n", + "1354 São Paulo 284 3 2 2 9 acept furnished 2300 6600 584 84 9568\n", + "1355 Campinas 37 1 1 1 2 acept not furnished 478 555 0 8 1041\n", + "1356 São Paulo 35 1 1 0 - not acept not furnished 0 750 34 12 796\n", + "1357 São Paulo 190 2 2 4 - acept not furnished 0 4200 0 64 4264\n", + "1358 São Paulo 67 2 1 1 2 acept furnished 894 1600 25 21 2540\n", + "1359 Rio de Janeiro 98 2 2 0 10 acept not furnished 950 2882 223 38 4093\n", + "1360 São Paulo 260 4 5 2 1 acept furnished 2600 8000 417 102 11120\n", + "1361 São Paulo 139 3 2 2 1 not acept not furnished 1600 3870 325 50 5845\n", + "1362 Porto Alegre 76 2 2 1 4 acept not furnished 700 2200 0 33 2933\n", + "1363 Belo Horizonte 150 3 2 1 3 acept not furnished 480 3000 224 40 3744\n", + "1364 Rio de Janeiro 51 1 1 1 4 acept not furnished 800 1100 64 15 1979\n", + "1365 Belo Horizonte 120 3 2 2 2 acept not furnished 150 1700 195 23 2068\n", + "1366 Porto Alegre 42 1 1 0 3 acept furnished 150 1050 0 16 1216\n", + "1367 Belo Horizonte 180 4 2 2 1 acept not furnished 1500 2800 267 38 4605\n", + "1368 São Paulo 65 2 1 0 1 acept furnished 286 4200 17 54 4557\n", + "1369 São Paulo 420 5 4 4 7 acept not furnished 8000 12000 200 153 20350\n", + "1370 São Paulo 90 2 2 2 9 not acept not furnished 1649 1400 850 18 3917\n", + "1371 São Paulo 44 1 1 0 7 acept not furnished 460 1700 0 22 2182\n", + "1372 São Paulo 240 2 3 1 3 acept furnished 2300 6500 30 83 8913\n", + "1373 São Paulo 280 4 5 4 - acept not furnished 0 6350 350 96 6796\n", + "1374 São Paulo 120 2 2 3 9 acept not furnished 2449 3300 575 42 6366\n", + "1375 Belo Horizonte 140 4 3 4 10 not acept not furnished 1050 2300 376 31 3757\n", + "1376 São Paulo 65 2 2 1 16 acept not furnished 489 1750 68 23 2330\n", + "1377 Belo Horizonte 52 1 2 1 11 acept furnished 1000 3600 211 48 4859\n", + "1378 Porto Alegre 199 3 4 3 7 acept furnished 900 8750 334 128 10110\n", + "1379 Porto Alegre 71 2 2 1 4 acept not furnished 1080 2700 100 40 3920\n", + "1380 São Paulo 42 1 1 0 2 acept not furnished 530 2800 0 36 3366\n", + "1381 São Paulo 420 4 3 4 - acept not furnished 0 15000 1250 226 16480\n", + "1382 Porto Alegre 169 2 1 1 - acept not furnished 0 2800 55 50 2905\n", + "1383 São Paulo 170 3 2 4 6 acept not furnished 3678 1500 1130 20 6328\n", + "1384 São Paulo 45 2 2 0 - not acept not furnished 0 1650 84 25 1759\n", + "1385 São Paulo 60 2 1 1 6 acept not furnished 660 2700 98 35 3493\n", + "1386 São Paulo 76 3 2 2 3 acept not furnished 915 1450 104 19 2488\n", + "1387 Porto Alegre 47 1 1 1 1 not acept furnished 400 2200 0 33 2633\n", + "1388 São Paulo 22 1 1 0 25 acept not furnished 472 2200 55 28 2755\n", + "1389 Rio de Janeiro 63 2 2 1 1 acept not furnished 600 1800 92 24 2516\n", + "1390 São Paulo 33 1 1 1 7 not acept furnished 630 3600 0 46 4276\n", + "1391 São Paulo 96 3 2 2 19 acept not furnished 480 2300 250 30 3060\n", + "1392 Belo Horizonte 573 4 3 6 - acept not furnished 0 10000 737 164 10900\n", + "1393 Rio de Janeiro 84 3 1 0 2 acept not furnished 805 2400 209 31 3445\n", + "1394 Campinas 400 4 4 3 - acept not furnished 1200 8700 458 131 10490\n", + "1395 Belo Horizonte 150 3 3 2 4 acept not furnished 350 1950 0 26 2326\n", + "1396 São Paulo 120 3 1 0 11 acept not furnished 680 2040 110 26 2856\n", + "1397 São Paulo 78 2 1 1 - acept not furnished 0 1700 82 26 1808\n", + "1398 São Paulo 20 1 1 0 4 acept furnished 602 1800 130 23 2555\n", + "1399 Porto Alegre 117 2 1 1 4 acept not furnished 380 2100 73 31 2584\n", + "1400 São Paulo 40 1 1 0 1 acept furnished 350 2090 0 27 2467\n", + "1401 Rio de Janeiro 50 2 1 0 1 not acept not furnished 1000 1059 92 14 2165\n", + "1402 Porto Alegre 80 3 1 1 1 acept not furnished 350 1300 46 19 1715\n", + "1403 São Paulo 65 2 1 1 1 acept not furnished 580 2600 57 33 3270\n", + "1404 Porto Alegre 90 2 2 0 3 acept not furnished 320 1125 34 17 1496\n", + "1405 São Paulo 76 2 1 1 16 acept furnished 700 5600 0 71 6371\n", + "1406 Campinas 85 3 2 2 9 acept furnished 510 3000 165 39 3714\n", + "1407 São Paulo 76 1 2 2 5 acept furnished 540 2800 220 36 3596\n", + "1408 Rio de Janeiro 92 2 1 1 12 acept not furnished 1000 1839 134 24 2997\n", + "1409 São Paulo 150 3 3 3 - acept not furnished 100 4600 234 70 5004\n", + "1410 São Paulo 515 5 4 3 5 acept not furnished 5600 15000 250 191 21040\n", + "1411 Porto Alegre 91 2 1 0 2 acept not furnished 316 1350 69 20 1755\n", + "1412 São Paulo 161 3 3 3 23 acept furnished 2000 15000 667 191 17860\n", + "1413 São Paulo 64 2 1 1 2 acept not furnished 500 1400 11 18 1929\n", + "1414 Porto Alegre 59 1 1 1 12 acept not furnished 300 2200 67 33 2600\n", + "1415 Belo Horizonte 150 4 4 4 12 acept not furnished 890 4200 522 56 5668\n", + "1416 São Paulo 90 3 4 2 9 acept furnished 1200 5500 266 70 7036\n", + "1417 Rio de Janeiro 30 1 1 0 5 acept not furnished 653 1800 26 24 2503\n", + "1418 São Paulo 127 2 3 1 - acept not furnished 0 3200 15 49 3264\n", + "1419 São Paulo 48 1 1 1 2 not acept not furnished 867 2300 133 30 3330\n", + "1420 São Paulo 90 2 2 1 - not acept not furnished 0 4500 414 68 4982\n", + "1421 São Paulo 20 1 1 0 5 acept furnished 602 1800 130 23 2555\n", + "1422 São Paulo 82 2 1 1 5 acept not furnished 1060 3300 21 42 4423\n", + "1423 São Paulo 66 2 2 2 15 acept not furnished 580 2500 116 32 3228\n", + "1424 São Paulo 81 3 1 1 3 acept not furnished 900 2800 142 36 3878\n", + "1425 São Paulo 170 3 3 3 - acept not furnished 0 4200 239 64 4503\n", + "1426 Belo Horizonte 280 4 7 4 6 not acept not furnished 350 3000 660 40 4050\n", + "1427 Belo Horizonte 70 2 1 1 2 acept not furnished 250 1400 90 19 1759\n", + "1428 Porto Alegre 69 2 2 2 10 acept not furnished 670 2500 158 37 3365\n", + "1429 Belo Horizonte 143 3 2 3 11 not acept not furnished 680 2500 170 34 3384\n", + "1430 São Paulo 50 1 1 0 - not acept not furnished 0 1250 34 19 1303\n", + "1431 Campinas 102 3 2 0 15 acept not furnished 918 2500 248 32 3698\n", + "1432 São Paulo 60 2 1 0 - acept not furnished 0 1200 38 19 1257\n", + "1433 Campinas 265 3 3 2 - acept not furnished 0 2400 140 37 2577\n", + "1434 Rio de Janeiro 76 2 1 1 3 acept not furnished 1353 2750 179 36 4318\n", + "1435 São Paulo 96 3 2 2 14 not acept furnished 1122 8500 285 108 10020\n", + "1436 São Paulo 70 2 1 1 7 acept furnished 467 1800 170 23 2460\n", + "1437 São Paulo 140 3 4 2 11 acept furnished 1750 12000 615 153 14520\n", + "1438 São Paulo 81 2 1 1 3 not acept not furnished 710 2810 217 36 3773\n", + "1439 Porto Alegre 52 2 1 0 2 acept not furnished 380 1500 55 22 1957\n", + "1440 São Paulo 298 5 3 3 - acept not furnished 0 8000 1384 121 9505\n", + "1441 Porto Alegre 70 2 2 2 9 acept not furnished 535 1600 59 24 2218\n", + "1442 São Paulo 92 2 1 1 2 acept not furnished 425 1536 72 20 2053\n", + "1443 Rio de Janeiro 190 4 3 2 17 acept furnished 2500 9300 375 120 12300\n", + "1444 Porto Alegre 42 1 1 0 10 acept not furnished 32000 700 40 11 32750\n", + "1445 São Paulo 40 1 1 1 6 not acept not furnished 765 2500 34 32 3331\n", + "1446 Rio de Janeiro 312 4 4 3 13 acept not furnished 4000 15000 1084 194 20280\n", + "1447 São Paulo 106 2 1 2 - not acept not furnished 0 2100 110 32 2242\n", + "1448 Campinas 110 3 3 2 - acept not furnished 560 3700 88 56 4404\n", + "1449 São Paulo 384 5 5 3 13 acept not furnished 4000 8000 1240 102 13340\n", + "1450 Porto Alegre 69 2 1 0 2 acept not furnished 240 1200 410 18 1868\n", + "1451 São Paulo 82 2 2 0 13 acept furnished 800 4500 38 58 5396\n", + "1452 Belo Horizonte 500 7 6 3 - acept not furnished 0 15000 384 246 15630\n", + "1453 São Paulo 130 3 2 1 12 acept not furnished 1267 4500 334 58 6159\n", + "1454 São Paulo 55 1 1 0 - acept not furnished 0 1500 138 23 1661\n", + "1455 São Paulo 170 4 4 2 4 not acept not furnished 1411 2800 417 36 4664\n", + "1456 Campinas 183 4 2 0 - acept not furnished 920 2400 238 37 3595\n", + "1457 São Paulo 336 3 5 3 - acept furnished 299 6000 208 91 6598\n", + "1458 São Paulo 45 1 1 1 1 not acept furnished 3000 5520 0 70 8590\n", + "1459 São Paulo 40 1 1 0 3 acept furnished 350 1700 40 22 2112\n", + "1460 Belo Horizonte 45 3 1 0 - acept not furnished 0 1300 127 22 1449\n", + "1461 Rio de Janeiro 180 3 3 0 - acept not furnished 20 2550 170 39 2779\n", + "1462 São Paulo 23 1 1 0 23 acept not furnished 399 2100 42 27 2568\n", + "1463 Porto Alegre 53 1 1 0 2 acept not furnished 277 500 20 8 805\n", + "1464 São Paulo 100 2 2 1 6 acept not furnished 1050 4000 240 51 5341\n", + "1465 São Paulo 400 4 5 4 8 acept furnished 3884 8700 1671 111 14370\n", + "1466 Rio de Janeiro 92 1 3 1 10 not acept not furnished 1450 2720 365 36 4571\n", + "1467 Belo Horizonte 420 6 4 0 5 acept not furnished 927 3500 405 47 4879\n", + "1468 Rio de Janeiro 78 3 1 1 14 not acept furnished 900 2800 100 37 3837\n", + "1469 São Paulo 70 2 1 1 11 not acept furnished 500 1800 5 23 2328\n", + "1470 Campinas 500 6 5 8 - acept not furnished 0 8000 625 121 8746\n", + "1471 São Paulo 130 3 4 2 3 not acept furnished 2500 2000 667 26 5193\n", + "1472 Rio de Janeiro 24 1 1 0 12 not acept not furnished 445 2000 42 26 2513\n", + "1473 São Paulo 125 2 1 1 11 acept not furnished 700 2000 63 26 2789\n", + "1474 São Paulo 242 3 4 2 2 acept not furnished 2200 4500 952 58 7710\n", + "1475 São Paulo 69 3 1 1 1 acept not furnished 413 1199 0 16 1628\n", + "1476 São Paulo 135 2 2 1 8 acept furnished 1063 3250 159 42 4514\n", + "1477 Belo Horizonte 43 2 1 1 2 acept not furnished 199 620 100 9 928\n", + "1478 São Paulo 565 4 5 6 - acept furnished 2337 14850 2112 224 19520\n", + "1479 Porto Alegre 62 2 1 1 6 not acept not furnished 485 1296 54 19 1854\n", + "1480 Belo Horizonte 112 4 1 2 - acept not furnished 0 1900 212 32 2144\n", + "1481 São Paulo 31 1 1 1 14 acept not furnished 478 2500 75 32 3085\n", + "1482 São Paulo 89 3 3 0 9 acept furnished 990 3550 84 45 4669\n", + "1483 Porto Alegre 100 2 2 0 - acept not furnished 0 2200 0 40 2240\n", + "1484 São Paulo 65 2 1 0 24 acept furnished 650 6000 200 77 6927\n", + "1485 Campinas 60 3 2 0 2 acept not furnished 350 2362 88 30 2830\n", + "1486 Porto Alegre 75 3 2 1 3 not acept furnished 450 1950 98 29 2527\n", + "1487 Porto Alegre 41 1 1 1 2 acept not furnished 540 1150 35 17 1742\n", + "1488 São Paulo 100 2 1 0 1 acept furnished 765 3300 0 42 4107\n", + "1489 São Paulo 288 3 2 2 - acept not furnished 0 3700 457 56 4213\n", + "1490 São Paulo 400 5 6 0 - acept not furnished 0 5200 0 79 5279\n", + "1491 São Paulo 240 3 2 1 - acept not furnished 0 15000 667 226 15890\n", + "1492 São Paulo 80 1 1 1 - acept not furnished 0 1150 75 18 1243\n", + "1493 Campinas 43 2 1 1 - acept not furnished 274 1000 7 13 1294\n", + "1494 São Paulo 25 1 1 0 1 not acept not furnished 0 1200 35 16 1251\n", + "1495 São Paulo 49 2 1 1 17 not acept furnished 665 2000 100 26 2791\n", + "1496 São Paulo 40 1 1 0 - not acept not furnished 0 970 63 15 1048\n", + "1497 Porto Alegre 71 2 1 0 2 acept not furnished 0 1500 0 22 1522\n", + "1498 São Paulo 50 2 1 0 10 acept not furnished 450 1430 25 19 1924\n", + "1499 São Paulo 44 1 1 0 - acept furnished 0 1800 125 28 1953\n", + "1500 São Paulo 400 4 2 8 - acept not furnished 0 7200 117 109 7426\n", + "1501 Porto Alegre 225 3 3 2 3 acept not furnished 1100 3800 192 56 5148\n", + "1502 Rio de Janeiro 82 3 2 2 4 acept not furnished 967 2200 92 29 3288\n", + "1503 São Paulo 102 3 1 1 - acept not furnished 0 1760 0 27 1787\n", + "1504 Porto Alegre 981 3 2 4 - acept furnished 0 7000 4500 125 11630\n", + "1505 Rio de Janeiro 25 1 1 0 - acept not furnished 50 700 0 10 760\n", + "1506 São Paulo 230 3 4 0 16 acept furnished 1700 3000 700 39 5439\n", + "1507 São Paulo 280 3 4 3 3 acept not furnished 1717 5200 250 66 7233\n", + "1508 São Paulo 69 3 1 1 8 acept not furnished 650 1350 84 18 2102\n", + "1509 Rio de Janeiro 58 1 2 0 5 acept not furnished 700 1600 90 21 2411\n", + "1510 Campinas 58 1 1 0 3 acept not furnished 500 1050 38 14 1602\n", + "1511 Campinas 64 2 1 1 - acept not furnished 441 730 18 10 1199\n", + "1512 São Paulo 84 3 1 1 6 acept not furnished 670 2180 100 28 2978\n", + "1513 Rio de Janeiro 35 1 1 0 7 not acept not furnished 450 1100 21 15 1586\n", + "1514 Rio de Janeiro 78 2 1 0 5 acept not furnished 850 1600 94 21 2565\n", + "1515 São Paulo 55 2 1 2 4 not acept not furnished 780 980 142 13 1915\n", + "1516 São Paulo 250 4 5 4 5 acept furnished 3500 15000 1540 191 20230\n", + "1517 Rio de Janeiro 110 3 2 0 7 not acept not furnished 1100 4860 300 63 6323\n", + "1518 São Paulo 206 2 1 3 - acept not furnished 0 3500 214 53 3767\n", + "1519 São Paulo 150 3 4 1 - acept not furnished 0 4250 491 64 4805\n", + "1520 São Paulo 180 4 3 2 11 acept furnished 1880 9000 460 115 11460\n", + "1521 São Paulo 330 4 5 4 - acept not furnished 0 6500 750 98 7348\n", + "1522 São Paulo 68 1 1 0 - not acept not furnished 0 1100 0 17 1117\n", + "1523 São Paulo 280 4 4 4 6 not acept furnished 3200 6000 100 77 9377\n", + "1524 Campinas 85 3 2 1 7 acept not furnished 915 1500 63 20 2498\n", + "1525 São Paulo 55 2 1 0 1 acept not furnished 340 1530 0 20 1890\n", + "1526 São Paulo 90 3 2 1 13 not acept not furnished 1100 2800 25 36 3961\n", + "1527 Belo Horizonte 96 3 1 1 - not acept not furnished 0 1200 34 20 1254\n", + "1528 Belo Horizonte 250 4 1 8 - acept not furnished 0 2125 231 35 2391\n", + "1529 Porto Alegre 80 2 2 1 2 acept not furnished 500 1800 100 27 2427\n", + "1530 Porto Alegre 41 1 2 1 9 acept not furnished 400 2800 67 41 3308\n", + "1531 São Paulo 75 2 1 3 5 not acept not furnished 700 2500 250 32 3482\n", + "1532 São Paulo 800 7 7 8 - acept not furnished 0 9000 3000 136 12140\n", + "1533 Rio de Janeiro 45 1 1 0 5 acept not furnished 750 1000 34 13 1797\n", + "1534 São Paulo 74 2 2 2 17 acept not furnished 1000 5000 120 64 6184\n", + "1535 Belo Horizonte 160 4 3 2 - acept not furnished 0 3700 143 61 3904\n", + "1536 São Paulo 50 1 1 0 3 acept not furnished 400 1500 59 20 1979\n", + "1537 São Paulo 126 2 3 1 9 acept furnished 2000 10000 317 127 12440\n", + "1538 Rio de Janeiro 65 1 1 1 6 not acept furnished 1100 4000 434 52 5586\n", + "1539 São Paulo 120 3 2 2 8 acept not furnished 740 4000 238 51 5029\n", + "1540 Belo Horizonte 150 4 2 2 8 acept not furnished 730 4200 396 56 5382\n", + "1541 Campinas 76 1 1 1 1 not acept furnished 969 2500 130 32 3631\n", + "1542 São Paulo 226 4 5 4 1 acept not furnished 4360 15000 2242 191 21790\n", + "1543 São Paulo 22 1 1 0 - not acept not furnished 0 976 0 15 991\n", + "1544 Campinas 154 3 3 1 14 not acept not furnished 1700 6500 0 83 8283\n", + "1545 São Paulo 56 2 2 2 1 acept not furnished 480 1630 42 21 2173\n", + "1546 Belo Horizonte 212 3 5 4 - acept not furnished 0 4200 393 69 4662\n", + "1547 São Paulo 62 3 2 1 4 acept not furnished 400 1300 75 17 1792\n", + "1548 Rio de Janeiro 80 2 2 2 3 not acept not furnished 4200 7800 327 101 12430\n", + "1549 São Paulo 420 4 4 4 7 acept not furnished 6000 12000 2000 153 20150\n", + "1550 Porto Alegre 32 1 1 0 - acept furnished 230 750 23 11 1014\n", + "1551 São Paulo 30 1 1 1 9 not acept not furnished 0 3000 0 39 3039\n", + "1552 Campinas 70 2 2 0 5 not acept not furnished 0 1000 62 16 1078\n", + "1553 São Paulo 200 3 3 2 - not acept not furnished 0 6000 750 91 6841\n", + "1554 São Paulo 25 1 1 0 2 acept not furnished 105 1330 0 17 1452\n", + "1555 São Paulo 42 1 1 1 9 acept furnished 768 3696 17 47 4528\n", + "1556 São Paulo 135 3 3 2 1 acept furnished 1650 4250 584 54 6538\n", + "1557 Porto Alegre 47 1 1 0 3 acept not furnished 250 900 38 14 1202\n", + "1558 Porto Alegre 35 1 1 0 3 acept furnished 200 880 15 13 1108\n", + "1559 São Paulo 75 3 2 0 12 not acept furnished 800 2236 64 29 3129\n", + "1560 São Paulo 300 2 2 0 - acept furnished 0 3000 292 46 3338\n", + "1561 São Paulo 45 1 1 1 14 not acept furnished 2200 2300 167 30 4697\n", + "1562 Belo Horizonte 850 5 7 8 - acept not furnished 0 10000 1 164 10170\n", + "1563 Porto Alegre 140 3 2 2 3 acept not furnished 686 3000 250 44 3980\n", + "1564 São Paulo 60 2 1 0 - not acept not furnished 0 1222 0 19 1241\n", + "1565 São Paulo 50 1 1 0 - not acept not furnished 0 1250 34 19 1303\n", + "1566 Campinas 150 4 5 2 1 acept not furnished 1100 2860 360 37 4357\n", + "1567 São Paulo 160 3 2 1 1 acept not furnished 185 7693 223 116 8217\n", + "1568 São Paulo 334 3 3 8 - acept not furnished 0 8600 209 130 8939\n", + "1569 São Paulo 330 4 3 0 - acept not furnished 0 9800 750 148 10700\n", + "1570 Porto Alegre 38 1 1 0 4 acept furnished 190 1800 20 27 2037\n", + "1571 Belo Horizonte 280 4 7 4 6 not acept not furnished 350 3000 642 40 4032\n", + "1572 São Paulo 200 3 3 2 12 acept not furnished 2000 6500 417 83 9000\n", + "1573 São Paulo 100 4 5 2 7 acept not furnished 2400 8500 500 108 11510\n", + "1574 Rio de Janeiro 80 2 1 0 2 acept furnished 515 1400 101 19 2035\n", + "1575 São Paulo 267 3 6 6 - acept not furnished 0 4800 470 73 5343\n", + "1576 Rio de Janeiro 130 3 1 1 2 acept not furnished 1000 3500 184 46 4730\n", + "1577 Belo Horizonte 70 2 3 1 12 acept furnished 700 2450 165 33 3348\n", + "1578 São Paulo 213 3 5 5 10 acept not furnished 3800 6200 0 79 10080\n", + "1579 São Paulo 35 1 1 0 - not acept not furnished 0 780 40 12 832\n", + "1580 Belo Horizonte 312 4 5 4 15 acept not furnished 3150 15000 1747 200 20100\n", + "1581 São Paulo 160 3 4 3 4 acept not furnished 2087 2500 298 32 4917\n", + "1582 São Paulo 22 1 1 0 26 acept not furnished 295 2000 44 26 2365\n", + "1583 São Paulo 400 4 4 3 1 acept furnished 3000 10000 0 127 13130\n", + "1584 São Paulo 45 1 2 1 11 acept not furnished 495 2100 99 27 2721\n", + "1585 São Paulo 237 4 4 0 13 not acept not furnished 3168 8000 1031 102 12300\n", + "1586 São Paulo 180 3 3 0 - acept not furnished 0 13000 715 196 13910\n", + "1587 São Paulo 30 1 1 0 2 not acept not furnished 349 1805 0 23 2177\n", + "1588 São Paulo 13 1 1 0 2 acept not furnished 0 2200 42 28 2270\n", + "1589 São Paulo 140 4 4 2 - acept furnished 0 6800 107 103 7010\n", + "1590 Belo Horizonte 62 2 1 1 3 acept not furnished 100 1050 84 14 1248\n", + "1591 Rio de Janeiro 76 2 1 0 3 acept not furnished 625 1000 50 13 1688\n", + "1592 São Paulo 220 3 4 4 15 acept not furnished 1587 4250 711 54 6602\n", + "1593 Campinas 143 3 3 2 6 acept not furnished 1600 3300 250 42 5192\n", + "1594 Campinas 44 2 1 0 2 acept not furnished 272 650 0 9 931\n", + "1595 São Paulo 90 3 2 1 10 acept not furnished 934 1450 65 19 2468\n", + "1596 Belo Horizonte 190 4 3 3 10 acept furnished 1384 4800 357 64 6605\n", + "1597 São Paulo 79 2 3 1 14 acept not furnished 2500 3100 500 40 6140\n", + "1598 São Paulo 45 1 1 2 8 acept not furnished 695 1800 170 23 2688\n", + "1599 Campinas 73 3 2 2 17 acept not furnished 570 2400 125 31 3126\n", + "1600 São Paulo 168 3 4 5 7 acept furnished 1610 3600 190 46 5446\n", + "1601 São Paulo 95 3 2 3 20 not acept not furnished 687 2500 41 32 3260\n", + "1602 Porto Alegre 180 2 2 1 4 acept not furnished 170 2001 25 30 2226\n", + "1603 Porto Alegre 65 2 2 0 5 not acept not furnished 485 1390 87 21 1983\n", + "1604 Belo Horizonte 110 4 2 0 - acept not furnished 0 1850 0 31 1881\n", + "1605 São Paulo 58 1 1 1 13 acept furnished 750 4700 200 60 5710\n", + "1606 Belo Horizonte 15 1 1 0 - acept not furnished 45 665 0 9 719\n", + "1607 São Paulo 213 4 3 5 - acept not furnished 0 3900 298 59 4257\n", + "1608 São Paulo 162 4 4 3 7 not acept not furnished 1500 5500 891 70 7961\n", + "1609 São Paulo 49 1 1 0 12 not acept furnished 443 3800 89 49 4381\n", + "1610 São Paulo 32 1 1 0 2 acept not furnished 0 1400 0 18 1418\n", + "1611 Belo Horizonte 78 3 2 2 16 acept not furnished 875 2300 229 31 3435\n", + "1612 Porto Alegre 240 4 4 2 - acept not furnished 0 5000 630 89 5719\n", + "1613 Campinas 150 3 2 1 - acept not furnished 0 1320 167 20 1507\n", + "1614 Belo Horizonte 60 2 1 1 2 acept not furnished 275 1200 97 16 1588\n", + "1615 Belo Horizonte 160 3 2 3 4 not acept not furnished 460 3500 177 47 4184\n", + "1616 São Paulo 74 2 2 2 7 acept not furnished 1100 3400 163 44 4707\n", + "1617 São Paulo 280 4 4 8 - acept not furnished 0 7040 688 106 7834\n", + "1618 Porto Alegre 42 1 1 0 6 not acept not furnished 320 850 21 13 1204\n", + "1619 Porto Alegre 102 3 2 5 - acept not furnished 0 2975 103 53 3131\n", + "1620 São Paulo 123 3 2 2 11 acept not furnished 1342 2174 283 28 3827\n", + "1621 Porto Alegre 50 2 1 1 - acept not furnished 0 1000 25 18 1043\n", + "1622 São Paulo 125 3 2 2 - acept not furnished 0 1700 5 26 1731\n", + "1623 Porto Alegre 240 3 2 4 - acept not furnished 0 5500 500 98 6098\n", + "1624 São Paulo 85 3 2 3 3 acept furnished 1100 1999 153 26 3278\n", + "1625 Belo Horizonte 260 4 5 4 5 acept not furnished 2405 15000 153 200 17760\n", + "1626 São Paulo 22 1 1 0 - not acept not furnished 0 870 0 14 884\n", + "1627 São Paulo 278 3 2 1 11 acept not furnished 2640 7800 601 99 11140\n", + "1628 São Paulo 18 1 1 0 8 acept not furnished 400 1130 30 15 1575\n", + "1629 Rio de Janeiro 196 3 4 1 11 acept not furnished 1500 5500 500 71 7571\n", + "1630 São Paulo 26 1 1 0 3 acept not furnished 200 3500 1 45 3746\n", + "1631 São Paulo 100 4 2 2 - acept not furnished 0 3500 42 53 3595\n", + "1632 São Paulo 460 4 3 6 8 acept not furnished 4400 10000 1667 127 16190\n", + "1633 São Paulo 189 4 3 2 5 not acept furnished 2300 6500 584 83 9467\n", + "1634 São Paulo 226 3 3 0 - acept furnished 0 6000 34 91 6125\n", + "1635 São Paulo 418 2 4 3 17 not acept not furnished 5274 6875 117 88 12350\n", + "1636 Campinas 660 5 5 4 - acept not furnished 1400 5000 1000 76 7476\n", + "1637 Campinas 120 1 2 1 - acept not furnished 0 1112 0 17 1129\n", + "1638 São Paulo 70 2 1 1 1 acept not furnished 484 1100 20 14 1618\n", + "1639 São Paulo 400 10 5 8 - acept not furnished 0 10900 1417 164 12480\n", + "1640 Campinas 82 3 3 2 4 acept not furnished 550 1500 153 20 2223\n", + "1641 São Paulo 210 3 4 4 11 acept furnished 2000 15000 1000 191 18190\n", + "1642 São Paulo 92 3 2 2 11 acept not furnished 660 1900 105 25 2690\n", + "1643 Belo Horizonte 64 3 1 0 3 not acept not furnished 215 1400 27 19 1661\n", + "1644 Porto Alegre 35 2 1 0 1 not acept furnished 0 1350 0 20 1370\n", + "1645 São Paulo 120 2 2 2 - acept not furnished 0 2690 226 41 2957\n", + "1646 São Paulo 16 1 1 0 1 not acept not furnished 0 1200 59 16 1275\n", + "1647 Porto Alegre 60 2 1 0 2 acept not furnished 300 950 0 14 1264\n", + "1648 Campinas 223 3 5 2 2 acept not furnished 1400 3300 290 42 5032\n", + "1649 São Paulo 50 1 1 0 - not acept not furnished 0 800 0 13 813\n", + "1650 Porto Alegre 30 1 1 0 5 acept not furnished 400 940 35 14 1389\n", + "1651 São Paulo 111 2 2 1 14 not acept not furnished 1400 3500 175 45 5120\n", + "1652 São Paulo 290 4 3 2 1 not acept furnished 2890 7150 862 91 10990\n", + "1653 Campinas 80 3 1 1 1 acept not furnished 380 1328 50 10 1768\n", + "1654 São Paulo 353 4 5 5 46 acept not furnished 3000 10000 0 127 13130\n", + "1655 São Paulo 55 2 1 1 18 acept not furnished 635 1990 80 26 2731\n", + "1656 Campinas 49 2 1 1 1 acept not furnished 263 1000 38 13 1314\n", + "1657 Rio de Janeiro 50 2 1 0 4 acept not furnished 450 850 21 11 1332\n", + "1658 São Paulo 182 4 4 2 10 acept not furnished 2965 6000 605 77 9647\n", + "1659 São Paulo 42 1 1 1 9 acept furnished 565 3800 24 49 4438\n", + "1660 São Paulo 500 5 7 5 22 acept not furnished 5500 14000 2084 178 21760\n", + "1661 São Paulo 56 1 1 0 - not acept not furnished 0 1200 48 19 1267\n", + "1662 Rio de Janeiro 170 3 2 1 9 acept not furnished 2000 4600 384 60 7044\n", + "1663 São Paulo 160 3 3 2 8 acept not furnished 2000 5000 570 64 7634\n", + "1664 São Paulo 70 1 1 2 - acept not furnished 0 1300 63 20 1383\n", + "1665 Campinas 120 2 1 4 - acept not furnished 0 2400 59 37 2496\n", + "1666 Rio de Janeiro 65 2 1 1 3 acept furnished 550 1650 0 22 2222\n", + "1667 São Paulo 300 4 4 6 7 not acept furnished 4000 5500 1180 70 10750\n", + "1668 São Paulo 140 3 2 2 8 acept furnished 1050 12000 209 153 13410\n", + "1669 São Paulo 108 2 3 2 - acept not furnished 450 2100 250 32 2832\n", + "1670 Porto Alegre 220 3 3 4 - acept not furnished 0 2500 2360 45 4905\n", + "1671 São Paulo 157 3 3 4 19 acept not furnished 1300 4900 725 63 6988\n", + "1672 São Paulo 101 3 4 2 5 acept not furnished 1300 3120 340 40 4800\n", + "1673 São Paulo 87 3 2 4 14 acept not furnished 800 2000 67 26 2893\n", + "1674 Campinas 123 3 2 2 13 acept not furnished 834 2000 148 26 3008\n", + "1675 São Paulo 67 1 2 1 12 acept furnished 815 2479 117 32 3443\n", + "1676 São Paulo 200 3 3 8 - acept not furnished 0 4480 509 68 5057\n", + "1677 São Paulo 48 2 1 1 8 acept not furnished 545 1720 0 22 2287\n", + "1678 Belo Horizonte 51 2 1 1 2 acept not furnished 260 700 27 10 997\n", + "1679 São Paulo 54 2 1 1 5 not acept not furnished 245 1300 4 17 1566\n", + "1680 São Paulo 280 3 3 2 9 acept furnished 3000 5650 692 72 9414\n", + "1681 São Paulo 172 3 4 3 5 acept furnished 1650 7800 890 99 10440\n", + "1682 São Paulo 136 3 2 2 13 acept furnished 1259 15000 374 191 16820\n", + "1683 São Paulo 300 4 2 0 5 acept not furnished 6000 15000 834 191 22030\n", + "1684 São Paulo 26 1 1 0 6 acept furnished 250 2300 42 30 2622\n", + "1685 Rio de Janeiro 52 1 1 0 2 acept not furnished 477 1172 50 16 1715\n", + "1686 Rio de Janeiro 72 2 2 1 5 acept not furnished 500 1200 5 16 1721\n", + "1687 Rio de Janeiro 240 3 3 1 8 acept furnished 2300 7000 417 91 9808\n", + "1688 São Paulo 100 3 2 6 - acept not furnished 0 7500 1000 113 8613\n", + "1689 Rio de Janeiro 145 3 3 2 4 not acept not furnished 4000 11960 0 155 16120\n", + "1690 São Paulo 60 2 2 2 - acept not furnished 165 1950 67 30 2212\n", + "1691 Porto Alegre 260 2 2 1 3 acept not furnished 170 2000 25 30 2225\n", + "1692 Belo Horizonte 28 1 1 0 - not acept furnished 550 1100 0 15 1665\n", + "1693 Campinas 25 1 1 0 3 not acept not furnished 300 1000 0 13 1313\n", + "1694 São Paulo 45 2 1 1 9 acept not furnished 300 1920 34 25 2279\n", + "1695 Belo Horizonte 115 3 2 2 3 acept not furnished 450 1950 133 26 2559\n", + "1696 Porto Alegre 48 2 1 0 4 acept not furnished 468 800 28 12 1308\n", + "1697 São Paulo 150 3 3 8 - acept not furnished 0 8000 1084 121 9205\n", + "1698 São Paulo 160 4 3 2 - acept not furnished 0 3800 250 58 4108\n", + "1699 São Paulo 700 4 4 4 - acept not furnished 0 10000 21880 151 32040\n", + "1700 São Paulo 340 4 6 4 11 not acept not furnished 4800 7650 1667 97 14210\n", + "1701 Rio de Janeiro 25 1 1 0 3 acept not furnished 561 1513 0 7 2081\n", + "1702 São Paulo 79 3 2 2 11 acept not furnished 652 1290 90 17 2049\n", + "1703 São Paulo 35 1 1 1 2 acept not furnished 530 1600 134 21 2285\n", + "1704 São Paulo 270 3 4 0 1 acept not furnished 0 3500 165 45 3710\n", + "1705 São Paulo 156 3 4 3 7 not acept not furnished 1417 5000 500 64 6981\n", + "1706 São Paulo 50 1 1 1 8 acept furnished 600 2800 0 20 3420\n", + "1707 São Paulo 60 1 1 2 2 not acept not furnished 3398 1900 288 25 5611\n", + "1708 São Paulo 140 3 4 3 18 acept not furnished 1100 4000 489 51 5640\n", + "1709 São Paulo 53 1 1 0 2 not acept not furnished 170 1680 68 22 1940\n", + "1710 São Paulo 200 4 4 4 - acept not furnished 0 4220 450 64 4734\n", + "1711 Belo Horizonte 125 4 2 2 1 not acept not furnished 1100 2100 267 28 3495\n", + "1712 São Paulo 160 3 4 3 - acept furnished 0 9350 0 141 9491\n", + "1713 Campinas 300 4 5 3 9 acept not furnished 1650 9500 459 121 11730\n", + "1714 Belo Horizonte 175 3 3 2 4 acept furnished 400 3700 205 50 4355\n", + "1715 Rio de Janeiro 158 3 2 2 14 acept furnished 2000 8000 445 104 10550\n", + "1716 Rio de Janeiro 110 3 2 1 4 acept not furnished 1200 2850 259 37 4346\n", + "1717 São Paulo 168 3 2 2 - acept not furnished 0 2500 152 38 2690\n", + "1718 São Paulo 120 3 1 2 - not acept not furnished 0 3500 117 53 3670\n", + "1719 Belo Horizonte 230 4 3 4 7 acept furnished 3100 15000 1500 200 19800\n", + "1720 São Paulo 255 3 4 2 10 acept furnished 2600 6000 500 77 9177\n", + "1721 São Paulo 23 1 1 1 26 acept not furnished 472 2300 59 30 2861\n", + "1722 São Paulo 120 3 2 1 1 not acept not furnished 870 2500 160 32 3562\n", + "1723 São Paulo 45 1 1 2 8 acept not furnished 695 1800 170 23 2688\n", + "1724 Belo Horizonte 154 3 2 1 1 acept not furnished 300 2000 159 27 2486\n", + "1725 Rio de Janeiro 50 1 1 1 13 not acept furnished 0 4520 0 59 4579\n", + "1726 Rio de Janeiro 104 3 2 2 4 acept furnished 1549 7000 337 91 8977\n", + "1727 São Paulo 50 2 1 1 9 acept not furnished 978 2430 124 31 3563\n", + "1728 Porto Alegre 75 2 2 1 6 acept not furnished 383 1400 117 21 1921\n", + "1729 São Paulo 145 3 2 1 2 acept furnished 1017 2000 12 26 3055\n", + "1730 São Paulo 211 3 5 3 12 acept furnished 2500 7000 750 89 10340\n", + "1731 São Paulo 30 1 1 0 2 not acept not furnished 0 2060 0 27 2087\n", + "1732 Campinas 170 4 3 1 10 not acept not furnished 1470 3700 0 47 5217\n", + "1733 São Paulo 86 2 2 1 4 acept not furnished 690 1900 93 25 2708\n", + "1734 Rio de Janeiro 230 3 4 3 10 acept not furnished 2000 3000 556 39 5595\n", + "1735 São Paulo 61 1 2 2 1 not acept furnished 2200 4000 250 51 6501\n", + "1736 São Paulo 383 4 4 5 11 not acept not furnished 2189 3004 709 39 5941\n", + "1737 São Paulo 210 3 3 0 - acept not furnished 0 5500 734 83 6317\n", + "1738 São Paulo 60 2 2 1 14 not acept furnished 916 5650 59 72 6697\n", + "1739 São Paulo 213 4 6 4 1 acept furnished 3200 8500 970 108 12780\n", + "1740 Porto Alegre 93 2 2 3 6 acept furnished 873 3900 224 57 5054\n", + "1741 São Paulo 50 1 1 1 20 not acept furnished 781 5300 212 68 6361\n", + "1742 São Paulo 149 2 3 3 21 acept not furnished 1603 4500 883 58 7044\n", + "1743 São Paulo 410 4 5 5 1 acept not furnished 0 20000 0 254 20250\n", + "1744 São Paulo 40 1 1 1 14 acept furnished 474 3175 105 41 3795\n", + "1745 Rio de Janeiro 46 1 1 0 11 acept furnished 659 1500 101 20 2280\n", + "1746 São Paulo 378 4 4 8 - acept furnished 0 10000 1334 151 11490\n", + "1747 São Paulo 60 2 2 2 11 acept furnished 760 3800 132 49 4741\n", + "1748 Rio de Janeiro 180 2 3 1 3 acept furnished 2500 8500 700 110 11810\n", + "1749 Belo Horizonte 70 2 2 2 1 not acept not furnished 300 1450 94 20 1864\n", + "1750 São Paulo 68 2 1 1 9 acept not furnished 0 2100 0 27 2127\n", + "1751 Rio de Janeiro 85 2 2 1 4 acept not furnished 763 1800 78 24 2665\n", + "1752 Belo Horizonte 140 4 2 2 2 acept not furnished 450 2281 221 31 2983\n", + "1753 Belo Horizonte 52 2 2 1 2 not acept not furnished 360 1650 86 22 2118\n", + "1754 Porto Alegre 63 2 2 0 7 not acept furnished 400 2600 109 38 3147\n", + "1755 São Paulo 65 2 2 2 13 acept furnished 1084 3300 207 42 4633\n", + "1756 Belo Horizonte 60 3 1 1 1 acept not furnished 348 950 63 13 1374\n", + "1757 Belo Horizonte 27 1 1 0 2 not acept not furnished 0 1167 334 16 1517\n", + "1758 São Paulo 260 4 4 3 11 not acept not furnished 3500 15000 1417 191 20110\n", + "1759 São Paulo 44 1 1 1 13 acept not furnished 400 1200 0 16 1616\n", + "1760 São Paulo 170 3 3 2 - acept not furnished 0 4850 334 73 5257\n", + "1761 São Paulo 118 3 2 1 11 not acept not furnished 1116 4775 185 61 6137\n", + "1762 São Paulo 114 3 2 2 9 acept not furnished 900 3780 100 48 4828\n", + "1763 Belo Horizonte 154 4 2 2 2 acept not furnished 1465 2800 305 38 4608\n", + "1764 Rio de Janeiro 108 3 1 1 3 not acept furnished 2300 15000 334 194 17830\n", + "1765 São Paulo 147 3 2 2 4 acept furnished 1313 3600 414 46 5373\n", + "1766 São Paulo 365 3 4 3 15 acept not furnished 3700 12000 1250 153 17100\n", + "1767 Porto Alegre 109 3 2 1 2 acept furnished 681 2423 193 36 3333\n", + "1768 Belo Horizonte 148 3 3 2 3 acept furnished 284 2500 104 34 2922\n", + "1769 São Paulo 250 3 4 2 - acept not furnished 0 6000 75 91 6166\n", + "1770 Campinas 79 2 1 1 3 not acept not furnished 245 1000 25 13 1283\n", + "1771 Rio de Janeiro 66 2 1 1 9 acept not furnished 997 2400 179 31 3607\n", + "1772 Campinas 54 1 1 1 6 not acept not furnished 0 1370 31 18 1419\n", + "1773 Campinas 87 3 1 1 6 acept not furnished 730 1200 64 16 2010\n", + "1774 São Paulo 640 4 4 4 12 acept furnished 5400 10200 1584 130 17310\n", + "1775 São Paulo 71 2 1 0 3 acept furnished 613 1040 0 14 1667\n", + "1776 São Paulo 35 1 1 1 6 not acept furnished 886 1250 90 16 2242\n", + "1777 São Paulo 57 2 2 1 2 not acept furnished 584 2300 50 30 2964\n", + "1778 São Paulo 38 1 1 0 8 not acept not furnished 480 1220 25 16 1741\n", + "1779 Rio de Janeiro 70 2 2 1 3 acept not furnished 990 3700 122 48 4860\n", + "1780 São Paulo 350 2 4 8 - not acept not furnished 0 3300 450 50 3800\n", + "1781 Rio de Janeiro 300 4 3 2 5 not acept furnished 2500 12000 750 155 15410\n", + "1782 Porto Alegre 80 2 2 0 8 acept not furnished 430 1320 121 20 1891\n", + "1783 Rio de Janeiro 160 3 3 1 4 acept not furnished 1050 2900 317 38 4305\n", + "1784 Porto Alegre 117 3 2 2 10 acept not furnished 1564 5500 167 81 7312\n", + "1785 Porto Alegre 112 3 2 2 3 acept furnished 800 4100 100 60 5060\n", + "1786 Rio de Janeiro 100 2 2 1 - acept not furnished 0 1870 0 29 1899\n", + "1787 Rio de Janeiro 160 4 2 1 2 acept not furnished 1500 4230 0 55 5785\n", + "1788 Porto Alegre 68 2 1 0 3 acept not furnished 270 700 19 11 1000\n", + "1789 São Paulo 530 4 4 4 4 not acept not furnished 3857 5000 1636 64 10560\n", + "1790 São Paulo 210 3 2 2 - acept furnished 0 3500 101 53 3654\n", + "1791 Rio de Janeiro 33 1 1 0 8 not acept furnished 600 3300 100 25 4025\n", + "1792 São Paulo 40 2 1 0 3 acept not furnished 348 1100 0 14 1462\n", + "1793 Belo Horizonte 200 5 5 8 - acept not furnished 0 6000 1017 99 7116\n", + "1794 São Paulo 58 2 1 2 10 acept not furnished 383 1360 0 18 1761\n", + "1795 São Paulo 120 3 3 2 6 acept not furnished 1800 3400 134 44 5378\n", + "1796 São Paulo 162 3 4 0 - acept not furnished 0 3200 267 49 3516\n", + "1797 São Paulo 301 4 5 4 3 acept furnished 4265 12500 1600 159 18520\n", + "1798 São Paulo 40 1 1 0 1 not acept not furnished 150 1800 38 23 2011\n", + "1799 Rio de Janeiro 45 1 1 0 5 acept not furnished 750 1000 34 13 1797\n", + "1800 Rio de Janeiro 135 3 2 1 2 acept not furnished 1940 3060 428 40 5468\n", + "1801 São Paulo 135 3 2 1 4 acept not furnished 1378 3290 279 42 4989\n", + "1802 Porto Alegre 102 3 2 2 8 acept furnished 1125 5525 225 81 6956\n", + "1803 São Paulo 76 2 2 2 6 acept not furnished 978 1400 123 18 2519\n", + "1804 São Paulo 180 4 1 1 13 acept not furnished 2420 8500 400 108 11430\n", + "1805 Belo Horizonte 72 2 2 1 - acept not furnished 0 1250 66 21 1337\n", + "1806 São Paulo 128 2 3 1 4 acept not furnished 755 4339 85 55 5234\n", + "1807 Campinas 60 3 2 0 2 acept not furnished 350 2362 88 30 2830\n", + "1808 São Paulo 44 1 1 0 4 acept furnished 450 2500 30 32 3012\n", + "1809 São Paulo 189 3 3 1 12 acept not furnished 2143 5800 371 74 8388\n", + "1810 Porto Alegre 450 6 2 8 - acept not furnished 0 4000 197 72 4269\n", + "1811 São Paulo 286 4 4 5 - acept not furnished 0 10800 1125 163 12090\n", + "1812 São Paulo 276 4 6 4 10 acept furnished 3450 4500 1713 58 9721\n", + "1813 São Paulo 60 1 2 1 9 not acept furnished 844 3800 0 49 4693\n", + "1814 São Paulo 40 1 1 0 - not acept not furnished 0 880 48 14 942\n", + "1815 Rio de Janeiro 57 2 2 1 4 acept not furnished 600 1800 0 24 2424\n", + "1816 Campinas 45 1 1 1 3 acept not furnished 521 600 38 8 1167\n", + "1817 São Paulo 42 1 1 1 12 not acept furnished 712 3500 22 45 4279\n", + "1818 Rio de Janeiro 68 2 1 1 2 acept not furnished 560 1100 42 15 1717\n", + "1819 Rio de Janeiro 120 3 2 1 4 acept not furnished 1650 4800 355 62 6867\n", + "1820 São Paulo 360 4 4 2 4 acept not furnished 3340 11050 0 141 14530\n", + "1821 São Paulo 140 2 1 0 - acept not furnished 0 1650 167 25 1842\n", + "1822 São Paulo 35 1 1 0 - acept not furnished 0 1100 30 14 1144\n", + "1823 São Paulo 16 1 1 0 1 not acept not furnished 0 910 0 12 922\n", + "1824 Campinas 110 3 1 1 13 acept not furnished 780 1100 108 9 1997\n", + "1825 Campinas 69 2 1 1 7 not acept not furnished 485 980 60 13 1538\n", + "1826 Belo Horizonte 59 2 2 0 2 not acept furnished 510 1400 112 19 2041\n", + "1827 São Paulo 336 4 4 6 - acept not furnished 0 7677 950 116 8743\n", + "1828 São Paulo 210 4 4 3 5 acept furnished 2800 5000 917 64 8781\n", + "1829 São Paulo 242 4 5 4 4 acept furnished 3270 12000 930 153 16350\n", + "1830 Porto Alegre 28 1 1 0 4 acept not furnished 350 550 21 9 930\n", + "1831 São Paulo 220 4 3 3 2 not acept furnished 4208 9000 1203 115 14530\n", + "1832 Porto Alegre 62 3 2 1 1 not acept not furnished 485 1629 54 24 2192\n", + "1833 Rio de Janeiro 111 3 2 2 11 acept furnished 1100 3500 325 46 4971\n", + "1834 Campinas 159 3 2 2 1 acept not furnished 1000 2500 334 32 3866\n", + "1835 Rio de Janeiro 70 2 2 0 5 acept furnished 690 2250 100 29 3069\n", + "1836 São Paulo 150 3 2 2 2 acept not furnished 1181 2000 384 26 3591\n", + "1837 São Paulo 50 1 1 1 17 acept furnished 776 4000 126 51 4953\n", + "1838 São Paulo 450 3 3 8 - acept furnished 0 5015 400 76 5491\n", + "1839 Belo Horizonte 64 2 1 1 2 acept not furnished 252 850 78 12 1192\n", + "1840 São Paulo 600 5 7 5 - acept not furnished 0 5200 155 79 5434\n", + "1841 São Paulo 70 1 1 0 8 acept not furnished 430 3200 109 41 3780\n", + "1842 São Paulo 76 3 2 0 6 acept not furnished 1160 1240 95 16 2511\n", + "1843 São Paulo 280 3 3 4 - acept not furnished 0 6520 834 99 7453\n", + "1844 São Paulo 172 2 4 3 23 acept not furnished 1400 11000 775 140 13320\n", + "1845 São Paulo 246 3 4 4 3 acept furnished 3800 12000 750 153 16700\n", + "1846 São Paulo 64 2 1 1 8 acept not furnished 400 1500 101 20 2021\n", + "1847 Belo Horizonte 30 1 1 0 2 not acept not furnished 0 550 0 8 558\n", + "1848 São Paulo 80 3 2 1 - acept not furnished 0 2170 47 33 2250\n", + "1849 Rio de Janeiro 87 3 1 1 7 acept not furnished 786 1800 159 24 2769\n", + "1850 Porto Alegre 50 1 1 1 7 acept not furnished 250 800 0 12 1062\n", + "1851 Porto Alegre 50 1 1 0 6 acept not furnished 400 800 20 12 1232\n", + "1852 São Paulo 30 1 1 0 - not acept not furnished 0 1850 167 28 2045\n", + "1853 São Paulo 43 1 1 0 6 acept not furnished 219 1472 42 6 1739\n", + "1854 São Paulo 300 3 4 0 - acept furnished 0 10000 2000 151 12150\n", + "1855 Campinas 58 1 2 1 10 not acept not furnished 850 750 40 10 1650\n", + "1856 São Paulo 30 1 1 1 14 not acept not furnished 1379 1660 18 22 3079\n", + "1857 São Paulo 54 2 1 0 2 not acept not furnished 571 1700 135 22 2428\n", + "1858 Rio de Janeiro 80 2 2 1 2 not acept not furnished 1050 3500 167 46 4763\n", + "1859 Porto Alegre 62 2 2 1 10 acept not furnished 480 1600 9 24 2113\n", + "1860 Porto Alegre 66 2 2 0 3 acept not furnished 550 1200 50 18 1818\n", + "1861 São Paulo 80 2 2 1 2 acept not furnished 400 1500 36 20 1956\n", + "1862 São Paulo 560 4 4 7 2 acept not furnished 8600 15000 5000 191 28790\n", + "1863 São Paulo 30 1 1 1 5 acept furnished 500 3900 84 50 4534\n", + "1864 São Paulo 50 1 1 0 - acept not furnished 0 1600 0 25 1625\n", + "1865 Rio de Janeiro 81 2 2 1 8 acept furnished 615 3500 225 46 4386\n", + "1866 São Paulo 218 4 4 4 3 not acept not furnished 2488 4930 1454 63 8935\n", + "1867 Campinas 54 2 1 2 6 acept not furnished 300 1200 46 16 1562\n", + "1868 Rio de Janeiro 60 2 1 0 - not acept not furnished 0 1200 0 19 1219\n", + "1869 Belo Horizonte 100 3 1 1 2 acept not furnished 150 1200 0 16 1366\n", + "1870 São Paulo 156 2 3 2 8 acept furnished 2040 13590 292 173 16090\n", + "1871 São Paulo 300 3 4 3 1 acept furnished 3000 4000 0 51 7051\n", + "1872 São Paulo 39 1 1 1 3 not acept furnished 680 2500 115 32 3327\n", + "1873 São Paulo 150 4 3 4 - acept not furnished 0 3000 500 46 3546\n", + "1874 São Paulo 140 2 3 4 10 acept furnished 2300 6170 417 79 8966\n", + "1875 São Paulo 240 4 4 3 1 acept not furnished 2800 4200 792 54 7846\n", + "1876 São Paulo 70 2 1 0 - acept not furnished 0 1300 70 20 1390\n", + "1877 Campinas 462 4 7 4 - acept not furnished 0 5000 590 76 5666\n", + "1878 Campinas 67 3 1 1 1 not acept not furnished 351 890 40 12 1293\n", + "1879 Belo Horizonte 100 2 1 0 - acept not furnished 0 1200 63 20 1283\n", + "1880 Belo Horizonte 113 3 3 1 1 acept not furnished 350 1100 88 15 1553\n", + "1881 São Paulo 99 3 2 1 3 acept not furnished 390 2500 90 32 3012\n", + "1882 São Paulo 120 2 1 1 - acept not furnished 0 2100 175 32 2307\n", + "1883 São Paulo 110 3 2 3 - acept not furnished 0 2600 400 40 3040\n", + "1884 Porto Alegre 38 1 1 1 5 acept not furnished 342 980 51 15 1388\n", + "1885 Campinas 100 3 1 1 7 acept not furnished 999 1090 94 14 2197\n", + "1886 Rio de Janeiro 135 4 2 2 7 acept not furnished 1378 4200 468 55 6101\n", + "1887 Rio de Janeiro 130 3 2 1 10 acept furnished 1338 3250 450 42 5080\n", + "1888 Belo Horizonte 80 3 2 1 1 acept not furnished 305 1200 122 16 1643\n", + "1889 São Paulo 300 3 2 5 - acept not furnished 0 11500 2000 173 13670\n", + "1890 Belo Horizonte 72 2 1 2 4 not acept not furnished 195 1300 97 18 1610\n", + "1891 São Paulo 70 3 2 2 3 acept not furnished 1058 1659 44 22 2783\n", + "1892 São Paulo 395 4 4 3 16 acept furnished 2137 15000 834 191 18160\n", + "1893 Porto Alegre 540 6 8 3 - acept not furnished 0 15000 467 267 15730\n", + "1894 São Paulo 318 4 6 4 13 acept furnished 3450 10160 0 129 13740\n", + "1895 Belo Horizonte 42 2 1 1 5 acept not furnished 170 900 27 12 1109\n", + "1896 Rio de Janeiro 52 1 1 1 1 acept not furnished 613 1400 22 19 2054\n", + "1897 São Paulo 167 3 2 1 7 acept not furnished 1787 10850 532 138 13310\n", + "1898 São Paulo 50 1 1 0 6 not acept not furnished 467 1209 129 8 1813\n", + "1899 Campinas 65 2 2 1 4 not acept not furnished 412 1000 45 13 1470\n", + "1900 São Paulo 140 4 4 3 5 acept not furnished 1800 3600 583 46 6029\n", + "1901 São Paulo 92 3 1 1 3 acept not furnished 340 1600 4 21 1965\n", + "1902 Belo Horizonte 150 4 3 3 5 not acept not furnished 1200 3300 293 44 4837\n", + "1903 Campinas 60 1 1 0 3 acept not furnished 250 1300 75 17 1642\n", + "1904 Belo Horizonte 308 4 5 6 18 acept furnished 2000 13500 173 180 15850\n", + "1905 São Paulo 159 2 3 1 8 not acept furnished 1276 3230 49 41 4596\n", + "1906 São Paulo 240 3 5 4 - acept not furnished 0 7500 459 113 8072\n", + "1907 Porto Alegre 65 3 2 0 5 not acept not furnished 450 1690 86 25 2251\n", + "1908 São Paulo 200 3 2 2 - acept not furnished 0 5000 167 76 5243\n", + "1909 Campinas 130 3 5 2 2 acept not furnished 1170 3610 209 46 5035\n", + "1910 Rio de Janeiro 21 1 1 0 11 acept not furnished 519 1200 0 16 1735\n", + "1911 São Paulo 68 2 1 1 5 acept not furnished 525 1600 142 21 2288\n", + "1912 Porto Alegre 40 1 1 0 4 acept not furnished 450 900 38 14 1402\n", + "1913 Belo Horizonte 310 4 3 6 - acept not furnished 0 3100 187 51 3338\n", + "1914 Campinas 103 2 1 1 4 not acept not furnished 635 1060 84 14 1793\n", + "1915 Rio de Janeiro 650 5 7 4 - acept furnished 4100 15000 4241 229 23570\n", + "1916 Campinas 30 1 1 0 5 not acept furnished 380 500 10 7 897\n", + "1917 Belo Horizonte 155 4 5 3 5 not acept not furnished 1200 5000 593 67 6860\n", + "1918 São Paulo 107 2 2 1 - acept not furnished 400 2600 0 33 3033\n", + "1919 São Paulo 340 4 5 5 16 acept furnished 5200 12000 3400 153 20750\n", + "1920 Belo Horizonte 70 3 1 0 3 not acept not furnished 275 1200 104 16 1595\n", + "1921 Belo Horizonte 58 2 2 1 4 acept not furnished 310 950 86 13 1359\n", + "1922 São Paulo 70 3 2 1 6 not acept furnished 569 3300 159 42 4070\n", + "1923 São Paulo 240 3 3 0 - acept not furnished 300 4300 292 65 4957\n", + "1924 Rio de Janeiro 130 3 2 1 5 acept not furnished 1300 2800 300 37 4437\n", + "1925 São Paulo 310 5 6 5 5 acept not furnished 6900 10000 1834 127 18860\n", + "1926 Rio de Janeiro 60 1 1 1 10 acept not furnished 731 1300 54 17 2102\n", + "1927 São Paulo 319 4 6 5 16 not acept not furnished 5000 10050 2900 128 18080\n", + "1928 Porto Alegre 81 2 1 0 2 acept not furnished 350 1150 5 17 1522\n", + "1929 Belo Horizonte 306 3 5 0 - acept not furnished 0 8000 0 132 8132\n", + "1930 São Paulo 113 2 2 1 6 acept not furnished 1000 3000 50 39 4089\n", + "1931 São Paulo 280 3 4 2 3 not acept not furnished 4000 6000 1059 77 11140\n", + "1932 São Paulo 270 3 3 3 16 acept not furnished 2800 13000 959 165 16920\n", + "1933 São Paulo 78 2 1 1 7 acept not furnished 645 2000 35 26 2706\n", + "1934 São Paulo 60 1 2 1 - acept not furnished 0 1500 30 23 1553\n", + "1935 São Paulo 30 1 1 0 - acept not furnished 0 750 59 12 821\n", + "1936 Rio de Janeiro 58 2 1 1 10 acept not furnished 594 800 77 11 1482\n", + "1937 Rio de Janeiro 65 1 1 0 2 acept not furnished 350 1800 30 24 2204\n", + "1938 São Paulo 58 1 1 1 1 not acept not furnished 580 1740 75 23 2418\n", + "1939 São Paulo 22 1 1 0 25 acept not furnished 385 2100 40 27 2552\n", + "1940 São Paulo 32 1 1 1 13 not acept furnished 811 3200 174 41 4226\n", + "1941 Campinas 176 3 5 3 3 acept not furnished 1350 5200 442 66 7058\n", + "1942 Belo Horizonte 350 7 5 4 - acept not furnished 0 7500 357 123 7980\n", + "1943 São Paulo 260 4 4 2 5 acept furnished 2570 4400 584 56 7610\n", + "1944 São Paulo 100 2 1 0 - acept not furnished 0 2300 198 35 2533\n", + "1945 Rio de Janeiro 65 1 1 0 10 not acept furnished 750 3500 142 46 4438\n", + "1946 Rio de Janeiro 600 7 6 1 12 not acept furnished 1300 15000 1167 194 17660\n", + "1947 Rio de Janeiro 300 4 3 1 - acept not furnished 0 5000 367 77 5444\n", + "1948 São Paulo 430 4 3 4 - acept not furnished 0 8500 1427 128 10060\n", + "1949 São Paulo 260 5 5 4 20 not acept not furnished 4000 8000 2620 102 14720\n", + "1950 Belo Horizonte 211 3 4 3 - not acept not furnished 0 8400 292 138 8830\n", + "1951 Campinas 103 3 2 1 9 not acept not furnished 885 1800 113 23 2821\n", + "1952 Porto Alegre 62 2 2 0 2 acept not furnished 400 1556 100 23 2079\n", + "1953 Rio de Janeiro 80 2 2 1 1 acept furnished 1100 3499 205 46 4850\n", + "1954 São Paulo 60 1 1 1 - not acept not furnished 0 1180 0 18 1198\n", + "1955 São Paulo 27 1 1 0 5 not acept not furnished 1404 3500 1 45 4950\n", + "1956 São Paulo 486 4 6 5 8 not acept not furnished 4614 4861 3772 62 13310\n", + "1957 São Paulo 40 1 1 1 12 acept furnished 480 1680 102 22 2284\n", + "1958 Rio de Janeiro 60 2 1 0 7 acept furnished 806 2800 97 37 3740\n", + "1959 Rio de Janeiro 64 2 2 0 10 acept not furnished 665 2200 104 29 2998\n", + "1960 Campinas 660 5 7 4 17 acept not furnished 5381 10000 1100 127 16610\n", + "1961 São Paulo 62 3 2 1 5 acept not furnished 487 2400 54 31 2972\n", + "1962 Porto Alegre 50 2 1 1 3 acept not furnished 180 946 0 14 1140\n", + "1963 São Paulo 380 3 4 4 - acept not furnished 0 8000 952 121 9073\n", + "1964 Campinas 134 3 3 2 7 not acept not furnished 1000 2500 177 32 3709\n", + "1965 São Paulo 74 2 2 0 4 acept furnished 1105 3600 210 46 4961\n", + "1966 Belo Horizonte 68 2 2 1 5 acept furnished 1183 2500 207 34 3924\n", + "1967 Rio de Janeiro 33 1 1 0 2 acept not furnished 470 1600 72 21 2163\n", + "1968 São Paulo 60 2 1 0 - acept not furnished 0 1100 0 17 1117\n", + "1969 São Paulo 50 1 1 1 25 not acept furnished 707 3700 30 47 4484\n", + "1970 São Paulo 57 2 2 2 6 acept not furnished 834 1630 189 21 2674\n", + "1971 São Paulo 39 1 1 1 4 acept not furnished 529 995 49 13 1586\n", + "1972 Porto Alegre 45 1 1 1 1 not acept not furnished 30 760 0 12 802\n", + "1973 São Paulo 221 3 2 2 7 acept not furnished 1980 4500 200 58 6738\n", + "1974 São Paulo 140 3 2 0 8 acept furnished 2500 1799 375 23 4697\n", + "1975 Rio de Janeiro 650 5 4 2 9 acept not furnished 5718 9000 1431 116 16270\n", + "1976 São Paulo 210 5 4 1 - acept not furnished 0 15000 1667 226 16890\n", + "1977 Belo Horizonte 100 4 2 3 10 acept not furnished 1027 2600 238 35 3900\n", + "1978 Rio de Janeiro 220 3 3 2 4 acept furnished 2500 9000 367 116 11980\n", + "1979 São Paulo 42 1 1 0 1 acept not furnished 400 1150 27 15 1592\n", + "1980 Rio de Janeiro 98 3 2 0 7 acept not furnished 891 3000 185 39 4115\n", + "1981 Rio de Janeiro 150 3 1 2 2 acept not furnished 3290 5200 710 68 9268\n", + "1982 São Paulo 170 3 3 4 - acept not furnished 0 3500 222 53 3775\n", + "1983 São Paulo 60 2 1 0 - acept not furnished 1 1610 0 25 1636\n", + "1984 São Paulo 120 3 4 2 - acept not furnished 187 3450 149 52 3838\n", + "1985 São Paulo 142 2 3 2 18 acept not furnished 1400 3550 492 45 5487\n", + "1986 Porto Alegre 90 2 2 1 18 not acept not furnished 500 2500 84 37 3121\n", + "1987 São Paulo 140 3 3 2 3 acept not furnished 2400 6000 500 77 8977\n", + "1988 Rio de Janeiro 26 1 1 0 3 acept not furnished 325 1200 26 16 1567\n", + "1989 São Paulo 20 1 1 0 - not acept not furnished 0 790 0 11 801\n", + "1990 Porto Alegre 24 1 1 1 - not acept not furnished 0 550 0 9 559\n", + "1991 Rio de Janeiro 140 3 2 0 5 acept not furnished 350 2900 194 38 3482\n", + "1992 Belo Horizonte 134 4 2 3 1 not acept not furnished 650 3000 313 40 4003\n", + "1993 São Paulo 400 5 4 2 12 acept not furnished 2675 2000 832 26 5533\n", + "1994 Rio de Janeiro 18 1 1 0 3 acept not furnished 628 650 49 9 1336\n", + "1995 Rio de Janeiro 62 1 1 1 8 acept not furnished 1550 2800 182 37 4569\n", + "1996 São Paulo 192 3 3 3 16 acept furnished 1790 6500 630 83 9003\n", + "1997 São Paulo 80 3 2 1 6 acept not furnished 850 1790 128 23 2791\n", + "1998 Porto Alegre 38 1 1 1 9 acept not furnished 350 2900 42 43 3335\n", + "1999 Belo Horizonte 112 2 3 2 10 acept not furnished 442 1400 92 19 1953\n", + "2000 Rio de Janeiro 15 1 1 0 1 not acept not furnished 500 1100 0 15 1615\n", + "2001 São Paulo 29 1 1 0 5 acept not furnished 257 1043 0 14 1314\n", + "2002 Belo Horizonte 55 2 1 1 1 acept not furnished 200 1050 0 14 1264\n", + "2003 São Paulo 88 3 1 2 5 acept not furnished 1900 2500 84 32 4516\n", + "2004 São Paulo 100 4 1 0 - acept not furnished 0 1600 100 25 1725\n", + "2005 Belo Horizonte 92 3 2 1 1 acept not furnished 268 1800 141 24 2233\n", + "2006 Rio de Janeiro 154 4 2 2 2 acept not furnished 1850 4250 313 55 6468\n", + "2007 São Paulo 240 4 3 3 6 acept not furnished 2850 12000 700 153 15700\n", + "2008 Porto Alegre 28 1 1 0 1 acept furnished 0 1340 4 20 1364\n", + "2009 São Paulo 50 1 1 0 - not acept not furnished 0 1250 34 19 1303\n", + "2010 São Paulo 180 3 3 2 4 acept not furnished 2100 8000 413 102 10620\n", + "2011 São Paulo 35 1 1 0 3 not acept not furnished 150 850 0 11 1011\n", + "2012 Rio de Janeiro 64 2 1 1 2 acept not furnished 0 3500 0 46 3546\n", + "2013 São Paulo 60 2 1 1 8 acept not furnished 550 1310 5 17 1882\n", + "2014 São Paulo 239 4 4 3 - acept furnished 0 5950 500 90 6540\n", + "2015 São Paulo 130 3 2 1 10 not acept furnished 1100 2300 109 30 3539\n", + "2016 Campinas 85 2 2 0 6 not acept not furnished 810 918 98 12 1838\n", + "2017 Rio de Janeiro 75 2 2 1 9 acept furnished 650 2000 310 26 2986\n", + "2018 São Paulo 90 2 2 1 - acept not furnished 0 1800 0 28 1828\n", + "2019 Belo Horizonte 100 3 1 1 2 acept not furnished 300 1500 85 20 1905\n", + "2020 São Paulo 70 2 2 1 1 not acept not furnished 670 1450 0 19 2139\n", + "2021 Rio de Janeiro 86 3 1 0 3 acept not furnished 800 1258 80 17 2155\n", + "2022 Rio de Janeiro 29 1 1 0 2 acept not furnished 484 1500 26 20 2030\n", + "2023 Porto Alegre 82 2 2 1 5 acept not furnished 450 1700 67 25 2242\n", + "2024 São Paulo 55 2 1 1 5 acept not furnished 640 1625 0 21 2286\n", + "2025 Porto Alegre 47 1 1 1 1 not acept furnished 400 2200 0 33 2633\n", + "2026 São Paulo 33 1 1 0 15 not acept not furnished 550 4000 0 51 4601\n", + "2027 Campinas 50 1 1 1 11 not acept not furnished 650 1800 130 23 2603\n", + "2028 São Paulo 159 4 2 0 3 acept not furnished 2064 1900 634 25 4623\n", + "2029 Belo Horizonte 62 3 2 1 4 not acept not furnished 230 1100 63 15 1408\n", + "2030 São Paulo 80 2 1 2 - acept not furnished 0 1569 0 24 1593\n", + "2031 São Paulo 170 3 4 3 21 acept not furnished 1500 5000 450 64 7014\n", + "2032 Porto Alegre 68 2 2 1 1 acept not furnished 400 1800 82 27 2309\n", + "2033 São Paulo 300 4 4 3 - acept furnished 0 5080 284 77 5441\n", + "2034 Porto Alegre 50 2 1 1 2 acept not furnished 100 1460 0 22 1582\n", + "2035 Rio de Janeiro 80 2 2 1 10 acept not furnished 824 2000 279 26 3129\n", + "2036 Porto Alegre 40 2 1 1 3 acept not furnished 300 820 32 12 1164\n", + "2037 São Paulo 270 3 4 2 6 acept not furnished 2890 6500 100 83 9573\n", + "2038 Porto Alegre 75 3 1 1 1 acept not furnished 360 1100 47 17 1524\n", + "2039 Porto Alegre 60 1 2 2 15 acept not furnished 500 2800 17 41 3358\n", + "2040 São Paulo 300 4 5 4 1 acept not furnished 3600 7500 1334 96 12530\n", + "2041 Belo Horizonte 73 2 1 2 1 acept not furnished 150 1200 62 16 1428\n", + "2042 Belo Horizonte 85 2 1 1 1 acept not furnished 230 1000 61 14 1305\n", + "2043 São Paulo 100 3 3 1 - acept not furnished 0 2400 0 37 2437\n", + "2044 Porto Alegre 49 1 1 0 7 acept not furnished 310 680 21 10 1021\n", + "2045 São Paulo 35 1 1 0 5 acept furnished 420 1800 0 23 2243\n", + "2046 São Paulo 240 3 4 1 6 not acept not furnished 1700 14850 400 189 17140\n", + "2047 São Paulo 45 1 1 0 - acept not furnished 0 900 0 14 914\n", + "2048 São Paulo 55 2 1 1 9 acept furnished 565 2800 0 36 3401\n", + "2049 São Paulo 305 4 3 4 6 acept furnished 3428 11000 2134 140 16700\n", + "2050 Belo Horizonte 622 5 5 6 - acept not furnished 0 10000 924 164 11090\n", + "2051 Belo Horizonte 55 2 1 1 2 not acept not furnished 250 1200 67 16 1533\n", + "2052 Rio de Janeiro 42 1 1 0 12 acept furnished 600 2300 167 30 3097\n", + "2053 Belo Horizonte 132 3 3 2 2 acept not furnished 0 1500 207 20 1727\n", + "2054 Belo Horizonte 53 2 1 0 6 acept not furnished 626 850 76 12 1564\n", + "2055 São Paulo 998 7 10 4 - acept furnished 0 15000 5000 226 20230\n", + "2056 São Paulo 22 1 1 0 4 not acept furnished 350 2410 0 31 2791\n", + "2057 Rio de Janeiro 35 1 1 0 12 acept not furnished 350 850 60 11 1271\n", + "2058 São Paulo 189 4 2 2 4 acept not furnished 1970 8000 559 102 10630\n", + "2059 São Paulo 375 4 5 3 - acept furnished 0 9000 850 136 9986\n", + "2060 São Paulo 65 2 1 1 3 acept not furnished 315 1400 47 18 1780\n", + "2061 São Paulo 462 4 6 4 - acept furnished 0 8000 1081 121 9202\n", + "2062 São Paulo 150 2 1 0 1 acept not furnished 180 2285 100 29 2594\n", + "2063 Campinas 350 2 2 2 - acept not furnished 0 4300 150 65 4515\n", + "2064 São Paulo 260 4 5 4 15 acept furnished 3471 7500 0 96 11070\n", + "2065 Porto Alegre 61 1 1 0 - acept not furnished 80 1100 160 17 1357\n", + "2066 São Paulo 175 4 3 2 - acept not furnished 0 2890 0 44 2934\n", + "2067 Porto Alegre 70 2 1 0 - acept furnished 270 1800 23 27 2120\n", + "2068 Rio de Janeiro 60 2 1 1 10 acept furnished 520 1500 80 20 2120\n", + "2069 Campinas 296 6 4 8 - acept not furnished 0 5200 375 79 5654\n", + "2070 Rio de Janeiro 96 2 2 1 10 not acept furnished 995 2900 109 38 4042\n", + "2071 São Paulo 150 4 2 3 2 acept not furnished 3030 7377 800 94 11300\n", + "2072 São Paulo 375 4 4 3 - acept not furnished 0 6400 75 97 6572\n", + "2073 Campinas 70 3 1 1 1 acept not furnished 600 1500 17 20 2137\n", + "2074 São Paulo 127 4 3 2 4 acept not furnished 1040 4930 472 63 6505\n", + "2075 Belo Horizonte 67 2 2 2 3 not acept not furnished 850 2800 0 38 3688\n", + "2076 São Paulo 50 1 2 1 1 not acept furnished 750 3300 214 42 4306\n", + "2077 Rio de Janeiro 56 2 1 0 4 acept not furnished 502 1500 0 20 2022\n", + "2078 São Paulo 55 2 1 1 19 acept furnished 608 2100 84 27 2819\n", + "2079 São Paulo 34 1 1 0 - not acept not furnished 0 900 46 14 960\n", + "2080 Campinas 68 2 1 0 4 not acept not furnished 498 930 48 12 1488\n", + "2081 São Paulo 80 2 1 0 4 not acept not furnished 400 1777 0 23 2200\n", + "2082 Campinas 120 3 1 1 3 not acept not furnished 650 1800 80 23 2553\n", + "2083 Campinas 50 1 1 1 10 not acept not furnished 718 1600 13 21 2352\n", + "2084 Campinas 78 2 2 1 1 acept not furnished 432 1200 127 16 1775\n", + "2085 Rio de Janeiro 90 2 2 1 9 acept not furnished 880 3800 80 49 4809\n", + "2086 Belo Horizonte 320 5 4 6 - not acept not furnished 0 8000 584 132 8716\n", + "2087 Rio de Janeiro 560 5 6 4 14 acept not furnished 2190 2633 1133 34 5990\n", + "2088 Rio de Janeiro 25 1 1 0 8 acept not furnished 600 1850 25 24 2499\n", + "2089 Porto Alegre 37 1 1 0 3 acept not furnished 270 650 23 10 953\n", + "2090 Rio de Janeiro 95 3 1 0 16 acept not furnished 1048 3600 283 47 4978\n", + "2091 São Paulo 130 3 3 2 7 acept not furnished 1400 1650 414 21 3485\n", + "2092 Belo Horizonte 270 5 4 6 - acept not furnished 0 3910 125 53 4088\n", + "2093 Belo Horizonte 40 1 1 0 - not acept not furnished 0 650 59 11 720\n", + "2094 Belo Horizonte 65 2 2 3 7 acept not furnished 366 1450 110 20 1946\n", + "2095 São Paulo 45 1 1 0 22 not acept not furnished 350 1015 33 13 1411\n", + "2096 São Paulo 20 1 1 0 1 not acept furnished 0 2060 0 27 2087\n", + "2097 São Paulo 720 4 5 5 17 acept not furnished 6471 6500 3520 83 16570\n", + "2098 Belo Horizonte 80 3 2 2 1 acept furnished 280 2500 126 34 2940\n", + "2099 Belo Horizonte 90 2 1 0 1 acept not furnished 0 1000 39 14 1053\n", + "2100 São Paulo 60 1 2 0 - acept not furnished 0 1062 1 16 1079\n", + "2101 Belo Horizonte 45 1 1 1 4 not acept furnished 1550 3400 198 46 5194\n", + "2102 São Paulo 100 1 2 0 - not acept not furnished 4320 3100 0 40 7460\n", + "2103 Belo Horizonte 553 4 6 3 3 not acept not furnished 2800 10870 1459 145 15270\n", + "2104 São Paulo 250 4 3 2 - acept not furnished 0 3900 475 59 4434\n", + "2105 Campinas 92 3 2 3 17 acept not furnished 643 3700 299 47 4689\n", + "2106 São Paulo 98 1 2 0 27 acept furnished 3177 15000 130 191 18500\n", + "2107 Campinas 114 3 2 1 4 acept not furnished 967 1400 176 18 2561\n", + "2108 São Paulo 27 1 1 1 6 not acept furnished 650 1900 59 25 2634\n", + "2109 Porto Alegre 225 1 2 0 - acept not furnished 0 3500 218 63 3781\n", + "2110 São Paulo 30 1 1 0 3 acept not furnished 380 1700 0 22 2102\n", + "2111 Porto Alegre 135 3 3 4 5 acept not furnished 200 4000 0 59 4259\n", + "2112 Campinas 150 4 3 4 - not acept not furnished 750 4000 334 61 5145\n", + "2113 Belo Horizonte 190 4 2 0 10 acept not furnished 1000 5580 417 75 7072\n", + "2114 Porto Alegre 47 1 1 1 1 not acept furnished 400 2200 0 33 2633\n", + "2115 Rio de Janeiro 120 3 1 1 - acept not furnished 0 1150 67 18 1235\n", + "2116 São Paulo 90 3 2 1 4 acept not furnished 900 2066 92 27 3085\n", + "2117 São Paulo 350 4 5 2 - not acept furnished 0 7500 0 113 7613\n", + "2118 São Paulo 160 3 4 2 - acept not furnished 0 4300 209 65 4574\n", + "2119 Rio de Janeiro 150 3 2 0 5 acept not furnished 1800 2500 200 33 4533\n", + "2120 Rio de Janeiro 35 1 1 0 3 acept not furnished 790 2000 86 26 2902\n", + "2121 Porto Alegre 25 1 1 0 - not acept not furnished 0 550 0 9 559\n", + "2122 São Paulo 240 4 4 4 26 acept not furnished 3250 13000 1121 165 17540\n", + "2123 São Paulo 150 4 2 2 13 not acept not furnished 1700 4400 37 56 6193\n", + "2124 Rio de Janeiro 20 1 1 0 - acept not furnished 0 700 0 10 710\n", + "2125 Campinas 85 3 2 1 4 acept not furnished 690 1341 110 6 2147\n", + "2126 São Paulo 50 2 1 1 6 acept furnished 400 1900 0 15 2315\n", + "2127 São Paulo 197 3 3 2 8 acept not furnished 4200 6000 1375 77 11650\n", + "2128 São Paulo 70 3 2 1 7 acept not furnished 800 2800 67 36 3703\n", + "2129 Rio de Janeiro 220 3 2 2 8 acept not furnished 1850 3500 265 46 5661\n", + "2130 Belo Horizonte 270 4 3 2 3 acept not furnished 1200 4800 241 64 6305\n", + "2131 Porto Alegre 100 3 2 2 2 acept not furnished 650 2499 92 37 3278\n", + "2132 São Paulo 195 4 6 3 12 acept not furnished 1400 8000 750 102 10250\n", + "2133 São Paulo 160 3 3 2 - acept not furnished 0 4200 342 64 4606\n", + "2134 São Paulo 470 4 6 3 - acept not furnished 0 7200 1134 109 8443\n", + "2135 Campinas 60 3 2 1 5 acept not furnished 366 1200 0 16 1582\n", + "2136 São Paulo 300 4 4 3 - acept not furnished 0 12900 584 194 13680\n", + "2137 São Paulo 330 5 6 2 11 acept not furnished 800 8950 250 114 10110\n", + "2138 Porto Alegre 109 1 2 2 3 acept furnished 496 4300 87 63 4946\n", + "2139 São Paulo 240 4 5 4 15 acept furnished 3700 12000 1000 153 16850\n", + "2140 São Paulo 150 3 2 5 - acept not furnished 0 2300 260 35 2595\n", + "2141 São Paulo 200 3 2 1 2 acept not furnished 1750 4500 375 58 6683\n", + "2142 Belo Horizonte 140 4 3 1 2 acept not furnished 475 2300 167 31 2973\n", + "2143 São Paulo 106 2 2 2 1 not acept furnished 1170 10600 334 135 12240\n", + "2144 Porto Alegre 92 2 2 1 2 acept furnished 645 2100 2610 31 5386\n", + "2145 São Paulo 35 1 1 1 7 acept not furnished 380 2200 100 28 2708\n", + "2146 São Paulo 70 3 2 1 3 acept not furnished 1200 2900 25 37 4162\n", + "2147 São Paulo 74 2 1 2 9 acept furnished 1100 6600 424 84 8208\n", + "2148 São Paulo 69 2 2 2 5 acept not furnished 853 1900 210 25 2988\n", + "2149 São Paulo 50 1 1 0 - not acept not furnished 0 830 0 13 843\n", + "2150 Porto Alegre 450 5 3 6 - acept not furnished 0 4760 94 85 4939\n", + "2151 Rio de Janeiro 68 2 1 0 5 acept not furnished 593 1000 400 13 2006\n", + "2152 São Paulo 71 1 1 1 11 acept not furnished 1650 3000 238 39 4927\n", + "2153 Rio de Janeiro 69 2 1 1 9 acept furnished 500 1370 56 18 1944\n", + "2154 Belo Horizonte 32 1 1 1 9 acept not furnished 197 1500 126 20 1843\n", + "2155 São Paulo 57 2 1 1 8 acept furnished 350 1800 50 23 2223\n", + "2156 São Paulo 28 1 1 0 1 acept furnished 500 2200 72 28 2800\n", + "2157 São Paulo 39 1 1 0 8 acept furnished 300 2000 0 26 2326\n", + "2158 Porto Alegre 140 3 3 0 2 acept not furnished 750 1700 125 25 2600\n", + "2159 São Paulo 160 3 3 2 - acept not furnished 0 4500 209 68 4777\n", + "2160 São Paulo 235 3 3 1 3 acept not furnished 2585 5150 575 66 8376\n", + "2161 São Paulo 171 3 2 1 13 acept not furnished 1200 2200 300 28 3728\n", + "2162 Rio de Janeiro 139 3 2 2 1 acept not furnished 2047 6000 540 78 8665\n", + "2163 Belo Horizonte 160 4 3 2 5 acept not furnished 763 2300 230 31 3324\n", + "2164 Campinas 60 2 1 1 - acept not furnished 485 800 60 11 1356\n", + "2165 São Paulo 134 3 3 3 8 acept not furnished 1680 2125 375 27 4207\n", + "2166 Belo Horizonte 70 2 1 1 11 acept not furnished 897 1300 125 18 2340\n", + "2167 Rio de Janeiro 57 2 1 0 1 acept not furnished 100 1530 0 20 1650\n", + "2168 São Paulo 240 3 3 4 6 acept furnished 2600 5500 1834 70 10000\n", + "2169 São Paulo 50 1 1 0 - not acept not furnished 0 800 34 13 847\n", + "2170 Rio de Janeiro 120 3 2 1 8 acept not furnished 1470 3550 190 46 5256\n", + "2171 Porto Alegre 200 3 3 4 2 acept not furnished 2900 1200 260 18 4378\n", + "2172 São Paulo 572 6 6 4 - acept furnished 0 7800 2359 118 10280\n", + "2173 São Paulo 145 2 2 1 1 acept furnished 1463 4000 0 51 5514\n", + "2174 Belo Horizonte 70 2 1 2 1 not acept not furnished 80 1200 97 16 1393\n", + "2175 Rio de Janeiro 85 2 2 1 2 acept furnished 3700 8000 659 104 12460\n", + "2176 Belo Horizonte 140 3 2 0 2 not acept not furnished 0 3000 202 40 3242\n", + "2177 São Paulo 260 4 5 5 6 acept not furnished 3000 12500 1667 159 17330\n", + "2178 São Paulo 211 4 4 4 2 acept not furnished 1800 3390 775 43 6008\n", + "2179 Campinas 58 2 1 1 2 acept not furnished 280 650 0 9 939\n", + "2180 Rio de Janeiro 110 1 1 2 3 acept not furnished 1936 4500 341 58 6835\n", + "2181 São Paulo 72 2 2 0 10 acept not furnished 820 1500 70 20 2410\n", + "2182 São Paulo 700 4 7 8 - acept not furnished 0 45000 8750 677 54430\n", + "2183 São Paulo 68 1 2 1 5 acept not furnished 1040 6000 229 77 7346\n", + "2184 Rio de Janeiro 100 3 3 2 8 acept not furnished 1167 2700 95 35 3997\n", + "2185 São Paulo 240 3 2 0 7 acept furnished 1717 6500 444 83 8744\n", + "2186 Rio de Janeiro 104 3 1 0 6 acept not furnished 784 3500 195 46 4525\n", + "2187 Campinas 70 1 1 1 2 acept furnished 290 1600 70 21 1981\n", + "2188 São Paulo 67 1 1 1 14 acept furnished 920 2600 72 33 3625\n", + "2189 Belo Horizonte 160 4 2 5 - acept furnished 0 3780 167 62 4009\n", + "2190 Belo Horizonte 64 3 1 0 3 not acept not furnished 215 1400 27 19 1661\n", + "2191 São Paulo 140 3 3 5 8 not acept furnished 2000 8000 710 102 10810\n", + "2192 Campinas 38 1 1 0 3 not acept not furnished 376 750 15 10 1151\n", + "2193 São Paulo 34 1 1 0 12 acept not furnished 372 2700 57 35 3164\n", + "2194 São Paulo 54 2 1 0 7 acept not furnished 535 2001 0 26 2562\n", + "2195 São Paulo 54 1 1 1 1 not acept furnished 1050 7200 250 92 8592\n", + "2196 São Paulo 200 3 2 4 - acept not furnished 0 3500 500 53 4053\n", + "2197 São Paulo 107 3 2 2 1 acept not furnished 1122 2600 350 33 4105\n", + "2198 Rio de Janeiro 70 2 2 0 11 acept not furnished 879 1550 77 20 2526\n", + "2199 São Paulo 20 1 1 0 5 acept furnished 602 1800 130 23 2555\n", + "2200 São Paulo 86 2 1 1 5 acept not furnished 1002 2340 0 8 3350\n", + "2201 Rio de Janeiro 30 1 1 1 - acept not furnished 0 1480 25 20 1525\n", + "2202 Porto Alegre 108 3 2 1 3 acept furnished 826 2000 89 30 2945\n", + "2203 São Paulo 250 4 3 4 - acept not furnished 0 2700 154 41 2895\n", + "2204 São Paulo 80 2 1 0 4 acept not furnished 740 2200 92 28 3060\n", + "2205 Rio de Janeiro 73 2 1 1 8 acept not furnished 1022 1100 0 15 2137\n", + "2206 Porto Alegre 45 1 1 1 3 acept not furnished 250 1205 72 18 1545\n", + "2207 São Paulo 45 2 2 0 - not acept not furnished 0 1650 84 25 1759\n", + "2208 São Paulo 255 4 4 0 15 acept furnished 4000 2500 1484 32 8016\n", + "2209 Belo Horizonte 217 4 3 4 12 acept not furnished 2644 6000 1177 80 9901\n", + "2210 São Paulo 70 1 1 0 2 acept not furnished 472 1870 0 24 2366\n", + "2211 São Paulo 25 1 1 0 1 not acept not furnished 0 885 0 12 897\n", + "2212 Porto Alegre 110 3 3 0 1 acept not furnished 400 3250 75 48 3773\n", + "2213 São Paulo 80 2 2 1 12 acept not furnished 1200 10000 109 127 11440\n", + "2214 São Paulo 260 3 5 0 - acept not furnished 0 9000 634 136 9770\n", + "2215 São Paulo 50 2 2 1 10 acept not furnished 624 2700 82 35 3441\n", + "2216 Campinas 60 2 1 1 1 not acept not furnished 430 815 20 6 1271\n", + "2217 São Paulo 400 3 6 6 - acept furnished 0 6500 375 98 6973\n", + "2218 São Paulo 113 2 1 1 4 acept not furnished 1000 3000 50 39 4089\n", + "2219 São Paulo 400 4 4 6 8 acept not furnished 3900 8000 1750 102 13750\n", + "2220 Porto Alegre 64 2 2 2 6 acept not furnished 450 2250 50 33 2783\n", + "2221 São Paulo 82 2 1 2 10 acept furnished 2020 3100 333 40 5493\n", + "2222 São Paulo 65 2 1 3 9 acept not furnished 800 2000 217 26 3043\n", + "2223 Porto Alegre 128 4 3 2 3 acept not furnished 1160 4900 409 88 6557\n", + "2224 São Paulo 38 1 1 0 1 not acept not furnished 60 950 0 13 1023\n", + "2225 Campinas 175 3 2 0 - not acept not furnished 0 2000 0 31 2031\n", + "2226 São Paulo 107 3 3 2 3 acept not furnished 1600 4500 417 58 6575\n", + "2227 Rio de Janeiro 257 4 3 2 3 acept furnished 3250 3800 709 49 7808\n", + "2228 São Paulo 35 1 1 1 2 not acept furnished 550 3250 30 42 3872\n", + "2229 São Paulo 463 4 7 6 - acept not furnished 0 12000 1264 181 13450\n", + "2230 Rio de Janeiro 40 2 1 0 7 acept not furnished 335 920 55 12 1322\n", + "2231 Belo Horizonte 297 4 2 3 6 acept not furnished 2000 1870 209 15 4094\n", + "2232 São Paulo 137 3 3 1 9 acept furnished 1247 5500 303 70 7120\n", + "2233 Rio de Janeiro 35 1 1 0 10 not acept not furnished 498 1200 80 16 1794\n", + "2234 Rio de Janeiro 128 3 3 1 8 acept furnished 950 3500 242 46 4738\n", + "2235 Belo Horizonte 59 2 1 1 2 acept not furnished 190 1250 70 17 1527\n", + "2236 Rio de Janeiro 400 4 4 2 - acept not furnished 634 11480 1357 175 13640\n", + "2237 Rio de Janeiro 100 3 2 1 5 not acept not furnished 980 4500 125 58 5663\n", + "2238 Rio de Janeiro 50 1 1 0 10 acept furnished 680 2200 85 29 2994\n", + "2239 Porto Alegre 80 2 2 1 5 acept furnished 740 1900 120 28 2788\n", + "2240 Belo Horizonte 68 2 2 2 4 acept not furnished 230 1650 154 22 2056\n", + "2241 São Paulo 32 1 1 1 22 acept furnished 2000 2000 416 26 4442\n", + "2242 Rio de Janeiro 161 3 3 3 14 acept not furnished 1300 4500 640 58 6498\n", + "2243 São Paulo 85 2 2 0 - acept not furnished 0 1700 0 26 1726\n", + "2244 São Paulo 100 2 2 0 - acept not furnished 0 2500 274 38 2812\n", + "2245 São Paulo 136 3 4 3 7 acept not furnished 1400 5000 117 64 6581\n", + "2246 São Paulo 362 4 5 2 - acept not furnished 0 7000 834 106 7940\n", + "2247 São Paulo 276 3 3 4 15 acept furnished 3600 6500 1650 83 11830\n", + "2248 Rio de Janeiro 22 1 1 0 2 not acept not furnished 50 1322 59 16 1447\n", + "2249 Porto Alegre 60 2 1 0 1 acept not furnished 114 980 42 15 1151\n", + "2250 São Paulo 500 4 7 8 - acept not furnished 0 9250 1167 140 10560\n", + "2251 Porto Alegre 65 1 1 1 3 acept not furnished 426 980 38 15 1459\n", + "2252 São Paulo 56 2 1 1 11 acept not furnished 350 2600 0 33 2983\n", + "2253 São Paulo 35 1 1 1 4 not acept furnished 300 2840 10 36 3186\n", + "2254 Porto Alegre 98 3 2 2 4 not acept not furnished 700 2550 100 38 3388\n", + "2255 São Paulo 45 1 1 0 1 not acept not furnished 0 950 30 15 995\n", + "2256 Porto Alegre 48 2 1 1 2 acept not furnished 300 800 35 12 1147\n", + "2257 Campinas 48 1 1 1 4 acept furnished 490 1500 42 20 2052\n", + "2258 São Paulo 114 2 3 1 1 acept furnished 902 7010 167 89 8168\n", + "2259 Belo Horizonte 197 4 2 3 3 acept not furnished 850 4250 400 57 5557\n", + "2260 Belo Horizonte 200 4 1 2 4 acept not furnished 345 2500 209 34 3088\n", + "2261 Belo Horizonte 110 3 2 0 - acept not furnished 0 2500 0 41 2541\n", + "2262 São Paulo 300 2 4 2 - acept not furnished 0 6000 419 91 6510\n", + "2263 Belo Horizonte 120 3 1 1 6 not acept not furnished 1140 1900 140 26 3206\n", + "2264 Porto Alegre 40 1 1 0 3 acept furnished 370 1084 46 16 1516\n", + "2265 São Paulo 92 2 1 1 7 not acept furnished 690 3950 0 51 4691\n", + "2266 São Paulo 140 3 2 2 3 acept not furnished 1640 5500 583 70 7793\n", + "2267 São Paulo 244 4 3 4 2 acept not furnished 3460 7000 1000 89 11550\n", + "2268 Porto Alegre 59 2 1 0 3 acept not furnished 326 1000 42 15 1383\n", + "2269 Rio de Janeiro 35 1 1 0 3 acept not furnished 0 791 30 11 832\n", + "2270 São Paulo 120 3 2 3 16 acept not furnished 1400 2000 292 26 3718\n", + "2271 São Paulo 248 4 5 4 1 not acept not furnished 2500 9100 250 116 11970\n", + "2272 São Paulo 63 2 2 1 17 acept not furnished 783 1690 27 22 2522\n", + "2273 São Paulo 45 1 1 1 8 acept not furnished 694 1800 172 23 2689\n", + "2274 São Paulo 129 2 3 2 16 acept furnished 1100 2376 334 38 3848\n", + "2275 São Paulo 300 3 3 8 - acept not furnished 0 4675 400 71 5146\n", + "2276 São Paulo 29 1 1 1 4 not acept furnished 650 2200 118 28 2996\n", + "2277 Belo Horizonte 100 3 2 1 2 acept not furnished 745 1300 119 18 2182\n", + "2278 São Paulo 153 4 3 3 3 acept not furnished 2500 5500 700 70 8770\n", + "2279 Campinas 87 2 1 1 4 acept not furnished 780 1200 52 16 2048\n", + "2280 São Paulo 75 1 1 2 8 acept furnished 976 7000 323 89 8388\n", + "2281 Rio de Janeiro 300 4 4 2 3 acept not furnished 4100 12750 1334 165 18350\n", + "2282 Porto Alegre 48 1 1 0 4 acept not furnished 340 700 300 11 1351\n", + "2283 São Paulo 56 2 2 1 4 acept not furnished 500 2000 0 26 2526\n", + "2284 Campinas 71 2 1 1 7 acept not furnished 670 977 114 13 1774\n", + "2285 São Paulo 84 4 1 3 5 not acept not furnished 1914 6000 804 77 8795\n", + "2286 São Paulo 208 3 4 3 - not acept not furnished 0 3490 476 53 4019\n", + "2287 São Paulo 100 1 2 1 13 not acept not furnished 1520 6000 348 77 7945\n", + "2288 São Paulo 84 3 2 2 7 acept furnished 540 2200 71 28 2839\n", + "2289 São Paulo 145 4 3 2 1 acept not furnished 1644 4800 500 61 7005\n", + "2290 São Paulo 300 4 3 2 - acept furnished 0 15000 1040 226 16270\n", + "2291 São Paulo 65 2 2 1 12 not acept furnished 980 6000 250 77 7307\n", + "2292 São Paulo 27 1 1 0 - not acept not furnished 0 836 0 13 849\n", + "2293 Rio de Janeiro 102 3 2 1 2 acept not furnished 1900 1350 140 18 3408\n", + "2294 Campinas 60 2 1 1 1 not acept furnished 385 2848 64 37 3334\n", + "2295 Porto Alegre 60 1 1 0 1 acept not furnished 230 1286 70 19 1605\n", + "2296 Rio de Janeiro 50 1 1 0 10 acept not furnished 520 1620 0 21 2161\n", + "2297 São Paulo 97 3 1 1 10 acept not furnished 762 2300 25 30 3117\n", + "2298 São Paulo 52 1 2 1 19 acept not furnished 1100 5000 210 64 6374\n", + "2299 São Paulo 373 4 4 3 12 acept not furnished 4500 12750 1417 162 18830\n", + "2300 São Paulo 157 4 3 2 - acept not furnished 0 6608 492 100 7200\n", + "2301 Campinas 68 3 1 1 2 acept not furnished 555 1100 50 14 1719\n", + "2302 São Paulo 172 4 4 3 15 acept furnished 1650 8800 890 112 11450\n", + "2303 São Paulo 64 2 2 2 25 not acept not furnished 865 3500 0 45 4410\n", + "2304 Rio de Janeiro 41 1 1 0 9 acept not furnished 800 1700 85 22 2607\n", + "2305 Rio de Janeiro 106 2 2 1 2 acept not furnished 900 2850 296 37 4083\n", + "2306 Belo Horizonte 150 4 2 3 1 acept furnished 900 3300 340 44 4584\n", + "2307 Belo Horizonte 135 4 2 2 4 acept not furnished 450 3500 117 47 4114\n", + "2308 São Paulo 350 4 6 6 - acept furnished 0 9600 1367 145 11110\n", + "2309 Belo Horizonte 360 3 1 3 - acept not furnished 0 1500 142 25 1667\n", + "2310 São Paulo 700 4 7 8 - acept furnished 0 15000 2250 226 17480\n", + "2311 Rio de Janeiro 100 2 2 1 6 acept furnished 2400 8900 380 115 11800\n", + "2312 Belo Horizonte 50 1 1 2 4 acept not furnished 300 1200 0 16 1516\n", + "2313 São Paulo 55 3 1 1 3 acept not furnished 458 1300 0 17 1775\n", + "2314 São Paulo 215 4 4 2 10 not acept not furnished 1950 6000 834 77 8861\n", + "2315 São Paulo 287 3 2 5 - acept not furnished 0 15000 0 226 15230\n", + "2316 São Paulo 58 2 1 1 3 acept furnished 383 1500 43 20 1946\n", + "2317 São Paulo 90 3 2 2 10 acept not furnished 850 1600 300 21 2771\n", + "2318 São Paulo 200 3 3 3 - acept not furnished 0 3315 241 50 3606\n", + "2319 São Paulo 65 3 2 1 8 acept not furnished 650 2200 5 28 2883\n", + "2320 São Paulo 820 4 6 6 - acept not furnished 2500 10000 2500 151 15150\n", + "2321 São Paulo 102 2 1 0 3 acept not furnished 538 2000 109 26 2673\n", + "2322 Rio de Janeiro 108 3 2 2 3 acept not furnished 2000 4500 442 58 7000\n", + "2323 São Paulo 86 3 2 2 6 acept furnished 800 3100 203 40 4143\n", + "2324 Campinas 210 6 3 0 - acept not furnished 0 4200 0 64 4264\n", + "2325 Belo Horizonte 140 4 2 2 4 acept not furnished 995 4200 462 56 5713\n", + "2326 São Paulo 220 4 4 3 2 acept not furnished 2500 4500 1042 58 8100\n", + "2327 Campinas 66 2 1 1 - acept not furnished 265 1100 34 14 1413\n", + "2328 São Paulo 389 4 5 6 4 acept not furnished 4000 8500 1834 108 14440\n", + "2329 São Paulo 80 3 3 1 11 not acept not furnished 934 1700 25 22 2681\n", + "2330 São Paulo 78 2 2 1 1 acept not furnished 792 2200 148 28 3168\n", + "2331 São Paulo 178 4 2 5 - acept not furnished 0 6000 459 91 6550\n", + "2332 São Paulo 47 2 1 1 4 acept not furnished 565 1140 64 15 1784\n", + "2333 Belo Horizonte 160 4 1 1 - acept not furnished 0 2150 0 36 2186\n", + "2334 Rio de Janeiro 25 1 1 0 1 acept not furnished 50 700 0 10 760\n", + "2335 São Paulo 80 2 2 2 - acept not furnished 50 1700 177 26 1953\n", + "2336 São Paulo 144 3 3 2 - acept furnished 0 5000 109 76 5185\n", + "2337 Campinas 400 5 7 4 5 acept not furnished 3200 7900 888 101 12090\n", + "2338 Belo Horizonte 100 3 2 1 - acept not furnished 0 14500 423 238 15160\n", + "2339 São Paulo 48 2 1 0 2 acept not furnished 90 1150 90 15 1345\n", + "2340 São Paulo 64 3 2 2 16 acept not furnished 500 1530 34 20 2084\n", + "2341 Porto Alegre 50 2 1 0 - acept not furnished 100 700 100 11 911\n", + "2342 São Paulo 50 1 1 1 11 acept furnished 1140 5156 117 66 6479\n", + "2343 São Paulo 60 2 2 1 5 acept not furnished 700 1465 100 19 2284\n", + "2344 Rio de Janeiro 180 3 2 1 2 acept not furnished 2000 4800 377 62 7239\n", + "2345 São Paulo 339 3 3 4 - acept not furnished 0 3880 353 59 4292\n", + "2346 Campinas 54 1 1 1 5 acept furnished 751 2350 127 30 3258\n", + "2347 São Paulo 420 4 6 4 10 acept not furnished 5700 12000 3167 153 21020\n", + "2348 Campinas 350 4 5 4 - acept not furnished 680 8000 417 121 9218\n", + "2349 São Paulo 72 2 2 2 6 not acept not furnished 800 3060 250 39 4149\n", + "2350 São Paulo 50 1 1 0 - not acept not furnished 0 800 59 13 872\n", + "2351 São Paulo 450 4 4 4 - acept not furnished 0 11000 1417 166 12580\n", + "2352 Rio de Janeiro 60 2 1 0 6 not acept furnished 800 2900 92 38 3830\n", + "2353 São Paulo 160 2 3 3 - acept not furnished 0 7500 417 113 8030\n", + "2354 Belo Horizonte 450 4 4 5 10 not acept not furnished 2200 13500 1130 180 17010\n", + "2355 São Paulo 265 3 4 3 - acept furnished 0 3490 450 53 3993\n", + "2356 São Paulo 103 3 1 3 2 acept not furnished 1054 3400 94 44 4592\n", + "2357 São Paulo 60 2 2 1 8 acept not furnished 640 1650 0 21 2311\n", + "2358 São Paulo 136 3 3 3 15 acept furnished 1450 7900 490 101 9941\n", + "2359 Belo Horizonte 45 2 1 1 5 not acept not furnished 227 750 28 10 1015\n", + "2360 São Paulo 206 3 3 4 25 acept not furnished 1800 12500 758 159 15220\n", + "2361 São Paulo 229 4 2 3 2 acept furnished 1100 5500 409 70 7079\n", + "2362 Campinas 70 1 2 1 2 not acept not furnished 450 1000 35 13 1498\n", + "2363 São Paulo 130 3 2 0 18 acept furnished 1386 4500 574 58 6518\n", + "2364 Campinas 87 2 1 0 10 acept not furnished 415 1100 82 14 1611\n", + "2365 São Paulo 200 4 5 3 7 not acept not furnished 2750 6000 250 77 9077\n", + "2366 Rio de Janeiro 50 1 1 1 2 acept not furnished 170 1320 0 18 1508\n", + "2367 São Paulo 120 3 2 1 - acept not furnished 0 3000 495 46 3541\n", + "2368 São Paulo 40 1 1 0 1 not acept not furnished 600 1300 111 17 2028\n", + "2369 São Paulo 54 2 1 1 - acept not furnished 600 1800 129 23 2552\n", + "2370 São Paulo 48 2 1 0 2 acept not furnished 100 1350 0 18 1468\n", + "2371 São Paulo 149 3 4 3 7 acept furnished 1300 6000 550 77 7927\n", + "2372 São Paulo 45 2 1 1 14 acept not furnished 270 1500 82 20 1872\n", + "2373 São Paulo 76 2 2 2 4 not acept not furnished 850 2650 130 34 3664\n", + "2374 São Paulo 60 2 1 0 3 acept not furnished 487 1850 0 24 2361\n", + "2375 São Paulo 118 3 3 2 5 not acept not furnished 1800 9000 352 115 11270\n", + "2376 São Paulo 200 2 3 1 2 not acept furnished 2300 13000 625 165 16090\n", + "2377 São Paulo 200 2 2 1 - acept not furnished 0 5000 0 76 5076\n", + "2378 São Paulo 138 3 4 2 18 acept furnished 1500 10000 527 127 12150\n", + "2379 São Paulo 53 2 1 1 8 acept furnished 950 1200 0 16 2166\n", + "2380 Porto Alegre 61 1 1 1 13 acept furnished 1237 3800 104 56 5197\n", + "2381 São Paulo 135 3 3 2 7 not acept furnished 1855 2800 641 36 5332\n", + "2382 São Paulo 50 1 1 0 - not acept not furnished 0 750 25 12 787\n", + "2383 São Paulo 34 1 1 1 9 not acept not furnished 1200 1300 100 17 2617\n", + "2384 São Paulo 218 3 3 3 17 not acept not furnished 2300 4000 775 51 7126\n", + "2385 São Paulo 400 3 5 4 20 acept furnished 3500 10000 1250 127 14880\n", + "2386 Belo Horizonte 25 1 1 1 1 not acept not furnished 0 550 84 8 642\n", + "2387 Porto Alegre 360 5 3 3 - acept not furnished 0 3500 0 63 3563\n", + "2388 São Paulo 72 2 1 1 9 acept not furnished 990 2630 378 34 4032\n", + "2389 São Paulo 45 2 1 1 17 acept not furnished 300 1600 34 21 1955\n", + "2390 Belo Horizonte 340 3 5 5 - acept not furnished 0 4600 211 76 4887\n", + "2391 São Paulo 130 3 3 2 - acept not furnished 0 3100 130 47 3277\n", + "2392 São Paulo 72 3 2 2 15 acept not furnished 616 3000 245 39 3900\n", + "2393 São Paulo 50 1 1 0 - not acept not furnished 0 900 0 14 914\n", + "2394 São Paulo 100 2 2 0 8 not acept furnished 1100 4999 50 64 6213\n", + "2395 São Paulo 270 3 2 4 21 acept not furnished 3200 13000 1250 165 17620\n", + "2396 Belo Horizonte 60 2 1 1 3 acept not furnished 122 1325 0 18 1465\n", + "2397 Belo Horizonte 46335 4 8 5 11 acept furnished 960 8500 646 114 10220\n", + "2398 Belo Horizonte 700 3 3 8 - acept not furnished 0 10000 807 164 10970\n", + "2399 São Paulo 550 4 5 0 1 acept not furnished 2700 8800 0 112 11610\n", + "2400 Belo Horizonte 21 1 1 1 2 not acept not furnished 1000 980 0 14 1994\n", + "2401 São Paulo 55 1 2 1 17 acept not furnished 777 3800 100 49 4726\n", + "2402 São Paulo 40 1 2 1 28 not acept furnished 1935 4200 318 54 6507\n", + "2403 Belo Horizonte 50 1 1 1 12 not acept furnished 571 1500 100 20 2191\n", + "2404 São Paulo 52 1 1 1 15 acept furnished 650 3950 290 51 4941\n", + "2405 São Paulo 46 2 1 1 6 acept not furnished 280 1434 9 19 1742\n", + "2406 Belo Horizonte 20 1 1 1 - acept furnished 0 1100 0 15 1115\n", + "2407 São Paulo 50 1 1 0 - acept not furnished 0 1050 59 16 1125\n", + "2408 Rio de Janeiro 49 1 2 1 10 acept not furnished 761 2400 133 31 3325\n", + "2409 Porto Alegre 440 3 2 3 6 not acept not furnished 100 10500 84 154 10840\n", + "2410 Porto Alegre 59 2 1 1 2 acept not furnished 382 900 62 14 1358\n", + "2411 Belo Horizonte 150 4 1 3 1 acept not furnished 0 2300 0 38 2338\n", + "2412 São Paulo 100 3 2 0 7 acept not furnished 750 2020 132 26 2928\n", + "2413 São Paulo 72 2 2 1 4 acept not furnished 880 2100 27 27 3034\n", + "2414 São Paulo 500 7 7 8 - not acept furnished 0 9000 1667 136 10800\n", + "2415 São Paulo 264 3 5 0 - acept not furnished 0 6000 488 91 6579\n", + "2416 São Paulo 76 2 2 2 14 acept not furnished 909 5500 299 70 6778\n", + "2417 São Paulo 16 1 1 0 1 not acept not furnished 0 870 0 12 882\n", + "2418 São Paulo 198 3 2 2 8 acept not furnished 1400 3250 334 42 5026\n", + "2419 São Paulo 190 3 2 1 3 acept not furnished 1600 4000 100 51 5751\n", + "2420 São Paulo 210 4 4 4 4 not acept not furnished 2857 11500 1480 146 15980\n", + "2421 Campinas 233 3 1 1 - acept not furnished 0 2700 239 41 2980\n", + "2422 São Paulo 180 3 2 2 - acept not furnished 0 11000 150 166 11320\n", + "2423 Belo Horizonte 1020 5 4 6 - acept furnished 0 6520 654 107 7281\n", + "2424 São Paulo 320 3 3 2 - acept not furnished 0 7200 600 109 7909\n", + "2425 São Paulo 116 3 2 2 5 acept not furnished 1884 3800 518 49 6251\n", + "2426 São Paulo 128 2 1 1 9 acept furnished 1200 8500 9 108 9817\n", + "2427 Campinas 42 2 1 1 4 acept not furnished 191 1020 0 13 1224\n", + "2428 São Paulo 70 2 1 1 6 acept not furnished 660 3800 45 49 4554\n", + "2429 São Paulo 320 3 4 4 7 acept furnished 3440 15000 1659 191 20290\n", + "2430 Campinas 77 2 2 1 9 acept not furnished 725 1200 71 16 2012\n", + "2431 São Paulo 208 3 3 3 4 acept furnished 2490 15000 1200 191 18880\n", + "2432 São Paulo 115 3 3 3 - acept not furnished 0 2400 71 37 2508\n", + "2433 Porto Alegre 60 2 1 1 1 acept furnished 400 1300 25 19 1744\n", + "2434 Porto Alegre 50 1 1 0 1 acept not furnished 200 1045 30 16 1291\n", + "2435 São Paulo 108 2 4 2 7 acept not furnished 1289 4500 522 58 6369\n", + "2436 São Paulo 64 2 2 1 7 not acept not furnished 1182 6950 276 89 8497\n", + "2437 São Paulo 178 3 2 1 - acept furnished 0 3500 130 53 3683\n", + "2438 Porto Alegre 53 1 1 0 2 acept furnished 240 1480 42 22 1784\n", + "2439 Rio de Janeiro 118 3 2 0 2 acept not furnished 1334 1560 210 21 3125\n", + "2440 Campinas 65 2 1 1 3 acept not furnished 420 1250 53 16 1739\n", + "2441 Rio de Janeiro 180 3 3 2 6 acept not furnished 2000 7000 475 91 9566\n", + "2442 Campinas 348 3 3 3 - acept not furnished 0 4850 400 73 5323\n", + "2443 São Paulo 150 3 3 1 3 not acept not furnished 2229 4500 484 58 7271\n", + "2444 Porto Alegre 45 1 1 0 6 acept not furnished 350 650 28 10 1038\n", + "2445 São Paulo 37 1 1 1 3 not acept furnished 485 3300 13 42 3840\n", + "2446 São Paulo 540 4 4 6 - acept not furnished 0 5220 1542 79 6841\n", + "2447 Belo Horizonte 521 5 2 3 - acept not furnished 0 10000 743 164 10910\n", + "2448 Campinas 147 4 3 3 8 acept not furnished 1600 4800 284 61 6745\n", + "2449 Rio de Janeiro 130 3 2 1 8 acept not furnished 1889 2610 450 34 4983\n", + "2450 São Paulo 190 3 2 1 - acept not furnished 0 3700 0 56 3756\n", + "2451 Rio de Janeiro 28 1 1 0 16 acept not furnished 1100 730 99 10 1939\n", + "2452 São Paulo 160 3 3 3 - not acept not furnished 1509 5850 528 88 7975\n", + "2453 Rio de Janeiro 310 3 2 0 5 acept not furnished 2500 5200 595 68 8363\n", + "2454 São Paulo 530 4 5 6 - not acept not furnished 0 13000 0 196 13200\n", + "2455 São Paulo 59 2 1 1 9 acept furnished 801 1200 0 16 2017\n", + "2456 São Paulo 800 5 4 8 - acept not furnished 0 14200 2250 214 16660\n", + "2457 São Paulo 77 2 1 0 3 acept not furnished 590 2050 7 26 2673\n", + "2458 São Paulo 160 3 2 1 6 acept not furnished 1500 4300 500 55 6355\n", + "2459 São Paulo 47 1 1 1 15 acept not furnished 530 1800 0 23 2353\n", + "2460 Belo Horizonte 52 2 1 1 1 acept not furnished 160 1000 0 14 1174\n", + "2461 São Paulo 60 1 2 1 2 acept not furnished 1155 4000 112 51 5318\n", + "2462 Rio de Janeiro 120 3 3 2 9 acept not furnished 750 3000 500 39 4289\n", + "2463 Belo Horizonte 55 2 1 0 2 not acept not furnished 0 850 50 12 912\n", + "2464 Campinas 110 3 3 2 - acept not furnished 560 3200 88 49 3897\n", + "2465 Porto Alegre 145 3 4 0 2 acept furnished 250 2950 75 44 3319\n", + "2466 São Paulo 88 2 4 2 8 acept not furnished 840 2300 379 30 3549\n", + "2467 São Paulo 49 2 1 1 11 acept not furnished 350 2000 3 26 2379\n", + "2468 São Paulo 26 1 1 0 4 acept furnished 550 3500 80 45 4175\n", + "2469 São Paulo 36 1 1 0 6 acept not furnished 300 1600 60 21 1981\n", + "2470 São Paulo 150 3 2 5 - acept not furnished 0 2100 260 32 2392\n", + "2471 São Paulo 77 1 1 1 8 not acept not furnished 0 5700 0 73 5773\n", + "2472 Campinas 60 1 1 2 - acept not furnished 0 1610 50 25 1685\n", + "2473 Rio de Janeiro 58 2 2 1 1 acept not furnished 761 1190 105 16 2072\n", + "2474 São Paulo 145 4 4 3 14 acept not furnished 1663 4500 584 58 6805\n", + "2475 São Paulo 408 4 6 3 20 acept not furnished 2800 15000 1667 191 19660\n", + "2476 São Paulo 50 1 1 0 - acept not furnished 0 800 18 13 831\n", + "2477 São Paulo 85 3 2 2 12 acept not furnished 900 3300 116 42 4358\n", + "2478 Belo Horizonte 210 3 3 3 1 acept not furnished 400 4200 242 56 4898\n", + "2479 Belo Horizonte 100 3 1 2 3 acept not furnished 200 1646 73 22 1941\n", + "2480 Porto Alegre 68 2 1 1 6 not acept furnished 480 1900 78 28 2486\n", + "2481 Campinas 42 1 1 1 16 not acept not furnished 472 2000 75 26 2573\n", + "2482 Campinas 87 3 1 0 15 acept not furnished 725 1300 105 17 2147\n", + "2483 São Paulo 40 1 1 0 1 acept not furnished 240 950 84 13 1287\n", + "2484 São Paulo 50 2 1 1 4 acept not furnished 540 1850 133 24 2547\n", + "2485 Porto Alegre 85 2 2 0 7 acept furnished 660 2520 113 37 3330\n", + "2486 Porto Alegre 55 1 1 1 3 acept furnished 550 1910 110 28 2598\n", + "2487 São Paulo 127 2 2 2 5 acept not furnished 1550 5500 361 70 7481\n", + "2488 São Paulo 172 3 5 3 - acept not furnished 0 5800 607 88 6495\n", + "2489 Porto Alegre 75 2 1 2 2 acept not furnished 380 1200 55 18 1653\n", + "2490 São Paulo 50 1 1 1 6 not acept not furnished 500 3000 123 39 3662\n", + "2491 Campinas 120 4 2 5 - acept not furnished 0 4200 0 64 4264\n", + "2492 São Paulo 95 3 2 2 15 acept not furnished 720 3490 167 45 4422\n", + "2493 Belo Horizonte 300 5 3 6 - acept not furnished 0 5200 334 86 5620\n", + "2494 Rio de Janeiro 44 1 1 0 1 acept furnished 360 1600 0 21 1981\n", + "2495 Porto Alegre 563 3 6 4 12 acept not furnished 5200 15000 1250 220 21670\n", + "2496 Rio de Janeiro 65 2 2 0 2 not acept not furnished 150 1700 84 22 1956\n", + "2497 Rio de Janeiro 170 2 2 1 9 acept not furnished 884 2940 80 38 3942\n", + "2498 Belo Horizonte 22 1 1 1 1 not acept furnished 0 1500 0 20 1520\n", + "2499 Belo Horizonte 410 4 4 4 - acept furnished 0 4900 466 81 5447\n", + "2500 Rio de Janeiro 60 2 1 1 2 acept not furnished 561 1400 41 19 2021\n", + "2501 São Paulo 47 1 1 0 7 acept not furnished 890 2700 178 35 3803\n", + "2502 São Paulo 72 2 2 0 10 acept not furnished 820 1500 70 20 2410\n", + "2503 Belo Horizonte 157 4 3 3 3 acept furnished 1717 9000 108 120 10950\n", + "2504 São Paulo 280 3 4 2 - acept not furnished 0 7000 584 106 7690\n", + "2505 Rio de Janeiro 68 3 2 1 14 acept not furnished 830 1050 82 14 1976\n", + "2506 Campinas 56 1 1 0 3 not acept not furnished 428 560 17 9 1014\n", + "2507 São Paulo 140 2 4 1 11 acept not furnished 2200 8900 300 113 11510\n", + "2508 Campinas 50 2 1 0 2 not acept not furnished 386 830 55 11 1282\n", + "2509 Campinas 40 2 1 1 3 acept not furnished 320 1200 70 16 1606\n", + "2510 São Paulo 260 3 4 4 4 acept furnished 5000 12000 0 153 17150\n", + "2511 São Paulo 700 6 8 8 - acept furnished 0 14000 1020 211 15230\n", + "2512 São Paulo 130 2 1 0 - acept furnished 0 1900 292 29 2221\n", + "2513 São Paulo 215 3 2 0 4 not acept not furnished 1054 4000 229 51 5334\n", + "2514 Rio de Janeiro 300 4 3 2 1 acept not furnished 2500 4500 796 58 7854\n", + "2515 São Paulo 250 4 5 4 1 acept not furnished 4200 12000 1667 153 18020\n", + "2516 Rio de Janeiro 80 2 2 1 7 acept furnished 1180 5435 207 71 6893\n", + "2517 Porto Alegre 54 2 1 0 13 acept furnished 460 1200 41 18 1719\n", + "2518 Campinas 57 1 2 1 12 not acept not furnished 660 650 0 9 1319\n", + "2519 São Paulo 130 3 2 1 9 not acept not furnished 1500 4500 0 58 6058\n", + "2520 São Paulo 48 1 1 2 15 not acept furnished 2121 6800 400 87 9408\n", + "2521 Porto Alegre 318 4 3 0 - acept not furnished 0 19000 384 338 19720\n", + "2522 São Paulo 77 1 2 1 29 acept furnished 750 7740 209 99 8798\n", + "2523 São Paulo 42 1 1 1 14 acept furnished 1202 2650 243 34 4129\n", + "2524 Rio de Janeiro 74 3 1 0 - acept not furnished 0 1600 40 25 1665\n", + "2525 São Paulo 452 4 6 4 13 acept not furnished 3033 9980 2500 127 15640\n", + "2526 Porto Alegre 41 1 2 1 6 acept not furnished 400 2400 67 36 2903\n", + "2527 São Paulo 90 2 2 2 1 acept not furnished 1200 1917 275 25 3417\n", + "2528 Rio de Janeiro 145 1 3 1 5 not acept furnished 1200 8000 537 104 9841\n", + "2529 São Paulo 70 1 2 0 2 acept not furnished 450 2035 111 26 2622\n", + "2530 São Paulo 180 3 4 5 - acept not furnished 0 3300 266 50 3616\n", + "2531 São Paulo 68 2 1 0 12 acept not furnished 470 1300 50 17 1837\n", + "2532 São Paulo 300 4 4 3 - acept not furnished 0 10000 767 151 10920\n", + "2533 São Paulo 270 3 3 1 - acept furnished 0 6500 23 98 6621\n", + "2534 São Paulo 63 1 1 1 3 acept not furnished 298 650 0 9 957\n", + "2535 São Paulo 140 2 3 1 3 acept furnished 1306 5000 250 64 6620\n", + "2536 São Paulo 220 5 4 3 - not acept not furnished 0 8000 425 121 8546\n", + "2537 São Paulo 90 3 2 2 5 acept not furnished 1478 2500 355 32 4365\n", + "2538 São Paulo 62 2 2 1 2 not acept furnished 733 3200 129 41 4103\n", + "2539 São Paulo 55 1 1 0 1 not acept not furnished 140 770 0 10 920\n", + "2540 Belo Horizonte 170 3 2 3 - acept not furnished 0 4000 180 66 4246\n", + "2541 Belo Horizonte 75 3 2 1 1 acept not furnished 290 1100 90 15 1495\n", + "2542 São Paulo 150 3 4 3 10 acept not furnished 1700 2490 375 32 4597\n", + "2543 Porto Alegre 270 4 4 2 - acept not furnished 0 7000 200 125 7325\n", + "2544 Porto Alegre 55 2 1 0 1 not acept not furnished 185 1500 27 22 1734\n", + "2545 Rio de Janeiro 38 1 1 0 4 not acept not furnished 457 1050 0 14 1521\n", + "2546 Porto Alegre 87 2 2 1 2 acept not furnished 580 1970 117 29 2696\n", + "2547 Belo Horizonte 26 1 1 1 1 acept not furnished 60 750 67 10 887\n", + "2548 Belo Horizonte 384 5 4 6 - not acept not furnished 0 5000 435 82 5517\n", + "2549 Belo Horizonte 62 2 1 1 2 acept not furnished 100 1050 84 14 1248\n", + "2550 São Paulo 70 2 1 1 6 acept not furnished 900 1750 50 23 2723\n", + "2551 Porto Alegre 48 1 1 1 8 acept furnished 1580 1288 0 19 2887\n", + "2552 São Paulo 396 4 4 4 - acept not furnished 0 10000 750 151 10900\n", + "2553 Rio de Janeiro 480 3 4 1 3 acept not furnished 5200 7000 1201 91 13490\n", + "2554 Belo Horizonte 230 4 4 3 3 acept not furnished 1700 6300 431 84 8515\n", + "2555 Rio de Janeiro 60 1 1 0 5 acept not furnished 650 2210 84 29 2973\n", + "2556 Rio de Janeiro 80 2 2 2 2 acept not furnished 1088 1900 420 25 3433\n", + "2557 Rio de Janeiro 150 4 3 3 5 acept not furnished 1609 7500 525 97 9731\n", + "2558 Belo Horizonte 85 3 1 0 2 not acept not furnished 150 1100 150 15 1415\n", + "2559 São Paulo 25 1 1 0 14 acept not furnished 304 2200 60 28 2592\n", + "2560 Porto Alegre 105 3 3 0 3 acept not furnished 840 2125 111 32 3108\n", + "2561 São Paulo 144 4 2 2 6 acept not furnished 1820 4800 667 61 7348\n", + "2562 Belo Horizonte 80 3 2 2 301 acept not furnished 750 2600 164 35 3549\n", + "2563 São Paulo 100 1 1 0 - acept not furnished 0 1530 84 23 1637\n", + "2564 Belo Horizonte 649 5 5 6 - acept furnished 0 15000 1065 246 16310\n", + "2565 Porto Alegre 55 2 1 1 2 acept not furnished 300 850 30 13 1193\n", + "2566 Porto Alegre 68 2 2 1 2 acept not furnished 400 1800 82 27 2309\n", + "2567 São Paulo 265 3 3 0 - acept not furnished 0 8500 475 128 9103\n", + "2568 São Paulo 96 2 1 0 9 acept furnished 940 4387 3 56 5386\n", + "2569 Belo Horizonte 241 5 4 3 - acept not furnished 0 5200 310 86 5596\n", + "2570 Rio de Janeiro 65 2 1 1 8 acept not furnished 610 900 88 12 1610\n", + "2571 Campinas 71 2 1 1 3 acept not furnished 670 1130 114 15 1929\n", + "2572 São Paulo 90 1 1 0 1 not acept not furnished 200 1550 167 20 1937\n", + "2573 São Paulo 90 3 2 0 9 acept not furnished 900 2100 84 27 3111\n", + "2574 Campinas 42 1 1 1 9 acept not furnished 460 1020 42 13 1535\n", + "2575 Porto Alegre 109 3 1 1 5 acept not furnished 500 1400 42 21 1963\n", + "2576 Rio de Janeiro 260 4 1 2 5 acept furnished 3800 15000 1167 194 20160\n", + "2577 São Paulo 154 3 3 2 12 acept furnished 1042 2000 0 26 3068\n", + "2578 Belo Horizonte 55 1 1 0 - not acept not furnished 0 1020 21 17 1058\n", + "2579 São Paulo 49 2 2 1 8 acept not furnished 632 2400 55 31 3118\n", + "2580 São Paulo 56 1 1 0 2 acept furnished 0 8000 280 102 8382\n", + "2581 Campinas 67 2 1 1 2 acept not furnished 500 1230 42 16 1788\n", + "2582 São Paulo 160 4 4 0 9 acept furnished 1300 3175 787 41 5303\n", + "2583 Porto Alegre 118 3 2 1 3 acept not furnished 300 1800 50 27 2177\n", + "2584 Belo Horizonte 47 2 1 1 6 acept not furnished 350 1480 75 20 1925\n", + "2585 São Paulo 132 3 4 3 2 not acept not furnished 2137 2980 520 38 5675\n", + "2586 Porto Alegre 47 1 1 0 20 acept not furnished 280 755 27 12 1074\n", + "2587 Campinas 60 3 2 1 13 not acept not furnished 340 1700 120 22 2182\n", + "2588 São Paulo 250 4 5 0 14 acept not furnished 3392 7880 1566 100 12940\n", + "2589 Porto Alegre 400 3 4 5 - acept furnished 0 8500 309 152 8961\n", + "2590 Rio de Janeiro 28 1 1 0 4 acept furnished 484 2200 0 29 2713\n", + "2591 São Paulo 300 3 4 2 9 acept furnished 2000 14000 1084 178 17260\n", + "2592 São Paulo 78 2 1 2 9 acept furnished 0 5900 0 75 5975\n", + "2593 São Paulo 56 2 1 0 3 acept not furnished 250 1800 41 23 2114\n", + "2594 São Paulo 110 2 2 0 4 acept furnished 1356 3360 248 43 5007\n", + "2595 São Paulo 65 2 2 1 7 acept not furnished 630 1800 25 23 2478\n", + "2596 Belo Horizonte 59 3 1 1 1 acept not furnished 100 1018 63 14 1195\n", + "2597 São Paulo 20 1 1 0 1 acept furnished 602 1800 130 23 2555\n", + "2598 São Paulo 65 3 1 1 11 acept not furnished 510 1800 0 23 2333\n", + "2599 São Paulo 235 4 4 4 5 acept furnished 3330 14900 1417 189 19840\n", + "2600 São Paulo 137 2 3 2 1 acept not furnished 2800 14000 542 178 17520\n", + "2601 Belo Horizonte 28 1 1 0 - not acept furnished 550 1100 0 15 1665\n", + "2602 São Paulo 50 1 1 1 - not acept not furnished 0 1500 80 23 1603\n", + "2603 São Paulo 120 3 1 4 - acept not furnished 0 3500 234 53 3787\n", + "2604 São Paulo 80 2 1 0 - not acept not furnished 0 1576 125 24 1725\n", + "2605 Rio de Janeiro 82 3 1 0 3 not acept furnished 460 2700 50 35 3245\n", + "2606 São Paulo 160 3 2 1 - acept not furnished 0 4700 0 71 4771\n", + "2607 São Paulo 51 1 1 0 1 acept furnished 785 2350 150 30 3315\n", + "2608 São Paulo 56 2 1 0 - acept not furnished 200 1400 0 10 1610\n", + "2609 São Paulo 170 3 4 0 14 acept furnished 2200 4000 800 51 7051\n", + "2610 São Paulo 300 4 5 4 19 acept not furnished 3150 3800 1630 49 8629\n", + "2611 São Paulo 60 2 1 1 11 acept furnished 500 3400 23 44 3967\n", + "2612 Rio de Janeiro 50 1 1 1 2 acept not furnished 470 990 19 13 1492\n", + "2613 São Paulo 250 5 6 2 - acept not furnished 0 9000 717 136 9853\n", + "2614 Rio de Janeiro 80 2 2 2 12 acept not furnished 900 935 100 13 1948\n", + "2615 São Paulo 20 1 1 0 - acept furnished 602 1800 130 23 2555\n", + "2616 Rio de Janeiro 110 2 1 1 6 not acept not furnished 1200 3800 250 49 5299\n", + "2617 Belo Horizonte 430 4 5 3 - acept not furnished 0 6000 0 99 6099\n", + "2618 Belo Horizonte 144 4 3 3 14 not acept furnished 1050 4500 390 60 6000\n", + "2619 São Paulo 80 2 1 1 1 acept not furnished 875 24000 0 305 25180\n", + "2620 Campinas 30 1 1 0 5 acept not furnished 280 580 12 8 880\n", + "2621 São Paulo 163 2 3 2 18 acept furnished 1464 8000 470 102 10040\n", + "2622 Belo Horizonte 80 2 2 2 9 acept not furnished 400 2600 113 35 3148\n", + "2623 São Paulo 300 5 4 7 - acept not furnished 0 15000 2292 226 17520\n", + "2624 Belo Horizonte 544 4 3 7 - acept not furnished 0 3200 250 53 3503\n", + "2625 Belo Horizonte 95 3 2 2 4 not acept not furnished 666 1800 134 24 2624\n", + "2626 Porto Alegre 65 2 1 0 1 acept not furnished 355 1030 24 16 1425\n", + "2627 Belo Horizonte 305 4 5 5 26 acept not furnished 5071 14000 2241 187 21500\n", + "2628 Belo Horizonte 103 2 2 2 1 not acept not furnished 400 1200 100 16 1716\n", + "2629 São Paulo 135 3 2 2 3 acept not furnished 1650 2300 775 30 4755\n", + "2630 São Paulo 200 3 4 2 13 acept not furnished 1900 7000 677 89 9666\n", + "2631 Rio de Janeiro 47 2 2 1 12 acept not furnished 500 1000 40 13 1553\n", + "2632 Rio de Janeiro 35 1 1 0 3 acept not furnished 310 700 80 10 1100\n", + "2633 Campinas 44 2 1 1 2 acept not furnished 244 1000 0 13 1257\n", + "2634 São Paulo 82 2 1 1 5 acept not furnished 860 3400 0 44 4304\n", + "2635 São Paulo 50 1 1 1 - not acept not furnished 0 900 21 14 935\n", + "2636 Belo Horizonte 360 4 3 3 - acept not furnished 0 3300 171 55 3526\n", + "2637 Porto Alegre 95 3 2 2 2 acept not furnished 350 2500 71 37 2958\n", + "2638 São Paulo 83 2 3 2 8 acept not furnished 1555 3200 735 41 5531\n", + "2639 São Paulo 60 1 1 1 6 acept not furnished 683 2100 0 27 2810\n", + "2640 São Paulo 122 3 2 1 9 acept not furnished 1766 5800 279 74 7919\n", + "2641 São Paulo 150 3 4 4 14 acept not furnished 1076 7925 651 101 9753\n", + "2642 Campinas 450 5 4 8 - acept not furnished 0 3460 400 53 3913\n", + "2643 Porto Alegre 58 2 1 1 4 acept not furnished 350 1000 47 15 1412\n", + "2644 São Paulo 380 4 2 4 - acept not furnished 0 4600 700 70 5370\n", + "2645 Belo Horizonte 430 4 5 3 7 acept not furnished 1945 8000 528 107 10580\n", + "2646 Porto Alegre 280 3 5 2 3 acept furnished 729 5280 500 78 6587\n", + "2647 Belo Horizonte 580 5 6 5 - not acept not furnished 0 15000 1153 246 16400\n", + "2648 Porto Alegre 98 2 2 0 2 acept not furnished 310 1100 38 17 1465\n", + "2649 São Paulo 40 1 1 1 2 not acept not furnished 225 1080 65 14 1384\n", + "2650 Rio de Janeiro 50 2 1 1 2 not acept furnished 328 2300 0 30 2658\n", + "2651 São Paulo 40 1 1 1 11 acept furnished 1233 4065 202 52 5552\n", + "2652 Rio de Janeiro 75 4 4 1 9 not acept furnished 700 4500 0 58 5258\n", + "2653 Rio de Janeiro 72 1 1 1 1 acept not furnished 957 3500 239 46 4742\n", + "2654 São Paulo 429 5 4 6 - acept not furnished 0 12750 2312 192 15250\n", + "2655 São Paulo 380 4 2 0 - acept not furnished 0 8000 0 121 8121\n", + "2656 Belo Horizonte 72 3 1 1 3 not acept not furnished 300 900 86 12 1298\n", + "2657 São Paulo 114 3 3 0 - acept not furnished 150 2600 171 40 2961\n", + "2658 São Paulo 100 3 2 4 - acept not furnished 0 3880 255 59 4194\n", + "2659 São Paulo 120 4 2 2 11 acept not furnished 1630 4000 464 51 6145\n", + "2660 São Paulo 100 3 3 2 6 acept not furnished 1250 5500 250 70 7070\n", + "2661 Porto Alegre 170 2 3 2 - acept not furnished 0 6500 292 116 6908\n", + "2662 São Paulo 62 1 2 1 4 acept furnished 2400 12000 350 153 14900\n", + "2663 São Paulo 62 2 2 1 5 acept not furnished 510 2500 158 32 3200\n", + "2664 São Paulo 94 2 3 2 18 not acept not furnished 1600 4400 325 56 6381\n", + "2665 Rio de Janeiro 144 3 2 1 7 acept furnished 1500 8200 622 106 10430\n", + "2666 Campinas 68 2 1 2 1 acept not furnished 520 1200 74 16 1810\n", + "2667 Porto Alegre 42 1 1 0 5 not acept furnished 290 2200 66 33 2589\n", + "2668 Porto Alegre 84 3 1 0 3 acept furnished 70 1460 44 22 1596\n", + "2669 São Paulo 165 3 4 4 15 acept not furnished 2000 10000 799 127 12930\n", + "2670 São Paulo 50 2 1 1 9 acept not furnished 390 1072 0 14 1476\n", + "2671 Porto Alegre 65 2 1 1 3 not acept furnished 400 1750 100 26 2276\n", + "2672 Campinas 52 1 1 1 8 not acept furnished 1000 2300 50 30 3380\n", + "2673 São Paulo 136 3 3 2 12 acept not furnished 738 3400 115 44 4297\n", + "2674 Belo Horizonte 75 2 1 1 3 not acept not furnished 200 1100 62 15 1377\n", + "2675 São Paulo 212 3 5 3 7 acept not furnished 2300 7000 1084 89 10470\n", + "2676 São Paulo 70 2 1 1 1 acept not furnished 580 1400 52 18 2050\n", + "2677 São Paulo 57 2 1 1 5 acept furnished 550 2300 63 30 2943\n", + "2678 São Paulo 128 2 3 3 9 acept not furnished 2000 3900 500 50 6450\n", + "2679 São Paulo 62 2 2 1 1 not acept not furnished 0 2350 0 30 2380\n", + "2680 São Paulo 140 3 3 2 - acept not furnished 0 3800 200 58 4058\n", + "2681 São Paulo 55 2 1 1 14 acept not furnished 420 1399 0 18 1837\n", + "2682 São Paulo 130 3 2 1 8 acept not furnished 2400 5500 209 70 8179\n", + "2683 São Paulo 82 3 2 2 4 not acept not furnished 860 2600 209 33 3702\n", + "2684 São Paulo 100 3 2 1 5 acept not furnished 1221 1200 38 16 2475\n", + "2685 São Paulo 122 2 2 2 10 acept not furnished 1761 3950 640 51 6402\n", + "2686 Porto Alegre 87 2 1 0 2 acept not furnished 300 1300 64 19 1683\n", + "2687 Belo Horizonte 70 2 1 2 4 acept not furnished 290 780 0 11 1081\n", + "2688 Rio de Janeiro 123 3 2 1 1 acept not furnished 2800 3700 237 48 6785\n", + "2689 Porto Alegre 91 3 2 2 3 acept not furnished 400 3390 150 50 3990\n", + "2690 São Paulo 50 1 1 0 4 acept not furnished 100 1100 0 14 1214\n", + "2691 São Paulo 189 4 3 3 14 acept not furnished 3300 5780 440 74 9594\n", + "2692 Campinas 45 2 1 1 3 acept not furnished 312 850 25 11 1198\n", + "2693 Rio de Janeiro 35 1 1 0 7 acept furnished 560 1950 50 26 2586\n", + "2694 São Paulo 350 5 5 4 8 not acept not furnished 3000 7200 1417 92 11710\n", + "2695 Belo Horizonte 73 1 1 0 13 not acept not furnished 744 1460 142 20 2366\n", + "2696 São Paulo 35 2 1 1 - acept not furnished 125 2100 0 32 2257\n", + "2697 São Paulo 685 4 3 5 11 acept not furnished 3960 13000 3120 165 20250\n", + "2698 São Paulo 140 5 2 1 1 acept furnished 0 3999 200 51 4250\n", + "2699 São Paulo 78 3 3 2 10 acept not furnished 639 2800 117 36 3592\n", + "2700 São Paulo 200 6 4 2 - acept not furnished 0 5600 4710 85 10400\n", + "2701 Porto Alegre 102 2 2 1 11 acept furnished 1900 3000 259 44 5203\n", + "2702 Campinas 48 2 1 1 5 acept not furnished 263 1000 66 13 1342\n", + "2703 São Paulo 84 3 2 1 3 not acept furnished 741 2175 185 28 3129\n", + "2704 São Paulo 80 2 1 1 - acept not furnished 30 1300 40 20 1390\n", + "2705 São Paulo 391 4 5 2 15 acept not furnished 2900 10000 1999 127 15030\n", + "2706 São Paulo 227 4 4 3 7 not acept furnished 2000 15000 750 191 17940\n", + "2707 São Paulo 180 3 3 4 27 acept not furnished 1800 6500 859 83 9242\n", + "2708 Belo Horizonte 178 4 4 4 1 acept not furnished 1200 3900 409 52 5561\n", + "2709 São Paulo 105 1 1 2 29 not acept not furnished 1300 8700 417 111 10530\n", + "2710 São Paulo 26 1 1 0 4 acept furnished 400 4300 60 55 4815\n", + "2711 São Paulo 200 2 3 1 10 acept not furnished 1750 4500 0 58 6308\n", + "2712 Belo Horizonte 78 2 2 2 3 acept not furnished 150 1300 100 18 1568\n", + "2713 São Paulo 309 4 5 3 - acept not furnished 0 12000 734 181 12920\n", + "2714 Porto Alegre 66 3 2 1 11 acept not furnished 400 1500 40 22 1962\n", + "2715 Rio de Janeiro 20 1 1 0 11 not acept furnished 0 1650 0 22 1672\n", + "2716 Campinas 35 1 1 1 13 acept not furnished 475 750 32 10 1267\n", + "2717 São Paulo 130 2 4 3 2 acept not furnished 1800 6000 667 77 8544\n", + "2718 São Paulo 120 3 1 0 1 acept not furnished 0 1210 207 16 1433\n", + "2719 Rio de Janeiro 75 2 2 0 1 not acept not furnished 670 2200 59 29 2958\n", + "2720 São Paulo 120 3 3 2 23 not acept not furnished 1500 7300 400 93 9293\n", + "2721 Rio de Janeiro 65 2 1 1 1 acept furnished 0 1530 0 20 1550\n", + "2722 São Paulo 20 1 1 0 - acept furnished 602 1800 130 23 2555\n", + "2723 São Paulo 62 3 1 2 1 acept not furnished 750 1400 156 18 2324\n", + "2724 São Paulo 129 3 4 2 8 acept not furnished 1800 3000 600 39 5439\n", + "2725 São Paulo 70 2 2 4 - acept not furnished 0 3000 190 46 3236\n", + "2726 Rio de Janeiro 38 1 1 0 12 not acept not furnished 600 1700 82 22 2404\n", + "2727 Porto Alegre 120 3 3 3 7 acept not furnished 800 5000 0 74 5874\n", + "2728 São Paulo 180 2 3 2 - acept not furnished 0 3150 301 48 3499\n", + "2729 São Paulo 82 1 1 2 1 acept not furnished 1650 8000 267 102 10020\n", + "2730 Belo Horizonte 58 2 2 2 7 acept not furnished 304 1400 100 19 1823\n", + "2731 São Paulo 52 2 1 1 3 not acept not furnished 450 2400 78 31 2959\n", + "2732 São Paulo 67 2 1 0 3 acept not furnished 385 1300 56 17 1758\n", + "2733 Belo Horizonte 100 3 1 1 2 acept not furnished 0 2900 301 39 3240\n", + "2734 São Paulo 570 4 5 4 14 acept not furnished 3800 10870 2016 138 16820\n", + "2735 São Paulo 54 2 1 1 1 acept not furnished 280 2200 0 28 2508\n", + "2736 Campinas 150 4 2 0 - acept not furnished 0 2500 184 38 2722\n", + "2737 São Paulo 32 1 1 1 11 acept furnished 652 3870 42 50 4614\n", + "2738 São Paulo 127 3 2 2 1 acept not furnished 0 5000 250 76 5326\n", + "2739 Porto Alegre 58 2 1 1 - acept not furnished 170 800 24 12 1006\n", + "2740 São Paulo 230 3 2 2 - acept furnished 0 4590 309 69 4968\n", + "2741 São Paulo 60 1 1 0 - not acept not furnished 0 1600 192 25 1817\n", + "2742 Porto Alegre 60 1 1 0 2 not acept furnished 100 1170 0 18 1288\n", + "2743 São Paulo 245 3 5 4 13 acept furnished 2450 11500 1584 146 15680\n", + "2744 São Paulo 180 3 2 2 2 acept not furnished 2500 7000 1200 89 10790\n", + "2745 Porto Alegre 42 1 1 1 2 acept not furnished 280 900 19 14 1213\n", + "2746 Porto Alegre 41 1 1 0 5 acept furnished 300 1090 84 16 1490\n", + "2747 Belo Horizonte 800 4 4 3 - acept not furnished 0 8000 834 132 8966\n", + "2748 Belo Horizonte 700 7 6 5 - acept not furnished 0 15000 1161 246 16410\n", + "2749 São Paulo 140 3 3 2 - acept not furnished 0 2300 0 35 2335\n", + "2750 Porto Alegre 222 4 3 2 13 acept not furnished 2300 4000 200 59 6559\n", + "2751 Porto Alegre 122 3 3 2 2 acept not furnished 600 2500 149 37 3286\n", + "2752 Rio de Janeiro 62 1 1 0 7 not acept furnished 943 2700 156 35 3834\n", + "2753 São Paulo 107 2 2 0 6 not acept not furnished 799 3150 0 40 3989\n", + "2754 Belo Horizonte 59 2 2 0 2 not acept furnished 510 1400 112 19 2041\n", + "2755 Rio de Janeiro 40 1 1 0 4 acept furnished 510 1360 1 18 1889\n", + "2756 Campinas 72 3 1 1 1 acept furnished 470 1075 49 14 1608\n", + "2757 Belo Horizonte 400 4 6 4 15 acept not furnished 1840 6000 668 80 8588\n", + "2758 São Paulo 84 2 3 2 25 acept furnished 634 6900 165 88 7787\n", + "2759 Belo Horizonte 80 3 2 2 11 acept not furnished 700 1800 167 24 2691\n", + "2760 São Paulo 90 2 2 0 - acept not furnished 0 1750 0 27 1777\n", + "2761 Belo Horizonte 413 4 4 0 1 acept not furnished 2314 7900 692 106 11010\n", + "2762 São Paulo 120 4 4 1 - acept not furnished 0 4500 67 68 4635\n", + "2763 Belo Horizonte 66 2 1 1 3 acept not furnished 200 1000 25 14 1239\n", + "2764 Rio de Janeiro 140 3 2 1 22 not acept not furnished 732 3000 305 39 4076\n", + "2765 Belo Horizonte 190 4 2 2 4 acept not furnished 970 3500 287 47 4804\n", + "2766 São Paulo 325 5 5 4 - acept not furnished 0 6000 420 91 6511\n", + "2767 Rio de Janeiro 60 2 2 0 15 acept furnished 1640 2300 205 30 4175\n", + "2768 São Paulo 310 4 4 3 - acept not furnished 0 7000 675 106 7781\n", + "2769 São Paulo 100 2 2 2 6 acept furnished 1700 6500 42 83 8325\n", + "2770 Campinas 120 2 1 0 3 acept not furnished 830 1100 95 14 2039\n", + "2771 Belo Horizonte 52 2 1 1 4 not acept not furnished 180 730 0 10 920\n", + "2772 São Paulo 52 2 1 1 17 acept not furnished 540 1100 45 14 1699\n", + "2773 Campinas 115 3 3 1 5 acept not furnished 1035 1900 30 25 2990\n", + "2774 Rio de Janeiro 47 1 1 1 5 acept not furnished 390 1000 0 13 1403\n", + "2775 São Paulo 66 2 1 1 8 not acept not furnished 530 1780 0 23 2333\n", + "2776 São Paulo 100 2 1 2 - acept not furnished 0 1650 0 25 1675\n", + "2777 Porto Alegre 55 2 1 1 2 acept not furnished 300 1319 75 20 1714\n", + "2778 São Paulo 200 3 4 3 20 not acept furnished 2450 12000 1261 153 15860\n", + "2779 Campinas 51 2 1 1 1 not acept not furnished 390 800 50 11 1251\n", + "2780 São Paulo 140 3 3 2 6 acept not furnished 2420 2580 1000 33 6033\n", + "2781 Belo Horizonte 200 4 4 3 4 acept not furnished 1200 4200 580 56 6036\n", + "2782 Porto Alegre 30 2 2 1 1 acept not furnished 250 1275 50 19 1594\n", + "2783 Belo Horizonte 87 3 2 2 11 acept not furnished 700 3500 125 47 4372\n", + "2784 Porto Alegre 100 3 2 1 6 acept not furnished 1374 1800 211 27 3412\n", + "2785 São Paulo 48 1 1 1 8 not acept not furnished 415 2000 0 8 2423\n", + "2786 Rio de Janeiro 40 1 1 1 20 not acept not furnished 800 1160 91 15 2066\n", + "2787 Porto Alegre 78 2 2 1 4 acept not furnished 700 2300 105 34 3139\n", + "2788 Porto Alegre 41 1 2 1 9 acept not furnished 400 2800 67 41 3308\n", + "2789 São Paulo 200 3 4 3 5 acept furnished 3249 5500 843 70 9662\n", + "2790 Belo Horizonte 234 3 3 3 - acept not furnished 0 8200 340 135 8675\n", + "2791 Rio de Janeiro 136 3 1 0 8 acept furnished 2000 3000 0 39 5039\n", + "2792 São Paulo 250 3 4 4 18 acept not furnished 2200 3300 852 42 6394\n", + "2793 Rio de Janeiro 125 3 2 1 8 not acept furnished 1164 3000 250 39 4453\n", + "2794 São Paulo 86 2 1 0 - acept not furnished 0 1387 130 21 1538\n", + "2795 Porto Alegre 62 2 1 0 8 acept not furnished 504 1100 32 17 1653\n", + "2796 São Paulo 120 3 2 2 - acept not furnished 0 3110 111 47 3268\n", + "2797 Campinas 61 1 1 0 8 acept furnished 378 1900 43 25 2346\n", + "2798 Porto Alegre 160 3 2 1 5 acept not furnished 1200 2500 170 37 3907\n", + "2799 Campinas 64 1 1 0 3 acept not furnished 680 1100 50 14 1844\n", + "2800 Rio de Janeiro 70 3 2 1 7 acept not furnished 1292 2100 94 28 3514\n", + "2801 Campinas 258 2 2 1 - acept not furnished 0 1400 67 22 1489\n", + "2802 Belo Horizonte 163 4 3 2 2 acept not furnished 300 2300 136 31 2767\n", + "2803 São Paulo 360 4 5 4 8 acept not furnished 3500 1700 1417 22 6639\n", + "2804 Rio de Janeiro 90 2 2 1 2 not acept not furnished 1389 3973 422 52 5836\n", + "2805 São Paulo 50 1 1 0 - acept not furnished 0 1100 0 17 1117\n", + "2806 Rio de Janeiro 264 4 4 1 2 not acept furnished 3200 7000 1067 91 11360\n", + "2807 Rio de Janeiro 70 2 1 0 5 acept not furnished 950 2500 199 19 3668\n", + "2808 São Paulo 126 2 2 1 8 not acept not furnished 889 3120 204 40 4253\n", + "2809 São Paulo 35 1 1 1 14 not acept not furnished 450 2700 0 35 3185\n", + "2810 Porto Alegre 98 2 2 1 2 acept not furnished 465 1300 54 19 1838\n", + "2811 Rio de Janeiro 47 2 1 1 4 acept not furnished 466 1375 0 18 1859\n", + "2812 São Paulo 70 3 2 1 3 acept not furnished 758 2000 109 26 2893\n", + "2813 Porto Alegre 85 3 3 0 - not acept not furnished 550 2500 72 45 3167\n", + "2814 Rio de Janeiro 90 2 2 1 4 acept not furnished 1200 3800 253 49 5302\n", + "2815 São Paulo 250 3 4 3 8 acept not furnished 2850 9000 834 115 12800\n", + "2816 Rio de Janeiro 160 4 2 0 - acept not furnished 0 6800 142 104 7046\n", + "2817 São Paulo 25 1 1 0 1 not acept not furnished 0 1200 35 16 1251\n", + "2818 São Paulo 97 2 3 2 15 acept not furnished 768 3300 243 42 4353\n", + "2819 São Paulo 33 1 1 0 15 not acept not furnished 550 4000 0 51 4601\n", + "2820 Rio de Janeiro 66 2 1 1 3 acept not furnished 477 1100 44 15 1636\n", + "2821 São Paulo 78 3 2 2 1 acept not furnished 780 1540 230 20 2570\n", + "2822 São Paulo 248 3 4 3 10 acept not furnished 2200 6000 742 77 9019\n", + "2823 São Paulo 163 3 2 1 1 acept not furnished 1100 4000 84 51 5235\n", + "2824 São Paulo 332 5 4 3 17 acept not furnished 3200 15000 1167 191 19560\n", + "2825 São Paulo 30 1 1 1 10 acept furnished 730 1850 70 24 2674\n", + "2826 Rio de Janeiro 172 3 3 3 3 acept not furnished 2000 5000 800 65 7865\n", + "2827 Belo Horizonte 100 3 2 0 - acept not furnished 0 1550 125 26 1701\n", + "2828 São Paulo 260 4 4 2 - acept not furnished 0 5200 184 79 5463\n", + "2829 São Paulo 432 5 7 6 21 acept not furnished 3208 15000 3007 191 21410\n", + "2830 São Paulo 46 2 1 1 5 not acept not furnished 600 1180 25 15 1820\n", + "2831 São Paulo 999 5 7 4 - not acept not furnished 100 15000 459 226 15790\n", + "2832 Belo Horizonte 274 6 6 2 - acept not furnished 0 9000 671 148 9819\n", + "2833 Rio de Janeiro 76 2 1 0 3 acept not furnished 625 1000 50 13 1688\n", + "2834 Belo Horizonte 210 4 4 2 1 not acept not furnished 1500 4200 283 56 6039\n", + "2835 São Paulo 400 4 5 4 - acept not furnished 3413 11000 2028 166 16610\n", + "2836 São Paulo 110 3 2 1 7 acept not furnished 1200 1200 350 16 2766\n", + "2837 São Paulo 20 1 1 0 - acept furnished 602 1800 130 23 2555\n", + "2838 São Paulo 160 3 2 2 - not acept not furnished 0 3500 250 53 3803\n", + "2839 Rio de Janeiro 95 3 2 2 3 acept not furnished 1200 5800 430 75 7505\n", + "2840 São Paulo 38 1 1 0 16 not acept not furnished 188 2001 0 26 2215\n", + "2841 São Paulo 220 4 3 3 20 acept furnished 2080 5500 1092 70 8742\n", + "2842 Belo Horizonte 396 4 5 6 - acept not furnished 0 10000 250 164 10410\n", + "2843 São Paulo 360 4 7 5 2 acept not furnished 3900 3990 2505 51 10450\n", + "2844 Rio de Janeiro 25 1 1 0 4 acept furnished 659 1910 0 25 2594\n", + "2845 São Paulo 120 3 2 8 - acept not furnished 0 3000 386 46 3432\n", + "2846 São Paulo 556 6 7 4 - acept not furnished 0 7500 1084 113 8697\n", + "2847 Belo Horizonte 100 3 1 1 - acept not furnished 0 1970 92 33 2095\n", + "2848 São Paulo 40 1 1 0 - not acept not furnished 0 780 17 12 809\n", + "2849 Campinas 55 2 1 1 2 acept not furnished 235 700 0 9 944\n", + "2850 Rio de Janeiro 60 2 1 0 1 not acept not furnished 500 2000 57 26 2583\n", + "2851 São Paulo 70 3 1 2 1 not acept furnished 882 3200 140 41 4263\n", + "2852 São Paulo 52 2 1 1 7 acept not furnished 616 1200 65 16 1897\n", + "2853 Rio de Janeiro 110 3 2 1 4 not acept not furnished 788 2500 140 33 3461\n", + "2854 São Paulo 53 2 1 1 8 acept not furnished 571 1800 22 23 2416\n", + "2855 São Paulo 188 1 3 2 10 not acept not furnished 1180 8000 550 102 9832\n", + "2856 Porto Alegre 121 3 2 1 10 acept not furnished 800 1900 200 28 2928\n", + "2857 São Paulo 80 1 1 1 - not acept not furnished 0 1300 84 20 1404\n", + "2858 Belo Horizonte 160 4 2 2 3 acept not furnished 700 2700 305 36 3741\n", + "2859 São Paulo 285 4 5 4 6 acept furnished 200000 20000 1834 254 222100\n", + "2860 São Paulo 70 2 1 0 - acept not furnished 0 1350 0 21 1371\n", + "2861 Campinas 53 2 2 1 - acept furnished 443 1900 54 25 2422\n", + "2862 Rio de Janeiro 320 3 6 3 9 acept not furnished 2000 6490 900 84 9474\n", + "2863 Rio de Janeiro 96 2 2 2 7 acept furnished 1320 7500 434 97 9351\n", + "2864 São Paulo 35 1 1 1 7 acept not furnished 430 2100 0 27 2557\n", + "2865 Campinas 375 4 5 0 - acept not furnished 1200 10000 825 151 12180\n", + "2866 São Paulo 60 2 1 0 - acept not furnished 0 1700 245 26 1971\n", + "2867 Belo Horizonte 100 7 2 1 - acept not furnished 0 2800 28 46 2874\n", + "2868 Rio de Janeiro 82 2 1 0 - acept furnished 0 4950 59 76 5085\n", + "2869 São Paulo 57 1 1 0 9 acept furnished 300 6000 17 77 6394\n", + "2870 São Paulo 485 5 6 6 23 acept not furnished 5709 13000 2495 165 21370\n", + "2871 São Paulo 61 1 2 1 14 not acept not furnished 444 1930 87 25 2486\n", + "2872 Rio de Janeiro 28 1 1 0 8 acept not furnished 453 1009 0 7 1469\n", + "2873 São Paulo 130 3 2 1 8 not acept furnished 1200 7500 417 96 9213\n", + "2874 Porto Alegre 119 3 1 0 3 acept not furnished 560 2100 84 31 2775\n", + "2875 São Paulo 123 3 1 1 6 not acept not furnished 2000 3800 348 49 6197\n", + "2876 Campinas 96 2 1 1 3 acept furnished 671 1800 52 23 2546\n", + "2877 Rio de Janeiro 120 3 2 2 4 acept not furnished 1950 5500 250 71 7771\n", + "2878 Rio de Janeiro 89 3 1 1 7 acept not furnished 1100 2000 90 26 3216\n", + "2879 São Paulo 190 3 3 2 10 not acept not furnished 2800 9000 888 115 12800\n", + "2880 Belo Horizonte 402 4 4 4 - acept furnished 0 7500 483 123 8106\n", + "2881 Rio de Janeiro 40 1 1 0 1 acept not furnished 379 1180 0 16 1575\n", + "2882 São Paulo 210 4 3 3 11 acept not furnished 1250 4000 750 51 6051\n", + "2883 São Paulo 77 2 2 1 8 acept not furnished 840 3170 34 41 4085\n", + "2884 Belo Horizonte 65 3 1 1 3 not acept not furnished 245 900 69 12 1226\n", + "2885 São Paulo 160 3 4 3 - acept not furnished 0 2770 475 42 3287\n", + "2886 Rio de Janeiro 80 2 3 1 15 acept furnished 602 3100 240 40 3982\n", + "2887 Porto Alegre 110 3 2 0 3 not acept furnished 370 2070 100 31 2571\n", + "2888 Porto Alegre 132 3 2 2 9 acept furnished 1000 3350 167 49 4566\n", + "2889 Belo Horizonte 90 3 2 2 2 acept not furnished 650 3500 325 47 4522\n", + "2890 Porto Alegre 50 2 1 1 2 acept not furnished 100 1540 0 23 1663\n", + "2891 São Paulo 55 3 1 1 7 acept furnished 600 1800 121 23 2544\n", + "2892 São Paulo 40 1 1 0 6 acept not furnished 600 3480 142 45 4267\n", + "2893 Rio de Janeiro 38 2 2 1 10 acept not furnished 1450 3200 200 42 4892\n", + "2894 São Paulo 50 2 1 1 - acept not furnished 510 1100 50 14 1674\n", + "2895 São Paulo 136 3 3 1 9 acept not furnished 1530 7500 290 96 9416\n", + "2896 Rio de Janeiro 140 3 2 2 4 acept not furnished 1450 2700 169 35 4354\n", + "2897 Rio de Janeiro 150 4 2 2 2 acept not furnished 2900 9000 834 116 12850\n", + "2898 Belo Horizonte 65 2 2 1 4 acept not furnished 255 1400 81 19 1755\n", + "2899 São Paulo 41 3 2 1 1 not acept furnished 0 6500 0 83 6583\n", + "2900 São Paulo 180 3 3 1 - acept furnished 1785 6000 294 77 8156\n", + "2901 Porto Alegre 425 4 4 0 - acept not furnished 0 15000 750 267 16020\n", + "2902 Porto Alegre 70 2 1 1 3 acept furnished 450 1800 63 27 2340\n", + "2903 São Paulo 460 6 6 4 - acept not furnished 0 6500 109 98 6707\n", + "2904 Rio de Janeiro 70 2 2 1 11 not acept furnished 2800 6000 835 78 9713\n", + "2905 São Paulo 25 1 1 0 23 acept not furnished 432 2200 45 28 2705\n", + "2906 São Paulo 274 4 5 6 - acept not furnished 0 11000 767 166 11930\n", + "2907 São Paulo 42 1 1 2 6 acept furnished 595 3380 0 43 4018\n", + "2908 Porto Alegre 64 2 1 1 4 acept not furnished 600 980 34 15 1629\n", + "2909 Rio de Janeiro 31 1 1 0 5 acept not furnished 400 1350 67 18 1835\n", + "2910 São Paulo 74 2 1 0 2 acept not furnished 589 2850 0 37 3476\n", + "2911 São Paulo 110 2 3 3 1 not acept not furnished 1600 1890 0 24 3514\n", + "2912 São Paulo 20 1 1 0 5 acept furnished 602 1800 130 23 2555\n", + "2913 Belo Horizonte 91 2 3 1 9 acept furnished 853 2350 221 32 3456\n", + "2914 Porto Alegre 85 2 3 1 4 acept not furnished 350 3000 125 44 3519\n", + "2915 São Paulo 42 1 1 1 13 not acept not furnished 704 3000 192 39 3935\n", + "2916 Porto Alegre 359 3 4 2 3 acept not furnished 2300 7000 292 103 9695\n", + "2917 Porto Alegre 89 2 1 0 4 not acept not furnished 340 1190 0 18 1548\n", + "2918 São Paulo 50 1 1 0 - not acept not furnished 0 750 0 12 762\n", + "2919 São Paulo 43 1 1 0 4 acept not furnished 300 1600 17 21 1938\n", + "2920 São Paulo 40 1 1 1 4 not acept furnished 620 5000 184 64 5868\n", + "2921 Campinas 42 1 1 1 13 acept not furnished 470 1750 75 23 2318\n", + "2922 Rio de Janeiro 143 3 2 1 - acept not furnished 750 2058 84 27 2919\n", + "2923 Porto Alegre 140 3 1 1 11 acept furnished 1000 4445 166 65 5676\n", + "2924 São Paulo 60 1 1 1 3 acept not furnished 252 750 9 10 1021\n", + "2925 Rio de Janeiro 121 1 1 0 1 acept not furnished 2000 6800 300 88 9188\n", + "2926 Porto Alegre 148 3 2 2 3 acept furnished 2200 3990 167 59 6416\n", + "2927 Rio de Janeiro 130 4 3 0 2 acept furnished 750 9900 141 128 10920\n", + "2928 Rio de Janeiro 35 1 1 0 1 acept furnished 81150 4500 9900 58 95610\n", + "2929 Rio de Janeiro 85 3 2 1 17 acept not furnished 1100 4170 225 54 5549\n", + "2930 São Paulo 40 1 1 0 - not acept not furnished 0 900 25 14 939\n", + "2931 Rio de Janeiro 53 2 1 1 4 acept furnished 365 1239 0 16 1620\n", + "2932 São Paulo 80 3 2 2 4 acept not furnished 690 2650 92 34 3466\n", + "2933 São Paulo 77 3 3 2 - acept not furnished 223 2400 70 37 2730\n", + "2934 São Paulo 103 3 2 2 4 acept furnished 1100 7550 209 96 8955\n", + "2935 Porto Alegre 78 2 2 0 7 acept not furnished 450 1500 167 22 2139\n", + "2936 São Paulo 158 3 4 2 2 acept not furnished 1361 2750 142 35 4288\n", + "2937 São Paulo 300 4 4 3 - acept not furnished 2150 13100 1500 166 16920\n", + "2938 Rio de Janeiro 65 2 1 1 16 acept not furnished 560 1000 125 13 1698\n", + "2939 São Paulo 58 2 2 1 6 not acept not furnished 520 2055 0 27 2602\n", + "2940 São Paulo 250 3 4 0 6 acept not furnished 3500 5000 1334 64 9898\n", + "2941 São Paulo 440 4 4 4 11 acept furnished 4985 10200 2849 130 18160\n", + "2942 Porto Alegre 39 1 1 1 12 acept not furnished 500 2200 50 33 2783\n", + "2943 Porto Alegre 45 2 2 0 - not acept not furnished 0 1300 0 24 1324\n", + "2944 Belo Horizonte 200 4 3 3 7 acept furnished 1350 7900 700 106 10060\n", + "2945 Porto Alegre 40 1 1 0 2 acept furnished 180 1250 6 19 1455\n", + "2946 Belo Horizonte 75 2 1 1 4 acept not furnished 380 849 71 12 1312\n", + "2947 Campinas 85 2 2 1 4 acept not furnished 675 1310 79 17 2081\n", + "2948 Rio de Janeiro 57 2 1 1 3 acept not furnished 430 1000 43 13 1486\n", + "2949 São Paulo 60 3 1 0 1 not acept not furnished 565 1950 109 25 2649\n", + "2950 Campinas 46 2 1 1 5 acept not furnished 380 850 18 11 1259\n", + "2951 Belo Horizonte 57 2 2 1 4 acept not furnished 180 1460 125 20 1785\n", + "2952 São Paulo 102 3 2 2 5 acept not furnished 1250 4200 250 54 5754\n", + "2953 São Paulo 61 2 2 1 5 acept not furnished 650 2300 21 30 3001\n", + "2954 Rio de Janeiro 29 1 1 0 12 acept furnished 580 1770 83 23 2456\n", + "2955 São Paulo 280 3 3 2 - acept not furnished 0 8000 600 121 8721\n", + "2956 São Paulo 210 3 3 4 1 acept not furnished 3100 6500 1400 83 11080\n", + "2957 São Paulo 130 3 3 3 - acept not furnished 0 4000 146 61 4207\n", + "2958 Porto Alegre 45 1 1 0 11 acept not furnished 750 900 658 14 2322\n", + "2959 Belo Horizonte 45 1 1 1 6 acept not furnished 757 2900 9 39 3705\n", + "2960 Rio de Janeiro 40 1 1 0 8 acept furnished 450 2000 50 26 2526\n", + "2961 São Paulo 175 1 1 2 - acept not furnished 0 1600 167 25 1792\n", + "2962 São Paulo 750 4 5 8 - acept not furnished 0 15000 4338 226 19560\n", + "2963 São Paulo 60 2 3 2 5 not acept not furnished 730 1200 182 16 2128\n", + "2964 São Paulo 86 2 1 1 11 not acept not furnished 1105 3800 155 49 5109\n", + "2965 Porto Alegre 75 2 2 2 6 acept not furnished 556 2200 95 33 2884\n", + "2966 Porto Alegre 281 4 3 4 - acept furnished 0 4950 442 88 5480\n", + "2967 Porto Alegre 70 2 2 1 2 acept not furnished 400 2200 92 33 2725\n", + "2968 Rio de Janeiro 280 3 3 2 2 acept furnished 6500 8000 1680 104 16280\n", + "2969 São Paulo 30 1 1 0 2 acept not furnished 0 1850 0 24 1874\n", + "2970 Campinas 100 2 2 1 11 acept not furnished 0 2000 0 26 2026\n", + "2971 São Paulo 271 3 2 2 - acept not furnished 0 4800 646 73 5519\n", + "2972 São Paulo 123 3 3 2 3 not acept furnished 1527 3400 334 44 5305\n", + "2973 São Paulo 59 2 2 0 10 acept furnished 380 3900 143 50 4473\n", + "2974 São Paulo 130 2 3 3 - acept not furnished 0 1830 0 28 1858\n", + "2975 Porto Alegre 58 1 1 1 2 acept not furnished 273 1200 27 18 1518\n", + "2976 São Paulo 42 1 1 1 9 acept not furnished 500 2325 128 30 2983\n", + "2977 São Paulo 168 3 2 4 - not acept not furnished 600 3500 317 53 4470\n", + "2978 São Paulo 430 4 7 6 - acept not furnished 0 7990 300 121 8411\n", + "2979 Rio de Janeiro 90 3 2 1 17 acept not furnished 830 980 120 13 1943\n", + "2980 Rio de Janeiro 36 1 1 0 8 acept furnished 450 2000 0 26 2476\n", + "2981 Rio de Janeiro 45 1 1 1 5 acept furnished 1050 2700 196 35 3981\n", + "2982 Belo Horizonte 73 3 1 1 3 acept not furnished 707 1400 121 19 2247\n", + "2983 São Paulo 38 1 1 0 2 not acept not furnished 60 950 0 13 1023\n", + "2984 São Paulo 95 3 2 1 7 acept not furnished 850 2300 0 30 3180\n", + "2985 Campinas 60 1 1 1 1 acept furnished 665 1700 37 22 2424\n", + "2986 Belo Horizonte 60 2 1 1 6 not acept not furnished 200 2000 66 27 2293\n", + "2987 São Paulo 44 1 1 1 1 not acept furnished 590 2000 29 26 2645\n", + "2988 Porto Alegre 39 1 1 1 1 not acept furnished 185 900 27 14 1126\n", + "2989 Campinas 30 1 1 0 2 not acept not furnished 70 1100 9 14 1193\n", + "2990 São Paulo 250 3 3 2 - not acept not furnished 0 3700 459 56 4215\n", + "2991 São Paulo 170 3 3 3 - acept not furnished 0 3500 209 53 3762\n", + "2992 São Paulo 65 2 1 0 - acept not furnished 0 1800 167 28 1995\n", + "2993 São Paulo 320 3 3 4 - acept not furnished 1700 4320 142 65 6227\n", + "2994 São Paulo 60 2 1 3 - acept not furnished 0 2200 188 34 2422\n", + "2995 Porto Alegre 100 3 1 0 3 acept furnished 250 1870 59 28 2207\n", + "2996 São Paulo 100 2 2 2 - acept not furnished 1750 2800 450 36 5036\n", + "2997 São Paulo 45 2 1 0 2 acept not furnished 60 900 42 12 1014\n", + "2998 São Paulo 270 5 7 2 - acept not furnished 0 3978 89 60 4127\n", + "2999 Rio de Janeiro 90 3 2 1 10 not acept furnished 1500 3500 350 46 5396\n", + "3000 Campinas 51 2 1 2 13 not acept not furnished 457 1850 56 24 2387\n", + "3001 São Paulo 72 2 2 1 1 acept not furnished 0 1760 30 23 1813\n", + "3002 Rio de Janeiro 45 1 1 1 2 not acept furnished 50 2000 50 26 2126\n", + "3003 Porto Alegre 60 2 1 0 3 acept not furnished 170 1090 25 16 1301\n", + "3004 São Paulo 213 3 3 2 1 not acept not furnished 3200 6500 475 83 10260\n", + "3005 São Paulo 33 1 1 0 1 not acept not furnished 250 1305 0 17 1572\n", + "3006 Campinas 74 3 1 1 4 acept not furnished 308 814 49 11 1182\n", + "3007 São Paulo 120 3 1 1 - acept not furnished 0 2625 0 26 2651\n", + "3008 Rio de Janeiro 45 1 1 0 2 acept not furnished 340 1900 13 25 2278\n", + "3009 São Paulo 59 2 2 1 2 acept not furnished 759 3478 75 14 4326\n", + "3010 Rio de Janeiro 35 1 1 0 5 not acept furnished 600 4500 67 58 5225\n", + "3011 São Paulo 253 4 5 3 16 acept not furnished 2100 4100 0 52 6252\n", + "3012 Campinas 78 3 2 1 6 acept not furnished 645 1600 67 21 2333\n", + "3013 Belo Horizonte 200 4 3 3 10 not acept not furnished 2012 5000 547 67 7626\n", + "3014 São Paulo 128 3 3 2 10 acept not furnished 2600 3800 605 49 7054\n", + "3015 Belo Horizonte 200 5 2 5 - acept not furnished 0 4000 148 54 4202\n", + "3016 São Paulo 60 2 2 1 17 acept not furnished 440 1250 38 16 1744\n", + "3017 São Paulo 244 3 4 2 7 acept furnished 3500 12000 648 153 16300\n", + "3018 São Paulo 120 2 1 1 - not acept not furnished 0 3000 280 46 3326\n", + "3019 Campinas 145 4 3 2 8 acept not furnished 1800 5700 292 73 7865\n", + "3020 São Paulo 120 3 2 1 7 acept not furnished 1400 4675 200 60 6335\n", + "3021 Campinas 34 1 1 0 4 acept not furnished 430 650 70 9 1159\n", + "3022 São Paulo 90 2 1 2 4 acept not furnished 1100 2000 0 26 3126\n", + "3023 Campinas 76 2 1 0 1 acept not furnished 300 700 100 9 1109\n", + "3024 São Paulo 69 3 2 1 8 acept not furnished 670 2000 6 26 2702\n", + "3025 São Paulo 150 3 2 0 - acept not furnished 0 2500 150 38 2688\n", + "3026 São Paulo 101 2 2 1 12 acept not furnished 582 1700 0 22 2304\n", + "3027 São Paulo 225 3 3 2 5 acept not furnished 2560 10800 670 137 14170\n", + "3028 São Paulo 220 4 4 4 8 acept not furnished 2058 4500 540 58 7156\n", + "3029 Porto Alegre 79 2 1 0 10 acept not furnished 400 1880 67 28 2375\n", + "3030 São Paulo 25 1 1 0 - acept not furnished 0 1200 25 19 1244\n", + "3031 São Paulo 277 3 5 4 - acept not furnished 2580 9000 771 136 12490\n", + "3032 São Paulo 282 4 4 3 19 acept furnished 3100 10000 1334 127 14560\n", + "3033 São Paulo 200 4 5 3 1 not acept not furnished 2800 5500 997 70 9367\n", + "3034 Porto Alegre 45 1 1 2 5 acept not furnished 800 2300 9 34 3143\n", + "3035 São Paulo 280 4 4 3 17 acept furnished 2400 6553 0 84 9037\n", + "3036 São Paulo 155 4 3 2 16 acept not furnished 1050 3500 459 45 5054\n", + "3037 São Paulo 44 1 1 1 9 acept furnished 398 1900 19 25 2342\n", + "3038 Belo Horizonte 312 4 5 4 9 acept not furnished 1067 8000 890 107 10060\n", + "3039 Rio de Janeiro 90 2 1 0 2 acept not furnished 200 1200 142 16 1558\n", + "3040 São Paulo 64 2 1 1 5 acept furnished 741 1850 75 24 2690\n", + "3041 São Paulo 150 2 2 3 2 not acept furnished 4085 8000 570 102 12760\n", + "3042 São Paulo 65 2 1 0 - acept not furnished 0 1300 70 17 1387\n", + "3043 Porto Alegre 47 1 1 1 1 not acept furnished 400 2200 0 33 2633\n", + "3044 Rio de Janeiro 40 1 1 0 9 acept furnished 550 1980 84 26 2640\n", + "3045 São Paulo 50 1 1 0 12 acept furnished 501 1800 0 23 2324\n", + "3046 Belo Horizonte 120 3 3 2 - acept not furnished 0 2320 125 39 2484\n", + "3047 Rio de Janeiro 95 3 1 0 2 acept not furnished 528 3000 140 39 3707\n", + "3048 Rio de Janeiro 25 1 1 2 6 not acept furnished 540 1650 42 22 2254\n", + "3049 São Paulo 202 4 3 4 5 acept not furnished 4308 12000 1896 153 18360\n", + "3050 Rio de Janeiro 30 1 1 0 3 acept not furnished 350 1000 17 13 1380\n", + "3051 Porto Alegre 30 1 1 0 1 acept furnished 230 850 18 13 1111\n", + "3052 Belo Horizonte 1000 3 4 2 - acept not furnished 0 5000 365 82 5447\n", + "3053 Porto Alegre 80 3 1 1 8 acept not furnished 400 1700 125 25 2250\n", + "3054 Belo Horizonte 120 4 3 2 2 acept not furnished 0 3250 0 44 3294\n", + "3055 São Paulo 249 3 3 3 - acept not furnished 0 9000 834 136 9970\n", + "3056 São Paulo 90 3 3 2 16 acept not furnished 1119 2600 360 33 4112\n", + "3057 Rio de Janeiro 91 2 2 1 1 acept not furnished 1102 3450 201 45 4798\n", + "3058 São Paulo 36 1 1 0 4 acept not furnished 300 1162 19 15 1496\n", + "3059 São Paulo 51 2 1 1 7 acept not furnished 427 2900 114 37 3478\n", + "3060 São Paulo 287 4 4 4 6 not acept not furnished 7900 11300 2590 144 21930\n", + "3061 Rio de Janeiro 65 2 2 1 5 acept furnished 1265 6700 262 87 8314\n", + "3062 São Paulo 84 2 2 2 20 not acept furnished 1250 9600 217 122 11190\n", + "3063 São Paulo 43 1 1 1 2 not acept furnished 488 3600 133 46 4267\n", + "3064 São Paulo 58 2 1 1 1 acept not furnished 430 1540 0 20 1990\n", + "3065 São Paulo 208 4 4 3 1 acept furnished 2860 8000 1672 102 12630\n", + "3066 São Paulo 462 7 2 3 - not acept not furnished 0 8600 834 130 9564\n", + "3067 São Paulo 167 3 2 1 14 acept furnished 1800 9500 500 121 11920\n", + "3068 São Paulo 62 2 1 1 12 not acept furnished 650 1236 34 16 1936\n", + "3069 Porto Alegre 75 2 2 0 5 acept not furnished 400 2500 140 37 3077\n", + "3070 Campinas 244 5 7 4 12 acept not furnished 1600 8000 500 102 10200\n", + "3071 São Paulo 309 4 7 8 - acept not furnished 0 8000 1250 121 9371\n", + "3072 Porto Alegre 40 1 1 0 5 acept not furnished 400 950 100 14 1464\n", + "3073 Porto Alegre 90 2 1 0 2 acept not furnished 200 950 26 14 1190\n", + "3074 Porto Alegre 47 1 1 0 - not acept not furnished 200 1100 0 17 1317\n", + "3075 Porto Alegre 143 3 2 3 9 acept furnished 1950 6000 698 88 8736\n", + "3076 São Paulo 230 3 4 3 8 not acept not furnished 2700 4210 1167 54 8131\n", + "3077 São Paulo 580 6 6 6 - acept not furnished 0 6960 2084 105 9149\n", + "3078 São Paulo 238 4 4 3 1 acept furnished 2569 15000 542 191 18300\n", + "3079 São Paulo 113 3 4 3 5 acept furnished 1055 3400 178 44 4677\n", + "3080 São Paulo 115 2 2 2 10 not acept furnished 1395 3800 259 49 5503\n", + "3081 São Paulo 80 1 2 1 10 acept furnished 1000 4000 109 51 5160\n", + "3082 Rio de Janeiro 300 4 4 3 3 acept not furnished 2300 4500 803 58 7661\n", + "3083 Campinas 70 1 1 2 - acept not furnished 0 1450 5 22 1477\n", + "3084 São Paulo 52 2 1 0 - acept not furnished 375 990 0 13 1378\n", + "3085 São Paulo 55 2 1 1 9 acept not furnished 655 1530 100 20 2305\n", + "3086 Rio de Janeiro 58 2 1 1 7 acept not furnished 754 750 44 10 1558\n", + "3087 Campinas 50 2 1 1 - acept not furnished 330 1150 0 15 1495\n", + "3088 Campinas 40 1 1 0 4 acept not furnished 420 500 17 7 944\n", + "3089 São Paulo 164 3 2 1 15 acept furnished 1229 3700 198 47 5174\n", + "3090 Porto Alegre 76 2 2 0 2 acept not furnished 190 2100 49 38 2377\n", + "3091 São Paulo 80 2 1 1 2 acept furnished 1950 2800 209 36 4995\n", + "3092 Belo Horizonte 300 5 4 3 - acept not furnished 0 15000 417 246 15660\n", + "3093 Porto Alegre 75 2 2 2 4 acept not furnished 550 1600 122 24 2296\n", + "3094 São Paulo 280 3 4 2 - acept furnished 8000 8000 667 121 16790\n", + "3095 Porto Alegre 50 1 1 1 3 not acept not furnished 370 1200 50 18 1638\n", + "3096 São Paulo 74 1 2 2 8 acept furnished 850 5500 294 70 6714\n", + "3097 São Paulo 73 2 1 1 4 acept not furnished 540 2080 0 27 2647\n", + "3098 Campinas 280 4 3 4 - acept not furnished 2307 3100 341 47 5795\n", + "3099 Rio de Janeiro 403 3 4 2 3 acept not furnished 2800 15000 667 194 18660\n", + "3100 Campinas 424 4 5 4 - acept not furnished 0 3315 358 50 3723\n", + "3101 São Paulo 190 4 5 3 10 acept not furnished 3200 4000 417 51 7668\n", + "3102 São Paulo 454 4 3 4 - acept furnished 2700 10900 917 164 14680\n", + "3103 São Paulo 138 3 2 1 7 not acept not furnished 2000 7600 238 97 9935\n", + "3104 São Paulo 600 5 5 6 - acept not furnished 0 15000 2100 191 17290\n", + "3105 Campinas 58 2 1 1 1 acept furnished 385 3500 64 45 3994\n", + "3106 São Paulo 38 1 1 0 16 acept furnished 290 2500 0 32 2822\n", + "3107 São Paulo 113 2 2 1 4 acept not furnished 1000 3000 50 39 4089\n", + "3108 São Paulo 70 2 1 0 - not acept not furnished 0 1700 25 26 1751\n", + "3109 Rio de Janeiro 90 2 1 0 10 acept furnished 1 4000 1 52 4054\n", + "3110 São Paulo 183 4 4 3 7 acept not furnished 2200 5000 834 64 8098\n", + "3111 Rio de Janeiro 20 1 1 0 8 acept furnished 630 1370 25 18 2043\n", + "3112 Belo Horizonte 66 2 1 1 1 acept not furnished 380 500 23 7 910\n", + "3113 Rio de Janeiro 92 2 2 0 3 acept not furnished 1550 2700 250 35 4535\n", + "3114 Porto Alegre 70 2 1 0 3 not acept furnished 300 1800 0 27 2127\n", + "3115 São Paulo 93 3 2 1 10 acept not furnished 1497 3400 227 44 5168\n", + "3116 São Paulo 220 4 5 4 5 not acept not furnished 2066 3230 1577 41 6914\n", + "3117 São Paulo 20 1 1 0 3 not acept furnished 300 600 40 8 948\n", + "3118 São Paulo 92 3 2 2 - not acept not furnished 150 2200 198 34 2582\n", + "3119 Belo Horizonte 50 2 1 0 - not acept not furnished 0 1200 250 16 1466\n", + "3120 São Paulo 300 3 5 2 12 not acept furnished 2100 13900 809 177 16990\n", + "3121 Porto Alegre 90 3 1 1 6 acept not furnished 380 1750 90 26 2246\n", + "3122 Campinas 36 1 1 0 4 not acept not furnished 300 500 10 7 817\n", + "3123 Rio de Janeiro 70 2 2 0 3 acept not furnished 1015 2250 135 29 3429\n", + "3124 São Paulo 200 3 3 2 - acept not furnished 0 3500 292 53 3845\n", + "3125 Rio de Janeiro 160 3 2 1 4 acept furnished 1957 6800 513 88 9358\n", + "3126 São Paulo 135 3 2 3 7 acept not furnished 1941 2800 635 36 5412\n", + "3127 São Paulo 70 1 1 0 - acept not furnished 0 1200 34 19 1253\n", + "3128 Belo Horizonte 95 2 1 1 4 not acept furnished 330 2000 94 27 2451\n", + "3129 São Paulo 60 2 2 2 15 acept not furnished 692 1900 90 25 2707\n", + "3130 São Paulo 36 1 1 0 1 acept not furnished 0 860 50 11 921\n", + "3131 São Paulo 136 3 3 3 4 acept furnished 1970 6000 600 77 8647\n", + "3132 São Paulo 250 3 2 2 - acept not furnished 0 3500 250 53 3803\n", + "3133 São Paulo 330 3 5 3 15 acept not furnished 3400 15000 2500 191 21090\n", + "3134 Belo Horizonte 65 3 2 1 5 not acept not furnished 250 950 82 13 1295\n", + "3135 Campinas 380 3 4 4 - acept not furnished 3640 8000 534 121 12300\n", + "3136 São Paulo 350 5 5 4 - acept not furnished 0 3000 467 46 3513\n", + "3137 Campinas 70 2 1 0 2 acept not furnished 470 700 39 9 1218\n", + "3138 Rio de Janeiro 65 2 2 0 2 acept not furnished 640 1500 70 20 2230\n", + "3139 São Paulo 45 1 1 1 1 not acept furnished 3000 5520 0 70 8590\n", + "3140 Rio de Janeiro 95 2 2 0 - acept not furnished 450 3430 263 45 4188\n", + "3141 São Paulo 120 2 1 1 - acept not furnished 0 1600 167 25 1792\n", + "3142 São Paulo 248 3 4 3 2 acept not furnished 4325 5300 1521 68 11210\n", + "3143 São Paulo 100 2 1 2 - not acept not furnished 0 3300 317 50 3667\n", + "3144 São Paulo 394 4 6 4 23 acept furnished 6000 4000 2500 51 12550\n", + "3145 Campinas 209 3 3 2 - not acept not furnished 593 2550 237 39 3419\n", + "3146 Rio de Janeiro 16 1 1 0 2 acept not furnished 450 555 30 8 1043\n", + "3147 São Paulo 49 2 1 1 8 acept not furnished 528 1700 135 22 2385\n", + "3148 Rio de Janeiro 70 2 2 1 4 not acept furnished 750 4100 13 53 4916\n", + "3149 Rio de Janeiro 150 3 2 3 2 acept not furnished 0 2430 38 32 2500\n", + "3150 Porto Alegre 58 2 1 1 4 acept not furnished 220 1320 67 20 1627\n", + "3151 São Paulo 200 3 4 1 8 not acept furnished 2200 6000 375 77 8652\n", + "3152 Belo Horizonte 400 3 3 0 - acept not furnished 0 3500 142 58 3700\n", + "3153 São Paulo 196 3 4 2 1 not acept not furnished 2200 3300 559 42 6101\n", + "3154 Porto Alegre 40 1 1 0 3 not acept furnished 0 2000 0 30 2030\n", + "3155 Belo Horizonte 158 3 3 2 5 acept not furnished 796 3700 360 50 4906\n", + "3156 São Paulo 130 2 1 1 - acept not furnished 0 4000 0 61 4061\n", + "3157 Campinas 48 1 2 0 2 acept furnished 704 987 46 13 1750\n", + "3158 São Paulo 72 2 1 1 7 acept not furnished 438 1440 51 19 1948\n", + "3159 São Paulo 65 2 1 0 2 acept not furnished 425 1680 33 22 2160\n", + "3160 Porto Alegre 60 2 1 1 7 acept not furnished 320 1900 50 28 2298\n", + "3161 São Paulo 48 1 1 1 19 acept not furnished 588 1525 0 6 2119\n", + "3162 Rio de Janeiro 47 1 1 0 2 not acept not furnished 306 1400 22 19 1747\n", + "3163 Porto Alegre 84 2 1 0 3 acept not furnished 500 900 73 14 1487\n", + "3164 São Paulo 186 4 2 2 2 acept not furnished 1500 2500 0 32 4032\n", + "3165 Belo Horizonte 85 3 2 2 2 not acept not furnished 500 1500 114 20 2134\n", + "3166 São Paulo 160 4 5 3 2 acept furnished 1623 3800 834 49 6306\n", + "3167 Rio de Janeiro 74 2 1 1 1 acept not furnished 100 900 65 12 1077\n", + "3168 São Paulo 18 1 1 0 - acept not furnished 0 1720 0 22 1742\n", + "3169 Porto Alegre 130 2 1 2 - acept not furnished 0 2000 109 36 2145\n", + "3170 Belo Horizonte 95 3 2 1 2 acept not furnished 300 2300 182 31 2813\n", + "3171 São Paulo 105 3 2 3 1 acept not furnished 1250 1900 552 25 3727\n", + "3172 Belo Horizonte 85 2 2 1 6 acept not furnished 1105 1100 119 15 2339\n", + "3173 Belo Horizonte 50 1 1 2 - acept not furnished 0 1280 83 21 1384\n", + "3174 Rio de Janeiro 103 3 2 1 3 acept not furnished 1736 4500 290 58 6584\n", + "3175 São Paulo 54 2 1 1 1 acept not furnished 990 780 0 10 1780\n", + "3176 Campinas 75 2 1 2 1 acept not furnished 235 1400 25 18 1678\n", + "3177 São Paulo 25 1 1 0 1 not acept not furnished 0 1200 35 16 1251\n", + "3178 Belo Horizonte 63 3 2 2 2 not acept not furnished 180 1300 90 18 1588\n", + "3179 Belo Horizonte 150 5 5 5 - acept furnished 0 14000 835 230 15070\n", + "3180 São Paulo 47 2 1 1 12 acept not furnished 597 1570 0 20 2187\n", + "3181 Rio de Janeiro 140 3 2 3 2 acept furnished 926 4235 145 55 5361\n", + "3182 Rio de Janeiro 40 1 1 0 2 acept not furnished 380 1110 0 15 1505\n", + "3183 Belo Horizonte 115 3 2 1 2 not acept not furnished 334 2200 110 30 2674\n", + "3184 São Paulo 160 4 3 2 9 acept furnished 2800 9530 286 121 12740\n", + "3185 Rio de Janeiro 80 1 1 0 - not acept not furnished 70 1400 38 22 1530\n", + "3186 Rio de Janeiro 75 2 1 1 2 acept not furnished 450 1100 50 15 1615\n", + "3187 Porto Alegre 80 2 1 0 1 acept not furnished 0 950 65 14 1029\n", + "3188 São Paulo 80 2 2 1 - acept not furnished 0 2600 417 40 3057\n", + "3189 São Paulo 199 3 4 5 17 acept furnished 2800 4000 1500 51 8351\n", + "3190 São Paulo 400 4 4 3 - acept not furnished 0 9000 542 136 9678\n", + "3191 São Paulo 70 1 1 0 - not acept not furnished 0 1086 163 17 1266\n", + "3192 São Paulo 300 4 5 4 - acept not furnished 0 5000 538 76 5614\n", + "3193 Belo Horizonte 70 2 1 1 6 acept not furnished 370 1100 103 15 1588\n", + "3194 São Paulo 250 3 2 1 2 acept not furnished 3200 8500 5000 108 16810\n", + "3195 Rio de Janeiro 27 1 1 0 12 acept furnished 350 1700 67 22 2139\n", + "3196 São Paulo 54 2 1 1 12 not acept not furnished 720 2010 71 26 2827\n", + "3197 São Paulo 225 4 5 4 22 acept furnished 2000 9000 1192 115 12310\n", + "3198 São Paulo 125 3 2 1 9 acept not furnished 1000 4655 200 59 5914\n", + "3199 São Paulo 55 2 1 0 - acept not furnished 0 2000 75 31 2106\n", + "3200 São Paulo 186 3 3 2 22 not acept not furnished 1350 5435 405 69 7259\n", + "3201 Rio de Janeiro 154 3 3 1 5 acept not furnished 1450 5000 367 65 6882\n", + "3202 São Paulo 200 3 4 2 - not acept furnished 0 9800 417 148 10370\n", + "3203 São Paulo 246 3 4 3 8 acept not furnished 3200 4500 794 58 8552\n", + "3204 Porto Alegre 78 2 1 0 3 acept not furnished 280 1380 32 21 1713\n", + "3205 São Paulo 70 2 1 1 - acept not furnished 60 2100 0 32 2192\n", + "3206 São Paulo 188 3 1 3 - acept not furnished 0 9500 472 143 10120\n", + "3207 Belo Horizonte 165 3 2 4 2 acept furnished 230 2870 142 39 3281\n", + "3208 Campinas 63 2 1 0 1 acept not furnished 430 950 0 13 1393\n", + "3209 Belo Horizonte 200 4 2 2 5 acept not furnished 2341 4000 421 54 6816\n", + "3210 São Paulo 298 4 5 4 1 not acept not furnished 3600 6000 1250 77 10930\n", + "3211 São Paulo 154 3 1 3 17 acept furnished 830 6700 400 85 8015\n", + "3212 Campinas 110 3 2 2 7 not acept not furnished 900 2100 100 27 3127\n", + "3213 Campinas 130 2 2 5 - acept not furnished 0 1800 321 28 2149\n", + "3214 São Paulo 32 1 1 1 18 not acept furnished 1600 3500 234 45 5379\n", + "3215 Rio de Janeiro 170 4 3 2 10 acept not furnished 2500 2430 500 32 5462\n", + "3216 São Paulo 69 2 1 0 8 acept not furnished 1100 1600 0 21 2721\n", + "3217 Rio de Janeiro 118 2 2 1 6 acept not furnished 1600 3950 271 51 5872\n", + "3218 Rio de Janeiro 90 3 1 0 4 acept not furnished 370 2800 109 37 3316\n", + "3219 Campinas 65 1 1 1 9 acept not furnished 380 1200 83 16 1679\n", + "3220 São Paulo 260 4 3 4 1 acept furnished 2780 4000 1200 51 8031\n", + "3221 São Paulo 182 3 5 3 10 acept not furnished 3600 4900 875 63 9438\n", + "3222 São Paulo 41 1 1 1 10 not acept not furnished 900 3500 100 45 4545\n", + "3223 São Paulo 45 1 1 0 - acept not furnished 0 1400 0 22 1422\n", + "3224 São Paulo 40 1 1 0 - not acept not furnished 0 780 17 12 809\n", + "3225 São Paulo 100 1 3 2 8 not acept furnished 800 2500 125 32 3457\n", + "3226 São Paulo 66 2 1 0 7 acept not furnished 356 1650 0 21 2027\n", + "3227 Belo Horizonte 71 3 2 2 4 acept not furnished 660 970 149 13 1792\n", + "3228 Campinas 94 2 1 1 1 acept not furnished 525 1200 88 16 1829\n", + "3229 Rio de Janeiro 80 2 2 1 2 acept not furnished 662 1380 215 18 2275\n", + "3230 São Paulo 41 1 1 1 4 not acept furnished 380 3220 0 13 3613\n", + "3231 São Paulo 140 3 2 1 - acept not furnished 0 3825 0 58 3883\n", + "3232 Porto Alegre 47 1 1 1 1 not acept furnished 400 2200 0 33 2633\n", + "3233 Rio de Janeiro 70 3 1 1 2 acept not furnished 550 1200 0 16 1766\n", + "3234 Campinas 58 1 1 1 3 acept not furnished 710 720 40 10 1480\n", + "3235 São Paulo 200 3 4 4 8 acept furnished 1800 5600 860 71 8331\n", + "3236 Rio de Janeiro 40 1 1 0 3 acept not furnished 262 725 0 10 997\n", + "3237 São Paulo 240 3 4 4 - not acept not furnished 0 4000 370 61 4431\n", + "3238 São Paulo 96 3 2 1 12 acept not furnished 1122 3050 231 39 4442\n", + "3239 São Paulo 220 4 5 2 - acept not furnished 0 6500 1176 98 7774\n", + "3240 São Paulo 132 3 2 2 8 acept furnished 1650 4000 400 51 6101\n", + "3241 Belo Horizonte 106 3 2 2 7 not acept not furnished 1294 2200 239 30 3763\n", + "3242 São Paulo 150 3 3 2 3 acept furnished 2100 2000 584 26 4710\n", + "3243 São Paulo 68 3 1 1 7 not acept not furnished 700 1400 0 18 2118\n", + "3244 Porto Alegre 180 4 5 3 9 acept furnished 2500 10500 410 154 13560\n", + "3245 Porto Alegre 44 1 1 1 9 acept not furnished 280 1170 31 18 1499\n", + "3246 Rio de Janeiro 75 2 1 0 3 acept not furnished 888 1900 267 25 3080\n", + "3247 São Paulo 58 2 2 1 6 acept not furnished 450 4700 5 60 5215\n", + "3248 São Paulo 72 2 1 0 9 acept not furnished 760 2200 17 28 3005\n", + "3249 São Paulo 190 4 4 2 - acept not furnished 0 3500 315 53 3868\n", + "3250 Rio de Janeiro 150 3 2 1 10 acept not furnished 1500 1300 140 17 2957\n", + "3251 Campinas 550 3 7 8 - acept not furnished 0 7700 430 116 8246\n", + "3252 São Paulo 220 2 2 3 - acept not furnished 0 10500 750 158 11410\n", + "3253 São Paulo 200 3 2 3 - acept furnished 0 6000 209 91 6300\n", + "3254 Belo Horizonte 300 5 3 4 - acept not furnished 900 6800 167 112 7979\n", + "3255 São Paulo 70 2 2 0 3 not acept not furnished 260 2280 92 29 2661\n", + "3256 Campinas 43 2 1 1 - acept not furnished 274 1000 7 13 1294\n", + "3257 Porto Alegre 45 1 1 1 1 acept not furnished 240 740 7 11 998\n", + "3258 Porto Alegre 55 2 1 0 3 acept not furnished 350 650 42 10 1052\n", + "3259 São Paulo 700 5 8 3 - acept not furnished 0 12000 1000 181 13180\n", + "3260 Belo Horizonte 300 3 5 0 - acept not furnished 0 5500 310 91 5901\n", + "3261 Porto Alegre 220 4 5 2 - acept not furnished 0 7000 225 125 7350\n", + "3262 São Paulo 300 4 5 6 - acept furnished 0 15000 1805 226 17030\n", + "3263 Porto Alegre 52 1 1 0 - acept not furnished 90 748 1 11 850\n", + "3264 Rio de Janeiro 106 2 2 1 2 acept not furnished 1550 4000 323 52 5925\n", + "3265 Porto Alegre 84 2 2 2 6 acept not furnished 657 3200 189 47 4093\n", + "3266 São Paulo 50 2 1 0 - not acept not furnished 0 1200 0 19 1219\n", + "3267 São Paulo 240 3 3 2 - acept not furnished 0 4000 292 61 4353\n", + "3268 São Paulo 240 3 3 4 - acept furnished 0 8000 1000 121 9121\n", + "3269 Porto Alegre 260 2 2 1 3 not acept not furnished 350 1640 0 24 2014\n", + "3270 São Paulo 73 2 2 1 11 acept not furnished 700 1250 150 16 2116\n", + "3271 São Paulo 334 4 6 5 4 acept not furnished 3790 3800 2435 49 10070\n", + "3272 São Paulo 67 2 1 1 6 acept not furnished 313 1200 167 16 1696\n", + "3273 São Paulo 71 2 1 0 8 not acept not furnished 764 1800 0 23 2587\n", + "3274 São Paulo 280 3 4 3 4 not acept not furnished 4200 7600 1250 97 13150\n", + "3275 Belo Horizonte 450 5 5 3 - acept not furnished 0 6500 542 107 7149\n", + "3276 Porto Alegre 82 3 2 1 6 acept not furnished 700 2500 59 37 3296\n", + "3277 São Paulo 380 4 5 4 4 acept not furnished 4000 8000 2667 102 14770\n", + "3278 Porto Alegre 105 3 2 2 1 acept not furnished 600 2390 134 35 3159\n", + "3279 São Paulo 55 1 1 1 10 acept furnished 570 1800 0 7 2377\n", + "3280 São Paulo 45 1 1 0 - not acept not furnished 700 1500 0 20 2220\n", + "3281 São Paulo 70 2 2 1 5 acept furnished 820 3100 117 40 4077\n", + "3282 São Paulo 160 3 3 0 - not acept not furnished 0 5000 500 76 5576\n", + "3283 São Paulo 48 2 1 1 1 acept not furnished 480 1710 0 22 2212\n", + "3284 São Paulo 200 3 4 2 2 acept not furnished 2700 9180 0 117 12000\n", + "3285 São Paulo 46 2 1 0 5 acept not furnished 0 1200 0 16 1216\n", + "3286 Rio de Janeiro 30 1 1 0 - not acept not furnished 0 680 0 9 689\n", + "3287 Rio de Janeiro 140 3 2 1 10 acept not furnished 1600 3600 375 47 5622\n", + "3288 São Paulo 101 3 3 2 1 acept not furnished 780 4600 330 59 5769\n", + "3289 São Paulo 340 2 4 3 14 acept not furnished 4900 15000 917 191 21010\n", + "3290 São Paulo 400 4 5 4 13 acept furnished 2700 7000 1500 89 11290\n", + "3291 Campinas 55 2 1 1 2 acept not furnished 453 749 44 10 1256\n", + "3292 Rio de Janeiro 45 2 1 1 9 acept not furnished 560 1450 18 19 2047\n", + "3293 São Paulo 62 2 2 0 - acept furnished 0 1250 0 19 1269\n", + "3294 Rio de Janeiro 75 2 1 0 1 acept furnished 750 3190 196 42 4178\n", + "3295 São Paulo 86 3 1 1 6 acept not furnished 460 3150 0 40 3650\n", + "3296 Porto Alegre 182 3 3 2 - acept not furnished 0 3200 112 57 3369\n", + "3297 Porto Alegre 30 1 1 1 - acept not furnished 0 762 15 14 791\n", + "3298 Rio de Janeiro 153 4 3 1 - acept not furnished 0 2710 121 42 2873\n", + "3299 São Paulo 70 2 1 1 - acept not furnished 0 1100 77 17 1194\n", + "3300 Rio de Janeiro 82 2 1 1 11 acept not furnished 750 1840 83 24 2697\n", + "3301 São Paulo 160 3 4 4 - not acept not furnished 0 7000 534 106 7640\n", + "3302 São Paulo 270 5 4 4 6 not acept not furnished 3500 7000 1684 89 12270\n", + "3303 São Paulo 370 7 6 8 - acept not furnished 0 10000 1875 151 12030\n", + "3304 São Paulo 470 4 6 2 7 acept not furnished 3000 7200 1000 109 11310\n", + "3305 São Paulo 200 1 1 3 - acept not furnished 0 1600 264 25 1889\n", + "3306 São Paulo 62 2 2 0 6 not acept not furnished 645 1400 92 18 2155\n", + "3307 São Paulo 64 2 2 1 4 acept not furnished 690 2500 5 32 3227\n", + "3308 São Paulo 58 2 1 1 2 acept not furnished 170 1100 0 14 1284\n", + "3309 Porto Alegre 75 2 2 0 9 not acept not furnished 436 1350 50 20 1856\n", + "3310 São Paulo 200 2 2 2 11 acept furnished 2900 11000 560 140 14600\n", + "3311 São Paulo 36 1 1 1 11 acept not furnished 380 1600 60 21 2061\n", + "3312 Porto Alegre 120 2 2 1 8 acept not furnished 850 1700 134 25 2709\n", + "3313 Porto Alegre 62 2 2 2 3 acept not furnished 540 1600 9 24 2173\n", + "3314 São Paulo 490 3 3 3 - acept furnished 0 4450 1200 67 5717\n", + "3315 Belo Horizonte 67 2 2 2 7 not acept not furnished 831 3170 34 43 4078\n", + "3316 São Paulo 161 3 3 3 8 acept not furnished 1762 2500 741 32 5035\n", + "3317 São Paulo 176 4 2 3 - acept not furnished 1225 5000 0 76 6301\n", + "3318 São Paulo 178 4 4 4 16 acept not furnished 2200 4500 688 58 7446\n", + "3319 Porto Alegre 88 3 2 0 2 acept not furnished 520 1658 31 25 2234\n", + "3320 Porto Alegre 470 3 3 4 - acept furnished 0 3700 346 66 4112\n", + "3321 São Paulo 257 4 3 2 - acept not furnished 0 7000 1200 106 8306\n", + "3322 São Paulo 70 4 3 0 - acept not furnished 0 3500 270 53 3823\n", + "3323 Belo Horizonte 50 2 1 1 4 acept not furnished 145 700 62 10 917\n", + "3324 Belo Horizonte 89 3 2 1 2 acept not furnished 330 1300 138 18 1786\n", + "3325 São Paulo 73 2 1 1 4 acept not furnished 680 1300 21 17 2018\n", + "3326 São Paulo 95 3 2 2 14 acept furnished 1000 4500 325 58 5883\n", + "3327 Rio de Janeiro 54 2 1 1 9 acept not furnished 560 1600 0 21 2181\n", + "3328 Belo Horizonte 150 4 1 3 4 acept furnished 1600 4350 542 58 6550\n", + "3329 Rio de Janeiro 139 2 3 1 5 acept not furnished 720 5966 387 77 7150\n", + "3330 Porto Alegre 45 1 1 0 4 acept furnished 200 1700 55 25 1980\n", + "3331 São Paulo 255 4 4 4 - acept not furnished 0 3400 375 52 3827\n", + "3332 São Paulo 100 1 1 0 - acept not furnished 0 2150 267 33 2450\n", + "3333 São Paulo 120 3 3 1 4 acept not furnished 1015 2870 0 37 3922\n", + "3334 Campinas 200 4 5 2 - not acept not furnished 1000 8000 84 121 9205\n", + "3335 São Paulo 72 2 1 1 5 acept not furnished 899 1280 6 17 2202\n", + "3336 Porto Alegre 50 1 1 0 - acept furnished 0 1100 13 20 1133\n", + "3337 São Paulo 158 3 4 3 5 not acept furnished 1950 12000 738 153 14840\n", + "3338 São Paulo 22 1 1 0 26 acept not furnished 384 2100 40 27 2551\n", + "3339 São Paulo 105 3 2 1 2 acept not furnished 1937 2380 374 31 4722\n", + "3340 São Paulo 50 2 1 1 5 acept not furnished 420 1500 3 20 1943\n", + "3341 Belo Horizonte 65 2 2 0 3 acept not furnished 210 1200 19 16 1445\n", + "3342 São Paulo 108 3 2 2 2 acept not furnished 980 2000 195 26 3201\n", + "3343 Campinas 50 1 1 0 2 acept not furnished 450 1080 15 14 1559\n", + "3344 São Paulo 198 3 3 6 - acept furnished 0 4200 250 64 4514\n", + "3345 Campinas 74 3 2 1 10 acept not furnished 700 1800 120 23 2643\n", + "3346 Rio de Janeiro 71 2 2 1 13 not acept furnished 2438 5500 246 71 8255\n", + "3347 Porto Alegre 52 2 1 1 5 acept not furnished 400 1100 42 17 1559\n", + "3348 Belo Horizonte 355 3 4 8 8 acept not furnished 2700 6000 1106 80 9886\n", + "3349 Porto Alegre 162 3 1 0 1 acept not furnished 440 1300 67 19 1826\n", + "3350 São Paulo 90 1 1 0 11 not acept not furnished 300 2000 0 26 2326\n", + "3351 Porto Alegre 62 2 1 1 7 not acept not furnished 485 1377 54 21 1937\n", + "3352 São Paulo 130 3 2 2 - acept furnished 0 3000 0 46 3046\n", + "3353 São Paulo 78 1 1 0 2 acept not furnished 420 2522 25 32 2999\n", + "3354 São Paulo 276 4 5 4 - acept not furnished 0 4900 183 74 5157\n", + "3355 São Paulo 50 2 1 1 2 acept not furnished 380 1500 88 20 1988\n", + "3356 Porto Alegre 35 1 1 0 2 acept furnished 350 1500 50 22 1922\n", + "3357 Belo Horizonte 161 3 1 2 - acept not furnished 0 3500 435 58 3993\n", + "3358 São Paulo 30 1 1 0 3 not acept not furnished 340 920 0 12 1272\n", + "3359 São Paulo 251 4 4 3 10 acept not furnished 2700 4200 1250 54 8204\n", + "3360 São Paulo 77 2 1 1 1 acept furnished 1300 2600 100 33 4033\n", + "3361 São Paulo 112 3 3 2 8 not acept not furnished 1222 3250 486 42 5000\n", + "3362 Campinas 273 4 2 2 4 acept furnished 2100 2470 366 32 4968\n", + "3363 Rio de Janeiro 55 1 1 1 8 acept not furnished 400 1100 9 15 1524\n", + "3364 Campinas 80 3 2 2 14 not acept not furnished 704 1800 83 23 2610\n", + "3365 São Paulo 400 4 5 3 - acept not furnished 0 15000 1750 226 16980\n", + "3366 Rio de Janeiro 110 3 2 1 9 acept not furnished 1100 2500 100 33 3733\n", + "3367 São Paulo 262 4 5 4 17 acept not furnished 2500 2250 1350 29 6129\n", + "3368 Rio de Janeiro 38 1 1 0 12 not acept not furnished 600 1700 82 22 2404\n", + "3369 São Paulo 140 2 2 1 3 not acept not furnished 2000 12500 279 159 14940\n", + "3370 São Paulo 110 6 5 7 - acept not furnished 0 9810 1000 148 10960\n", + "3371 Porto Alegre 46 1 1 1 3 acept not furnished 280 1099 55 17 1451\n", + "3372 Porto Alegre 55 2 1 0 4 acept not furnished 390 1500 42 22 1954\n", + "3373 Rio de Janeiro 70 2 1 1 5 not acept not furnished 470 1710 100 23 2303\n", + "3374 São Paulo 60 2 2 1 1 acept not furnished 600 1860 0 24 2484\n", + "3375 São Paulo 87 3 2 2 5 not acept not furnished 750 4000 250 51 5051\n", + "3376 Porto Alegre 400 3 4 4 - acept furnished 3000 12000 1100 214 16310\n", + "3377 Porto Alegre 64 2 2 0 7 not acept not furnished 550 1350 52 20 1972\n", + "3378 Rio de Janeiro 85 2 2 1 12 acept furnished 3499 9000 769 116 13380\n", + "3379 Porto Alegre 140 3 4 2 12 acept not furnished 1990 3490 292 51 5823\n", + "3380 São Paulo 288 4 5 4 8 acept not furnished 3635 5025 1155 64 9879\n", + "3381 São Paulo 64 3 1 1 2 acept not furnished 470 1200 110 16 1796\n", + "3382 São Paulo 62 2 2 1 1 not acept furnished 684 5050 227 64 6025\n", + "3383 Rio de Janeiro 15 1 1 0 - acept not furnished 0 700 0 10 710\n", + "3384 São Paulo 200 4 3 2 8 acept not furnished 2744 4100 1615 52 8511\n", + "3385 Belo Horizonte 450 4 3 4 8 acept furnished 2000 12750 717 170 15640\n", + "3386 São Paulo 72 3 2 1 11 acept not furnished 800 3010 0 39 3849\n", + "3387 Rio de Janeiro 75 2 1 1 6 acept not furnished 970 1750 42 23 2785\n", + "3388 São Paulo 20 1 1 0 - acept not furnished 0 550 30 9 589\n", + "3389 São Paulo 77 2 2 1 6 acept not furnished 900 3000 80 39 4019\n", + "3390 São Paulo 57 1 1 0 5 acept furnished 300 6000 17 77 6394\n", + "3391 São Paulo 103 3 3 0 6 acept not furnished 1530 6000 320 77 7927\n", + "3392 São Paulo 180 3 2 1 8 acept furnished 2000 12000 334 153 14490\n", + "3393 Porto Alegre 80 2 1 1 1 acept not furnished 0 833 4 13 850\n", + "3394 São Paulo 25 1 1 1 8 acept furnished 0 4000 0 51 4051\n", + "3395 Campinas 248 3 4 4 2 acept not furnished 2648 8000 667 102 11420\n", + "3396 Belo Horizonte 360 6 2 0 - not acept not furnished 0 8000 752 132 8884\n", + "3397 São Paulo 62 1 1 0 4 acept furnished 670 2300 0 30 3000\n", + "3398 São Paulo 85 2 1 0 2 acept not furnished 259 1800 0 23 2082\n", + "3399 Porto Alegre 187 3 3 2 - acept furnished 0 2805 98 50 2953\n", + "3400 São Paulo 58 2 3 2 - not acept not furnished 50 2000 0 31 2081\n", + "3401 Belo Horizonte 93 2 1 0 12 not acept not furnished 475 1600 70 22 2167\n", + "3402 São Paulo 28 1 1 0 5 acept not furnished 450 1999 42 26 2517\n", + "3403 Campinas 120 3 2 5 - acept not furnished 0 1700 75 26 1801\n", + "3404 Rio de Janeiro 70 1 2 0 - not acept not furnished 0 1200 0 19 1219\n", + "3405 São Paulo 162 2 3 3 3 not acept furnished 2200 15000 959 191 18350\n", + "3406 São Paulo 210 3 2 3 - acept not furnished 0 4700 0 71 4771\n", + "3407 Belo Horizonte 300 3 2 2 - acept not furnished 0 2500 224 41 2765\n", + "3408 São Paulo 40 1 1 1 12 acept not furnished 651 1900 30 25 2606\n", + "3409 São Paulo 270 3 4 4 4 acept furnished 3200 4800 928 61 8989\n", + "3410 São Paulo 65 2 1 1 8 acept furnished 1082 3820 134 49 5085\n", + "3411 Porto Alegre 83 2 2 1 5 acept not furnished 450 1400 67 21 1938\n", + "3412 São Paulo 340 4 5 5 9 acept not furnished 4800 7500 1917 96 14310\n", + "3413 Belo Horizonte 28 1 1 1 6 not acept furnished 720 890 65 12 1687\n", + "3414 São Paulo 70 1 1 0 - acept not furnished 0 930 60 14 1004\n", + "3415 Belo Horizonte 300 3 2 2 - acept not furnished 0 4000 184 66 4250\n", + "3416 São Paulo 423 4 5 7 28 acept not furnished 5785 14000 2647 178 22610\n", + "3417 São Paulo 16 1 1 0 1 not acept not furnished 0 850 35 11 896\n", + "3418 Porto Alegre 38 1 1 0 3 acept not furnished 300 1300 53 19 1672\n", + "3419 Belo Horizonte 210 4 4 4 3 acept not furnished 2680 7000 146 94 9920\n", + "3420 São Paulo 380 4 5 5 2 acept not furnished 6500 3400 1125 44 11070\n", + "3421 Rio de Janeiro 289 3 2 1 6 acept not furnished 3000 5000 667 65 8732\n", + "3422 São Paulo 28 1 1 0 - acept not furnished 0 1300 0 17 1317\n", + "3423 Campinas 83 2 3 1 7 acept not furnished 1100 1500 42 20 2662\n", + "3424 São Paulo 120 4 3 3 8 acept not furnished 1680 3430 622 44 5776\n", + "3425 Porto Alegre 60 2 2 1 6 acept not furnished 606 1080 88 16 1790\n", + "3426 São Paulo 100 2 1 0 - acept not furnished 0 1100 125 17 1242\n", + "3427 São Paulo 108 4 3 2 4 acept not furnished 1134 6500 609 83 8326\n", + "3428 São Paulo 345 2 3 2 4 not acept not furnished 3655 12000 783 153 16590\n", + "3429 São Paulo 210 3 4 4 13 acept furnished 1475 10000 650 127 12250\n", + "3430 Rio de Janeiro 80 2 1 0 3 acept furnished 600 5300 34 69 6003\n", + "3431 São Paulo 270 4 4 4 4 acept not furnished 3900 2900 0 37 6837\n", + "3432 Porto Alegre 60 2 1 0 3 acept not furnished 290 770 45 12 1117\n", + "3433 Rio de Janeiro 64 2 1 1 1 acept not furnished 810 2900 172 38 3920\n", + "3434 Rio de Janeiro 90 2 2 0 4 not acept furnished 857 4800 208 62 5927\n", + "3435 São Paulo 157 3 3 1 5 acept not furnished 1325 4500 347 58 6230\n", + "3436 Campinas 100 3 2 1 3 acept not furnished 690 1300 76 17 2083\n", + "3437 Campinas 86 3 2 2 3 acept not furnished 420 2340 81 30 2871\n", + "3438 São Paulo 56 2 1 1 13 not acept not furnished 390 1800 9 23 2222\n", + "3439 Rio de Janeiro 40 1 1 0 7 not acept furnished 735 2900 137 38 3810\n", + "3440 São Paulo 188 3 4 1 8 acept not furnished 2100 10000 562 127 12790\n", + "3441 Campinas 44 2 1 1 4 acept furnished 310 1800 34 23 2167\n", + "3442 Rio de Janeiro 300 3 2 0 5 acept not furnished 3000 2970 709 39 6718\n", + "3443 Rio de Janeiro 101 3 3 2 4 acept not furnished 2163 5000 377 65 7605\n", + "3444 Belo Horizonte 130 3 1 1 2 acept not furnished 0 2000 293 27 2320\n", + "3445 São Paulo 120 4 3 3 16 acept not furnished 1420 6160 390 79 8049\n", + "3446 São Paulo 200 3 4 2 - acept not furnished 0 2900 1100 44 4044\n", + "3447 São Paulo 140 3 4 2 24 acept not furnished 1583 8500 456 108 10650\n", + "3448 Rio de Janeiro 100 3 1 0 12 acept not furnished 1367 3399 217 44 5027\n", + "3449 São Paulo 260 5 3 0 - acept not furnished 0 5500 600 83 6183\n", + "3450 São Paulo 77 2 2 2 18 acept not furnished 547 3000 203 39 3789\n", + "3451 Campinas 45 1 1 0 1 acept not furnished 0 770 34 10 814\n", + "3452 Porto Alegre 50 2 1 1 - acept not furnished 0 1000 25 18 1043\n", + "3453 Campinas 44 2 1 2 - acept not furnished 342 908 24 12 1286\n", + "3454 Porto Alegre 84 1 2 0 - acept furnished 300 2200 0 33 2533\n", + "3455 Belo Horizonte 53 3 1 0 4 acept not furnished 230 1000 68 14 1312\n", + "3456 São Paulo 200 3 4 2 - acept not furnished 0 3250 292 49 3591\n", + "3457 Campinas 75 3 2 1 2 acept not furnished 280 900 0 12 1192\n", + "3458 Porto Alegre 120 2 2 1 3 acept furnished 360 2525 75 37 2997\n", + "3459 Belo Horizonte 70 2 1 0 - not acept not furnished 0 1030 0 17 1047\n", + "3460 Campinas 100 3 2 0 2 not acept not furnished 815 808 81 11 1715\n", + "3461 Porto Alegre 73 2 2 1 6 acept furnished 450 2450 94 36 3030\n", + "3462 Rio de Janeiro 70 2 1 1 5 not acept not furnished 600 3000 167 39 3806\n", + "3463 São Paulo 110 2 4 2 2 acept furnished 2100 6375 500 81 9056\n", + "3464 São Paulo 200 3 2 2 8 acept not furnished 1626 3000 0 39 4665\n", + "3465 São Paulo 75 2 2 2 6 acept not furnished 700 1198 227 16 2141\n", + "3466 São Paulo 96 2 1 1 - acept furnished 0 3450 23 52 3525\n", + "3467 Rio de Janeiro 270 3 2 1 6 not acept not furnished 2000 4000 1000 52 7052\n", + "3468 São Paulo 100 1 1 0 - acept furnished 0 2720 138 41 2899\n", + "3469 Belo Horizonte 195 4 2 2 - acept not furnished 0 3400 236 56 3692\n", + "3470 Rio de Janeiro 102 3 2 0 12 not acept not furnished 900 3100 380 40 4420\n", + "3471 São Paulo 310 4 4 8 - acept not furnished 0 5500 521 83 6104\n", + "3472 São Paulo 63 2 2 1 16 acept not furnished 690 1850 103 24 2667\n", + "3473 São Paulo 131 3 2 2 6 not acept furnished 1400 3000 534 39 4973\n", + "3474 São Paulo 37 1 1 1 25 not acept furnished 440 2850 152 37 3479\n", + "3475 São Paulo 145 3 2 2 - acept furnished 0 3000 128 46 3174\n", + "3476 São Paulo 135 3 3 1 10 acept furnished 1600 4300 250 55 6205\n", + "3477 Porto Alegre 67 3 2 1 1 acept not furnished 406 1399 56 21 1882\n", + "3478 São Paulo 25 1 1 0 1 not acept not furnished 0 1049 31 14 1094\n", + "3479 Belo Horizonte 300 4 4 4 - acept not furnished 0 6200 343 102 6645\n", + "3480 São Paulo 190 3 2 2 9 acept not furnished 1700 5700 492 73 7965\n", + "3481 São Paulo 105 3 2 2 2 acept not furnished 1320 7300 275 93 8988\n", + "3482 São Paulo 48 1 1 2 5 not acept furnished 1313 4500 248 58 6119\n", + "3483 Porto Alegre 170 2 3 1 - acept not furnished 0 1300 50 24 1374\n", + "3484 São Paulo 75 3 2 1 11 not acept not furnished 980 2000 109 26 3115\n", + "3485 São Paulo 520 3 4 8 - not acept not furnished 0 10000 1008 151 11160\n", + "3486 Rio de Janeiro 37 1 1 0 7 acept not furnished 600 1840 247 24 2711\n", + "3487 São Paulo 305 3 6 3 8 acept furnished 2980 10000 1834 127 14940\n", + "3488 Rio de Janeiro 80 2 2 1 2 acept not furnished 1100 3776 167 49 5092\n", + "3489 Campinas 69 2 2 1 14 acept not furnished 325 1800 130 23 2278\n", + "3490 São Paulo 36 1 1 1 13 acept not furnished 250 1850 0 24 2124\n", + "3491 São Paulo 28 1 1 0 1 acept not furnished 568 2150 0 28 2746\n", + "3492 Porto Alegre 110 1 2 1 4 acept not furnished 540 2040 179 30 2789\n", + "3493 Porto Alegre 88 2 1 0 1 acept furnished 270 1300 27 19 1616\n", + "3494 São Paulo 500 5 7 7 - acept not furnished 0 11500 5500 173 17170\n", + "3495 São Paulo 122 3 2 1 17 acept not furnished 970 3860 113 49 4992\n", + "3496 Belo Horizonte 85 2 1 1 3 acept not furnished 250 1250 88 17 1605\n", + "3497 São Paulo 36 1 1 0 10 acept furnished 345 1600 30 21 1996\n", + "3498 Belo Horizonte 80 3 2 1 2 acept not furnished 720 1900 195 26 2841\n", + "3499 São Paulo 114 3 3 0 7 not acept not furnished 1480 2289 542 29 4340\n", + "3500 Belo Horizonte 150 3 2 2 1 acept not furnished 808 1600 240 22 2670\n", + "3501 São Paulo 70 2 1 0 6 acept not furnished 480 1800 0 23 2303\n", + "3502 São Paulo 370 4 4 3 - acept not furnished 0 7900 1000 119 9019\n", + "3503 Campinas 47 1 1 1 18 acept furnished 582 2700 135 35 3452\n", + "3504 São Paulo 70 3 2 2 13 not acept not furnished 700 2910 84 37 3731\n", + "3505 São Paulo 70 2 2 2 16 acept not furnished 1400 3300 84 42 4826\n", + "3506 São Paulo 50 2 3 0 - not acept not furnished 0 1740 84 27 1851\n", + "3507 Rio de Janeiro 37 1 1 0 1 acept not furnished 1100 1900 250 25 3275\n", + "3508 São Paulo 136 3 2 2 2 acept not furnished 1546 2800 252 36 4634\n", + "3509 Rio de Janeiro 60 2 1 0 6 not acept furnished 498 2000 185 26 2709\n", + "3510 São Paulo 65 2 2 1 4 acept not furnished 600 1540 290 20 2450\n", + "3511 Belo Horizonte 450 7 5 3 - not acept not furnished 0 7880 292 130 8302\n", + "3512 São Paulo 180 3 4 3 12 acept furnished 1600 3400 250 44 5294\n", + "3513 São Paulo 130 3 3 2 3 acept not furnished 1140 4000 292 51 5483\n", + "3514 São Paulo 200 3 2 6 - acept not furnished 0 2300 176 35 2511\n", + "3515 São Paulo 180 2 3 2 13 acept not furnished 0 12500 0 159 12660\n", + "3516 Belo Horizonte 55 2 2 1 6 not acept not furnished 380 1700 75 23 2178\n", + "3517 São Paulo 79 2 1 2 8 acept not furnished 705 6250 0 80 7035\n", + "3518 São Paulo 47 1 1 1 3 acept furnished 907 9200 313 117 10540\n", + "3519 São Paulo 65 2 1 1 3 acept not furnished 1300 2550 109 33 3992\n", + "3520 Campinas 292 4 4 3 13 acept not furnished 1650 3750 424 48 5872\n", + "3521 Belo Horizonte 181 4 2 2 1 acept furnished 1530 4000 434 54 6018\n", + "3522 São Paulo 327 5 4 5 - acept not furnished 0 11000 2000 166 13170\n", + "3523 São Paulo 300 2 3 2 8 not acept furnished 3000 5120 500 65 8685\n", + "3524 São Paulo 366 4 5 5 8 acept furnished 4000 15000 1834 191 21030\n", + "3525 Rio de Janeiro 115 3 3 1 7 acept not furnished 1254 3150 179 41 4624\n", + "3526 Belo Horizonte 216 4 5 5 12 acept not furnished 600 7500 0 100 8200\n", + "3527 São Paulo 70 2 1 1 3 not acept not furnished 710 820 45 11 1586\n", + "3528 São Paulo 170 3 3 2 - acept not furnished 0 5000 242 76 5318\n", + "3529 São Paulo 65 3 2 2 3 acept not furnished 245 3000 1 39 3285\n", + "3530 São Paulo 88 3 3 2 5 acept not furnished 700 2900 190 37 3827\n", + "3531 São Paulo 54 1 1 0 8 acept not furnished 350 1870 3 24 2247\n", + "3532 São Paulo 95 1 2 2 15 acept not furnished 1859 8000 566 102 10530\n", + "3533 São Paulo 800 4 5 4 9 acept not furnished 6000 15000 3334 191 24530\n", + "3534 São Paulo 75 1 1 0 - not acept not furnished 0 1450 0 22 1472\n", + "3535 Rio de Janeiro 38 1 1 0 10 acept furnished 640 1940 65 25 2670\n", + "3536 São Paulo 178 2 4 3 2 acept not furnished 2580 6000 70 77 8727\n", + "3537 São Paulo 310 2 6 3 11 not acept not furnished 2300 6000 764 77 9141\n", + "3538 São Paulo 66 1 1 1 1 acept furnished 550 2600 50 33 3233\n", + "3539 Rio de Janeiro 90 3 2 0 4 acept not furnished 921 2550 142 33 3646\n", + "3540 São Paulo 180 3 3 2 11 acept furnished 3100 4250 625 54 8029\n", + "3541 Rio de Janeiro 40 1 1 0 2 acept not furnished 480 1100 20 15 1615\n", + "3542 São Paulo 150 3 2 1 5 acept not furnished 1300 5500 221 70 7091\n", + "3543 São Paulo 37 1 1 0 12 not acept not furnished 346 2900 69 37 3352\n", + "3544 São Paulo 71 2 2 1 3 acept not furnished 730 2800 234 36 3800\n", + "3545 São Paulo 130 3 2 2 5 acept not furnished 1400 5000 584 64 7048\n", + "3546 Rio de Janeiro 75 2 2 1 1 acept not furnished 990 2700 145 35 3870\n", + "3547 São Paulo 45 1 1 1 2 acept furnished 1000 1760 167 23 2950\n", + "3548 Campinas 260 4 3 4 - acept furnished 600 5830 596 88 7114\n", + "3549 São Paulo 50 1 1 0 - not acept not furnished 0 750 0 12 762\n", + "3550 São Paulo 63 2 2 1 1 not acept not furnished 360 1600 66 21 2047\n", + "3551 São Paulo 99 2 1 1 6 not acept not furnished 1300 4300 125 55 5780\n", + "3552 São Paulo 170 4 4 3 9 acept not furnished 1990 8250 594 105 10940\n", + "3553 Belo Horizonte 67 2 2 1 3 acept furnished 400 1612 59 22 2093\n", + "3554 São Paulo 126 2 2 2 8 acept not furnished 1000 2300 263 30 3593\n", + "3555 Rio de Janeiro 70 2 2 2 3 acept not furnished 900 1700 265 22 2887\n", + "3556 Rio de Janeiro 57 1 1 1 3 acept not furnished 653 1717 64 23 2457\n", + "3557 Porto Alegre 27 1 1 0 6 not acept not furnished 300 694 13 11 1018\n", + "3558 Campinas 78 1 2 1 6 acept not furnished 762 1840 50 24 2676\n", + "3559 São Paulo 1100 4 6 10 - acept not furnished 3000 14000 2000 211 19210\n", + "3560 São Paulo 162 2 2 3 6 acept furnished 1500 15000 609 191 17300\n", + "3561 São Paulo 85 2 2 2 4 acept furnished 1028 2550 290 33 3901\n", + "3562 Rio de Janeiro 67 2 1 1 2 acept not furnished 682 1100 60 15 1857\n", + "3563 Rio de Janeiro 122 3 1 0 6 acept furnished 1000 2000 220 26 3246\n", + "3564 São Paulo 220 4 3 4 4 acept not furnished 3200 11000 1000 140 15340\n", + "3565 São Paulo 30 1 1 0 - not acept not furnished 0 1000 0 13 1013\n", + "3566 São Paulo 50 1 1 0 1 acept not furnished 0 950 0 15 965\n", + "3567 Belo Horizonte 120 3 2 2 4 not acept not furnished 350 1500 81 20 1951\n", + "3568 Rio de Janeiro 75 2 2 1 12 acept not furnished 798 1500 0 12 2310\n", + "3569 São Paulo 70 2 2 2 8 acept furnished 835 2700 102 35 3672\n", + "3570 São Paulo 650 4 6 6 - acept not furnished 0 8500 1600 128 10230\n", + "3571 Porto Alegre 71 3 2 1 4 acept not furnished 530 1300 48 19 1897\n", + "3572 São Paulo 27 1 1 0 11 acept not furnished 585 2000 0 26 2611\n", + "3573 São Paulo 187 3 3 2 2 acept not furnished 1300 2950 342 38 4630\n", + "3574 São Paulo 110 3 2 1 10 acept not furnished 1000 4500 0 58 5558\n", + "3575 São Paulo 180 4 2 2 - acept not furnished 0 3500 150 53 3703\n", + "3576 São Paulo 57 2 2 2 5 acept not furnished 834 1510 190 20 2554\n", + "3577 São Paulo 250 3 2 2 - acept not furnished 0 15000 459 226 15690\n", + "3578 São Paulo 49 2 2 1 9 acept not furnished 500 1460 100 19 2079\n", + "3579 São Paulo 110 1 1 1 - acept not furnished 0 1300 250 20 1570\n", + "3580 São Paulo 59 2 2 1 12 acept not furnished 360 2200 18 28 2606\n", + "3581 São Paulo 65 2 1 1 12 acept furnished 740 1700 34 22 2496\n", + "3582 São Paulo 220 4 2 2 9 acept not furnished 2500 5000 692 64 8256\n", + "3583 São Paulo 220 3 2 2 4 acept not furnished 3100 6400 700 82 10280\n", + "3584 São Paulo 88 2 2 1 1 acept not furnished 1200 7300 0 93 8593\n", + "3585 São Paulo 90 3 2 2 - acept furnished 200 4100 300 62 4662\n", + "3586 São Paulo 30 1 1 0 12 acept furnished 350 3400 0 44 3794\n", + "3587 São Paulo 49 2 1 1 6 acept furnished 400 1800 0 23 2223\n", + "3588 Rio de Janeiro 100 3 2 0 1 acept not furnished 900 5900 309 77 7186\n", + "3589 Rio de Janeiro 120 3 1 1 8 acept not furnished 560 2300 209 30 3099\n", + "3590 São Paulo 150 2 3 3 - acept not furnished 0 4250 0 64 4314\n", + "3591 Belo Horizonte 100 3 2 0 - acept not furnished 0 1550 125 26 1701\n", + "3592 São Paulo 170 3 3 0 10 acept not furnished 1900 7500 529 96 10030\n", + "3593 Campinas 70 2 1 2 - acept not furnished 0 1300 70 20 1390\n", + "3594 São Paulo 70 1 1 1 6 not acept furnished 650 3150 120 40 3960\n", + "3595 São Paulo 80 1 1 1 10 acept not furnished 1300 6500 0 83 7883\n", + "3596 São Paulo 60 2 2 1 3 acept furnished 900 5700 212 73 6885\n", + "3597 São Paulo 100 3 3 3 1 acept not furnished 1000 3300 417 42 4759\n", + "3598 São Paulo 260 4 2 3 - acept not furnished 0 3850 430 58 4338\n", + "3599 São Paulo 300 3 5 4 - acept not furnished 0 6500 853 98 7451\n", + "3600 São Paulo 86 3 3 2 9 not acept not furnished 550 2500 200 32 3282\n", + "3601 São Paulo 250 4 4 2 - not acept not furnished 0 6600 0 100 6700\n", + "3602 Porto Alegre 48 1 1 0 - acept not furnished 250 900 542 14 1706\n", + "3603 Belo Horizonte 70 3 2 2 1 acept not furnished 554 1900 228 26 2708\n", + "3604 São Paulo 82 3 2 2 5 acept not furnished 915 2100 252 27 3294\n", + "3605 São Paulo 80 3 2 1 10 acept not furnished 790 1900 164 25 2879\n", + "3606 Porto Alegre 429 5 4 5 - acept not furnished 0 10500 334 187 11020\n", + "3607 Campinas 104 2 2 1 2 acept not furnished 580 1700 122 22 2424\n", + "3608 Rio de Janeiro 35 1 1 0 3 not acept furnished 525 2600 96 34 3255\n", + "3609 São Paulo 240 4 2 1 4 acept furnished 1200 4500 217 58 5975\n", + "3610 São Paulo 40 1 1 0 - not acept not furnished 180 850 41 11 1082\n", + "3611 São Paulo 400 3 3 2 - not acept not furnished 0 12000 0 181 12180\n", + "3612 São Paulo 90 2 2 2 8 acept not furnished 965 4500 36 58 5559\n", + "3613 São Paulo 45 2 1 1 11 not acept not furnished 457 1720 91 22 2290\n", + "3614 Rio de Janeiro 110 3 2 0 - acept not furnished 0 2000 60 31 2091\n", + "3615 Rio de Janeiro 110 4 2 2 10 acept not furnished 1300 1900 380 25 3605\n", + "3616 Porto Alegre 143 2 1 2 7 acept furnished 900 2500 184 37 3621\n", + "3617 São Paulo 60 2 2 2 7 acept not furnished 894 1100 210 14 2218\n", + "3618 São Paulo 124 3 3 2 16 acept not furnished 1100 2791 339 36 4266\n", + "3619 São Paulo 55 2 1 1 1 acept not furnished 580 1490 21 19 2110\n", + "3620 São Paulo 73 3 2 2 1 acept not furnished 760 2500 283 32 3575\n", + "3621 Belo Horizonte 200 4 4 2 5 acept furnished 900 4100 500 55 5555\n", + "3622 Porto Alegre 70 1 1 0 3 not acept not furnished 150 850 46 13 1059\n", + "3623 São Paulo 44 1 1 0 10 acept not furnished 370 2600 0 33 3003\n", + "3624 Rio de Janeiro 87 2 1 1 2 acept not furnished 1350 2500 209 33 4092\n", + "3625 Porto Alegre 60 1 1 1 2 not acept not furnished 345 1290 35 19 1689\n", + "3626 São Paulo 200 3 5 3 5 acept furnished 1513 4350 584 56 6503\n", + "3627 São Paulo 80 2 1 1 5 not acept not furnished 660 2900 0 37 3597\n", + "3628 Porto Alegre 51 2 1 1 3 acept not furnished 270 1080 25 16 1391\n", + "3629 São Paulo 147 2 3 2 3 not acept furnished 1500 12000 500 153 14150\n", + "3630 Belo Horizonte 210 3 4 3 5 not acept furnished 1817 10000 685 134 12640\n", + "3631 São Paulo 110 3 2 2 14 acept not furnished 0 3200 0 41 3241\n", + "3632 Porto Alegre 50 1 1 0 1 acept not furnished 287 1100 46 17 1450\n", + "3633 Rio de Janeiro 32 1 1 0 10 acept not furnished 360 1430 62 19 1871\n", + "3634 Belo Horizonte 82 3 2 1 4 acept not furnished 410 1000 64 14 1488\n", + "3635 São Paulo 98 3 3 2 6 acept not furnished 1100 2100 334 27 3561\n", + "3636 Rio de Janeiro 170 4 3 2 5 acept not furnished 2300 9000 667 116 12080\n", + "3637 São Paulo 20 1 1 0 2 acept furnished 602 1800 130 23 2555\n", + "3638 Belo Horizonte 168 4 3 2 2 not acept not furnished 430 2000 108 27 2565\n", + "3639 Rio de Janeiro 50 2 1 0 5 acept not furnished 215 800 62 11 1088\n", + "3640 São Paulo 212 4 4 3 7 not acept not furnished 2300 9200 1046 117 12660\n", + "3641 São Paulo 73 2 2 1 13 acept not furnished 700 1250 150 16 2116\n", + "3642 São Paulo 50 1 1 1 13 acept not furnished 500 1800 0 23 2323\n", + "3643 São Paulo 20 1 1 0 6 acept furnished 602 1800 130 23 2555\n", + "3644 Belo Horizonte 190 1 1 1 - not acept not furnished 0 3900 162 64 4126\n", + "3645 São Paulo 450 4 6 2 - acept not furnished 0 4900 486 74 5460\n", + "3646 Belo Horizonte 180 5 5 4 - acept not furnished 0 4500 270 74 4844\n", + "3647 Belo Horizonte 682 6 7 6 - acept not furnished 0 5500 428 91 6019\n", + "3648 Rio de Janeiro 68 2 1 0 5 acept not furnished 593 1000 400 13 2006\n", + "3649 Porto Alegre 58 2 1 0 1 acept furnished 0 1300 0 19 1319\n", + "3650 Belo Horizonte 60 3 2 1 10 acept not furnished 404 1100 83 15 1602\n", + "3651 Campinas 50 1 1 1 5 not acept furnished 750 1160 185 15 2110\n", + "3652 Belo Horizonte 120 3 3 1 2 acept not furnished 0 2200 145 30 2675\n", + "3653 São Paulo 43 2 1 1 10 acept furnished 465 2000 0 26 2491\n", + "3654 São Paulo 91 1 2 2 11 acept furnished 2076 13000 334 165 15580\n", + "3655 Campinas 75 2 1 2 1 acept not furnished 1250 1600 135 21 3006\n", + "3656 São Paulo 300 4 3 4 9 acept not furnished 4900 6000 1500 77 12480\n", + "3657 Campinas 74 2 2 2 9 acept furnished 500 4920 0 63 5483\n", + "3658 Belo Horizonte 90 3 2 2 3 acept not furnished 472 1550 84 21 2127\n", + "3659 Belo Horizonte 154 4 4 3 12 acept furnished 1670 8500 153 114 10440\n", + "3660 São Paulo 280 3 3 7 - acept not furnished 0 8670 450 131 9251\n", + "3661 São Paulo 150 3 3 2 10 acept not furnished 1570 4000 515 51 6136\n", + "3662 São Paulo 20 1 1 0 6 acept furnished 602 1800 130 23 2555\n", + "3663 São Paulo 110 2 2 0 13 acept not furnished 664 2690 0 35 3389\n", + "3664 São Paulo 247 4 4 4 3 acept not furnished 2900 2550 684 33 6167\n", + "3665 São Paulo 220 3 4 2 - acept not furnished 400 15000 834 226 16460\n", + "3666 São Paulo 70 2 2 0 - not acept not furnished 0 3800 90 58 3948\n", + "3667 São Paulo 98 3 2 2 1 acept not furnished 1400 1760 383 23 3566\n", + "3668 São Paulo 300 4 6 6 17 acept not furnished 6300 15000 3400 191 24890\n", + "3669 Porto Alegre 80 2 1 1 8 acept not furnished 755 4000 212 59 5026\n", + "3670 São Paulo 57 2 1 2 3 acept furnished 645 1450 69 19 2183\n", + "3671 São Paulo 75 2 1 0 1 not acept not furnished 0 1200 67 16 1283\n", + "3672 Rio de Janeiro 70 2 2 1 6 not acept not furnished 741 2300 75 30 3146\n", + "3673 São Paulo 80 2 1 0 4 acept not furnished 330 1700 0 22 2052\n", + "3674 São Paulo 372 5 4 6 - acept not furnished 0 9200 1041 139 10380\n", + "3675 São Paulo 120 3 2 2 23 not acept not furnished 722 4500 238 58 5518\n", + "3676 Campinas 71 1 1 1 9 not acept not furnished 486 750 56 10 1302\n", + "3677 São Paulo 130 3 3 2 7 acept not furnished 1200 3500 342 45 5087\n", + "3678 São Paulo 300 2 1 2 - acept not furnished 0 2800 350 43 3193\n", + "3679 Belo Horizonte 320 5 4 3 3 acept not furnished 660 3400 220 46 4326\n", + "3680 Belo Horizonte 200 3 2 2 - acept not furnished 0 12000 369 197 12570\n", + "3681 Porto Alegre 56 2 2 1 3 acept not furnished 250 1600 84 24 1958\n", + "3682 São Paulo 165 3 2 3 16 acept not furnished 1260 3730 955 48 5993\n", + "3683 São Paulo 35 1 1 0 1 not acept not furnished 0 1290 0 17 1307\n", + "3684 Belo Horizonte 96 3 1 1 11 acept furnished 575 2200 154 30 2959\n", + "3685 Campinas 450 4 5 4 - acept furnished 0 6500 230 98 6828\n", + "3686 São Paulo 227 4 4 3 5 acept not furnished 4200 6900 1534 88 12720\n", + "3687 São Paulo 40 1 1 1 10 acept not furnished 700 2600 25 33 3358\n", + "3688 São Paulo 288 4 5 4 7 acept not furnished 3600 6000 1150 77 10830\n", + "3689 Belo Horizonte 90 1 2 0 4 acept not furnished 325 1300 54 18 1697\n", + "3690 São Paulo 45 2 1 1 7 not acept not furnished 320 1290 0 17 1627\n", + "3691 São Paulo 63 2 2 1 11 not acept not furnished 453 2800 149 36 3438\n", + "3692 Belo Horizonte 120 3 2 2 - acept not furnished 600 2200 120 37 2957\n", + "3693 São Paulo 94 3 2 2 12 not acept not furnished 1046 7150 341 91 8628\n", + "3694 Porto Alegre 60 1 1 1 1 acept not furnished 316 500 10 8 834\n", + "3695 Porto Alegre 106 3 2 2 2 not acept furnished 300 4000 100 59 4459\n", + "3696 São Paulo 167 3 4 2 5 acept not furnished 2884 2900 732 37 6553\n", + "3697 Belo Horizonte 69 2 3 2 11 acept not furnished 700 2600 172 35 3507\n", + "3698 Rio de Janeiro 300 4 4 1 - acept not furnished 0 3400 292 52 3744\n", + "3699 São Paulo 50 2 1 0 2 acept furnished 800 2473 3 32 3308\n", + "3700 Porto Alegre 40 1 1 0 9 acept not furnished 500 850 42 13 1405\n", + "3701 São Paulo 380 4 3 3 11 acept not furnished 3500 5800 1600 74 10970\n", + "3702 Rio de Janeiro 20 1 1 0 - not acept not furnished 0 750 0 10 760\n", + "3703 Campinas 50 2 1 1 7 acept not furnished 270 950 43 13 1276\n", + "3704 São Paulo 60 2 2 1 4 acept furnished 600 4500 50 58 5208\n", + "3705 São Paulo 40 1 1 1 12 acept not furnished 300 3470 70 44 3884\n", + "3706 São Paulo 62 2 2 1 1 acept not furnished 700 1730 22 22 2474\n", + "3707 Rio de Janeiro 230 3 3 0 9 acept not furnished 1950 7200 667 93 9910\n", + "3708 Campinas 45 2 1 1 1 acept not furnished 300 870 0 12 1182\n", + "3709 Porto Alegre 60 2 1 0 4 acept not furnished 340 730 20 11 1101\n", + "3710 São Paulo 65 2 2 1 9 not acept not furnished 682 1039 42 14 1777\n", + "3711 Rio de Janeiro 90 3 1 0 4 not acept not furnished 500 2710 8 35 3253\n", + "3712 São Paulo 150 3 3 2 - acept furnished 0 3400 325 52 3777\n", + "3713 São Paulo 180 3 4 3 5 not acept not furnished 2848 4330 1228 55 8461\n", + "3714 Belo Horizonte 95 3 2 2 2 not acept not furnished 150 1650 145 22 1967\n", + "3715 Rio de Janeiro 45 1 1 0 10 not acept furnished 450 2200 50 29 2729\n", + "3716 São Paulo 216 3 5 0 14 not acept furnished 3200 15000 1500 191 19890\n", + "3717 Campinas 58 1 1 0 5 acept not furnished 540 900 66 12 1518\n", + "3718 São Paulo 42 1 1 0 2 acept furnished 0 3256 0 42 3298\n", + "3719 Porto Alegre 40 1 1 0 3 acept furnished 350 750 42 11 1153\n", + "3720 São Paulo 220 4 4 3 4 not acept furnished 2200 4930 809 63 8002\n", + "3721 Belo Horizonte 42 1 1 1 15 not acept not furnished 410 2690 172 36 3308\n", + "3722 Rio de Janeiro 421 3 3 1 7 acept furnished 5000 10000 834 129 15960\n", + "3723 Campinas 226 4 2 2 10 acept not furnished 1850 3000 403 39 5292\n", + "3724 São Paulo 55 1 1 0 1 acept not furnished 0 1400 0 18 1418\n", + "3725 Porto Alegre 61 1 1 1 13 acept not furnished 350 2200 67 33 2650\n", + "3726 Rio de Janeiro 50 1 1 0 4 not acept not furnished 630 1000 184 13 1827\n", + "3727 São Paulo 300 4 4 0 7 acept furnished 2700 9600 500 122 12920\n", + "3728 Porto Alegre 58 2 2 2 13 acept not furnished 470 2550 0 38 3058\n", + "3729 Porto Alegre 104 3 3 2 4 acept not furnished 1200 3900 200 57 5357\n", + "3730 Rio de Janeiro 72 2 2 0 3 acept not furnished 1000 2500 200 33 3733\n", + "3731 Campinas 65 3 1 1 3 acept furnished 470 1100 1500 14 3084\n", + "3732 São Paulo 160 4 2 2 12 acept furnished 1506 4900 460 63 6929\n", + "3733 Campinas 40 1 1 0 8 acept not furnished 380 730 11 10 1131\n", + "3734 São Paulo 23 1 1 1 26 acept not furnished 520 2300 59 30 2909\n", + "3735 São Paulo 35 1 1 0 1 not acept not furnished 0 900 50 14 964\n", + "3736 Porto Alegre 28 1 1 0 - acept not furnished 200 840 50 13 1103\n", + "3737 São Paulo 20 1 1 0 - acept furnished 602 1800 130 23 2555\n", + "3738 São Paulo 68 2 2 1 7 acept not furnished 750 1880 189 24 2843\n", + "3739 Campinas 70 3 1 1 6 acept not furnished 549 1200 0 16 1765\n", + "3740 São Paulo 127 2 3 2 1 acept furnished 996 3800 292 49 5137\n", + "3741 São Paulo 138 3 2 3 - acept not furnished 0 5200 231 79 5510\n", + "3742 Campinas 53 1 1 1 3 acept not furnished 588 550 73 7 1218\n", + "3743 São Paulo 130 5 2 0 2 acept not furnished 0 3000 37 39 3076\n", + "3744 Porto Alegre 39 1 1 1 2 acept furnished 334 800 11 12 1157\n", + "3745 Porto Alegre 60 2 1 0 6 acept not furnished 340 980 8 15 1343\n", + "3746 São Paulo 300 4 4 4 4 not acept not furnished 4000 1400 834 18 6252\n", + "3747 São Paulo 500 3 3 5 - acept not furnished 0 8500 534 128 9162\n", + "3748 Campinas 90 3 2 1 2 acept not furnished 495 1600 76 21 2192\n", + "3749 Campinas 120 3 1 2 1 acept not furnished 150 1790 150 23 2113\n", + "3750 São Paulo 134 3 5 2 7 acept not furnished 1152 4900 0 63 6115\n", + "3751 Campinas 78 2 1 1 8 acept not furnished 605 1300 106 17 2028\n", + "3752 São Paulo 55 1 1 1 3 not acept furnished 850 4300 21 55 5226\n", + "3753 São Paulo 167 3 3 2 7 acept not furnished 1315 5500 292 70 7177\n", + "3754 São Paulo 15 1 1 0 - not acept not furnished 0 1200 0 16 1216\n", + "3755 Belo Horizonte 46 2 1 1 2 acept not furnished 200 1050 27 14 1291\n", + "3756 Rio de Janeiro 30 1 1 0 2 not acept furnished 750 4000 67 52 4869\n", + "3757 Rio de Janeiro 60 2 2 1 10 acept not furnished 700 2198 125 29 3052\n", + "3758 São Paulo 380 3 3 4 - acept furnished 0 4200 300 64 4564\n", + "3759 Belo Horizonte 95 3 2 1 3 acept not furnished 722 1400 129 19 2270\n", + "3760 São Paulo 55 2 2 1 4 acept not furnished 380 1850 0 24 2254\n", + "3761 Belo Horizonte 55 2 1 1 1 not acept not furnished 180 850 0 12 1042\n", + "3762 Rio de Janeiro 30 1 1 0 2 not acept not furnished 350 1140 0 15 1505\n", + "3763 Rio de Janeiro 58 2 1 0 2 not acept furnished 500 4000 200 52 4752\n", + "3764 São Paulo 480 4 5 2 - acept furnished 0 6000 2308 91 8399\n", + "3765 São Paulo 97 3 2 2 2 acept not furnished 600 2100 29 27 2756\n", + "3766 São Paulo 33 1 1 1 13 not acept furnished 1791 1300 155 17 3263\n", + "3767 São Paulo 192 3 4 2 13 acept not furnished 1600 8500 0 108 10210\n", + "3768 Rio de Janeiro 114 4 2 1 10 acept furnished 2500 3000 450 39 5989\n", + "3769 São Paulo 70 2 2 0 24 not acept furnished 800 4000 50 51 4901\n", + "3770 Campinas 240 3 4 4 1 acept not furnished 2800 7000 0 89 9889\n", + "3771 Porto Alegre 110 3 1 0 1 acept not furnished 630 1850 80 28 2588\n", + "3772 Rio de Janeiro 950 6 5 2 3 not acept furnished 0 13000 1500 198 14700\n", + "3773 São Paulo 55 1 1 1 4 not acept furnished 812 3200 0 41 4053\n", + "3774 Campinas 166 4 3 3 6 acept not furnished 1860 2050 284 26 4220\n", + "3775 Porto Alegre 117 3 3 2 9 acept furnished 1090 4000 329 59 5478\n", + "3776 Campinas 115 3 2 1 4 acept not furnished 680 1364 91 5 2140\n", + "3777 Campinas 55 2 1 1 3 acept not furnished 385 940 20 12 1357\n", + "3778 São Paulo 85 1 2 1 14 acept not furnished 800 2800 92 36 3728\n", + "3779 São Paulo 61 1 2 1 4 acept furnished 680 2270 25 29 3004\n", + "3780 São Paulo 34 1 1 0 12 acept furnished 370 2600 74 33 3077\n", + "3781 Porto Alegre 70 3 2 0 - acept not furnished 290 1500 0 22 1812\n", + "3782 São Paulo 85 2 2 0 17 acept furnished 560 6000 250 43 6853\n", + "3783 São Paulo 93 2 1 1 4 not acept furnished 985 5500 110 70 6665\n", + "3784 São Paulo 150 3 2 1 1 acept furnished 1600 3600 310 46 5556\n", + "3785 São Paulo 48 2 1 1 8 acept not furnished 452 1740 135 23 2350\n", + "3786 Belo Horizonte 70 2 1 0 1 acept not furnished 0 1200 42 16 1258\n", + "3787 Campinas 80 2 2 1 1 acept furnished 420 3000 107 39 3566\n", + "3788 São Paulo 137 3 3 3 4 acept furnished 1500 9800 417 125 11840\n", + "3789 São Paulo 230 3 4 3 2 acept not furnished 3700 12000 157 153 16010\n", + "3790 São Paulo 95 3 2 1 10 not acept furnished 1018 4300 380 55 5753\n", + "3791 Rio de Janeiro 87 2 2 1 8 not acept furnished 826 1950 219 26 3021\n", + "3792 Belo Horizonte 800 8 7 4 - acept not furnished 0 14000 834 230 15060\n", + "3793 São Paulo 88 3 1 2 5 acept not furnished 685 1400 35 18 2138\n", + "3794 São Paulo 245 3 3 1 18 acept furnished 1904 12000 486 153 14540\n", + "3795 São Paulo 34 1 1 0 11 not acept not furnished 370 2800 74 36 3280\n", + "3796 São Paulo 469 4 5 4 12 acept not furnished 5706 15000 2260 191 23160\n", + "3797 Rio de Janeiro 113 2 2 1 10 acept not furnished 1566 8000 501 104 10170\n", + "3798 Belo Horizonte 200 4 4 3 3 acept not furnished 2000 4000 475 54 6529\n", + "3799 Rio de Janeiro 44 1 1 0 4 acept not furnished 632 1700 86 22 2440\n", + "3800 São Paulo 45 2 1 1 5 acept not furnished 530 1440 0 19 1989\n", + "3801 São Paulo 63 2 2 1 16 acept not furnished 690 1850 103 24 2667\n", + "3802 Porto Alegre 58 1 1 0 8 acept not furnished 500 867 42 13 1422\n", + "3803 São Paulo 55 2 2 1 11 acept not furnished 670 2500 199 32 3401\n", + "3804 São Paulo 320 4 4 2 7 acept not furnished 4110 8000 645 102 12860\n", + "3805 Belo Horizonte 57 1 1 1 6 not acept not furnished 1500 1400 158 19 3077\n", + "3806 São Paulo 240 5 2 3 - not acept not furnished 0 6500 290 98 6888\n", + "3807 São Paulo 127 3 2 1 5 acept not furnished 1780 3300 400 42 5522\n", + "3808 São Paulo 18 1 1 0 - acept not furnished 0 1710 0 22 1732\n", + "3809 Campinas 35 1 1 0 8 acept not furnished 480 500 14 7 1001\n", + "3810 São Paulo 320 3 5 3 - acept not furnished 0 9000 0 136 9136\n", + "3811 Campinas 46 1 1 0 2 acept not furnished 450 500 14 7 971\n", + "3812 São Paulo 130 3 2 1 2 acept furnished 1168 6290 233 80 7771\n", + "3813 São Paulo 37 1 1 0 - acept not furnished 0 1625 0 25 1650\n", + "3814 Campinas 136 3 4 2 7 not acept not furnished 970 2500 131 32 3633\n", + "3815 São Paulo 81 2 2 1 1 not acept not furnished 787 1400 71 18 2276\n", + "3816 São Paulo 38 1 1 0 2 not acept not furnished 400 1450 0 19 1869\n", + "3817 São Paulo 198 3 4 2 - acept furnished 0 2500 259 38 2797\n", + "3818 Belo Horizonte 220 5 4 4 4 acept not furnished 400 2700 170 36 3306\n", + "3819 São Paulo 125 3 4 1 2 acept not furnished 1100 4900 0 63 6063\n", + "3820 São Paulo 450 4 6 4 4 acept not furnished 4000 15000 2500 191 21690\n", + "3821 São Paulo 145 3 2 2 6 acept not furnished 1834 3000 546 39 5419\n", + "3822 Belo Horizonte 70 3 1 2 1 acept not furnished 100 1600 667 22 2389\n", + "3823 Porto Alegre 140 3 4 3 2 acept furnished 2200 8000 550 117 10870\n", + "3824 São Paulo 100 3 2 1 3 acept not furnished 285 1930 100 25 2340\n", + "3825 São Paulo 39 1 1 0 2 not acept not furnished 0 1300 0 17 1317\n", + "3826 Rio de Janeiro 98 2 2 1 7 not acept furnished 1600 3500 225 46 5371\n", + "3827 São Paulo 367 4 5 3 10 not acept not furnished 3200 8500 1167 108 12980\n", + "3828 São Paulo 61 2 2 1 17 acept not furnished 764 4200 134 54 5152\n", + "3829 Belo Horizonte 66 2 2 1 6 acept not furnished 568 2100 226 28 2922\n", + "3830 São Paulo 235 3 3 0 15 acept furnished 2550 8300 709 106 11670\n", + "3831 Campinas 110 3 3 2 - acept not furnished 560 3200 88 49 3897\n", + "3832 São Paulo 84 3 2 1 23 acept not furnished 780 2200 25 28 3033\n", + "3833 São Paulo 165 3 1 3 - acept not furnished 0 3400 384 52 3836\n", + "3834 Belo Horizonte 90 2 1 0 - acept not furnished 0 1320 70 22 1412\n", + "3835 São Paulo 48 1 1 0 - not acept not furnished 0 1150 34 18 1202\n", + "3836 Porto Alegre 60 2 1 1 - not acept not furnished 0 950 34 17 1001\n", + "3837 São Paulo 92 3 2 2 8 acept not furnished 960 3300 318 42 4620\n", + "3838 Rio de Janeiro 80 3 1 1 8 acept not furnished 880 3000 213 39 4132\n", + "3839 Belo Horizonte 25 1 1 0 2 not acept not furnished 0 650 0 9 659\n", + "3840 São Paulo 220 4 4 4 10 acept not furnished 2200 5500 832 70 8602\n", + "3841 Campinas 74 2 3 1 9 acept not furnished 894 1584 118 6 2602\n", + "3842 São Paulo 98 2 2 0 6 acept not furnished 660 2500 0 32 3192\n", + "3843 São Paulo 69 2 2 1 3 acept not furnished 810 1400 18 18 2246\n", + "3844 São Paulo 90 2 1 1 - acept not furnished 0 2500 219 38 2757\n", + "3845 Rio de Janeiro 105 2 2 0 3 acept not furnished 1180 3430 174 45 4829\n", + "3846 São Paulo 400 3 4 4 - acept not furnished 0 12000 1667 181 13850\n", + "3847 São Paulo 110 2 2 2 - not acept not furnished 0 2700 300 41 3041\n", + "3848 São Paulo 245 3 4 3 10 acept not furnished 2900 14000 917 178 18000\n", + "3849 Belo Horizonte 60 1 1 1 - acept not furnished 0 3000 0 40 3040\n", + "3850 Porto Alegre 40 1 1 0 5 acept furnished 350 800 46 12 1208\n", + "3851 Porto Alegre 35 1 1 1 1 not acept furnished 0 1400 0 21 1421\n", + "3852 São Paulo 35 1 1 0 12 not acept furnished 1400 2595 0 33 4028\n", + "3853 São Paulo 500 3 2 8 - acept not furnished 0 4000 632 61 4693\n", + "3854 São Paulo 30 1 1 0 15 not acept not furnished 700 1650 0 25 2375\n", + "3855 Belo Horizonte 200 3 3 0 - acept not furnished 0 1800 0 30 1830\n", + "3856 São Paulo 33 1 1 1 1 not acept furnished 1512 1464 313 19 3308\n", + "3857 Porto Alegre 47 1 1 1 1 not acept furnished 400 2200 0 33 2633\n", + "3858 São Paulo 50 1 1 0 - acept not furnished 0 810 34 13 857\n", + "3859 São Paulo 54 2 2 2 5 acept not furnished 691 2400 103 31 3225\n", + "3860 Rio de Janeiro 60 2 1 0 11 acept not furnished 670 2500 34 33 3237\n", + "3861 São Paulo 36 1 1 1 15 not acept furnished 510 2300 105 30 2945\n", + "3862 Belo Horizonte 205 4 4 4 5 acept not furnished 2608 5000 796 67 8471\n", + "3863 Rio de Janeiro 625 5 3 2 - acept not furnished 0 15000 1250 229 16480\n", + "3864 Campinas 60 2 1 1 3 acept not furnished 0 900 48 12 960\n", + "3865 São Paulo 50 1 1 0 9 not acept furnished 850 2480 20 32 3382\n", + "3866 São Paulo 185 2 3 3 8 acept not furnished 2600 5500 834 70 9004\n", + "3867 São Paulo 256 3 4 4 4 acept not furnished 2800 7000 1000 89 10890\n", + "3868 São Paulo 170 3 3 2 6 acept not furnished 2377 9500 828 121 12830\n", + "3869 Porto Alegre 90 3 1 0 - acept not furnished 280 1500 5 22 1807\n", + "3870 Belo Horizonte 110 2 3 0 2 acept not furnished 0 3500 125 47 3672\n", + "3871 Campinas 89 3 2 2 5 acept not furnished 900 1897 176 25 2998\n", + "3872 São Paulo 54 1 1 1 7 acept not furnished 600 3600 149 46 4395\n", + "3873 São Paulo 113 3 2 2 - acept not furnished 0 2990 22 45 3057\n", + "3874 São Paulo 100 3 1 1 2 acept not furnished 1350 3000 92 39 4481\n", + "3875 São Paulo 400 4 6 5 8 not acept not furnished 4900 8160 2084 104 15250\n", + "3876 São Paulo 65 2 1 1 8 not acept furnished 708 1600 0 21 2329\n", + "3877 Porto Alegre 65 3 2 1 11 acept not furnished 380 1980 46 29 2435\n", + "3878 São Paulo 50 1 1 1 7 acept furnished 2000 2000 382 26 4408\n", + "3879 Rio de Janeiro 150 3 3 1 5 acept not furnished 932 4800 180 62 5974\n", + "3880 Rio de Janeiro 170 4 3 4 10 acept not furnished 1876 2350 576 31 4833\n", + "3881 Belo Horizonte 164 4 2 2 3 acept not furnished 310 3500 144 47 4001\n", + "3882 Campinas 470 3 4 0 - acept not furnished 2600 7900 900 119 11520\n", + "3883 São Paulo 430 4 6 2 16 acept furnished 2360 3378 286 43 6067\n", + "3884 São Paulo 108 3 3 2 - acept not furnished 0 2800 209 43 3052\n", + "3885 Belo Horizonte 75 2 2 1 3 acept not furnished 270 1300 98 18 1686\n", + "3886 Porto Alegre 200 4 3 1 - acept furnished 0 4050 250 72 4372\n", + "3887 Belo Horizonte 32 1 1 1 1 acept not furnished 60 850 67 12 989\n", + "3888 Rio de Janeiro 40 1 1 0 7 not acept furnished 474 2500 59 33 3066\n", + "3889 São Paulo 360 4 5 4 2 acept furnished 5420 12750 2779 162 21110\n", + "3890 Belo Horizonte 55 1 1 1 3 not acept furnished 1250 3450 250 46 4996\n", + "3891 Rio de Janeiro 30 1 1 0 1 not acept not furnished 473 2030 66 27 2596\n", + "3892 São Paulo 59 2 1 1 1 acept not furnished 313 1640 40 21 2014\n", + "3893 Rio de Janeiro 120 3 2 1 10 acept furnished 1695 3300 231 43 5269\n", + "3894 São Paulo 78 3 2 2 - acept not furnished 250 2000 292 31 2573\n", + "3895 Rio de Janeiro 95 2 3 0 4 acept furnished 1700 6020 250 78 8048\n", + "3896 São Paulo 180 3 3 1 14 acept not furnished 1680 5000 192 64 6936\n", + "3897 São Paulo 91 2 3 2 10 acept not furnished 1350 4675 417 60 6502\n", + "3898 Campinas 70 2 1 1 2 not acept not furnished 600 1800 1 23 2424\n", + "3899 São Paulo 315 3 5 4 11 acept not furnished 4475 5820 1495 74 11860\n", + "3900 Rio de Janeiro 56 2 1 1 3 not acept furnished 1302 2800 249 37 4388\n", + "3901 São Paulo 480 4 3 3 - acept not furnished 0 13500 834 203 14540\n", + "3902 São Paulo 400 3 3 6 - acept not furnished 0 15000 1123 226 16350\n", + "3903 Belo Horizonte 83 4 2 2 4 acept not furnished 270 1500 225 20 2015\n", + "3904 Porto Alegre 47 1 1 1 1 not acept furnished 400 2200 0 33 2633\n", + "3905 São Paulo 90 2 1 1 - not acept not furnished 0 1450 34 22 1506\n", + "3906 Porto Alegre 131 3 2 1 3 acept furnished 1100 2500 125 37 3762\n", + "3907 São Paulo 700 5 7 3 - acept furnished 0 13000 1084 196 14280\n", + "3908 Belo Horizonte 180 3 2 0 - acept not furnished 0 3200 359 53 3612\n", + "3909 Campinas 60 2 1 0 1 acept not furnished 457 1134 55 15 1661\n", + "3910 Porto Alegre 50 1 1 1 14 not acept furnished 1300 1300 68 19 2687\n", + "3911 Campinas 200 3 2 3 - acept not furnished 300 2500 600 38 3438\n", + "3912 Rio de Janeiro 80 4 3 1 3 not acept not furnished 1500 3000 202 39 4741\n", + "3913 Campinas 54 2 1 1 13 acept not furnished 320 1580 69 21 1990\n", + "3914 São Paulo 150 3 2 1 7 acept furnished 1600 6000 284 77 7961\n", + "3915 São Paulo 129 3 3 1 1 acept not furnished 1100 2300 78 30 3508\n", + "3916 São Paulo 200 3 2 1 9 acept not furnished 2100 8500 417 108 11130\n", + "3917 Rio de Janeiro 65 1 1 0 4 acept not furnished 350 1800 30 24 2204\n", + "3918 São Paulo 210 4 2 2 - acept not furnished 0 8000 684 121 8805\n", + "3919 Rio de Janeiro 115 3 2 2 5 acept not furnished 1465 2850 141 37 4493\n", + "3920 Belo Horizonte 350 4 5 5 12 acept furnished 2500 5000 1341 67 8908\n", + "3921 Rio de Janeiro 55 1 1 0 - acept furnished 0 1500 85 23 1608\n", + "3922 São Paulo 46 1 1 0 14 not acept furnished 1200 4300 292 31 5823\n", + "3923 Rio de Janeiro 160 3 2 1 2 not acept not furnished 1400 3100 350 40 4890\n", + "3924 Belo Horizonte 230 4 4 4 4 acept not furnished 2260 6000 1250 80 9590\n", + "3925 São Paulo 180 4 4 4 21 not acept not furnished 2400 10000 1000 127 13530\n", + "3926 São Paulo 440 4 3 7 - not acept not furnished 0 15000 1084 226 16310\n", + "3927 São Paulo 90 2 2 1 3 acept not furnished 1000 3000 50 39 4089\n", + "3928 Campinas 45 1 1 0 14 not acept not furnished 285 500 0 7 792\n", + "3929 São Paulo 77 3 1 1 7 acept not furnished 1316 3000 117 39 4472\n", + "3930 São Paulo 25 1 1 0 1 not acept not furnished 0 1000 84 13 1097\n", + "3931 São Paulo 65 3 1 1 7 acept not furnished 588 1380 115 18 2101\n", + "3932 Porto Alegre 60 2 2 0 3 acept not furnished 400 1085 55 16 1556\n", + "3933 Belo Horizonte 50 2 1 1 5 acept not furnished 230 799 67 11 1107\n", + "3934 São Paulo 103 3 2 2 3 acept not furnished 1224 1600 465 21 3310\n", + "3935 São Paulo 35 5 1 0 - acept not furnished 0 2500 200 38 2738\n", + "3936 Porto Alegre 121 2 1 2 3 acept not furnished 300 1200 75 18 1593\n", + "3937 São Paulo 307 4 6 4 - acept furnished 0 9100 1839 137 11080\n", + "3938 Rio de Janeiro 150 3 2 2 3 acept furnished 2200 6800 594 88 9682\n", + "3939 Porto Alegre 98 2 3 2 3 acept not furnished 450 2200 167 33 2850\n", + "3940 São Paulo 16 1 1 0 1 not acept not furnished 0 850 59 11 920\n", + "3941 Belo Horizonte 45 1 1 1 4 acept not furnished 507 2800 142 38 3487\n", + "3942 Rio de Janeiro 45 2 1 0 15 acept not furnished 525 1300 15 17 1857\n", + "3943 Rio de Janeiro 70 3 1 1 2 acept not furnished 550 1200 0 16 1766\n", + "3944 São Paulo 200 4 2 2 - acept furnished 0 6500 500 98 7098\n", + "3945 Rio de Janeiro 155 3 2 1 10 acept not furnished 1950 3800 279 49 6078\n", + "3946 São Paulo 35 1 1 1 1 acept not furnished 0 1020 30 13 1063\n", + "3947 Campinas 60 3 2 1 3 acept not furnished 452 800 50 11 1313\n", + "3948 São Paulo 35 1 1 0 1 acept not furnished 0 874 30 12 916\n", + "3949 São Paulo 67 2 2 1 1 not acept furnished 580 3500 60 45 4185\n", + "3950 São Paulo 38 1 1 0 2 acept not furnished 100 1380 67 18 1565\n", + "3951 Belo Horizonte 190 4 4 4 9 acept not furnished 2690 7700 1058 103 11550\n", + "3952 São Paulo 45 1 1 1 - acept not furnished 0 1300 59 20 1379\n", + "3953 Campinas 600 5 5 4 - acept not furnished 3300 5000 916 76 9292\n", + "3954 São Paulo 27 1 1 1 6 not acept not furnished 0 3700 0 47 3747\n", + "3955 São Paulo 160 3 2 2 - acept not furnished 0 3500 132 53 3685\n", + "3956 Belo Horizonte 320 4 6 4 - acept not furnished 0 12000 782 160 12940\n", + "3957 São Paulo 41 1 1 1 1 acept furnished 120 2680 110 41 2951\n", + "3958 São Paulo 60 1 1 1 13 acept furnished 646 3900 109 50 4705\n", + "3959 São Paulo 66 1 1 1 10 not acept furnished 762 3500 65 45 4372\n", + "3960 Rio de Janeiro 41 1 1 0 9 acept not furnished 800 1700 85 22 2607\n", + "3961 São Paulo 98 2 3 3 13 not acept not furnished 800 4150 375 53 5378\n", + "3962 São Paulo 75 2 1 0 5 acept furnished 1310 1283 0 17 2610\n", + "3963 Rio de Janeiro 62 2 1 0 1 acept not furnished 706 1700 97 22 2525\n", + "3964 São Paulo 120 2 1 1 - not acept not furnished 0 1300 50 20 1370\n", + "3965 São Paulo 98 1 2 2 9 acept not furnished 1241 4000 422 51 5714\n", + "3966 São Paulo 380 4 5 4 - acept furnished 0 10500 815 158 11470\n", + "3967 São Paulo 45 1 1 1 10 not acept furnished 1600 1800 177 23 3600\n", + "3968 Belo Horizonte 65 2 1 1 8 acept not furnished 409 800 17 11 1237\n", + "3969 São Paulo 88 2 1 1 3 acept not furnished 800 3400 150 44 4394\n", + "3970 São Paulo 250 3 4 2 - acept not furnished 0 3000 233 46 3279\n", + "3971 Campinas 108 1 3 2 9 acept not furnished 980 4500 0 58 5538\n", + "3972 São Paulo 160 3 2 2 13 acept not furnished 1200 3900 221 50 5371\n", + "3973 São Paulo 70 2 1 0 - acept not furnished 0 1300 50 20 1370\n", + "3974 São Paulo 320 4 5 5 - acept not furnished 0 10870 1417 164 12450\n", + "3975 São Paulo 68 3 1 1 16 not acept not furnished 522 1600 0 7 2129\n", + "3976 Rio de Janeiro 130 3 2 1 5 acept not furnished 1050 4500 150 58 5758\n", + "3977 São Paulo 600 3 3 3 9 acept not furnished 6826 15000 2860 191 24880\n", + "3978 Porto Alegre 127 3 2 2 2 acept furnished 600 2900 220 43 3763\n", + "3979 Rio de Janeiro 200 4 4 4 - acept not furnished 1 2650 283 41 2975\n", + "3980 São Paulo 90 3 2 2 1 acept furnished 950 2800 234 36 4020\n", + "3981 São Paulo 135 2 1 0 2 not acept not furnished 0 2000 5 26 2031\n", + "3982 Porto Alegre 70 2 2 0 7 acept furnished 600 3100 50 46 3796\n", + "3983 São Paulo 46 1 1 1 3 acept furnished 700 3000 133 39 3872\n", + "3984 São Paulo 20 1 1 0 2 not acept furnished 0 2060 0 27 2087\n", + "3985 São Paulo 350 3 6 4 19 acept not furnished 2200 8500 1035 108 11840\n", + "3986 Rio de Janeiro 45 1 1 1 5 acept not furnished 616 1900 109 25 2650\n", + "3987 Rio de Janeiro 223 3 3 0 15 not acept not furnished 2409 765 350 10 3534\n", + "3988 Porto Alegre 115 1 2 2 7 acept not furnished 1327 1550 177 23 3077\n", + "3989 Belo Horizonte 85 3 2 1 3 acept not furnished 250 1450 73 20 1793\n", + "3990 Campinas 63 2 1 1 1 acept not furnished 498 840 90 11 1439\n", + "3991 Belo Horizonte 69 3 2 1 8 not acept not furnished 305 1600 90 22 2017\n", + "3992 São Paulo 48 2 1 1 4 acept not furnished 150 900 0 12 1062\n", + "3993 Rio de Janeiro 400 5 4 2 8 acept not furnished 3000 8000 34 104 11140\n", + "3994 São Paulo 49 2 1 1 10 not acept not furnished 395 1250 0 16 1661\n", + "3995 São Paulo 120 4 2 2 - not acept not furnished 0 4500 89 68 4657\n", + "3996 São Paulo 168 3 4 3 10 acept furnished 1900 7300 1000 93 10290\n", + "3997 Rio de Janeiro 80 3 1 0 8 acept not furnished 1050 2700 167 35 3952\n", + "3998 São Paulo 100 2 4 2 10 acept not furnished 1600 5990 417 76 8083\n", + "3999 São Paulo 38 1 1 1 16 acept furnished 1100 2863 0 37 4000\n", + "4000 Porto Alegre 45 1 1 0 - not acept not furnished 550 550 0 9 1109\n", + "4001 São Paulo 123 3 3 0 - acept not furnished 0 4000 42 61 4103\n", + "4002 São Paulo 200 4 2 3 1 not acept not furnished 910 2390 267 31 3598\n", + "4003 Campinas 73 3 1 1 3 acept not furnished 547 1140 100 15 1802\n", + "4004 São Paulo 80 2 1 1 2 not acept furnished 1036 7450 98 95 8679\n", + "4005 Rio de Janeiro 185 4 3 3 10 acept not furnished 3250 11340 1835 147 16570\n", + "4006 São Paulo 100 3 3 4 - not acept not furnished 0 9775 0 147 9922\n", + "4007 São Paulo 240 3 3 2 - acept furnished 0 4350 385 66 4801\n", + "4008 Rio de Janeiro 405 4 3 2 1 acept furnished 4032 14000 1649 181 19860\n", + "4009 São Paulo 130 3 4 4 - acept not furnished 1100 3280 490 50 4920\n", + "4010 Porto Alegre 129 2 3 1 5 acept furnished 900 1925 61 29 2915\n", + "4011 São Paulo 130 2 2 2 - not acept not furnished 0 2700 123 41 2864\n", + "4012 Porto Alegre 73 2 1 1 8 acept not furnished 550 2500 50 37 3137\n", + "4013 Campinas 50 2 1 1 2 acept not furnished 530 1200 109 16 1855\n", + "4014 Belo Horizonte 90 3 2 1 2 acept not furnished 300 1859 124 7 2290\n", + "4015 São Paulo 25 1 1 0 1 not acept not furnished 0 1050 84 14 1148\n", + "4016 São Paulo 556 4 5 7 - acept not furnished 0 7000 2059 106 9165\n", + "4017 São Paulo 23 1 1 0 2 not acept not furnished 30 950 34 13 1027\n", + "4018 Porto Alegre 110 2 2 0 5 not acept furnished 700 3500 0 52 4252\n", + "4019 São Paulo 350 4 3 3 1 not acept furnished 4459 15000 0 191 19650\n", + "4020 Campinas 300 4 3 5 - acept not furnished 0 4100 20 62 4182\n", + "4021 São Paulo 20 1 1 0 1 not acept furnished 0 2050 0 26 2076\n", + "4022 Belo Horizonte 31 1 1 1 3 not acept not furnished 550 460 92 7 1109\n", + "4023 São Paulo 250 4 3 3 - acept not furnished 0 4350 250 66 4666\n", + "4024 Belo Horizonte 200 4 2 2 2 acept not furnished 1280 4300 429 58 6067\n", + "4025 São Paulo 500 4 7 6 5 not acept not furnished 5400 5000 4000 64 14460\n", + "4026 Rio de Janeiro 105 3 2 0 4 not acept furnished 940 5660 0 73 6673\n", + "4027 São Paulo 320 5 3 8 - acept not furnished 0 14000 917 211 15130\n", + "4028 São Paulo 236 4 4 0 17 acept furnished 3035 3500 985 45 7565\n", + "4029 São Paulo 50 1 1 0 2 not acept furnished 710 3100 85 12 3907\n", + "4030 Rio de Janeiro 65 2 1 0 3 acept not furnished 180 1130 0 15 1325\n", + "4031 Belo Horizonte 502 4 3 4 - acept not furnished 0 6500 436 107 7043\n", + "4032 São Paulo 160 3 3 2 - acept not furnished 0 6700 295 101 7096\n", + "4033 São Paulo 90 2 2 1 - acept not furnished 0 1950 125 30 2105\n", + "4034 Campinas 44 1 1 1 2 acept not furnished 390 1200 74 16 1680\n", + "4035 São Paulo 200 4 7 4 - acept furnished 0 8000 575 121 8696\n", + "4036 São Paulo 150 3 2 0 3 acept not furnished 715 1700 210 22 2647\n", + "4037 Campinas 578 4 5 8 - acept not furnished 0 9500 787 143 10430\n", + "4038 São Paulo 85 3 2 1 8 acept not furnished 996 3560 150 46 4752\n", + "4039 São Paulo 67 1 1 1 1 not acept not furnished 0 1000 0 6 1006\n", + "4040 Belo Horizonte 900 6 6 6 - acept not furnished 0 5570 1084 92 6746\n", + "4041 São Paulo 182 4 4 3 1 acept not furnished 2100 3400 542 44 6086\n", + "4042 Belo Horizonte 54 2 1 1 1 acept not furnished 100 800 58 11 969\n", + "4043 São Paulo 33 1 1 0 3 acept not furnished 350 1650 0 21 2021\n", + "4044 São Paulo 236 4 5 4 1 not acept furnished 3950 15000 142 191 19280\n", + "4045 São Paulo 33 1 1 1 1 acept not furnished 570 1630 9 21 2230\n", + "4046 São Paulo 25 1 1 0 3 acept furnished 350 1800 0 23 2173\n", + "4047 Porto Alegre 400 4 4 6 - acept not furnished 0 7000 209 125 7334\n", + "4048 Rio de Janeiro 130 4 2 2 7 acept furnished 1300 4200 592 55 6147\n", + "4049 São Paulo 240 4 3 3 10 not acept furnished 4976 15000 1813 191 21980\n", + "4050 São Paulo 190 4 3 2 1 acept not furnished 2700 7700 1305 98 11800\n", + "4051 São Paulo 42 1 1 1 5 acept not furnished 330 2100 107 27 2564\n", + "4052 São Paulo 112 2 3 2 2 acept furnished 1890 3580 418 46 5934\n", + "4053 Porto Alegre 108 3 2 2 17 not acept not furnished 900 3100 92 46 4138\n", + "4054 Rio de Janeiro 50 1 1 0 5 not acept not furnished 250 1100 38 15 1403\n", + "4055 Belo Horizonte 60 2 1 1 1 acept furnished 200 1040 0 14 1254\n", + "4056 São Paulo 60 3 1 1 4 acept not furnished 500 1480 0 19 1999\n", + "4057 São Paulo 462 4 4 0 - acept furnished 0 10000 2700 151 12850\n", + "4058 São Paulo 70 1 2 2 3 acept furnished 1000 4500 292 58 5850\n", + "4059 São Paulo 72 2 1 1 11 acept not furnished 850 2300 0 30 3180\n", + "4060 São Paulo 320 4 5 0 11 acept furnished 4600 8700 2300 142 15740\n", + "4061 Belo Horizonte 140 2 2 2 4 acept not furnished 305 1600 99 22 2026\n", + "4062 Campinas 60 1 1 0 3 acept not furnished 250 1300 75 17 1642\n", + "4063 São Paulo 114 5 3 1 - acept not furnished 0 6000 42 91 6133\n", + "4064 Rio de Janeiro 40 1 1 0 2 acept not furnished 359 2000 90 26 2475\n", + "4065 São Paulo 76 1 1 1 14 not acept furnished 1300 5015 185 64 6564\n", + "4066 São Paulo 170 3 5 3 7 acept furnished 1750 2800 600 36 5186\n", + "4067 Belo Horizonte 156 4 2 2 3 not acept not furnished 435 2700 189 36 3360\n", + "4068 Campinas 65 2 1 1 1 not acept not furnished 267 1000 34 13 1314\n", + "4069 Porto Alegre 67 1 1 1 3 acept not furnished 350 840 25 13 1228\n", + "4070 Porto Alegre 110 3 2 1 3 not acept furnished 790 2300 75 34 3199\n", + "4071 São Paulo 300 4 5 5 3 acept not furnished 4500 8800 2750 112 16160\n", + "4072 Porto Alegre 47 1 1 1 1 not acept furnished 400 2200 0 33 2633\n", + "4073 São Paulo 35 1 1 0 - acept not furnished 120 1300 39 17 1476\n", + "4074 Rio de Janeiro 46 2 1 0 1 acept not furnished 352 1400 0 19 1771\n", + "4075 São Paulo 60 2 1 0 15 acept furnished 990 2500 50 32 3572\n", + "4076 São Paulo 170 3 2 3 - acept not furnished 0 5000 0 76 5076\n", + "4077 Rio de Janeiro 30 1 1 0 1 acept furnished 300 1600 42 21 1963\n", + "4078 Rio de Janeiro 84 2 2 1 2 not acept furnished 900 2750 275 36 3961\n", + "4079 São Paulo 720 4 5 4 - acept not furnished 0 12000 3200 181 15380\n", + "4080 Porto Alegre 83 2 1 0 3 acept not furnished 230 1300 31 19 1580\n", + "4081 São Paulo 250 3 3 1 9 acept not furnished 2000 6500 292 83 8875\n", + "4082 São Paulo 325 3 5 0 3 acept furnished 4285 5800 2049 74 12210\n", + "4083 Campinas 98 1 1 1 5 acept not furnished 730 2800 152 36 3718\n", + "4084 São Paulo 95 2 2 1 - acept not furnished 0 2400 180 37 2617\n", + "4085 São Paulo 380 4 4 4 7 not acept not furnished 3300 1500 1917 20 6737\n", + "4086 Rio de Janeiro 70 2 1 0 3 acept not furnished 730 1600 240 21 2591\n", + "4087 São Paulo 86 3 3 0 1 not acept not furnished 1100 2500 75 32 3707\n", + "4088 Belo Horizonte 367 4 3 8 - acept furnished 0 4500 404 74 4978\n", + "4089 São Paulo 495 5 5 4 11 not acept not furnished 3100 15000 2180 191 20470\n", + "4090 São Paulo 320 4 4 6 8 acept furnished 5281 15000 3151 191 23620\n", + "4091 São Paulo 197 3 4 3 24 acept not furnished 2000 10000 0 127 12130\n", + "4092 São Paulo 140 4 2 1 8 acept furnished 1800 2100 486 27 4413\n", + "4093 Rio de Janeiro 105 2 1 1 8 acept furnished 530 1960 46 26 2562\n", + "4094 São Paulo 200 3 4 4 5 acept furnished 1800 2953 686 38 5477\n", + "4095 Rio de Janeiro 88 3 2 1 11 acept not furnished 600 1960 1180 26 3766\n", + "4096 São Paulo 96 3 3 2 5 acept not furnished 855 3700 486 47 5088\n", + "4097 São Paulo 192 3 4 4 10 not acept furnished 2350 8500 0 108 10960\n", + "4098 São Paulo 110 3 4 3 3 acept not furnished 1446 3800 467 49 5762\n", + "4099 Porto Alegre 43 1 1 2 3 acept furnished 500 2500 75 37 3112\n", + "4100 São Paulo 48 2 1 1 10 acept not furnished 400 1650 51 21 2122\n", + "4101 São Paulo 65 2 1 0 - not acept not furnished 0 1300 34 20 1354\n", + "4102 São Paulo 400 5 3 6 - acept not furnished 0 13950 1880 210 16040\n", + "4103 Campinas 160 3 2 0 - acept not furnished 0 1600 117 25 1742\n", + "4104 Campinas 60 2 1 1 1 acept not furnished 314 1000 0 13 1327\n", + "4105 São Paulo 110 3 2 2 10 acept not furnished 1590 2200 490 28 4308\n", + "4106 Belo Horizonte 56 3 1 1 4 not acept not furnished 320 1000 61 14 1395\n", + "4107 Rio de Janeiro 140 3 2 2 8 acept not furnished 1780 7500 417 97 9794\n", + "4108 São Paulo 150 3 2 3 - not acept not furnished 0 2500 0 38 2538\n", + "4109 São Paulo 208 3 4 3 1 acept not furnished 1900 3800 1100 49 6849\n", + "4110 Belo Horizonte 32 1 1 0 - not acept furnished 550 1250 0 17 1817\n", + "4111 Campinas 50 1 1 1 11 acept not furnished 1500 500 105 7 2112\n", + "4112 Belo Horizonte 300 5 3 4 - acept not furnished 0 6000 0 99 6099\n", + "4113 São Paulo 32 1 1 1 8 acept furnished 450 3250 0 42 3742\n", + "4114 Porto Alegre 900 5 5 2 4 acept not furnished 2700 1000 542 15 4257\n", + "4115 São Paulo 40 1 1 0 - not acept not furnished 0 850 0 11 861\n", + "4116 Porto Alegre 301 3 3 4 - acept furnished 0 5860 34 105 5999\n", + "4117 São Paulo 299 5 4 2 - acept not furnished 800 5600 691 85 7176\n", + "4118 São Paulo 131 3 2 1 8 acept not furnished 2100 2400 184 31 4715\n", + "4119 Rio de Janeiro 78 2 1 1 8 acept furnished 615 1000 71 13 1699\n", + "4120 São Paulo 45 1 1 0 - not acept not furnished 0 928 57 14 999\n", + "4121 São Paulo 250 5 3 2 - acept not furnished 0 2960 232 45 3237\n", + "4122 Porto Alegre 40 1 1 0 5 acept not furnished 320 650 9 10 989\n", + "4123 Porto Alegre 40 1 1 1 8 acept not furnished 500 2200 50 33 2783\n", + "4124 São Paulo 244 3 6 4 18 acept not furnished 2600 15000 1527 191 19320\n", + "4125 Belo Horizonte 190 2 3 0 - acept not furnished 0 2500 14 41 2555\n", + "4126 Porto Alegre 80 3 2 1 5 acept not furnished 500 1800 0 27 2327\n", + "4127 São Paulo 56 1 1 1 8 acept not furnished 2500 4600 467 59 7626\n", + "4128 Rio de Janeiro 53 1 1 0 2 acept not furnished 390 1100 14 14 1518\n", + "4129 Belo Horizonte 243 4 4 4 7 not acept not furnished 2800 10000 1250 134 14180\n", + "4130 Campinas 62 2 1 0 - not acept not furnished 0 1268 0 20 1288\n", + "4131 Porto Alegre 110 2 2 1 2 acept not furnished 700 1450 125 22 2297\n", + "4132 São Paulo 176 3 3 3 9 acept not furnished 1950 5000 542 64 7556\n", + "4133 São Paulo 150 3 2 1 - acept not furnished 0 4500 110 68 4678\n", + "4134 São Paulo 190 4 4 3 11 acept furnished 2289 7000 860 89 10240\n", + "4135 Rio de Janeiro 62 2 1 0 3 acept not furnished 839 2383 97 31 3350\n", + "4136 São Paulo 78 2 1 0 1 acept not furnished 280 1520 0 20 1820\n", + "4137 São Paulo 330 3 6 5 - acept furnished 0 7100 0 107 7207\n", + "4138 Rio de Janeiro 284 4 4 1 4 acept furnished 3010 7950 692 103 11760\n", + "4139 Belo Horizonte 999 6 6 6 - acept furnished 0 10800 1500 178 12480\n", + "4140 Campinas 55 1 1 0 14 acept not furnished 600 1100 60 14 1774\n", + "4141 São Paulo 50 2 1 1 1 acept not furnished 230 1520 40 20 1810\n", + "4142 Porto Alegre 109 4 3 1 2 acept not furnished 680 1950 117 29 2776\n", + "4143 São Paulo 420 4 4 2 4 acept not furnished 3300 13000 1417 165 17880\n", + "4144 Porto Alegre 40 1 1 0 - acept not furnished 390 500 0 8 898\n", + "4145 São Paulo 140 3 3 2 2 acept not furnished 1300 2800 292 36 4428\n", + "4146 Belo Horizonte 400 4 5 3 10 acept not furnished 3000 8695 834 116 12650\n", + "4147 São Paulo 28 1 1 1 4 not acept furnished 537 3076 80 39 3732\n", + "4148 São Paulo 74 2 2 0 10 acept not furnished 610 1650 0 21 2281\n", + "4149 Belo Horizonte 41 2 1 1 1 acept not furnished 200 1100 79 15 1394\n", + "4150 São Paulo 76 2 1 0 2 acept not furnished 500 2290 0 30 2820\n", + "4151 Belo Horizonte 233 3 3 0 13 acept not furnished 870 1600 96 22 2588\n", + "4152 São Paulo 30 1 1 0 6 not acept not furnished 253 1250 30 16 1549\n", + "4153 São Paulo 530 4 5 6 - acept not furnished 0 5950 1200 90 7240\n", + "4154 Campinas 94 3 3 2 1 acept not furnished 750 2200 192 28 3170\n", + "4155 São Paulo 160 3 3 1 6 acept not furnished 2000 4500 84 58 6642\n", + "4156 Rio de Janeiro 84 3 3 1 12 acept furnished 1500 3860 229 50 5639\n", + "4157 São Paulo 120 3 2 2 5 acept furnished 2150 4610 400 59 7219\n", + "4158 São Paulo 180 3 2 2 6 acept not furnished 2192 4000 413 51 6656\n", + "4159 São Paulo 51 2 1 1 2 acept not furnished 720 3700 5 47 4472\n", + "4160 Porto Alegre 65 1 1 0 5 acept furnished 300 1250 25 19 1594\n", + "4161 Campinas 206 3 2 3 15 acept not furnished 1900 3910 417 50 6277\n", + "4162 Porto Alegre 75 3 2 1 12 acept not furnished 330 1740 110 26 2206\n", + "4163 Porto Alegre 125 3 2 4 6 acept furnished 1000 6500 195 95 7790\n", + "4164 Campinas 75 3 2 2 1 acept not furnished 1250 1600 162 21 3033\n", + "4165 São Paulo 96 3 1 1 5 acept furnished 1172 3550 140 45 4907\n", + "4166 Belo Horizonte 80 2 2 1 4 acept furnished 600 1500 109 20 2229\n", + "4167 Porto Alegre 45 2 1 1 4 acept not furnished 250 1100 22 17 1389\n", + "4168 Campinas 68 2 1 1 2 acept not furnished 400 1310 60 17 1787\n", + "4169 Porto Alegre 50 2 1 1 4 acept furnished 345 2750 72 41 3208\n", + "4170 São Paulo 200 2 4 1 - acept not furnished 0 15000 829 226 16060\n", + "4171 São Paulo 100 3 2 2 11 acept furnished 1239 7950 313 101 9603\n", + "4172 São Paulo 107 2 1 0 1 acept not furnished 480 4950 55 63 5548\n", + "4173 Rio de Janeiro 60 1 2 0 10 acept furnished 430 2244 50 29 2753\n", + "4174 Rio de Janeiro 180 6 3 2 - acept not furnished 0 3800 350 58 4208\n", + "4175 São Paulo 85 3 2 2 - acept not furnished 100 2500 75 38 2713\n", + "4176 São Paulo 20 1 1 0 2 not acept furnished 150 3142 67 40 3399\n", + "4177 Belo Horizonte 260 4 3 2 - acept furnished 0 9700 611 160 10470\n", + "4178 Belo Horizonte 152 4 4 3 4 acept not furnished 1350 4100 525 55 6030\n", + "4179 Rio de Janeiro 25 1 1 0 3 not acept not furnished 590 1336 63 18 2007\n", + "4180 São Paulo 80 2 1 1 - acept not furnished 0 1900 567 29 2496\n", + "4181 Porto Alegre 79 2 2 1 2 acept furnished 400 3200 0 27 3627\n", + "4182 São Paulo 70 2 2 1 8 not acept furnished 1600 3440 250 44 5334\n", + "4183 São Paulo 92 2 2 1 6 not acept not furnished 1590 2490 158 32 4270\n", + "4184 Porto Alegre 68 2 1 0 10 acept not furnished 515 1650 73 25 2263\n", + "4185 São Paulo 158 3 3 2 10 not acept not furnished 1995 5500 529 70 8094\n", + "4186 São Paulo 45 1 1 1 2 not acept furnished 716 3300 166 42 4224\n", + "4187 Belo Horizonte 284 5 2 3 - acept not furnished 0 4500 270 74 4844\n", + "4188 São Paulo 500 4 6 3 - acept not furnished 0 15000 845 226 16070\n", + "4189 São Paulo 151 4 3 3 6 acept not furnished 2061 4000 736 51 6848\n", + "4190 Porto Alegre 65 2 1 1 3 acept not furnished 360 1066 15 16 1457\n", + "4191 São Paulo 70 2 1 0 - acept not furnished 100 2000 42 26 2168\n", + "4192 São Paulo 115 4 3 4 1 acept furnished 1133 7000 0 89 8222\n", + "4193 São Paulo 155 1 1 2 1 not acept furnished 1952 5500 0 70 7522\n", + "4194 São Paulo 35 3 2 0 - acept not furnished 0 1600 84 25 1709\n", + "4195 Belo Horizonte 71 3 2 1 3 acept not furnished 310 1150 85 16 1561\n", + "4196 São Paulo 48 2 1 1 7 acept not furnished 391 1865 17 24 2297\n", + "4197 Porto Alegre 202 3 3 3 4 acept furnished 1500 7900 417 116 9933\n", + "4198 Porto Alegre 18 1 1 0 15 acept furnished 360 830 10 13 1213\n", + "4199 Campinas 76 3 1 1 8 not acept not furnished 484 1100 63 14 1661\n", + "4200 São Paulo 25 1 1 0 5 not acept not furnished 450 2070 80 27 2627\n", + "4201 Rio de Janeiro 68 2 1 1 4 not acept furnished 1020 2800 101 37 3958\n", + "4202 Belo Horizonte 44 2 1 1 3 acept not furnished 296 1000 60 14 1370\n", + "4203 Rio de Janeiro 320 3 3 2 5 acept not furnished 3300 4800 820 62 8982\n", + "4204 São Paulo 180 3 2 1 4 acept not furnished 1300 4000 218 51 5569\n", + "4205 São Paulo 250 3 2 2 - acept furnished 0 6000 0 91 6091\n", + "4206 Porto Alegre 60 1 2 2 14 acept not furnished 650 3000 167 44 3861\n", + "4207 Porto Alegre 180 3 2 2 - acept not furnished 0 5048 0 90 5138\n", + "4208 São Paulo 60 1 2 1 14 not acept not furnished 3800 3300 500 42 7642\n", + "4209 Porto Alegre 50 2 1 1 - acept furnished 370 1290 30 17 1707\n", + "4210 São Paulo 35 1 1 0 - acept not furnished 0 1100 30 14 1144\n", + "4211 São Paulo 270 4 4 0 17 not acept furnished 2300 14000 1917 178 18400\n", + "4212 São Paulo 479 4 5 4 - acept furnished 0 9500 525 143 10170\n", + "4213 São Paulo 50 1 2 1 12 acept not furnished 1100 5400 259 69 6828\n", + "4214 Rio de Janeiro 80 2 2 1 2 acept furnished 999 3000 118 39 4156\n", + "4215 Porto Alegre 110 3 2 0 3 acept furnished 550 1980 234 29 2793\n", + "4216 Belo Horizonte 310 4 4 3 1 not acept not furnished 360 3000 341 40 3741\n", + "4217 Campinas 500 4 4 3 5 not acept not furnished 5288 15000 82 191 20560\n", + "4218 São Paulo 256 3 3 2 - not acept not furnished 0 5600 2417 85 8102\n", + "4219 São Paulo 52 2 1 1 7 acept not furnished 540 1300 63 17 1920\n", + "4220 Porto Alegre 44 1 1 1 2 acept not furnished 0 1200 0 18 1218\n", + "4221 São Paulo 100 2 4 2 12 not acept furnished 885 3000 330 39 4254\n", + "4222 Belo Horizonte 500 5 4 4 - acept not furnished 0 7000 485 115 7600\n", + "4223 São Paulo 50 1 1 1 13 acept not furnished 550 2180 200 28 2958\n", + "4224 Belo Horizonte 402 4 7 4 15 not acept not furnished 2124 15000 158 200 17480\n", + "4225 Campinas 45 1 1 1 16 not acept furnished 450 3900 105 50 4505\n", + "4226 Rio de Janeiro 40 1 1 0 2 acept not furnished 370 830 60 11 1271\n", + "4227 São Paulo 35 1 1 0 8 not acept not furnished 265 1270 17 17 1569\n", + "4228 Rio de Janeiro 75 2 2 1 3 acept not furnished 650 2500 179 33 3362\n", + "4229 São Paulo 190 3 4 4 5 acept not furnished 3600 11000 1584 140 16320\n", + "4230 Belo Horizonte 193 4 2 1 6 acept not furnished 975 1800 317 24 3116\n", + "4231 São Paulo 90 3 2 2 15 not acept not furnished 850 2180 210 28 3268\n", + "4232 São Paulo 215 3 4 4 25 acept not furnished 1740 3980 695 51 6466\n", + "4233 Rio de Janeiro 65 2 2 0 2 not acept not furnished 150 1700 84 22 1956\n", + "4234 Rio de Janeiro 93 2 2 0 4 not acept furnished 1360 3180 272 41 4853\n", + "4235 Campinas 50 2 1 1 3 acept not furnished 300 1170 0 15 1485\n", + "4236 São Paulo 170 3 2 0 - not acept not furnished 0 5550 255 84 5889\n", + "4237 Rio de Janeiro 380 4 3 2 9 acept not furnished 3500 4000 750 52 8302\n", + "4238 São Paulo 150 3 3 0 - acept not furnished 0 2560 0 39 2599\n", + "4239 Rio de Janeiro 45 1 1 0 6 acept not furnished 900 1820 90 24 2834\n", + "4240 Belo Horizonte 80 3 1 1 - acept not furnished 0 2800 138 46 2984\n", + "4241 São Paulo 35 1 1 0 7 not acept not furnished 465 1200 0 16 1681\n", + "4242 São Paulo 22 1 1 0 - not acept not furnished 50 700 5 9 764\n", + "4243 São Paulo 107 3 2 2 4 acept not furnished 1393 3300 413 42 5148\n", + "4244 São Paulo 125 2 2 1 - acept not furnished 0 1570 55 24 1649\n", + "4245 Porto Alegre 80 3 2 2 5 acept not furnished 461 2000 59 30 2550\n", + "4246 São Paulo 24 1 1 0 2 acept not furnished 500 2150 84 28 2762\n", + "4247 São Paulo 87 3 2 3 3 acept not furnished 914 1300 265 17 2496\n", + "4248 São Paulo 400 7 7 0 - acept not furnished 0 14000 1667 211 15880\n", + "4249 Campinas 55 1 1 1 - acept furnished 0 1100 80 14 1194\n", + "4250 São Paulo 48 2 1 1 3 acept not furnished 470 1700 0 22 2192\n", + "4251 São Paulo 129 3 2 2 9 acept not furnished 880 2250 156 29 3315\n", + "4252 Rio de Janeiro 200 3 3 0 5 acept not furnished 850 2370 167 31 3418\n", + "4253 Porto Alegre 240 5 4 4 - acept not furnished 0 4760 584 85 5429\n", + "4254 São Paulo 140 3 2 3 13 acept furnished 1100 8000 167 102 9369\n", + "4255 Rio de Janeiro 30 1 1 0 8 not acept not furnished 590 850 126 11 1577\n", + "4256 Porto Alegre 28 1 1 1 3 acept not furnished 330 930 125 14 1399\n", + "4257 São Paulo 43 1 1 0 13 acept not furnished 250 1700 0 22 1972\n", + "4258 Rio de Janeiro 184 4 2 3 9 acept furnished 2800 2550 417 33 5800\n", + "4259 São Paulo 120 3 3 2 7 acept not furnished 1350 4800 400 61 6611\n", + "4260 São Paulo 170 3 3 2 - acept not furnished 0 2750 100 42 2892\n", + "4261 São Paulo 77 3 2 1 5 not acept furnished 400 2050 55 26 2531\n", + "4262 Porto Alegre 50 1 1 0 7 acept furnished 200 1300 12 19 1531\n", + "4263 Porto Alegre 42 1 1 0 15 acept not furnished 350 1500 0 22 1872\n", + "4264 São Paulo 250 2 1 0 - acept not furnished 0 1500 9 23 1532\n", + "4265 Belo Horizonte 33 1 1 1 3 acept not furnished 170 1600 9 22 1801\n", + "4266 Porto Alegre 106 3 3 2 3 acept not furnished 637 2250 133 33 3053\n", + "4267 São Paulo 480 5 8 6 - acept not furnished 0 13200 1230 199 14630\n", + "4268 São Paulo 74 1 1 1 17 not acept furnished 826 6290 203 80 7399\n", + "4269 São Paulo 230 4 5 4 4 not acept not furnished 3500 6000 1167 77 10740\n", + "4270 Campinas 62 2 1 0 1 acept not furnished 440 1200 38 16 1694\n", + "4271 Rio de Janeiro 103 4 3 0 - acept furnished 800 2150 97 28 3075\n", + "4272 Campinas 90 3 2 0 - acept not furnished 0 1590 180 24 1794\n", + "4273 Rio de Janeiro 15 1 1 0 11 not acept furnished 0 1670 0 22 1692\n", + "4274 São Paulo 137 3 3 1 9 acept furnished 1200 5500 303 70 7073\n", + "4275 Porto Alegre 50 1 1 0 3 acept not furnished 270 600 23 9 902\n", + "4276 São Paulo 76 2 1 0 12 acept not furnished 502 1700 62 22 2286\n", + "4277 São Paulo 168 4 3 3 7 acept not furnished 1900 3500 768 45 6213\n", + "4278 São Paulo 148 3 3 3 13 not acept furnished 2064 4348 542 31 6985\n", + "4279 Belo Horizonte 220 4 3 3 4 acept not furnished 1500 4600 547 62 6709\n", + "4280 São Paulo 120 3 3 2 2 acept not furnished 200 2039 0 8 2247\n", + "4281 Campinas 136 4 5 2 10 acept not furnished 1300 3800 280 49 5429\n", + "4282 Rio de Janeiro 50 1 1 1 7 acept not furnished 750 860 84 12 1706\n", + "4283 Porto Alegre 78 3 1 1 2 acept not furnished 500 1200 400 18 2118\n", + "4284 São Paulo 42 1 1 1 4 not acept not furnished 1200 2350 151 30 3731\n", + "4285 São Paulo 45 1 1 0 2 not acept not furnished 0 1400 69 18 1487\n", + "4286 São Paulo 170 5 4 4 - acept furnished 0 6000 350 91 6441\n", + "4287 Belo Horizonte 310 5 2 1 - not acept not furnished 0 3500 208 58 3766\n", + "4288 São Paulo 170 6 5 1 - acept not furnished 0 3468 0 53 3521\n", + "4289 São Paulo 68 2 1 1 4 acept not furnished 626 1200 0 16 1842\n", + "4290 São Paulo 380 4 5 5 3 acept not furnished 4200 15000 1800 191 21190\n", + "4291 São Paulo 62 2 1 1 1 acept furnished 220 1590 40 21 1871\n", + "4292 São Paulo 30 1 1 1 15 acept not furnished 500 1560 61 20 2141\n", + "4293 Belo Horizonte 50 2 1 1 10 acept not furnished 160 800 0 11 971\n", + "4294 Belo Horizonte 20 1 1 0 1 not acept not furnished 0 500 42 7 549\n", + "4295 São Paulo 63 2 2 1 - acept not furnished 0 1920 79 29 2028\n", + "4296 São Paulo 60 1 1 0 - acept not furnished 0 2000 0 31 2031\n", + "4297 São Paulo 86 3 3 0 10 acept furnished 1100 3000 100 39 4239\n", + "4298 São Paulo 100 3 2 1 3 acept not furnished 1020 2900 0 37 3957\n", + "4299 São Paulo 70 2 2 1 3 acept not furnished 1100 2850 179 37 4166\n", + "4300 São Paulo 42 1 1 1 11 not acept furnished 560 3300 172 42 4074\n", + "4301 São Paulo 90 3 2 0 8 acept furnished 480 3000 1 39 3520\n", + "4302 São Paulo 45 1 1 1 1 not acept furnished 3000 5520 0 70 8590\n", + "4303 Porto Alegre 73 2 3 1 2 acept not furnished 400 1957 79 29 2465\n", + "4304 Porto Alegre 209 3 3 2 6 acept furnished 450 3500 542 52 4544\n", + "4305 São Paulo 200 4 3 2 5 acept not furnished 2200 2000 216 26 4442\n", + "4306 Rio de Janeiro 94 2 2 2 9 acept not furnished 918 2700 92 35 3745\n", + "4307 Porto Alegre 115 2 2 1 1 acept not furnished 300 1847 9 27 2183\n", + "4308 Belo Horizonte 200 4 2 1 5 not acept not furnished 1800 3000 327 40 5167\n", + "4309 Porto Alegre 147 3 1 1 6 not acept not furnished 500 2666 100 39 3305\n", + "4310 São Paulo 60 1 1 1 7 acept furnished 1800 2000 0 26 3826\n", + "4311 São Paulo 200 3 3 6 - acept not furnished 0 6000 500 91 6591\n", + "4312 Rio de Janeiro 150 2 1 0 3 acept not furnished 450 1500 180 20 2150\n", + "4313 São Paulo 135 2 3 2 - acept not furnished 0 3300 67 50 3417\n", + "4314 São Paulo 78 1 2 2 6 acept not furnished 682 2300 215 30 3227\n", + "4315 São Paulo 124 3 3 2 - acept not furnished 0 4000 92 61 4153\n", + "4316 Porto Alegre 102 3 2 1 5 acept not furnished 800 3000 234 44 4078\n", + "4317 Campinas 200 5 2 4 - acept not furnished 0 3200 269 49 3518\n", + "4318 São Paulo 150 3 2 3 - not acept not furnished 0 3000 375 46 3421\n", + "4319 Rio de Janeiro 40 1 2 0 11 acept not furnished 800 1780 209 23 2812\n", + "4320 São Paulo 240 3 4 4 10 not acept not furnished 1700 5000 1000 64 7764\n", + "4321 São Paulo 102 3 3 0 7 acept not furnished 1270 3500 434 45 5249\n", + "4322 São Paulo 149 3 3 2 12 not acept not furnished 2000 5400 0 69 7469\n", + "4323 São Paulo 300 4 2 3 - acept not furnished 0 7182 709 108 7999\n", + "4324 Belo Horizonte 75 2 2 2 6 not acept furnished 823 4200 384 56 5463\n", + "4325 São Paulo 48 2 1 1 7 acept not furnished 438 1723 0 22 2183\n", + "4326 Rio de Janeiro 58 2 1 0 1 not acept not furnished 515 1232 51 16 1814\n", + "4327 Porto Alegre 59 2 1 0 1 acept not furnished 430 700 17 11 1158\n", + "4328 Rio de Janeiro 136 3 2 1 7 acept not furnished 2300 3800 600 49 6749\n", + "4329 São Paulo 35 1 1 1 5 acept furnished 815 3200 149 41 4205\n", + "4330 São Paulo 103 3 2 1 7 acept not furnished 944 4400 126 56 5526\n", + "4331 São Paulo 129 3 2 3 7 acept not furnished 1190 3400 811 44 5445\n", + "4332 São Paulo 175 3 3 3 8 acept not furnished 1700 3500 153 45 5398\n", + "4333 Campinas 96 3 2 2 6 acept furnished 750 3400 138 44 4332\n", + "4334 Rio de Janeiro 60 2 1 0 3 acept furnished 700 1900 51 25 2676\n", + "4335 São Paulo 38 1 1 1 2 acept not furnished 335 1375 3 18 1731\n", + "4336 Belo Horizonte 211 3 3 3 11 not acept furnished 900 2500 264 34 3698\n", + "4337 São Paulo 72 2 1 1 4 acept not furnished 650 1000 12 13 1675\n", + "4338 São Paulo 440 1 2 4 - acept not furnished 1 9800 584 148 10530\n", + "4339 São Paulo 70 3 2 1 1 acept furnished 500 2000 100 26 2626\n", + "4340 São Paulo 70 1 1 4 - acept not furnished 0 1300 42 20 1362\n", + "4341 São Paulo 53 2 2 1 7 acept not furnished 412 1500 117 20 2049\n", + "4342 São Paulo 161 2 2 3 3 acept not furnished 2500 4800 1125 61 8486\n", + "4343 São Paulo 180 3 3 1 3 acept not furnished 2200 3100 300 22 5622\n", + "4344 Porto Alegre 260 2 5 4 - acept not furnished 0 4500 75 80 4655\n", + "4345 Belo Horizonte 60 2 1 1 - not acept not furnished 0 1150 50 19 1219\n", + "4346 São Paulo 120 1 2 2 16 acept furnished 1000 9000 700 115 10820\n", + "4347 Porto Alegre 36 1 1 0 6 not acept not furnished 375 630 24 10 1039\n", + "4348 Belo Horizonte 278 4 4 4 6 acept not furnished 2400 12000 155 160 14720\n", + "4349 São Paulo 113 2 2 1 6 acept not furnished 1000 3000 50 39 4089\n", + "4350 São Paulo 30 1 1 0 1 acept furnished 350 3300 0 42 3692\n", + "4351 São Paulo 300 4 3 3 - acept not furnished 0 4000 283 61 4344\n", + "4352 Campinas 48 2 1 1 4 acept not furnished 288 820 45 11 1164\n", + "4353 São Paulo 524 4 5 3 - acept furnished 0 11050 1167 167 12380\n", + "4354 São Paulo 94 3 2 3 5 acept not furnished 820 2200 350 28 3398\n", + "4355 São Paulo 320 4 6 4 4 acept not furnished 5400 15000 175 191 20770\n", + "4356 São Paulo 51 2 1 1 9 acept not furnished 450 2500 17 32 2999\n", + "4357 São Paulo 78 2 2 1 2 acept furnished 1250 7250 390 92 8982\n", + "4358 Rio de Janeiro 40 1 1 0 7 acept not furnished 600 1080 50 14 1744\n", + "4359 São Paulo 360 4 4 3 - not acept not furnished 0 8000 750 121 8871\n", + "4360 Porto Alegre 47 1 1 1 19 not acept not furnished 650 2630 135 39 3454\n", + "4361 São Paulo 45 2 1 1 2 acept not furnished 280 1650 29 21 1980\n", + "4362 Belo Horizonte 30 1 1 0 1 acept not furnished 100 550 35 8 693\n", + "4363 Rio de Janeiro 235 4 3 1 8 not acept furnished 2500 5950 500 77 9027\n", + "4364 São Paulo 142 3 4 3 21 not acept not furnished 2000 5440 400 69 7909\n", + "4365 São Paulo 75 2 1 1 2 acept not furnished 400 3400 84 44 3928\n", + "4366 Rio de Janeiro 117 3 1 1 2 not acept not furnished 200 3700 103 48 4051\n", + "4367 São Paulo 280 3 3 5 - acept not furnished 0 3500 2 53 3555\n", + "4368 São Paulo 380 4 4 5 6 acept not furnished 6000 10000 2584 127 18710\n", + "4369 São Paulo 133 3 3 2 19 acept furnished 2900 14000 898 178 17980\n", + "4370 Porto Alegre 83 2 2 1 7 acept not furnished 450 1400 67 21 1938\n", + "4371 São Paulo 93 2 2 1 11 acept furnished 2400 3450 84 44 5978\n", + "4372 São Paulo 178 3 2 3 8 acept not furnished 1000 4250 167 54 5471\n", + "4373 São Paulo 53 2 1 1 1 acept not furnished 550 1250 0 16 1816\n", + "4374 São Paulo 165 3 3 3 2 acept not furnished 1660 2700 767 35 5162\n", + "4375 São Paulo 50 2 1 1 14 not acept not furnished 450 1900 0 25 2375\n", + "4376 São Paulo 100 2 1 2 - acept not furnished 0 3200 67 49 3316\n", + "4377 São Paulo 70 2 2 1 - acept not furnished 0 2400 67 37 2504\n", + "4378 São Paulo 250 3 4 5 - acept not furnished 0 4000 500 61 4561\n", + "4379 Campinas 55 1 1 1 6 acept not furnished 640 700 36 9 1385\n", + "4380 Belo Horizonte 294 3 4 4 15 acept not furnished 1832 3600 543 48 6023\n", + "4381 Porto Alegre 56 2 1 1 2 acept not furnished 350 800 38 12 1200\n", + "4382 São Paulo 220 3 4 4 22 acept not furnished 2300 8000 834 102 11240\n", + "4383 Rio de Janeiro 44 1 1 0 5 acept not furnished 860 1000 57 13 1930\n", + "4384 Belo Horizonte 15 1 1 0 3 not acept furnished 0 1100 0 15 1115\n", + "4385 Rio de Janeiro 80 2 2 1 2 acept furnished 650 2200 67 29 2946\n", + "4386 São Paulo 70 2 2 1 6 acept not furnished 665 2000 0 26 2691\n", + "4387 São Paulo 368 4 6 6 3 acept not furnished 4448 7500 2078 96 14120\n", + "4388 São Paulo 35 1 1 0 6 acept furnished 420 1660 0 22 2102\n", + "4389 São Paulo 292 4 4 4 29 acept not furnished 1700 5000 686 64 7450\n", + "4390 Campinas 470 4 4 4 15 acept not furnished 3800 11000 1080 140 16020\n", + "4391 Porto Alegre 68 2 2 2 4 acept not furnished 350 1700 60 25 2135\n", + "4392 Porto Alegre 83 2 2 2 3 acept not furnished 340 1900 70 28 2338\n", + "4393 Belo Horizonte 70 2 2 1 4 not acept furnished 1355 4700 250 63 6368\n", + "4394 Rio de Janeiro 300 3 4 2 5 acept not furnished 3500 13000 1105 168 17770\n", + "4395 São Paulo 62 1 1 0 8 acept not furnished 670 2792 38 36 3536\n", + "4396 São Paulo 75 3 2 1 21 acept not furnished 501 2900 28 37 3466\n", + "4397 São Paulo 75 3 1 1 - acept not furnished 0 2470 0 38 2508\n", + "4398 São Paulo 72 3 2 1 12 acept not furnished 880 1830 114 24 2848\n", + "4399 São Paulo 160 3 3 4 3 acept not furnished 2300 5000 92 64 7456\n", + "4400 São Paulo 150 3 4 2 - not acept not furnished 0 3400 0 52 3452\n", + "4401 São Paulo 224 4 4 3 2 acept furnished 2900 9350 917 119 13290\n", + "4402 São Paulo 540 4 3 5 - acept furnished 1900 14000 3534 211 19650\n", + "4403 Rio de Janeiro 50 2 1 1 11 acept not furnished 420 1600 13 21 2054\n", + "4404 Rio de Janeiro 80 2 2 1 5 acept not furnished 928 1400 59 19 2406\n", + "4405 Belo Horizonte 190 3 2 2 6 acept not furnished 1500 4850 502 65 6917\n", + "4406 São Paulo 160 3 2 2 1 acept not furnished 1515 2900 400 37 4852\n", + "4407 Porto Alegre 92 3 1 0 1 acept not furnished 600 1800 42 27 2469\n", + "4408 São Paulo 30 1 1 0 1 acept not furnished 0 1550 21 20 1591\n", + "4409 Belo Horizonte 268 4 4 3 3 acept not furnished 700 2700 250 45 3695\n", + "4410 São Paulo 40 1 1 0 9 acept not furnished 299 1300 30 17 1646\n", + "4411 Rio de Janeiro 186 3 1 0 10 acept not furnished 1500 1500 364 20 3384\n", + "4412 São Paulo 100 2 2 1 - acept not furnished 0 4800 321 73 5194\n", + "4413 São Paulo 120 3 4 2 15 not acept not furnished 2011 4009 566 51 6637\n", + "4414 São Paulo 160 2 3 2 - acept not furnished 1950 14000 413 178 16540\n", + "4415 São Paulo 224 4 5 2 - acept not furnished 0 3800 731 58 4589\n", + "4416 São Paulo 33 2 1 0 12 acept not furnished 260 2000 0 26 2286\n", + "4417 São Paulo 360 4 5 4 - not acept furnished 0 10000 917 151 11070\n", + "4418 Porto Alegre 444 3 6 4 3 acept not furnished 3000 4500 959 66 8525\n", + "4419 São Paulo 93 3 2 2 7 acept not furnished 750 2200 84 28 3062\n", + "4420 São Paulo 49 1 2 0 1 acept not furnished 0 1300 0 17 1317\n", + "4421 São Paulo 90 1 1 1 1 acept not furnished 200 1300 67 17 1584\n", + "4422 Porto Alegre 96 3 2 2 4 acept furnished 730 3298 70 49 4147\n", + "4423 Porto Alegre 98 2 2 0 2 not acept not furnished 475 1600 70 24 2169\n", + "4424 São Paulo 240 3 4 3 - acept not furnished 0 6000 325 91 6416\n", + "4425 Belo Horizonte 45 2 1 1 4 acept not furnished 200 850 50 12 1112\n", + "4426 Campinas 50 2 1 1 1 acept not furnished 0 800 200 11 1011\n", + "4427 Rio de Janeiro 160 3 2 1 4 acept not furnished 1910 4500 529 58 6997\n", + "4428 Porto Alegre 67 3 2 1 3 acept not furnished 350 1230 60 18 1658\n", + "4429 Belo Horizonte 205 4 2 4 - acept not furnished 0 3990 150 66 4206\n", + "4430 São Paulo 25 1 1 0 - not acept not furnished 0 600 0 10 610\n", + "4431 São Paulo 167 3 3 3 19 acept furnished 1500 2800 542 36 4878\n", + "4432 Campinas 50 1 1 1 1 acept not furnished 650 900 69 12 1631\n", + "4433 São Paulo 104 2 2 2 8 acept not furnished 1800 4150 380 53 6383\n", + "4434 Porto Alegre 40 1 1 1 4 acept not furnished 200 650 5 10 865\n", + "4435 Belo Horizonte 135 4 2 1 2 acept not furnished 600 2200 138 30 2968\n", + "4436 São Paulo 210 3 2 2 - acept not furnished 0 2780 500 42 3322\n", + "4437 Campinas 70 2 1 1 7 acept not furnished 700 1300 0 17 2017\n", + "4438 São Paulo 200 3 3 1 5 acept not furnished 1750 3200 167 41 5158\n", + "4439 São Paulo 300 4 4 4 1 acept not furnished 1700 2500 917 32 5149\n", + "4440 Rio de Janeiro 155 4 3 1 3 not acept furnished 1450 8600 350 111 10510\n", + "4441 São Paulo 281 4 4 8 - acept furnished 0 10000 847 151 11000\n", + "4442 São Paulo 23 1 1 0 23 acept not furnished 383 2050 40 26 2499\n", + "4443 São Paulo 80 1 1 1 5 acept furnished 1 7200 0 92 7293\n", + "4444 Porto Alegre 99 3 2 0 3 acept not furnished 1450 1088 112 16 2666\n", + "4445 São Paulo 239 3 3 3 - acept not furnished 0 7000 177 106 7283\n", + "4446 São Paulo 356 3 4 4 - not acept not furnished 1900 9000 709 136 11750\n", + "4447 São Paulo 350 5 5 3 - not acept furnished 2300 10580 630 135 13650\n", + "4448 São Paulo 270 4 5 4 23 acept not furnished 3550 12000 1720 153 17420\n", + "4449 São Paulo 200 4 4 1 1 not acept not furnished 3200 3800 834 49 7883\n", + "4450 São Paulo 124 3 3 3 15 acept not furnished 1560 3670 709 47 5986\n", + "4451 São Paulo 202 3 4 3 8 acept furnished 2500 10250 834 130 13710\n", + "4452 São Paulo 40 1 1 0 2 acept not furnished 1200 3000 225 39 4464\n", + "4453 São Paulo 230 2 2 3 10 acept not furnished 2700 2550 845 33 6128\n", + "4454 Porto Alegre 45 1 1 1 4 acept not furnished 300 595 21 9 925\n", + "4455 São Paulo 23 1 1 1 26 acept not furnished 472 2300 59 30 2861\n", + "4456 São Paulo 340 4 4 0 - acept not furnished 0 4000 334 61 4395\n", + "4457 São Paulo 342 5 6 5 - not acept not furnished 0 6000 422 91 6513\n", + "4458 São Paulo 93 2 2 2 2 acept furnished 1166 5500 325 70 7061\n", + "4459 São Paulo 174 3 4 3 15 not acept not furnished 2500 10400 817 132 13850\n", + "4460 Rio de Janeiro 95 2 3 2 6 acept not furnished 1300 2000 159 26 3485\n", + "4461 São Paulo 104 2 2 2 4 not acept furnished 930 3100 34 40 4104\n", + "4462 São Paulo 65 1 1 1 9 not acept not furnished 1000 2500 0 32 3532\n", + "4463 São Paulo 90 1 1 0 - acept not furnished 0 2200 109 34 2343\n", + "4464 Rio de Janeiro 104 3 2 1 6 acept not furnished 990 2500 125 33 3648\n", + "4465 São Paulo 78 2 2 2 12 acept not furnished 450 2700 0 35 3185\n", + "4466 São Paulo 140 3 2 2 - acept not furnished 0 3200 225 49 3474\n", + "4467 São Paulo 50 2 2 1 10 acept not furnished 380 1900 0 25 2305\n", + "4468 São Paulo 270 4 3 3 - acept not furnished 0 10900 392 164 11460\n", + "4469 Rio de Janeiro 131 2 1 0 6 acept not furnished 600 790 128 11 1529\n", + "4470 Porto Alegre 69 2 2 1 - acept furnished 573 1500 107 22 2202\n", + "4471 São Paulo 630 4 6 4 - not acept not furnished 0 12300 2667 185 15150\n", + "4472 São Paulo 140 3 3 2 10 acept not furnished 2000 5100 167 65 7332\n", + "4473 São Paulo 255 3 4 4 9 acept furnished 1650 5000 125 64 6839\n", + "4474 São Paulo 187 4 3 2 7 acept not furnished 2269 5430 598 69 8366\n", + "4475 Porto Alegre 120 3 2 1 2 acept not furnished 0 1020 25 15 1060\n", + "4476 Porto Alegre 50 2 1 1 - acept not furnished 0 1000 25 18 1043\n", + "4477 São Paulo 190 3 3 1 3 acept not furnished 2150 6300 459 80 8989\n", + "4478 São Paulo 16 1 1 0 1 not acept not furnished 0 980 0 13 993\n", + "4479 São Paulo 92 2 1 1 11 not acept not furnished 0 6860 0 87 6947\n", + "4480 São Paulo 56 3 1 0 11 acept furnished 296 1900 30 25 2251\n", + "4481 Belo Horizonte 58 1 2 2 7 acept not furnished 304 1400 100 19 1823\n", + "4482 São Paulo 45 2 1 1 12 acept not furnished 270 1620 59 21 1970\n", + "4483 Rio de Janeiro 70 2 2 1 3 acept not furnished 690 850 0 11 1551\n", + "4484 Belo Horizonte 125 3 3 1 5 acept not furnished 745 2100 218 28 3091\n", + "4485 São Paulo 79 3 2 0 2 acept furnished 493 1250 78 16 1837\n", + "4486 Campinas 62 2 2 2 7 acept not furnished 600 1900 82 25 2607\n", + "4487 Campinas 55 1 1 0 7 acept not furnished 480 1200 50 16 1746\n", + "4488 São Paulo 84 2 2 0 12 acept not furnished 747 1500 0 20 2267\n", + "4489 Campinas 58 2 2 2 15 acept not furnished 400 2200 100 28 2728\n", + "4490 São Paulo 80 2 1 0 - not acept not furnished 0 1400 100 22 1522\n", + "4491 São Paulo 196 4 4 5 12 acept not furnished 4600 12500 1667 159 18930\n", + "4492 São Paulo 326 3 4 4 12 acept not furnished 2808 6500 1605 83 11000\n", + "4493 Belo Horizonte 54 2 1 2 2 acept not furnished 114 900 120 12 1146\n", + "4494 Porto Alegre 62 1 1 0 3 acept not furnished 150 900 13 14 1077\n", + "4495 São Paulo 72 2 1 1 2 not acept furnished 510 1350 100 18 1978\n", + "4496 São Paulo 156 3 2 2 10 acept not furnished 2322 7500 385 96 10300\n", + "4497 São Paulo 250 3 2 8 - acept not furnished 0 6500 1360 98 7958\n", + "4498 São Paulo 45 1 1 1 3 acept furnished 900 2450 158 32 3540\n", + "4499 São Paulo 200 4 4 3 2 acept furnished 3700 5000 0 64 8764\n", + "4500 Belo Horizonte 131 3 2 3 3 acept furnished 586 2750 351 37 3724\n", + "4501 São Paulo 55 1 1 1 9 not acept furnished 1400 2860 184 37 4481\n", + "4502 São Paulo 118 3 2 2 7 acept furnished 1880 8500 434 108 10920\n", + "4503 São Paulo 300 3 4 1 - acept not furnished 0 4500 542 68 5110\n", + "4504 São Paulo 45 1 1 1 13 acept not furnished 606 2500 15 32 3153\n", + "4505 Belo Horizonte 372 3 4 3 - acept not furnished 0 5500 343 91 5934\n", + "4506 São Paulo 55 1 1 1 6 not acept furnished 642 1600 0 21 2263\n", + "4507 Campinas 55 2 1 1 1 acept not furnished 350 1397 80 18 1845\n", + "4508 São Paulo 46 2 1 0 8 not acept not furnished 2000 1230 34 16 3280\n", + "4509 São Paulo 24 1 1 1 - not acept not furnished 0 1310 0 20 1330\n", + "4510 São Paulo 52 2 1 1 4 acept not furnished 0 1450 0 19 1469\n", + "4511 São Paulo 180 4 3 2 5 acept not furnished 2650 5500 667 70 8887\n", + "4512 São Paulo 97 3 2 2 6 acept not furnished 1055 1950 325 25 3355\n", + "4513 São Paulo 200 3 2 4 - acept not furnished 0 3500 0 53 3553\n", + "4514 São Paulo 67 2 2 2 12 acept furnished 620 5000 224 64 5908\n", + "4515 Porto Alegre 101 2 1 2 2 acept not furnished 750 1600 300 24 2674\n", + "4516 Belo Horizonte 240 4 4 3 5 acept not furnished 0 4600 0 62 4662\n", + "4517 São Paulo 250 6 2 2 - acept not furnished 0 2472 26 38 2536\n", + "4518 Campinas 94 3 1 0 6 acept not furnished 710 1000 90 13 1813\n", + "4519 São Paulo 50 1 1 0 5 acept furnished 415 2000 73 26 2514\n", + "4520 Porto Alegre 74 2 2 2 5 acept not furnished 600 2500 0 37 3137\n", + "4521 Campinas 105 2 1 1 5 acept not furnished 900 1400 77 18 2395\n", + "4522 Porto Alegre 38 1 1 0 1 not acept furnished 300 1600 34 24 1958\n", + "4523 São Paulo 50 2 1 1 2 acept not furnished 420 1150 0 15 1585\n", + "4524 São Paulo 54 1 1 1 13 acept furnished 612 2538 0 18 3168\n", + "4525 Rio de Janeiro 38 1 1 0 6 acept not furnished 375 1290 90 17 1772\n", + "4526 Campinas 115 3 2 2 4 acept not furnished 570 1948 109 25 2652\n", + "4527 Belo Horizonte 70 2 1 1 3 acept not furnished 150 1100 66 15 1331\n", + "4528 Rio de Janeiro 102 3 4 3 3 acept furnished 2000 5800 459 75 8334\n", + "4529 Porto Alegre 42 2 1 0 2 acept not furnished 280 790 23 12 1105\n", + "4530 São Paulo 70 2 2 1 1 not acept not furnished 280 1000 138 13 1431\n", + "4531 São Paulo 52 2 1 0 7 acept not furnished 616 1200 65 16 1897\n", + "4532 São Paulo 800 4 5 8 - acept not furnished 0 12000 2334 181 14520\n", + "4533 São Paulo 40 1 1 1 5 acept not furnished 350 1780 0 23 2153\n", + "4534 São Paulo 74 3 2 1 6 acept not furnished 995 3000 0 39 4034\n", + "4535 Campinas 110 2 2 0 18 acept furnished 960 4200 218 54 5432\n", + "4536 Campinas 56 1 1 1 18 acept not furnished 616 800 40 11 1467\n", + "4537 Porto Alegre 46 1 1 1 1 acept not furnished 190 1300 15 19 1524\n", + "4538 São Paulo 125 3 3 1 9 acept not furnished 674 2000 25 26 2725\n", + "4539 Belo Horizonte 224 4 4 4 1 acept furnished 2285 8500 1199 114 12100\n", + "4540 São Paulo 58 1 2 1 1 not acept furnished 830 4800 130 61 5821\n", + "4541 São Paulo 400 6 6 8 15 acept furnished 3000 4335 1750 55 9140\n", + "4542 São Paulo 58 1 1 1 17 acept not furnished 610 1600 89 21 2320\n", + "4543 São Paulo 52 1 1 0 3 acept furnished 425 3300 0 42 3767\n", + "4544 Porto Alegre 82 3 1 2 3 acept not furnished 400 800 30 12 1242\n", + "4545 Belo Horizonte 180 4 3 4 9 acept not furnished 2477 4550 409 61 7497\n", + "4546 São Paulo 58 2 2 1 2 acept not furnished 940 1383 94 16 2433\n", + "4547 Belo Horizonte 600 5 3 6 - acept not furnished 0 15000 1667 246 16910\n", + "4548 Porto Alegre 59 2 2 1 2 not acept not furnished 470 1250 56 19 1795\n", + "4549 São Paulo 280 3 5 2 - acept not furnished 0 7000 625 106 7731\n", + "4550 Porto Alegre 275 5 2 4 - acept not furnished 0 3200 250 57 3507\n", + "4551 Porto Alegre 58 2 1 2 8 acept furnished 500 2100 45 31 2676\n", + "4552 São Paulo 170 3 2 2 4 acept furnished 1970 9000 900 115 11990\n", + "4553 São Paulo 16 1 1 0 1 not acept not furnished 0 850 9 11 870\n", + "4554 Rio de Janeiro 192 3 2 1 - acept not furnished 0 4500 350 69 4919\n", + "4555 São Paulo 196 2 3 3 8 acept not furnished 3210 5500 73 70 8853\n", + "4556 São Paulo 45 1 1 1 3 not acept furnished 800 4000 84 51 4935\n", + "4557 São Paulo 40 1 1 0 3 acept not furnished 300 1100 0 14 1414\n", + "4558 São Paulo 289 3 3 2 6 not acept not furnished 2850 15000 777 191 18820\n", + "4559 Campinas 73 3 2 2 6 not acept not furnished 812 1500 204 20 2536\n", + "4560 São Paulo 65 3 1 1 6 acept furnished 550 1900 20 25 2495\n", + "4561 São Paulo 25 1 1 0 3 not acept not furnished 327 1178 27 15 1547\n", + "4562 São Paulo 68 1 1 1 12 acept furnished 4240 6000 584 77 10900\n", + "4563 São Paulo 512 4 6 5 8 acept furnished 7774 3500 2817 45 14140\n", + "4564 São Paulo 100 3 3 2 7 acept furnished 1058 3310 379 42 4789\n", + "4565 São Paulo 41 1 1 1 3 acept furnished 534 2800 133 36 3503\n", + "4566 Rio de Janeiro 80 3 2 0 7 acept not furnished 950 2720 192 36 3898\n", + "4567 São Paulo 53 1 1 0 3 not acept not furnished 170 1680 68 22 1940\n", + "4568 Belo Horizonte 52 2 1 1 5 acept furnished 253 1375 66 19 1713\n", + "4569 Belo Horizonte 130 3 2 2 4 acept not furnished 930 2200 260 30 3420\n", + "4570 São Paulo 87 3 2 0 14 not acept furnished 1078 3500 0 45 4623\n", + "4571 Campinas 55 2 1 1 3 acept not furnished 344 950 20 13 1327\n", + "4572 Porto Alegre 68 1 1 1 1 not acept furnished 445 1300 70 19 1834\n", + "4573 São Paulo 230 3 4 4 12 not acept not furnished 2200 6500 750 83 9533\n", + "4574 Porto Alegre 75 3 2 1 5 acept not furnished 441 1510 90 23 2064\n", + "4575 São Paulo 50 2 1 0 2 not acept not furnished 1000 1000 45 13 2058\n", + "4576 São Paulo 465 4 4 4 3 acept not furnished 4500 6500 1167 83 12250\n", + "4577 Campinas 346 5 5 2 - acept not furnished 0 3800 407 58 4265\n", + "4578 Campinas 113 3 3 2 4 acept not furnished 1000 3804 0 49 4853\n", + "4579 Rio de Janeiro 75 1 2 1 3 acept not furnished 1600 4300 209 56 6165\n", + "4580 São Paulo 125 3 3 2 2 acept not furnished 2250 3250 500 42 6042\n", + "4581 São Paulo 35 1 1 0 1 not acept not furnished 0 1230 0 16 1246\n", + "4582 São Paulo 34 1 1 0 9 acept not furnished 310 4600 55 59 5024\n", + "4583 São Paulo 200 5 2 3 - acept not furnished 0 4800 300 73 5173\n", + "4584 São Paulo 215 4 4 3 6 acept not furnished 3800 3400 1084 44 8328\n", + "4585 São Paulo 92 3 2 2 7 acept not furnished 880 3100 253 40 4273\n", + "4586 Belo Horizonte 70 3 2 1 2 acept not furnished 500 1250 86 17 1853\n", + "4587 São Paulo 61 2 1 0 1 not acept not furnished 230 1220 25 16 1491\n", + "4588 São Paulo 37 1 1 0 6 acept not furnished 555 1100 37 14 1706\n", + "4589 Rio de Janeiro 30 1 1 0 8 acept not furnished 0 2600 21 19 2640\n", + "4590 Belo Horizonte 65 3 1 1 2 acept not furnished 220 850 59 12 1141\n", + "4591 Porto Alegre 40 1 1 0 2 acept furnished 0 1630 4 24 1658\n", + "4592 Porto Alegre 52 2 1 1 1 not acept not furnished 205 750 18 11 984\n", + "4593 São Paulo 39 1 1 1 15 acept furnished 356 2200 60 28 2644\n", + "4594 São Paulo 350 3 3 8 - acept not furnished 0 9240 1042 139 10420\n", + "4595 Rio de Janeiro 70 2 1 0 10 not acept furnished 800 2900 200 38 3938\n", + "4596 Campinas 140 3 3 2 8 acept not furnished 1100 2330 198 30 3658\n", + "4597 São Paulo 70 2 1 0 - acept not furnished 0 999 42 16 1057\n", + "4598 Belo Horizonte 60 1 2 1 7 acept not furnished 2200 2200 0 30 4430\n", + "4599 São Paulo 100 3 1 0 6 acept furnished 805 3900 120 50 4875\n", + "4600 Porto Alegre 53 2 1 0 3 acept not furnished 234 1560 0 23 1817\n", + "4601 São Paulo 170 2 3 3 6 not acept furnished 2500 5950 417 76 8943\n", + "4602 Porto Alegre 270 3 2 2 - acept not furnished 0 2350 213 42 2605\n", + "4603 São Paulo 68 2 2 1 14 acept not furnished 600 4900 167 63 5730\n", + "4604 São Paulo 58 2 2 2 10 acept not furnished 770 1450 70 19 2309\n", + "4605 Campinas 73 3 2 1 9 acept not furnished 635 1600 100 21 2356\n", + "4606 São Paulo 20 1 1 0 3 acept furnished 602 1800 130 23 2555\n", + "4607 Porto Alegre 60 2 1 1 2 acept not furnished 310 950 0 14 1274\n", + "4608 São Paulo 65 3 2 0 2 acept furnished 1000 3200 245 41 4486\n", + "4609 Belo Horizonte 32 1 1 0 - not acept furnished 550 1300 0 18 1868\n", + "4610 Rio de Janeiro 80 2 2 0 8 acept furnished 650 1700 100 22 2472\n", + "4611 Porto Alegre 50 1 1 0 1 acept not furnished 0 650 80 10 740\n", + "4612 São Paulo 65 2 2 1 3 acept not furnished 650 2800 209 36 3695\n", + "4613 Porto Alegre 129 2 2 2 9 acept furnished 1200 6800 209 100 8309\n", + "4614 São Paulo 145 2 2 1 3 acept furnished 670 4300 72 55 5097\n", + "4615 Campinas 48 1 1 1 6 not acept not furnished 565 736 0 10 1311\n", + "4616 São Paulo 38 1 1 1 12 acept furnished 580 2000 100 26 2706\n", + "4617 Belo Horizonte 520 5 5 2 15 not acept not furnished 1870 15000 780 200 17850\n", + "4618 Belo Horizonte 184 3 3 1 2 acept not furnished 400 1200 132 16 1748\n", + "4619 São Paulo 130 2 3 2 4 not acept not furnished 1600 4000 417 51 6068\n", + "4620 Rio de Janeiro 26 1 1 0 10 acept not furnished 963 1500 58 20 2541\n", + "4621 São Paulo 350 7 4 2 - not acept not furnished 0 8000 1250 121 9371\n", + "4622 Porto Alegre 38 1 1 0 15 acept not furnished 210 1300 38 19 1567\n", + "4623 Porto Alegre 194 2 3 0 3 acept not furnished 700 3310 333 49 4392\n", + "4624 São Paulo 160 3 3 2 1 acept furnished 1990 12650 360 161 15160\n", + "4625 Belo Horizonte 32 1 1 1 9 acept not furnished 197 1500 132 20 1849\n", + "4626 Rio de Janeiro 175 4 1 0 - acept not furnished 0 2146 197 33 2376\n", + "4627 São Paulo 26 1 1 1 9 acept furnished 1570 1700 223 22 3515\n", + "4628 Campinas 66 2 1 1 - acept furnished 340 1050 47 14 1451\n", + "4629 São Paulo 83 3 2 1 9 not acept furnished 805 3300 80 42 4227\n", + "4630 São Paulo 50 1 1 0 3 acept not furnished 360 2800 0 36 3196\n", + "4631 São Paulo 400 3 6 3 - acept not furnished 0 4780 817 72 5669\n", + "4632 São Paulo 30 1 1 1 3 acept furnished 700 3300 9 42 4051\n", + "4633 São Paulo 92 3 2 1 3 acept not furnished 1500 2000 195 26 3721\n", + "4634 Belo Horizonte 156 7 2 1 3 acept not furnished 350 2200 187 30 2767\n", + "4635 São Paulo 150 3 4 3 4 acept not furnished 2080 1980 648 26 4734\n", + "4636 Rio de Janeiro 25 1 1 0 4 acept not furnished 50 550 0 8 608\n", + "4637 Rio de Janeiro 60 2 1 1 14 acept not furnished 742 1450 236 19 2447\n", + "4638 São Paulo 40 1 1 1 3 not acept furnished 600 2300 34 30 2964\n", + "4639 São Paulo 180 4 4 2 2 acept not furnished 2600 2000 584 26 5210\n", + "4640 São Paulo 230 3 2 3 - not acept not furnished 0 4500 367 68 4935\n", + "4641 São Paulo 70 2 2 0 6 acept not furnished 900 1850 50 24 2824\n", + "4642 São Paulo 70 1 2 1 - acept not furnished 0 1500 125 23 1648\n", + "4643 São Paulo 380 4 4 2 - acept not furnished 0 5500 1000 83 6583\n", + "4644 Porto Alegre 80 2 2 2 21 acept not furnished 1380 3670 163 54 5267\n", + "4645 Campinas 66 2 2 1 2 not acept furnished 536 2270 76 29 2911\n", + "4646 São Paulo 86 2 1 1 5 acept not furnished 995 2500 0 32 3527\n", + "4647 Porto Alegre 80 3 2 1 2 acept not furnished 200 1739 25 26 1990\n", + "4648 Porto Alegre 84 3 2 1 1 acept not furnished 750 1600 109 24 2483\n", + "4649 São Paulo 262 3 5 3 4 acept not furnished 2130 5525 1000 71 8726\n", + "4650 Belo Horizonte 90 3 1 1 1 acept not furnished 277 1430 99 20 1826\n", + "4651 Belo Horizonte 160 3 3 3 - not acept not furnished 0 4500 350 74 4924\n", + "4652 São Paulo 58 2 2 1 14 acept not furnished 480 2100 88 27 2695\n", + "4653 São Paulo 165 3 3 2 3 acept furnished 1663 6000 502 77 8242\n", + "4654 São Paulo 48 1 1 0 5 acept not furnished 650 1490 0 19 2159\n", + "4655 São Paulo 112 3 2 3 - acept not furnished 0 3300 32 50 3382\n", + "4656 São Paulo 110 3 2 2 11 acept not furnished 1179 3500 205 45 4929\n", + "4657 Belo Horizonte 72 2 2 2 14 acept not furnished 568 5300 375 71 6314\n", + "4658 Rio de Janeiro 65 1 1 0 - acept not furnished 300 1800 30 24 2154\n", + "4659 Belo Horizonte 150 3 1 1 4 acept not furnished 250 780 0 11 1041\n", + "4660 São Paulo 65 3 2 1 15 not acept not furnished 500 1900 29 25 2454\n", + "4661 Porto Alegre 90 3 1 1 3 acept not furnished 350 1550 0 23 1923\n", + "4662 Porto Alegre 66 2 2 0 4 acept not furnished 250 1600 0 24 1874\n", + "4663 São Paulo 117 2 3 3 15 acept not furnished 1500 9000 560 115 11180\n", + "4664 Rio de Janeiro 80 3 2 0 1 not acept not furnished 978 2870 180 37 4065\n", + "4665 Rio de Janeiro 64 2 1 0 3 acept not furnished 210 900 38 12 1160\n", + "4666 São Paulo 64 1 1 0 9 acept not furnished 500 1750 0 23 2273\n", + "4667 São Paulo 55 1 1 0 - acept not furnished 0 1650 0 25 1675\n", + "4668 Porto Alegre 70 2 1 1 11 acept not furnished 400 1350 28 20 1798\n", + "4669 São Paulo 74 2 3 2 26 acept not furnished 450 3200 40 41 3731\n", + "4670 São Paulo 126 3 4 1 3 acept not furnished 1980 4000 309 51 6340\n", + "4671 São Paulo 480 4 5 3 - acept not furnished 0 15000 742 226 15970\n", + "4672 Belo Horizonte 97 3 3 1 1 not acept not furnished 320 1300 109 18 1747\n", + "4673 Porto Alegre 76 2 2 1 3 acept not furnished 250 2200 70 33 2553\n", + "4674 Rio de Janeiro 102 3 1 1 5 acept not furnished 1897 1500 137 20 3554\n", + "4675 Belo Horizonte 200 4 3 2 - acept not furnished 0 5700 236 94 6030\n", + "4676 São Paulo 38 1 1 0 - acept furnished 150 1900 5 25 2080\n", + "4677 São Paulo 400 4 5 3 3 acept furnished 4670 6000 1195 77 11940\n", + "4678 São Paulo 200 3 1 2 - acept not furnished 0 3000 0 46 3046\n", + "4679 Belo Horizonte 80 3 2 0 5 not acept not furnished 280 1500 112 20 1912\n", + "4680 Campinas 80 3 1 4 - acept not furnished 0 5500 0 83 5583\n", + "4681 Belo Horizonte 200 4 3 2 - acept not furnished 0 14500 403 238 15140\n", + "4682 São Paulo 36 1 1 0 8 not acept not furnished 284 1650 0 21 1955\n", + "4683 São Paulo 151 3 3 3 1 acept furnished 1800 3950 750 51 6551\n", + "4684 São Paulo 49 2 2 1 5 acept not furnished 432 2400 55 31 2918\n", + "4685 São Paulo 51 1 1 0 9 acept not furnished 367 1700 84 22 2173\n", + "4686 Porto Alegre 80 3 2 1 6 not acept not furnished 557 2700 84 40 3381\n", + "4687 Campinas 55 2 1 1 1 acept not furnished 422 870 90 12 1394\n", + "4688 São Paulo 110 2 2 1 1 acept not furnished 550 2700 121 35 3406\n", + "4689 Belo Horizonte 30 1 1 1 2 not acept furnished 0 860 0 12 872\n", + "4690 Campinas 60 2 1 1 3 acept not furnished 200 1100 84 14 1398\n", + "4691 São Paulo 830 2 2 2 - acept not furnished 0 2001 159 31 2191\n", + "4692 São Paulo 140 3 2 2 23 not acept furnished 900 5000 142 64 6106\n", + "4693 Belo Horizonte 70 3 1 1 1 not acept not furnished 190 1150 0 16 1356\n", + "4694 São Paulo 140 3 2 0 2 acept not furnished 2450 7000 542 89 10080\n", + "4695 Rio de Janeiro 90 2 2 0 13 not acept furnished 1002 6000 70 78 7150\n", + "4696 Rio de Janeiro 85 3 2 1 8 acept not furnished 770 2300 115 30 3215\n", + "4697 Rio de Janeiro 150 3 3 1 1 not acept not furnished 2400 4000 334 52 6786\n", + "4698 Rio de Janeiro 70 2 1 0 2 not acept not furnished 150 950 30 13 1143\n", + "4699 São Paulo 205 3 3 4 8 acept furnished 2700 8500 788 108 12100\n", + "4700 Belo Horizonte 167 4 3 3 4 not acept not furnished 500 5140 167 69 5876\n", + "4701 Porto Alegre 47 1 1 1 1 not acept furnished 400 2200 0 33 2633\n", + "4702 Porto Alegre 63 2 2 1 13 acept not furnished 480 2000 56 30 2566\n", + "4703 Rio de Janeiro 18 1 1 0 14 not acept not furnished 521 1040 95 14 1670\n", + "4704 Rio de Janeiro 187 2 3 3 14 acept not furnished 1600 3100 292 40 5032\n", + "4705 São Paulo 79 3 2 2 3 acept not furnished 995 2200 146 28 3369\n", + "4706 Porto Alegre 44 1 1 0 5 acept not furnished 350 769 35 12 1166\n", + "4707 São Paulo 90 2 3 1 2 acept not furnished 574 2100 0 27 2701\n", + "4708 São Paulo 220 4 2 1 2 not acept not furnished 1340 6000 17 77 7434\n", + "4709 Campinas 100 2 1 0 16 acept not furnished 550 900 61 12 1523\n", + "4710 São Paulo 120 3 4 3 4 acept not furnished 1300 4440 289 57 6086\n", + "4711 Belo Horizonte 180 4 3 3 10 acept not furnished 2397 4500 520 60 7477\n", + "4712 Rio de Janeiro 253 4 3 1 5 acept not furnished 2000 3000 600 39 5639\n", + "4713 São Paulo 50 2 1 0 - not acept not furnished 0 900 50 14 964\n", + "4714 Belo Horizonte 120 2 3 1 4 acept not furnished 350 1800 0 24 2174\n", + "4715 São Paulo 220 4 2 2 3 not acept not furnished 2560 8000 650 102 11310\n", + "4716 São Paulo 140 2 1 0 13 acept not furnished 900 2200 0 28 3128\n", + "4717 Rio de Janeiro 180 4 2 2 3 not acept not furnished 2043 7500 409 97 10050\n", + "4718 São Paulo 170 3 5 3 7 not acept not furnished 2091 4500 951 19 7561\n", + "4719 São Paulo 250 5 3 6 - acept not furnished 0 15000 2704 226 17930\n", + "4720 Rio de Janeiro 70 1 2 1 3 acept not furnished 1200 2200 149 29 3578\n", + "4721 Rio de Janeiro 60 1 1 0 1 acept not furnished 350 1000 0 13 1363\n", + "4722 São Paulo 380 4 2 6 - acept not furnished 0 9800 525 148 10470\n", + "4723 São Paulo 32 1 1 1 3 not acept furnished 480 2150 0 28 2658\n", + "4724 Porto Alegre 116 3 2 2 4 acept not furnished 670 3400 200 50 4320\n", + "4725 Rio de Janeiro 19 1 1 0 3 acept not furnished 310 500 45 7 862\n", + "4726 Campinas 140 3 2 1 5 acept not furnished 980 2000 221 26 3227\n", + "4727 São Paulo 500 4 3 5 - not acept furnished 0 12000 84 181 12270\n", + "4728 Porto Alegre 80 2 1 0 - acept not furnished 0 950 0 17 967\n", + "4729 Rio de Janeiro 64 2 1 0 - not acept not furnished 0 1700 78 26 1804\n", + "4730 São Paulo 20 1 1 0 - acept furnished 0 2060 0 27 2087\n", + "4731 São Paulo 237 4 4 4 4 acept not furnished 3100 4990 1031 64 9185\n", + "4732 São Paulo 190 4 4 3 17 acept not furnished 2263 6000 899 77 9239\n", + "4733 Rio de Janeiro 28 1 1 0 2 acept not furnished 200 1600 0 21 1821\n", + "4734 Campinas 46 2 1 1 3 not acept not furnished 250 1100 53 5 1408\n", + "4735 Porto Alegre 120 3 2 2 2 not acept not furnished 600 2000 121 30 2751\n", + "4736 São Paulo 76 2 1 1 - acept not furnished 0 2000 45 31 2076\n", + "4737 São Paulo 142 3 2 1 14 acept not furnished 1950 8500 194 108 10750\n", + "4738 Rio de Janeiro 296 3 2 1 12 acept not furnished 1400 13500 848 174 15920\n", + "4739 Belo Horizonte 365 4 6 6 - acept not furnished 490 13000 459 214 14160\n", + "4740 Rio de Janeiro 125 4 2 2 2 not acept not furnished 1676 4500 40 58 6274\n", + "4741 Campinas 55 2 1 1 2 acept not furnished 450 1550 83 20 2103\n", + "4742 São Paulo 400 6 4 3 - acept not furnished 0 3999 2250 61 6310\n", + "4743 São Paulo 50 1 1 0 - acept furnished 464 1190 114 18 1786\n", + "4744 São Paulo 36 1 1 0 6 acept not furnished 423 2680 47 34 3184\n", + "4745 Porto Alegre 48 1 1 1 12 acept furnished 950 2500 0 37 3487\n", + "4746 Porto Alegre 38 1 1 0 6 acept furnished 530 850 34 13 1427\n", + "4747 Porto Alegre 94 1 1 1 2 acept not furnished 700 4800 250 71 5821\n", + "4748 São Paulo 49 2 1 1 10 not acept not furnished 513 1890 0 24 2427\n", + "4749 Rio de Janeiro 60 2 1 1 2 acept not furnished 300 1300 53 17 1670\n", + "4750 Campinas 70 2 3 1 7 acept not furnished 1196 2004 0 26 3226\n", + "4751 São Paulo 75 3 2 1 16 acept not furnished 670 1539 0 20 2229\n", + "4752 São Paulo 54 1 1 0 8 acept furnished 500 3949 0 51 4500\n", + "4753 São Paulo 50 1 1 0 11 acept furnished 370 3398 177 44 3989\n", + "4754 Rio de Janeiro 81 2 3 2 7 not acept furnished 1010 5500 1800 71 8381\n", + "4755 São Paulo 750 4 6 2 - acept not furnished 0 15000 2041 226 17270\n", + "4756 São Paulo 20 1 1 0 4 acept furnished 602 1800 130 23 2555\n", + "4757 São Paulo 100 2 3 2 9 acept not furnished 0 12960 0 165 13130\n", + "4758 São Paulo 49 1 1 1 1 not acept not furnished 545 1200 0 16 1761\n", + "4759 São Paulo 20 1 1 0 1 not acept not furnished 0 1000 84 13 1097\n", + "4760 Rio de Janeiro 80 2 1 0 3 acept not furnished 871 600 94 8 1573\n", + "4761 Rio de Janeiro 156 3 2 3 9 acept not furnished 1200 2200 167 29 3596\n", + "4762 São Paulo 287 3 3 4 - acept not furnished 900 4477 900 68 6345\n", + "4763 Belo Horizonte 130 4 4 3 16 not acept not furnished 1778 5200 529 70 7577\n", + "4764 Porto Alegre 302 4 4 3 2 acept not furnished 2100 8973 750 132 11960\n", + "4765 São Paulo 35 1 1 0 5 not acept not furnished 400 1740 50 23 2213\n", + "4766 São Paulo 90 2 1 0 1 acept not furnished 255 1990 0 26 2271\n", + "4767 São Paulo 81 2 1 1 4 not acept not furnished 1121 3910 340 50 5421\n", + "4768 Rio de Janeiro 40 2 1 0 2 acept not furnished 480 1417 84 18 1999\n", + "4769 São Paulo 60 2 1 1 4 acept not furnished 750 1841 77 7 2675\n", + "4770 Rio de Janeiro 25 1 1 0 11 not acept furnished 350 2928 34 38 3350\n", + "4771 São Paulo 700 5 7 5 - acept not furnished 0 15000 2240 226 17470\n", + "4772 São Paulo 237 3 5 3 8 acept furnished 2200 5500 917 70 8687\n", + "4773 São Paulo 162 2 2 1 13 acept not furnished 1804 5000 545 64 7413\n", + "4774 São Paulo 190 4 3 2 - not acept furnished 0 8311 415 125 8851\n", + "4775 Campinas 46 1 1 0 5 acept furnished 1300 1950 0 25 3275\n", + "4776 São Paulo 172 3 4 3 1 acept not furnished 1596 8000 820 102 10520\n", + "4777 São Paulo 236 4 5 5 5 acept not furnished 2827 5000 1261 64 9152\n", + "4778 São Paulo 100 3 1 2 - not acept not furnished 0 1600 84 25 1709\n", + "4779 Belo Horizonte 80 1 1 0 11 acept not furnished 350 1000 0 14 1364\n", + "4780 São Paulo 335 3 4 4 - acept furnished 0 6200 650 94 6944\n", + "4781 São Paulo 190 3 2 1 - acept not furnished 0 4100 84 62 4246\n", + "4782 Rio de Janeiro 207 4 3 1 5 acept not furnished 1500 4240 542 55 6337\n", + "4783 Porto Alegre 72 2 2 1 3 acept furnished 300 2000 109 30 2439\n", + "4784 Porto Alegre 102 3 2 1 9 acept furnished 1050 4000 125 59 5234\n", + "4785 São Paulo 50 1 1 0 - not acept not furnished 0 880 17 14 911\n", + "4786 São Paulo 150 3 4 0 4 acept not furnished 1200 5900 475 75 7650\n", + "4787 Belo Horizonte 220 4 3 2 2 acept not furnished 1200 3500 271 47 5018\n", + "4788 São Paulo 150 3 3 1 9 acept not furnished 1700 13000 305 165 15170\n", + "4789 Rio de Janeiro 110 3 2 1 2 acept not furnished 800 2100 155 28 3083\n", + "4790 São Paulo 300 4 4 4 19 acept furnished 2800 9000 1667 115 13580\n", + "4791 Porto Alegre 29 1 1 0 2 acept not furnished 148 1380 15 21 1564\n", + "4792 São Paulo 40 1 1 0 5 acept not furnished 578 2300 0 30 2908\n", + "4793 São Paulo 500 4 5 3 - not acept furnished 550 13500 3334 172 17560\n", + "4794 São Paulo 45 1 1 1 2 acept not furnished 565 2300 0 30 2895\n", + "4795 Rio de Janeiro 75 2 2 1 8 acept not furnished 684 1800 84 24 2592\n", + "4796 São Paulo 80 2 2 1 9 acept furnished 767 3200 213 41 4221\n", + "4797 Porto Alegre 65 2 1 0 5 acept not furnished 550 850 34 13 1447\n", + "4798 São Paulo 400 5 5 4 - acept furnished 3200 6141 817 93 10250\n", + "4799 São Paulo 49 1 1 2 8 acept furnished 2000 8000 217 102 10320\n", + "4800 São Paulo 70 2 1 0 12 acept furnished 715 2100 114 27 2956\n", + "4801 São Paulo 130 4 2 6 - acept not furnished 0 6100 512 92 6704\n", + "4802 São Paulo 146 3 4 3 4 acept not furnished 2100 6000 584 77 8761\n", + "4803 Porto Alegre 64 2 1 0 7 acept furnished 650 2000 57 30 2737\n", + "4804 São Paulo 63 3 2 1 8 acept not furnished 440 3300 10 42 3792\n", + "4805 Belo Horizonte 46 2 1 1 2 acept not furnished 300 850 62 12 1224\n", + "4806 São Paulo 90 2 1 0 - acept not furnished 0 1199 42 19 1260\n", + "4807 São Paulo 573 4 5 7 - acept furnished 0 14000 1974 211 16190\n", + "4808 São Paulo 38 1 1 0 6 acept not furnished 0 1680 0 22 1702\n", + "4809 Belo Horizonte 70 2 1 1 4 acept furnished 600 1500 125 20 2245\n", + "4810 Belo Horizonte 23 1 1 0 2 not acept not furnished 210 950 50 13 1223\n", + "4811 São Paulo 84 2 2 1 - acept not furnished 0 2000 109 31 2140\n", + "4812 Rio de Janeiro 40 1 1 1 11 not acept furnished 575 2500 128 33 3236\n", + "4813 São Paulo 1600 4 5 12 - acept not furnished 1 6900 5000 104 12010\n", + "4814 Belo Horizonte 200 5 3 2 - acept not furnished 0 2300 170 38 2508\n", + "4815 São Paulo 100 3 2 0 - acept not furnished 0 3000 172 46 3218\n", + "4816 Porto Alegre 69 2 2 0 3 acept not furnished 334 1500 40 22 1896\n", + "4817 São Paulo 92 3 2 2 4 acept not furnished 0 2800 179 36 3015\n", + "4818 São Paulo 120 3 2 4 8 acept not furnished 1365 4500 398 58 6321\n", + "4819 Belo Horizonte 90 3 2 2 7 not acept not furnished 1080 2500 348 34 3962\n", + "4820 São Paulo 53 2 1 1 8 acept furnished 720 3250 67 42 4079\n", + "4821 São Paulo 300 3 3 4 - acept not furnished 1 3700 950 56 4707\n", + "4822 São Paulo 65 2 2 2 21 acept not furnished 650 3200 234 41 4125\n", + "4823 Belo Horizonte 269 4 3 2 - acept not furnished 0 4900 357 81 5338\n", + "4824 Campinas 130 3 2 1 7 acept not furnished 1000 2500 100 32 3632\n", + "4825 São Paulo 248 3 4 4 9 acept not furnished 4094 5500 146 70 9810\n", + "4826 Belo Horizonte 45 1 1 1 6 not acept not furnished 251 1300 101 18 1670\n", + "4827 São Paulo 130 3 1 2 - acept not furnished 0 3800 130 58 3988\n", + "4828 Porto Alegre 75 2 1 0 10 acept not furnished 600 1100 60 17 1777\n", + "4829 Rio de Janeiro 250 2 4 8 - acept not furnished 0 4500 325 69 4894\n", + "4830 São Paulo 35 1 1 1 7 acept furnished 715 2370 0 31 3116\n", + "4831 Rio de Janeiro 130 3 3 1 13 acept not furnished 1510 2700 260 35 4505\n", + "4832 São Paulo 30 1 1 0 6 acept furnished 450 1700 0 22 2172\n", + "4833 São Paulo 200 3 4 3 8 acept not furnished 1700 6800 667 87 9254\n", + "4834 São Paulo 40 1 1 0 1 acept not furnished 0 900 155 12 1067\n", + "4835 Rio de Janeiro 113 3 1 0 3 acept furnished 1500 4000 385 52 5937\n", + "4836 Rio de Janeiro 100 2 2 2 4 acept not furnished 1439 5500 233 71 7243\n", + "4837 São Paulo 52 2 1 1 9 acept not furnished 480 1150 55 15 1700\n", + "4838 São Paulo 34 1 1 1 4 not acept not furnished 475 2200 77 28 2780\n", + "4839 São Paulo 73 3 2 3 2 acept not furnished 1100 1250 155 16 2521\n", + "4840 Belo Horizonte 210 4 5 3 4 acept not furnished 1635 5200 606 70 7511\n", + "4841 Campinas 219 4 5 2 4 acept furnished 1954 3800 472 49 6275\n", + "4842 Belo Horizonte 70 3 2 1 4 acept not furnished 370 1600 113 22 2105\n", + "4843 Porto Alegre 65 1 2 2 3 acept not furnished 500 2500 0 37 3037\n", + "4844 São Paulo 52 1 1 0 3 not acept furnished 218 2585 0 10 2813\n", + "4845 Campinas 80 2 1 1 6 not acept not furnished 498 1000 75 13 1586\n", + "4846 Rio de Janeiro 74 2 1 1 10 acept not furnished 701 1768 34 23 2526\n", + "4847 São Paulo 35 1 1 1 11 acept not furnished 470 2500 22 32 3024\n", + "4848 Campinas 70 1 1 2 - acept not furnished 0 1450 5 22 1477\n", + "4849 Porto Alegre 193 4 3 4 - acept furnished 0 4000 125 72 4197\n", + "4850 São Paulo 50 1 1 0 - acept not furnished 0 700 45 11 756\n", + "4851 Rio de Janeiro 55 2 2 1 5 not acept not furnished 720 850 58 11 1639\n", + "4852 Campinas 44 1 1 0 8 acept furnished 310 770 12 10 1102\n", + "4853 São Paulo 68 2 1 1 9 acept not furnished 706 1700 0 22 2428\n", + "4854 Belo Horizonte 300 3 2 1 2 acept not furnished 600 2300 267 31 3198\n", + "4855 Belo Horizonte 70 1 1 0 - acept not furnished 0 800 153 14 967\n", + "4856 São Paulo 300 4 4 2 - acept not furnished 0 8500 267 128 8895\n", + "4857 Belo Horizonte 203 4 3 3 11 not acept not furnished 2500 6400 971 86 9957\n", + "4858 São Paulo 45 2 2 0 - not acept not furnished 0 1650 84 25 1759\n", + "4859 São Paulo 240 3 4 3 8 acept not furnished 2900 7000 1225 89 11210\n", + "4860 Porto Alegre 100 2 3 2 3 acept furnished 350 2600 100 38 3088\n", + "4861 Porto Alegre 137 3 2 3 5 acept not furnished 500 2800 150 41 3491\n", + "4862 São Paulo 61 2 2 1 1 acept not furnished 885 2000 130 26 3041\n", + "4863 Porto Alegre 60 2 2 1 4 acept not furnished 375 1500 0 22 1897\n", + "4864 São Paulo 13 1 1 0 1 acept not furnished 0 2200 5 28 2233\n", + "4865 São Paulo 98 2 2 0 21 acept furnished 1552 9000 375 115 11040\n", + "4866 São Paulo 138 2 3 2 22 acept not furnished 1500 9800 545 125 11970\n", + "4867 Belo Horizonte 80 2 2 2 19 not acept not furnished 950 4500 501 60 6011\n", + "4868 Belo Horizonte 30 1 1 0 2 acept not furnished 0 525 25 7 557\n", + "4869 São Paulo 63 2 2 2 10 not acept furnished 783 2000 24 26 2833\n", + "4870 Belo Horizonte 95 2 3 2 4 not acept not furnished 1389 4500 415 60 6364\n", + "4871 São Paulo 54 2 1 1 5 acept furnished 600 1100 192 14 1906\n", + "4872 São Paulo 35 1 1 1 24 acept furnished 540 2100 140 27 2807\n", + "4873 Porto Alegre 44 1 1 0 2 acept furnished 316 1163 49 17 1545\n", + "4874 Rio de Janeiro 140 2 3 2 7 acept not furnished 2400 6500 667 84 9651\n", + "4875 São Paulo 70 2 1 0 - acept not furnished 0 1700 255 26 1981\n", + "4876 Belo Horizonte 162 3 3 2 3 acept not furnished 380 2800 125 38 3343\n", + "4877 São Paulo 420 4 4 4 19 acept not furnished 4900 11050 3700 141 19790\n", + "4878 Belo Horizonte 147 4 5 3 3 acept not furnished 1200 2975 293 40 4508\n", + "4879 Campinas 80 1 1 1 7 acept not furnished 550 2800 100 36 3486\n", + "4880 Rio de Janeiro 89 2 2 2 4 acept furnished 1744 3900 266 51 5961\n", + "4881 São Paulo 163 3 3 3 8 acept furnished 1532 2550 417 33 4532\n", + "4882 São Paulo 42 1 1 1 5 acept not furnished 330 2100 107 27 2564\n", + "4883 São Paulo 330 4 5 2 4 acept not furnished 4400 12500 1334 159 18390\n", + "4884 São Paulo 70 1 1 1 2 acept not furnished 300 1200 157 16 1673\n", + "4885 Rio de Janeiro 104 3 2 1 6 acept not furnished 1077 2500 134 33 3744\n", + "4886 Rio de Janeiro 43 1 1 0 7 acept not furnished 1 1400 75 19 1495\n", + "4887 São Paulo 67 2 1 1 2 acept furnished 814 1300 91 17 2222\n", + "4888 São Paulo 450 4 5 6 4 acept not furnished 6600 9900 2600 126 19230\n", + "4889 São Paulo 28 1 1 1 5 acept not furnished 500 1580 0 21 2101\n", + "4890 São Paulo 46 1 1 1 12 not acept furnished 1445 5000 298 64 6807\n", + "4891 São Paulo 34 1 1 1 7 acept furnished 510 3800 0 49 4359\n", + "4892 São Paulo 33 1 1 1 11 not acept furnished 1680 2500 158 32 4370\n", + "4893 Belo Horizonte 70 3 1 0 3 not acept not furnished 275 1200 104 16 1595\n", + "4894 São Paulo 90 3 1 1 2 not acept not furnished 600 2400 0 31 3031\n", + "4895 São Paulo 75 3 3 2 10 acept not furnished 865 2000 192 26 3083\n", + "4896 Belo Horizonte 150 6 5 8 - acept not furnished 0 8000 625 132 8757\n", + "4897 São Paulo 300 3 3 3 - acept not furnished 0 3500 250 53 3803\n", + "4898 Porto Alegre 70 2 2 2 3 not acept not furnished 700 1900 67 28 2695\n", + "4899 Rio de Janeiro 320 3 4 1 11 not acept not furnished 2200 5800 292 75 8367\n", + "4900 Belo Horizonte 800 4 5 0 - acept not furnished 0 4275 200 71 4546\n", + "4901 São Paulo 400 4 7 4 - acept furnished 0 12000 667 181 12850\n", + "4902 São Paulo 288 3 3 3 8 acept not furnished 3032 3325 1295 43 7695\n", + "4903 Rio de Janeiro 90 2 2 1 3 acept not furnished 600 1200 17 16 1833\n", + "4904 São Paulo 209 4 4 3 7 not acept not furnished 4300 3900 1084 50 9334\n", + "4905 São Paulo 55 2 1 1 6 acept not furnished 653 2100 11 27 2791\n", + "4906 São Paulo 280 4 4 7 - acept furnished 890 4000 278 61 5229\n", + "4907 São Paulo 190 4 4 4 14 acept not furnished 2000 8000 1326 102 11430\n", + "4908 São Paulo 20 1 1 0 3 acept furnished 602 1800 130 23 2555\n", + "4909 São Paulo 294 3 6 3 - acept not furnished 0 2400 512 37 2949\n", + "4910 São Paulo 40 1 1 0 - not acept not furnished 0 780 17 12 809\n", + "4911 São Paulo 60 2 1 1 3 acept furnished 600 2230 19 29 2878\n", + "4912 São Paulo 400 4 3 2 - acept not furnished 0 3390 400 43 3833\n", + "4913 São Paulo 350 5 4 8 - not acept not furnished 0 9000 762 136 9898\n", + "4914 Belo Horizonte 68 3 2 1 2 acept not furnished 150 900 76 12 1138\n", + "4915 Porto Alegre 40 1 1 1 - acept not furnished 0 960 15 18 993\n", + "4916 São Paulo 220 3 4 3 1 acept not furnished 2750 5800 1040 74 9664\n", + "4917 São Paulo 200 3 3 3 - acept not furnished 0 7000 737 106 7843\n", + "4918 Campinas 65 2 1 1 7 acept not furnished 550 1100 100 14 1764\n", + "4919 São Paulo 225 4 3 2 - acept furnished 0 4400 290 67 4757\n", + "4920 São Paulo 55 1 1 1 4 not acept furnished 812 3200 0 41 4053\n", + "4921 São Paulo 100 2 2 1 - acept not furnished 0 2800 125 43 2968\n", + "4922 São Paulo 116 4 3 2 8 acept not furnished 1040 2400 330 31 3801\n", + "4923 Rio de Janeiro 59 2 1 0 7 not acept furnished 1400 5000 244 65 6709\n", + "4924 São Paulo 380 3 2 3 5 acept not furnished 3200 15000 917 191 19310\n", + "4925 São Paulo 175 4 3 3 3 acept furnished 1750 13000 850 165 15770\n", + "4926 São Paulo 37 1 1 1 11 acept furnished 800 2800 0 36 3636\n", + "4927 São Paulo 34 1 1 1 2 not acept not furnished 490 1750 77 23 2340\n", + "4928 Rio de Janeiro 58 1 1 1 11 acept not furnished 650 1050 56 14 1770\n", + "4929 São Paulo 72 3 1 1 2 acept not furnished 461 1600 0 21 2082\n", + "4930 Belo Horizonte 135 4 2 2 2 acept not furnished 950 3800 294 51 5095\n", + "4931 Rio de Janeiro 164 4 3 2 5 acept not furnished 1500 5000 412 65 6977\n", + "4932 São Paulo 190 3 3 2 - acept not furnished 0 6800 392 103 7295\n", + "4933 Rio de Janeiro 110 3 1 0 7 acept furnished 950 2530 167 33 3680\n", + "4934 São Paulo 80 2 2 2 - acept furnished 1000 5500 0 70 6570\n", + "4935 Rio de Janeiro 90 3 2 1 5 acept not furnished 973 1500 30 20 2523\n", + "4936 Porto Alegre 54 2 1 1 2 acept not furnished 150 900 100 14 1164\n", + "4937 Rio de Janeiro 100 3 2 1 6 acept not furnished 1300 3800 180 49 5329\n", + "4938 Porto Alegre 37 1 1 0 1 acept not furnished 270 650 23 10 953\n", + "4939 São Paulo 51 1 2 1 3 not acept furnished 1062 2100 27 27 3216\n", + "4940 Campinas 62 2 1 1 - acept not furnished 370 1100 12 14 1496\n", + "4941 São Paulo 70 2 2 2 7 not acept furnished 1726 3950 341 51 6068\n", + "4942 Rio de Janeiro 63 2 1 0 4 acept not furnished 600 1110 0 15 1725\n", + "4943 São Paulo 127 3 2 1 10 acept not furnished 1393 6156 172 78 7799\n", + "4944 São Paulo 230 4 3 2 2 acept not furnished 3200 10000 917 127 14240\n", + "4945 Campinas 102 3 3 1 9 acept not furnished 1100 1500 105 20 2725\n", + "4946 São Paulo 65 2 2 1 11 acept furnished 564 1679 0 22 2265\n", + "4947 Rio de Janeiro 67 2 1 0 2 acept not furnished 590 1500 57 20 2167\n", + "4948 Porto Alegre 56 1 1 0 2 acept not furnished 300 700 34 11 1045\n", + "4949 São Paulo 172 3 3 2 14 acept furnished 2100 7000 834 89 10020\n", + "4950 Porto Alegre 60 2 1 1 - acept not furnished 0 540 0 10 550\n", + "4951 São Paulo 80 2 2 1 8 not acept furnished 1000 4500 250 58 5808\n", + "4952 Campinas 156 4 5 3 3 not acept not furnished 1950 935 200 12 3097\n", + "4953 Campinas 70 1 1 1 11 not acept not furnished 365 1200 40 16 1621\n", + "4954 Rio de Janeiro 125 3 2 0 4 acept not furnished 950 5500 243 71 6764\n", + "4955 Belo Horizonte 90 2 2 2 14 not acept not furnished 950 2600 304 35 3889\n", + "4956 São Paulo 50 2 1 0 - not acept not furnished 0 1100 80 17 1197\n", + "4957 Rio de Janeiro 260 4 3 1 11 acept furnished 2585 5500 1052 71 9208\n", + "4958 São Paulo 249 4 2 2 - acept not furnished 0 4300 57 65 4422\n", + "4959 São Paulo 179 3 5 0 11 acept furnished 2000 14500 975 184 17660\n", + "4960 São Paulo 16 1 1 0 8 not acept not furnished 320 2200 0 28 2548\n", + "4961 Belo Horizonte 350 7 5 5 - acept not furnished 0 9000 0 148 9148\n", + "4962 Rio de Janeiro 28 1 1 0 21 acept not furnished 400 2285 75 30 2790\n", + "4963 São Paulo 102 3 2 2 1 acept not furnished 1300 1900 340 25 3565\n", + "4964 São Paulo 31 1 1 0 6 acept not furnished 200 2614 84 34 2932\n", + "4965 São Paulo 480 4 6 3 - acept not furnished 0 10000 500 151 10650\n", + "4966 São Paulo 290 4 4 4 1 acept not furnished 4900 1000 1659 13 7572\n", + "4967 São Paulo 35 1 1 1 12 not acept furnished 1170 2200 242 28 3640\n", + "4968 São Paulo 24 1 1 0 2 not acept not furnished 500 1420 0 18 1938\n", + "4969 Porto Alegre 70 2 1 1 2 acept furnished 100 1360 100 20 1580\n", + "4970 Rio de Janeiro 55 2 1 1 9 not acept not furnished 800 1500 39 20 2359\n", + "4971 Belo Horizonte 120 3 1 1 2 acept not furnished 900 3000 183 40 4123\n", + "4972 São Paulo 160 3 3 1 11 acept not furnished 1809 3370 250 43 5472\n", + "4973 Campinas 47 1 1 1 9 acept not furnished 470 600 43 8 1121\n", + "4974 São Paulo 95 3 2 2 1 acept not furnished 1100 1600 209 21 2930\n", + "4975 Belo Horizonte 300 4 3 3 3 acept not furnished 1400 7500 469 100 9469\n", + "4976 Belo Horizonte 210 4 3 3 3 acept not furnished 360 3300 150 44 3854\n", + "4977 Porto Alegre 45 1 1 1 18 not acept not furnished 450 2000 100 30 2580\n", + "4978 São Paulo 87 2 1 1 5 acept not furnished 800 1220 46 16 2082\n", + "4979 São Paulo 250 4 4 2 17 acept furnished 2600 6000 500 77 9177\n", + "4980 São Paulo 82 3 2 2 2 acept not furnished 1100 1500 159 20 2779\n", + "4981 Campinas 93 3 2 2 4 acept not furnished 1459 2300 191 30 3980\n", + "4982 São Paulo 142 3 4 3 2 acept not furnished 1200 6000 500 77 7777\n", + "4983 Campinas 74 3 2 1 17 acept not furnished 706 1040 100 14 1860\n", + "4984 Porto Alegre 36 1 1 0 4 not acept furnished 277 1290 87 19 1673\n", + "4985 São Paulo 33 1 1 0 14 acept not furnished 500 3999 0 51 4550\n", + "4986 Rio de Janeiro 80 2 1 0 10 not acept not furnished 700 1000 98 13 1811\n", + "4987 Porto Alegre 90 2 1 1 2 acept furnished 220 1350 53 20 1643\n", + "4988 São Paulo 195 2 3 3 15 acept furnished 2600 9200 250 117 12170\n", + "4989 São Paulo 186 3 2 2 5 acept not furnished 1473 2200 185 28 3886\n", + "4990 São Paulo 275 4 4 3 9 acept not furnished 3300 6800 1250 87 11440\n", + "4991 Belo Horizonte 230 4 4 5 13 acept not furnished 2500 7500 1900 100 12000\n", + "4992 Porto Alegre 42 1 1 1 11 acept not furnished 372 2700 0 40 3112\n", + "4993 Rio de Janeiro 388 4 4 1 2 not acept not furnished 6047 15000 104 194 21350\n", + "4994 São Paulo 94 3 3 2 1 acept not furnished 750 2433 0 31 3593\n", + "4995 São Paulo 260 4 2 2 3 acept not furnished 1715 6000 594 77 8386\n", + "4996 Campinas 65 3 2 1 2 not acept not furnished 620 1100 60 14 1794\n", + "4997 Rio de Janeiro 76 2 1 0 5 acept not furnished 767 1280 57 17 2121\n", + "4998 São Paulo 131 4 4 3 1 not acept furnished 2100 6000 818 77 8995\n", + "4999 São Paulo 225 3 3 4 6 acept furnished 1360 10500 750 134 12740\n", + "5000 Belo Horizonte 71 3 2 2 4 acept not furnished 660 970 149 13 1792\n", + "5001 Belo Horizonte 201 4 4 3 2 acept not furnished 1651 5300 852 71 7874\n", + "5002 Rio de Janeiro 570 3 6 2 11 acept not furnished 3000 14000 334 181 17520\n", + "5003 Porto Alegre 53 2 2 1 3 acept not furnished 360 1275 59 19 1713\n", + "5004 Belo Horizonte 240 4 5 3 4 acept not furnished 912 3500 350 47 4809\n", + "5005 Rio de Janeiro 50 1 1 0 2 acept not furnished 0 2700 100 35 2835\n", + "5006 Porto Alegre 68 2 2 1 2 acept not furnished 400 1800 82 27 2309\n", + "5007 São Paulo 54 1 1 1 13 not acept furnished 679 5000 359 64 6102\n", + "5008 São Paulo 178 2 3 4 1 not acept not furnished 3145 2500 903 32 6580\n", + "5009 Porto Alegre 50 1 1 0 3 acept not furnished 0 1100 0 17 1117\n", + "5010 São Paulo 212 4 3 6 - acept furnished 0 2983 237 45 3265\n", + "5011 São Paulo 380 4 6 4 7 acept not furnished 3570 4900 1193 63 9726\n", + "5012 São Paulo 138 2 2 1 11 acept furnished 1000 7000 89 89 8178\n", + "5013 Belo Horizonte 180 4 3 3 4 not acept not furnished 1947 4200 407 56 6610\n", + "5014 Porto Alegre 43 1 1 1 4 acept not furnished 360 800 82 12 1254\n", + "5015 Rio de Janeiro 48 1 1 1 6 acept furnished 0 2800 0 37 2837\n", + "5016 Rio de Janeiro 180 3 3 0 7 acept furnished 916 7600 378 98 8992\n", + "5017 Campinas 70 1 2 1 6 acept furnished 1500 2500 0 32 4032\n", + "5018 Porto Alegre 155 2 2 2 5 acept not furnished 450 2300 94 34 2878\n", + "5019 São Paulo 262 3 4 4 8 acept not furnished 4844 15000 2050 191 22090\n", + "5020 São Paulo 25 1 1 1 25 acept not furnished 331 2100 64 27 2522\n", + "5021 São Paulo 50 3 1 1 4 not acept not furnished 852 2500 126 32 3510\n", + "5022 São Paulo 108 3 2 1 14 acept not furnished 1714 5000 127 64 6905\n", + "5023 São Paulo 170 3 2 1 14 acept furnished 1700 4500 85 58 6343\n", + "5024 São Paulo 60 1 1 0 - acept not furnished 0 1000 34 16 1050\n", + "5025 São Paulo 78 3 2 2 10 acept not furnished 650 2400 117 31 3198\n", + "5026 Belo Horizonte 170 3 2 0 - acept not furnished 0 5000 320 82 5402\n", + "5027 Rio de Janeiro 20 1 1 0 2 acept not furnished 0 600 0 8 608\n", + "5028 Porto Alegre 500 5 4 4 4 not acept not furnished 2000 4000 1250 59 7309\n", + "5029 São Paulo 248 3 4 4 2 acept not furnished 3163 14000 966 178 18310\n", + "5030 São Paulo 145 3 3 2 7 acept not furnished 1400 5500 0 70 6970\n", + "5031 São Paulo 50 1 1 1 10 not acept furnished 1436 7800 359 99 9694\n", + "5032 Porto Alegre 44 1 2 0 3 acept not furnished 140 1350 10 20 1520\n", + "5033 São Paulo 200 3 2 2 - acept not furnished 0 4500 250 68 4818\n", + "5034 Belo Horizonte 58 2 2 1 5 acept not furnished 400 999 99 14 1512\n", + "5035 São Paulo 280 3 4 4 4 acept not furnished 5000 15000 1500 191 21690\n", + "5036 São Paulo 52 1 1 1 7 acept furnished 1500 3000 292 39 4831\n", + "5037 São Paulo 271 3 3 2 - acept not furnished 0 8000 959 121 9080\n", + "5038 São Paulo 223 4 4 7 - acept not furnished 0 5500 1169 83 6752\n", + "5039 São Paulo 263 4 5 4 21 acept not furnished 2900 12500 1588 159 17150\n", + "5040 Porto Alegre 157 4 3 1 12 acept furnished 1150 3500 169 52 4871\n", + "5041 São Paulo 323 5 5 3 - acept not furnished 0 4800 582 73 5455\n", + "5042 São Paulo 80 2 2 1 - not acept not furnished 0 2188 0 10 2198\n", + "5043 São Paulo 70 2 2 2 1 acept furnished 858 6000 449 77 7384\n", + "5044 Belo Horizonte 74 3 2 1 1 acept not furnished 450 1000 92 14 1556\n", + "5045 Belo Horizonte 66 3 1 2 3 acept not furnished 250 1100 73 15 1438\n", + "5046 São Paulo 80 2 1 1 6 acept not furnished 800 1275 0 17 2092\n", + "5047 Porto Alegre 100 3 2 2 - acept not furnished 0 3000 125 54 3179\n", + "5048 São Paulo 218 4 4 2 1 acept not furnished 2250 5500 692 70 8512\n", + "5049 Rio de Janeiro 73 2 1 1 4 acept not furnished 625 1200 119 16 1960\n", + "5050 Rio de Janeiro 230 4 2 2 1 acept furnished 4000 13000 1839 168 19010\n", + "5051 São Paulo 80 3 5 2 4 not acept not furnished 3460 12000 1000 153 16610\n", + "5052 Belo Horizonte 180 3 3 3 4 acept not furnished 331 4200 227 56 4814\n", + "5053 Rio de Janeiro 85 3 2 1 15 acept not furnished 710 2500 264 33 3507\n", + "5054 São Paulo 37 1 1 0 - not acept not furnished 0 900 75 14 989\n", + "5055 Porto Alegre 65 2 1 0 3 acept not furnished 140 985 21 15 1161\n", + "5056 São Paulo 440 4 3 2 3 acept not furnished 4200 8000 1702 102 14000\n", + "5057 Rio de Janeiro 57 2 1 0 1 acept not furnished 100 1530 0 20 1650\n", + "5058 São Paulo 74 3 2 1 6 acept not furnished 513 1715 100 22 2350\n", + "5059 São Paulo 180 3 4 3 12 acept not furnished 2047 1800 902 23 4772\n", + "5060 São Paulo 198 3 3 0 14 acept not furnished 2070 6000 715 77 8862\n", + "5061 Rio de Janeiro 170 3 4 3 3 acept not furnished 2000 5000 757 65 7822\n", + "5062 São Paulo 240 3 4 3 7 acept furnished 4000 8500 1167 108 13780\n", + "5063 São Paulo 59 2 2 0 5 not acept not furnished 754 1990 25 26 2795\n", + "5064 São Paulo 525 5 4 4 - acept not furnished 0 8330 2167 126 10620\n", + "5065 São Paulo 226 4 4 4 2 acept not furnished 2850 3000 2488 39 8377\n", + "5066 São Paulo 60 2 2 2 - acept not furnished 170 1950 67 30 2217\n", + "5067 Porto Alegre 43 2 1 0 6 not acept not furnished 382 1570 42 23 2017\n", + "5068 São Paulo 158 4 4 3 3 acept not furnished 2100 6600 375 84 9159\n", + "5069 Porto Alegre 42 1 1 1 3 acept furnished 162 1400 17 21 1600\n", + "5070 São Paulo 50 1 1 0 - not acept not furnished 0 1250 34 19 1303\n", + "5071 Belo Horizonte 66 2 1 1 13 acept not furnished 385 550 26 8 969\n", + "5072 São Paulo 39 1 1 1 24 not acept furnished 600 4200 125 54 4979\n", + "5073 São Paulo 64 1 2 1 4 acept furnished 850 3700 185 47 4782\n", + "5074 São Paulo 70 3 2 0 - acept not furnished 0 1500 60 23 1583\n", + "5075 São Paulo 30 1 1 1 9 acept not furnished 1 1930 0 25 1956\n", + "5076 São Paulo 135 3 3 0 1 not acept not furnished 1400 3810 167 49 5426\n", + "5077 São Paulo 170 3 2 1 5 acept not furnished 860 6500 110 83 7553\n", + "5078 Rio de Janeiro 120 3 2 1 3 acept not furnished 1700 7500 334 97 9631\n", + "5079 Belo Horizonte 92 2 1 0 - acept not furnished 0 1200 60 20 1280\n", + "5080 Belo Horizonte 183 4 4 4 8 acept not furnished 1695 9300 803 124 11920\n", + "5081 São Paulo 210 3 3 2 15 not acept furnished 3500 8667 834 110 13110\n", + "5082 Rio de Janeiro 30 1 1 0 8 acept not furnished 456 900 94 12 1462\n", + "5083 Campinas 119 3 3 2 14 acept not furnished 663 5500 133 70 6366\n", + "5084 Rio de Janeiro 298 5 3 2 3 acept not furnished 2200 4100 417 53 6770\n", + "5085 Belo Horizonte 260 3 2 4 - acept not furnished 0 2600 268 43 2911\n", + "5086 Belo Horizonte 201 4 4 4 7 acept not furnished 1800 7300 113 98 9311\n", + "5087 São Paulo 200 3 4 4 - not acept not furnished 0 4000 400 61 4461\n", + "5088 São Paulo 60 2 1 1 7 acept furnished 785 3800 112 49 4746\n", + "5089 Rio de Janeiro 70 2 1 1 - acept not furnished 300 2000 59 31 2390\n", + "5090 São Paulo 135 3 2 1 21 acept furnished 950 7500 77 96 8623\n", + "5091 São Paulo 336 6 2 3 - acept not furnished 0 6350 1125 96 7571\n", + "5092 São Paulo 300 3 4 6 - acept not furnished 0 3200 167 49 3416\n", + "5093 Rio de Janeiro 600 5 5 4 12 acept not furnished 4300 8000 1585 104 13990\n", + "5094 São Paulo 60 3 3 2 - acept not furnished 0 2700 273 41 3014\n", + "5095 São Paulo 254 3 4 4 1 not acept furnished 3100 7000 930 89 11120\n", + "5096 São Paulo 210 3 5 4 6 acept furnished 3301 11900 960 151 16310\n", + "5097 São Paulo 178 3 4 2 4 not acept not furnished 2450 10000 834 127 13410\n", + "5098 São Paulo 45 1 1 0 - not acept not furnished 0 1000 34 16 1050\n", + "5099 Rio de Janeiro 70 3 1 0 3 acept not furnished 474 750 138 10 1372\n", + "5100 São Paulo 181 4 5 3 5 acept not furnished 2100 2600 579 33 5312\n", + "5101 Belo Horizonte 72 2 2 1 4 acept not furnished 370 1700 90 23 2183\n", + "5102 São Paulo 60 2 2 1 21 acept furnished 1600 5550 142 71 7363\n", + "5103 São Paulo 55 2 1 1 3 acept not furnished 496 1800 0 23 2319\n", + "5104 São Paulo 94 1 2 2 2 not acept furnished 1356 13000 384 165 14910\n", + "5105 Rio de Janeiro 210 3 2 1 6 acept not furnished 3200 14080 700 182 18160\n", + "5106 São Paulo 37 1 1 1 21 acept not furnished 541 4000 50 51 4642\n", + "5107 São Paulo 41 2 1 0 16 acept not furnished 270 1200 0 16 1486\n", + "5108 São Paulo 240 3 4 3 1 acept furnished 5100 11000 1834 140 18070\n", + "5109 Porto Alegre 70 2 1 0 12 acept not furnished 500 1105 84 17 1706\n", + "5110 Belo Horizonte 55 3 1 1 3 not acept not furnished 199 800 42 11 1052\n", + "5111 Rio de Janeiro 150 3 1 0 3 acept not furnished 450 1500 0 20 1970\n", + "5112 Rio de Janeiro 55 2 2 1 13 acept not furnished 500 1330 30 18 1878\n", + "5113 São Paulo 390 3 3 2 - acept furnished 0 7500 650 113 8263\n", + "5114 Porto Alegre 73 3 2 1 1 acept not furnished 354 1777 84 26 2241\n", + "5115 Campinas 57 1 1 1 2 acept not furnished 690 2600 131 33 3454\n", + "5116 Rio de Janeiro 93 3 1 0 - acept not furnished 400 1500 70 20 1990\n", + "5117 Rio de Janeiro 88 2 2 2 3 acept not furnished 957 2500 430 33 3920\n", + "5118 São Paulo 330 4 6 3 7 acept not furnished 5457 15000 2475 191 23120\n", + "5119 São Paulo 130 3 3 2 1 acept furnished 1150 2350 255 30 3785\n", + "5120 São Paulo 170 4 3 2 15 not acept furnished 3000 10000 770 127 13900\n", + "5121 São Paulo 220 3 4 4 2 acept not furnished 3167 5500 1084 70 9821\n", + "5122 São Paulo 59 2 1 1 6 acept not furnished 600 1600 0 21 2221\n", + "5123 São Paulo 500 4 4 3 - acept not furnished 0 10800 988 163 11950\n", + "5124 Rio de Janeiro 70 3 2 0 1 acept not furnished 0 1500 50 20 1570\n", + "5125 Rio de Janeiro 55 1 1 1 5 not acept not furnished 538 1250 25 17 1830\n", + "5126 Belo Horizonte 35 1 1 1 5 acept furnished 600 1080 100 15 1795\n", + "5127 São Paulo 33 1 1 1 12 acept furnished 565 3200 123 41 3929\n", + "5128 Belo Horizonte 80 3 2 1 1 acept not furnished 280 1200 97 16 1593\n", + "5129 Belo Horizonte 2000 4 2 3 - acept not furnished 0 4956 200 82 5238\n", + "5130 São Paulo 60 1 1 1 20 not acept furnished 490 3250 131 42 3913\n", + "5131 Porto Alegre 48 2 1 0 1 acept not furnished 400 950 36 14 1400\n", + "5132 Campinas 53 1 1 1 13 acept not furnished 494 650 34 9 1187\n", + "5133 São Paulo 96 3 1 1 10 acept not furnished 1140 2800 0 36 3976\n", + "5134 São Paulo 25 1 1 0 2 not acept furnished 0 1750 0 23 1773\n", + "5135 São Paulo 23 1 1 1 26 acept not furnished 520 2300 59 30 2909\n", + "5136 São Paulo 83 1 1 1 15 not acept furnished 4000 6000 255 77 10330\n", + "5137 Rio de Janeiro 25 1 1 0 1 acept not furnished 50 700 0 10 760\n", + "5138 São Paulo 45 1 1 1 10 not acept furnished 1600 1800 177 23 3600\n", + "5139 Porto Alegre 70 2 2 2 12 acept not furnished 500 1800 0 27 2327\n", + "5140 São Paulo 80 1 1 0 - acept not furnished 0 1200 1 19 1220\n", + "5141 São Paulo 78 1 1 0 2 acept not furnished 420 2522 25 32 2999\n", + "5142 Belo Horizonte 45 1 1 0 1 not acept not furnished 0 1100 8 15 1123\n", + "5143 São Paulo 43 1 1 0 5 acept furnished 1195 680 220 9 2104\n", + "5144 São Paulo 250 5 4 5 6 acept not furnished 2300 2800 800 36 5936\n", + "5145 São Paulo 350 5 6 6 10 acept not furnished 7000 15000 417 191 22610\n", + "5146 Campinas 190 4 4 2 14 acept not furnished 900 3200 192 15 4307\n", + "5147 São Paulo 117 3 4 4 14 acept not furnished 1500 2700 50 35 4285\n", + "5148 Rio de Janeiro 75 2 1 1 6 not acept not furnished 379 580 69 8 1036\n", + "5149 Belo Horizonte 113 4 2 2 11 acept not furnished 1600 4900 489 66 7055\n", + "5150 Porto Alegre 46 1 1 1 2 acept not furnished 380 650 16 10 1056\n", + "5151 São Paulo 100 3 2 1 - acept not furnished 0 3500 98 53 3651\n", + "5152 São Paulo 35 1 1 0 - not acept not furnished 0 500 0 8 508\n", + "5153 São Paulo 300 4 5 1 8 acept furnished 3700 8550 400 109 12760\n", + "5154 Campinas 57 2 1 1 1 acept furnished 370 1000 36 13 1419\n", + "5155 São Paulo 35 1 1 0 6 acept not furnished 285 1600 32 21 1938\n", + "5156 Rio de Janeiro 110 3 2 2 2 acept not furnished 1050 2750 92 36 3928\n", + "5157 São Paulo 106 2 3 2 14 acept furnished 1109 3980 209 51 5349\n", + "5158 Rio de Janeiro 120 3 3 1 3 acept not furnished 1260 3500 147 46 4953\n", + "5159 Porto Alegre 40 1 1 0 5 not acept furnished 0 2000 0 30 2030\n", + "5160 Rio de Janeiro 97 3 1 0 3 acept not furnished 390 2080 100 27 2597\n", + "5161 Rio de Janeiro 160 3 1 2 - acept not furnished 0 2800 151 43 2994\n", + "5162 São Paulo 80 4 4 3 5 acept not furnished 3450 6000 0 77 9527\n", + "5163 São Paulo 297 4 5 5 19 acept not furnished 3182 11700 2482 149 17510\n", + "5164 São Paulo 400 5 4 6 - acept furnished 0 6500 0 98 6598\n", + "5165 Rio de Janeiro 90 3 1 0 2 acept not furnished 250 1500 140 20 1910\n", + "5166 Rio de Janeiro 93 3 3 1 7 acept not furnished 1307 2990 235 39 4571\n", + "5167 São Paulo 37 1 1 1 9 acept furnished 658 2700 145 35 3538\n", + "5168 São Paulo 300 4 2 2 1 acept furnished 3000 6500 1091 83 10670\n", + "5169 São Paulo 217 3 4 3 3 acept not furnished 3400 1900 917 25 6242\n", + "5170 São Paulo 77 3 2 2 14 not acept not furnished 830 6200 205 79 7314\n", + "5171 São Paulo 150 3 4 3 18 not acept furnished 2200 7500 622 54 10380\n", + "5172 São Paulo 60 2 1 0 10 acept not furnished 453 1654 0 21 2128\n", + "5173 São Paulo 140 3 2 1 13 acept not furnished 1141 2900 148 37 4226\n", + "5174 Belo Horizonte 96 3 2 1 6 acept not furnished 200 2000 95 27 2322\n", + "5175 São Paulo 55 1 1 1 1 acept furnished 577 5600 80 71 6328\n", + "5176 São Paulo 170 3 2 2 - acept not furnished 0 4200 309 64 4573\n", + "5177 Rio de Janeiro 70 2 2 1 11 acept not furnished 1000 1400 211 19 2630\n", + "5178 São Paulo 400 10 9 8 - acept not furnished 0 8330 550 126 9006\n", + "5179 Belo Horizonte 209 4 4 4 11 acept not furnished 2140 7300 587 98 10130\n", + "5180 Rio de Janeiro 91 2 2 2 3 acept furnished 4495 5500 637 71 10700\n", + "5181 São Paulo 328 3 4 4 18 acept furnished 1382 6000 800 77 8259\n", + "5182 Belo Horizonte 92 3 3 2 2 acept not furnished 300 1600 112 22 2034\n", + "5183 Rio de Janeiro 50 2 1 1 11 acept not furnished 830 1650 0 22 2502\n", + "5184 Rio de Janeiro 85 2 1 0 - acept not furnished 470 2800 217 43 3530\n", + "5185 São Paulo 72 2 2 0 1 acept furnished 700 3000 1 39 3740\n", + "5186 Rio de Janeiro 140 4 2 1 9 acept not furnished 1600 3900 350 51 5901\n", + "5187 São Paulo 70 2 2 1 1 not acept not furnished 390 1500 80 20 1990\n", + "5188 São Paulo 130 3 3 3 5 not acept not furnished 2200 3500 348 45 6093\n", + "5189 São Paulo 387 4 6 6 4 acept not furnished 4246 6647 2235 85 13210\n", + "5190 Campinas 126 3 3 2 1 acept not furnished 780 3600 167 46 4593\n", + "5191 São Paulo 104 3 2 2 1 not acept not furnished 1040 3800 0 49 4889\n", + "5192 São Paulo 550 4 4 4 - acept not furnished 0 14000 1334 211 15550\n", + "5193 São Paulo 51 1 1 0 9 acept not furnished 367 1950 84 25 2426\n", + "5194 Belo Horizonte 140 4 3 3 4 acept not furnished 1200 3400 250 46 4896\n", + "5195 São Paulo 90 2 1 1 1 acept not furnished 1000 3000 50 39 4089\n", + "5196 São Paulo 70 2 2 2 1 acept not furnished 550 1750 209 23 2532\n", + "5197 Rio de Janeiro 140 3 2 1 4 not acept furnished 1600 4000 271 52 5923\n", + "5198 Rio de Janeiro 20 1 1 0 1 acept not furnished 375 1250 30 17 1672\n", + "5199 São Paulo 365 3 5 2 5 acept furnished 1950 8500 899 108 11460\n", + "5200 Porto Alegre 200 2 3 2 12 acept furnished 1800 12750 500 187 15240\n", + "5201 São Paulo 40 1 1 0 - not acept not furnished 185 850 41 13 1089\n", + "5202 Campinas 66 1 1 1 2 acept furnished 900 5000 62 64 6026\n", + "5203 São Paulo 161 1 2 2 10 not acept not furnished 2162 7000 54 89 9305\n", + "5204 Rio de Janeiro 75 2 1 0 5 acept not furnished 915 2350 80 31 3376\n", + "5205 Campinas 110 3 1 2 - acept not furnished 0 1900 64 29 1993\n", + "5206 Campinas 82 2 1 1 1 acept not furnished 300 600 105 8 1013\n", + "5207 São Paulo 23 1 1 0 7 acept furnished 430 1800 0 23 2253\n", + "5208 São Paulo 65 3 2 1 2 acept not furnished 512 1740 135 23 2410\n", + "5209 Porto Alegre 40 1 1 0 1 acept furnished 0 816 0 15 831\n", + "5210 Campinas 129 3 2 2 1 acept not furnished 1411 3310 235 42 4998\n", + "5211 São Paulo 114 1 1 1 6 acept not furnished 987 2800 208 36 4031\n", + "5212 São Paulo 200 2 2 2 - acept not furnished 1 3000 167 46 3214\n", + "5213 Porto Alegre 101 3 2 2 8 acept furnished 541 4200 142 62 4945\n", + "5214 Belo Horizonte 50 2 1 0 - not acept not furnished 0 950 50 16 1016\n", + "5215 São Paulo 400 4 3 2 - acept not furnished 0 8000 1417 121 9538\n", + "5216 São Paulo 71 2 1 1 7 acept not furnished 785 2559 0 32 3376\n", + "5217 Porto Alegre 72 2 1 0 3 not acept not furnished 100 900 42 14 1056\n", + "5218 São Paulo 250 4 4 3 5 not acept furnished 4341 8000 888 102 13330\n", + "5219 Campinas 50 2 1 1 3 acept not furnished 0 1000 0 13 1013\n", + "5220 Campinas 180 3 2 1 11 acept not furnished 1060 2200 201 28 3489\n", + "5221 Porto Alegre 31 1 1 0 4 acept not furnished 250 586 28 9 873\n", + "5222 Rio de Janeiro 86 2 1 0 7 acept not furnished 730 1650 60 22 2462\n", + "5223 Belo Horizonte 200 4 3 2 4 acept not furnished 1164 4000 378 54 5596\n", + "5224 São Paulo 130 3 2 1 6 acept not furnished 1550 5500 300 70 7420\n", + "5225 Porto Alegre 38 1 1 0 10 acept not furnished 330 1800 42 27 2199\n", + "5226 São Paulo 20 1 1 0 1 not acept furnished 0 1950 0 25 1975\n", + "5227 Porto Alegre 140 3 2 2 3 acept furnished 1300 3200 167 47 4714\n", + "5228 Porto Alegre 40 1 1 0 3 acept not furnished 250 930 21 14 1215\n", + "5229 São Paulo 65 2 2 1 8 acept not furnished 956 3800 7 50 4813\n", + "5230 Belo Horizonte 300 5 3 3 - acept not furnished 0 8500 234 140 8874\n", + "5231 Porto Alegre 30 1 1 0 3 not acept not furnished 250 650 30 10 940\n", + "5232 São Paulo 41 1 1 0 3 acept not furnished 350 1760 45 23 2178\n", + "5233 Belo Horizonte 98 3 2 1 2 not acept not furnished 325 1400 116 19 1860\n", + "5234 Campinas 50 1 1 0 11 not acept not furnished 430 702 20 9 1161\n", + "5235 Belo Horizonte 68 2 2 2 5 acept not furnished 1365 3900 9 52 5326\n", + "5236 São Paulo 193 3 3 3 1 not acept not furnished 3100 6500 834 83 10520\n", + "5237 São Paulo 32 1 1 1 15 acept not furnished 350 1880 0 24 2254\n", + "5238 Rio de Janeiro 36 1 1 0 4 acept not furnished 435 1300 0 17 1752\n", + "5239 São Paulo 167 3 1 0 - acept not furnished 0 1500 0 23 1523\n", + "5240 Rio de Janeiro 25 1 1 0 1 acept not furnished 400 2006 67 26 2499\n", + "5241 Rio de Janeiro 55 2 2 1 13 acept not furnished 500 1330 30 18 1878\n", + "5242 São Paulo 50 2 1 1 15 acept not furnished 295 1500 47 20 1862\n", + "5243 Rio de Janeiro 125 2 4 1 2 not acept not furnished 3000 6500 500 84 10080\n", + "5244 Porto Alegre 85 3 2 2 8 acept furnished 700 3400 100 50 4250\n", + "5245 Porto Alegre 170 2 2 0 19 acept furnished 800 2700 184 40 3724\n", + "5246 São Paulo 300 5 6 2 - not acept not furnished 0 8000 800 121 8921\n", + "5247 São Paulo 23 1 1 1 12 acept furnished 600 2800 99 36 3535\n", + "5248 Porto Alegre 160 2 4 2 8 acept not furnished 1500 7000 167 103 8770\n", + "5249 Belo Horizonte 210 3 5 4 3 acept not furnished 2660 7200 169 96 10130\n", + "5250 São Paulo 120 3 3 2 - acept not furnished 0 4200 359 64 4623\n", + "5251 Rio de Janeiro 406 3 4 2 3 acept furnished 3200 15000 1167 194 19560\n", + "5252 Campinas 63 2 1 1 - not acept not furnished 352 1750 90 23 2215\n", + "5253 São Paulo 127 3 4 2 6 not acept furnished 1227 3500 250 45 5022\n", + "5254 São Paulo 90 3 2 2 11 not acept not furnished 3160 5000 384 64 8608\n", + "5255 Belo Horizonte 373 4 5 7 - acept not furnished 0 11500 522 189 12210\n", + "5256 Rio de Janeiro 60 2 1 1 2 acept not furnished 300 1300 53 17 1670\n", + "5257 São Paulo 650 4 6 5 - acept not furnished 0 10000 834 151 10990\n", + "5258 São Paulo 250 3 3 2 7 acept furnished 2750 5500 792 70 9112\n", + "5259 Belo Horizonte 318 4 2 2 - not acept not furnished 0 4500 179 74 4753\n", + "5260 São Paulo 22 1 1 0 - acept not furnished 0 976 0 15 991\n", + "5261 Rio de Janeiro 64 2 1 0 8 acept furnished 950 2700 250 35 3935\n", + "5262 São Paulo 172 4 5 3 9 acept not furnished 2655 5500 943 70 9168\n", + "5263 São Paulo 108 3 3 2 2 not acept not furnished 1265 2200 253 28 3746\n", + "5264 São Paulo 31 1 1 1 11 acept not furnished 520 2700 83 35 3338\n", + "5265 Belo Horizonte 90 2 1 2 1 acept not furnished 311 1800 121 24 2256\n", + "5266 Rio de Janeiro 81 2 1 0 6 acept not furnished 1050 2650 300 35 4035\n", + "5267 Rio de Janeiro 80 2 1 1 10 not acept not furnished 660 1900 50 25 2635\n", + "5268 São Paulo 243 3 2 1 5 acept not furnished 1840 8000 450 102 10390\n", + "5269 Rio de Janeiro 67 2 1 0 6 acept not furnished 1700 6600 249 86 8635\n", + "5270 São Paulo 160 3 1 1 - acept not furnished 0 3000 298 46 3344\n", + "5271 Porto Alegre 67 2 1 1 9 acept not furnished 300 1200 284 18 1802\n", + "5272 São Paulo 90 3 2 3 1 acept not furnished 1018 1500 201 20 2739\n", + "5273 São Paulo 186 4 4 3 11 acept not furnished 1900 5600 584 71 8155\n", + "5274 Rio de Janeiro 15 1 1 0 - acept not furnished 0 700 0 10 710\n", + "5275 Porto Alegre 62 2 2 2 6 acept not furnished 570 1390 60 21 2041\n", + "5276 São Paulo 215 4 6 3 2 acept furnished 2100 5700 959 73 8832\n", + "5277 São Paulo 28 1 1 0 5 acept furnished 255 1764 0 23 2042\n", + "5278 São Paulo 240 4 5 3 4 acept not furnished 3500 15000 1250 191 19940\n", + "5279 São Paulo 70 2 2 1 2 not acept furnished 2274 2980 437 38 5729\n", + "5280 São Paulo 145 2 2 2 10 acept not furnished 2530 7630 538 97 10800\n", + "5281 Porto Alegre 47 1 1 1 1 not acept furnished 400 2200 0 33 2633\n", + "5282 São Paulo 62 2 2 1 9 acept furnished 749 2500 45 32 3326\n", + "5283 Belo Horizonte 270 4 5 6 - acept furnished 0 8000 317 132 8449\n", + "5284 São Paulo 266 3 5 1 15 acept furnished 2075 4320 391 55 6841\n", + "5285 São Paulo 109 1 1 2 5 not acept furnished 1750 11500 479 146 13880\n", + "5286 São Paulo 24 1 1 0 3 acept furnished 450 2020 0 26 2496\n", + "5287 Campinas 80 3 2 2 12 acept not furnished 560 2500 250 32 3342\n", + "5288 São Paulo 500 4 8 4 - acept furnished 0 14000 917 211 15130\n", + "5289 São Paulo 150 3 1 1 9 acept not furnished 1172 4800 294 61 6327\n", + "5290 Belo Horizonte 110 2 2 2 4 not acept not furnished 290 1346 88 10 1734\n", + "5291 São Paulo 110 2 3 2 12 not acept furnished 2000 11500 502 146 14150\n", + "5292 São Paulo 77 3 1 2 10 acept not furnished 953 3500 230 45 4728\n", + "5293 São Paulo 850 5 7 8 1 not acept not furnished 14000 4000 0 51 18050\n", + "5294 Campinas 58 1 1 1 3 acept not furnished 530 1200 0 16 1746\n", + "5295 São Paulo 145 3 3 1 5 acept furnished 2860 6600 555 84 10100\n", + "5296 Porto Alegre 42 1 1 1 7 acept not furnished 415 1200 54 18 1687\n", + "5297 Porto Alegre 62 2 1 1 5 acept not furnished 470 1150 70 17 1707\n", + "5298 São Paulo 65 2 1 0 - acept not furnished 0 1500 24 23 1547\n", + "5299 São Paulo 33 1 1 1 20 not acept furnished 479 3000 125 39 3643\n", + "5300 São Paulo 140 3 5 2 - acept furnished 0 3900 250 59 4209\n", + "5301 Porto Alegre 326 3 2 3 - acept not furnished 350 3900 2760 70 7080\n", + "5302 Rio de Janeiro 70 2 2 1 8 not acept furnished 1000 2500 67 33 3600\n", + "5303 Rio de Janeiro 25 1 1 0 2 acept furnished 250 1112 0 7 1369\n", + "5304 São Paulo 67 2 2 2 1 acept not furnished 618 2372 0 8 2998\n", + "5305 Campinas 50 1 1 0 2 acept not furnished 473 550 14 7 1044\n", + "5306 São Paulo 215 3 4 4 6 acept not furnished 2859 6000 865 77 9801\n", + "5307 Campinas 55 2 1 1 - acept not furnished 480 750 66 10 1306\n", + "5308 São Paulo 264 3 4 3 9 acept not furnished 3300 6770 0 86 10160\n", + "5309 Rio de Janeiro 270 4 2 1 16 not acept not furnished 1800 7500 750 97 10150\n", + "5310 São Paulo 40 1 1 1 10 not acept furnished 1300 4860 154 62 6376\n", + "5311 São Paulo 90 2 2 0 3 not acept not furnished 180 1800 375 23 2378\n", + "5312 Rio de Janeiro 50 2 2 1 6 acept not furnished 850 950 59 13 1872\n", + "5313 São Paulo 68 2 2 2 7 acept furnished 1500 6600 0 84 8184\n", + "5314 São Paulo 41 1 1 0 17 acept furnished 450 2470 0 32 2952\n", + "5315 São Paulo 420 3 5 5 - acept not furnished 0 8200 1084 124 9408\n", + "5316 São Paulo 150 3 2 1 - acept not furnished 0 2500 0 38 2538\n", + "5317 São Paulo 220 4 5 3 5 acept not furnished 3000 7800 1000 99 11900\n", + "5318 São Paulo 113 2 2 1 6 acept not furnished 1000 3000 50 39 4089\n", + "5319 São Paulo 268 4 4 4 3 acept furnished 3317 6000 899 77 10290\n", + "5320 Porto Alegre 74 3 1 1 1 acept not furnished 380 1090 42 16 1528\n", + "5321 São Paulo 53 2 1 1 4 not acept furnished 550 2400 21 31 3002\n", + "5322 Porto Alegre 64 1 1 1 2 acept furnished 398 1200 48 18 1664\n", + "5323 Porto Alegre 45 1 1 1 13 acept furnished 400 2550 120 38 3108\n", + "5324 Campinas 120 3 3 2 4 not acept not furnished 400 1850 0 24 2274\n", + "5325 São Paulo 167 3 3 4 10 acept not furnished 1814 5500 807 70 8191\n", + "5326 Porto Alegre 250 4 2 1 - acept not furnished 0 2700 209 48 2957\n", + "5327 Belo Horizonte 28 1 1 1 - not acept furnished 550 1100 0 15 1665\n", + "5328 São Paulo 135 2 3 1 19 not acept furnished 2745 8000 650 102 11500\n", + "5329 Porto Alegre 42 1 1 0 4 acept furnished 250 1250 25 19 1544\n", + "5330 Belo Horizonte 156 4 4 2 4 acept not furnished 250 3500 248 47 4045\n", + "5331 São Paulo 300 4 5 5 6 not acept not furnished 3500 1990 10830 26 16350\n", + "5332 Belo Horizonte 150 4 2 3 6 acept not furnished 600 3500 380 47 4527\n", + "5333 São Paulo 54 2 2 1 2 acept not furnished 400 1927 100 12 2439\n", + "5334 São Paulo 38 1 1 0 - not acept not furnished 700 1650 0 25 2375\n", + "5335 Belo Horizonte 474 5 5 7 - acept not furnished 0 15000 990 246 16240\n", + "5336 São Paulo 450 5 4 3 - acept not furnished 0 12000 1201 181 13380\n", + "5337 Belo Horizonte 343 4 3 4 - acept not furnished 0 7000 320 115 7435\n", + "5338 São Paulo 180 3 2 4 - acept not furnished 0 3000 0 46 3046\n", + "5339 São Paulo 100 2 2 2 - acept not furnished 0 2000 0 31 2031\n", + "5340 São Paulo 102 2 3 2 - acept not furnished 0 2500 0 38 2538\n", + "5341 Rio de Janeiro 470 4 5 3 1 acept not furnished 3772 6580 1650 85 12090\n", + "5342 Rio de Janeiro 140 3 3 1 1 acept not furnished 2285 2820 343 37 5485\n", + "5343 São Paulo 380 4 1 0 - acept not furnished 0 2890 150 25 3065\n", + "5344 Porto Alegre 140 2 2 1 2 acept furnished 252 3000 150 44 3446\n", + "5345 São Paulo 520 3 4 3 - acept furnished 0 7000 645 106 7751\n", + "5346 São Paulo 130 3 2 3 - acept furnished 0 7450 167 112 7729\n", + "5347 São Paulo 49 1 1 1 1 acept furnished 700 2985 0 38 3839\n", + "5348 Rio de Janeiro 28 1 1 0 5 not acept furnished 609 1099 0 15 1723\n", + "5349 Campinas 58 2 1 1 1 acept not furnished 472 870 75 12 1429\n", + "5350 São Paulo 32 1 1 1 3 not acept furnished 480 2150 0 28 2658\n", + "5351 São Paulo 48 2 1 1 11 not acept not furnished 300 2000 26 26 2352\n", + "5352 São Paulo 30 1 1 0 5 acept furnished 370 1830 0 24 2224\n", + "5353 São Paulo 26 1 1 0 4 acept furnished 188 2650 55 34 2927\n", + "5354 Rio de Janeiro 65 2 1 0 4 acept not furnished 450 1285 93 17 1845\n", + "5355 São Paulo 98 3 2 2 - acept not furnished 410 2290 25 35 2760\n", + "5356 São Paulo 234 3 4 4 3 acept not furnished 3746 5000 1210 64 10020\n", + "5357 Campinas 59 2 1 1 5 acept not furnished 430 1190 47 16 1683\n", + "5358 São Paulo 97 2 3 1 5 acept not furnished 760 6500 120 83 7463\n", + "5359 Belo Horizonte 65 2 2 1 11 acept not furnished 490 1100 70 15 1675\n", + "5360 Porto Alegre 42 1 1 1 7 acept not furnished 500 2300 42 34 2876\n", + "5361 Rio de Janeiro 94 3 2 1 25 acept not furnished 1733 3300 192 43 5268\n", + "5362 Belo Horizonte 147 4 2 3 10 acept not furnished 850 4700 330 63 5943\n", + "5363 São Paulo 73 3 2 2 14 acept not furnished 550 2520 192 32 3294\n", + "5364 Rio de Janeiro 40 1 1 0 7 not acept not furnished 2000 2200 35 29 4264\n", + "5365 São Paulo 350 3 5 5 - acept not furnished 0 3080 200 47 3327\n", + "5366 São Paulo 384 3 3 4 - not acept not furnished 0 11400 1142 172 12710\n", + "5367 São Paulo 48 1 1 2 7 acept furnished 2300 7000 245 89 9634\n", + "5368 Rio de Janeiro 96 3 2 1 5 not acept not furnished 1100 2500 165 33 3798\n", + "5369 Porto Alegre 55 2 1 0 3 acept furnished 350 1125 25 17 1517\n", + "5370 Porto Alegre 330 4 4 3 - acept not furnished 0 6994 403 125 7522\n", + "5371 Porto Alegre 49 1 1 0 4 acept not furnished 330 900 24 14 1268\n", + "5372 Rio de Janeiro 170 3 2 1 4 acept not furnished 900 3500 0 46 4446\n", + "5373 São Paulo 243 2 3 2 - acept not furnished 0 4619 559 70 5248\n", + "5374 São Paulo 216 4 4 3 3 acept furnished 3100 8980 0 114 12190\n", + "5375 Rio de Janeiro 60 2 1 1 5 acept not furnished 440 800 58 11 1309\n", + "5376 São Paulo 200 3 4 2 - acept not furnished 0 2500 500 38 3038\n", + "5377 Porto Alegre 48 1 1 0 2 acept not furnished 309 700 28 11 1048\n", + "5378 Campinas 130 3 2 6 - acept not furnished 0 2200 182 34 2416\n", + "5379 Rio de Janeiro 55 2 1 1 10 acept not furnished 647 1080 185 14 1926\n", + "5380 São Paulo 200 4 3 2 - acept not furnished 0 5628 575 85 6288\n", + "5381 Campinas 101 3 2 2 1 acept not furnished 632 2200 119 28 2979\n", + "5382 São Paulo 20 1 1 0 9 acept furnished 435 1650 59 21 2165\n", + "5383 São Paulo 97 3 3 2 7 acept not furnished 1058 2500 275 32 3865\n", + "5384 São Paulo 83 2 2 1 21 acept not furnished 782 4800 174 61 5817\n", + "5385 Porto Alegre 47 1 1 1 10 acept not furnished 360 610 6 9 985\n", + "5386 São Paulo 110 2 2 1 8 acept furnished 1285 4348 196 56 5885\n", + "5387 São Paulo 140 4 4 2 3 acept not furnished 670 3100 153 40 3963\n", + "5388 São Paulo 242 3 4 3 1 acept furnished 2100 7000 250 89 9439\n", + "5389 São Paulo 35 1 1 0 5 acept not furnished 270 1300 0 17 1587\n", + "5390 Rio de Janeiro 100 2 2 0 11 acept furnished 670 4700 375 61 5806\n", + "5391 São Paulo 134 3 3 1 4 acept not furnished 1200 3500 200 45 4945\n", + "5392 Porto Alegre 50 2 1 1 - not acept not furnished 0 1000 35 18 1053\n", + "5393 Campinas 67 3 1 1 9 acept not furnished 447 1200 26 16 1689\n", + "5394 São Paulo 150 2 3 0 - acept not furnished 0 4000 124 61 4185\n", + "5395 São Paulo 174 3 4 3 6 acept not furnished 2200 13500 814 172 16690\n", + "5396 São Paulo 120 3 3 1 - acept not furnished 0 2800 75 43 2918\n", + "5397 Porto Alegre 90 4 2 0 - not acept not furnished 0 1700 152 31 1883\n", + "5398 São Paulo 16 1 1 0 1 not acept not furnished 0 850 30 11 891\n", + "5399 Campinas 110 3 1 1 4 acept not furnished 830 1200 25 5 2060\n", + "5400 São Paulo 277 2 3 4 19 acept not furnished 5295 13000 1550 165 20010\n", + "5401 São Paulo 79 3 1 1 11 not acept not furnished 700 1405 0 18 2123\n", + "5402 Belo Horizonte 180 4 3 2 8 acept not furnished 970 3260 390 44 4664\n", + "5403 São Paulo 300 3 3 2 11 acept furnished 2600 7650 500 97 10850\n", + "5404 São Paulo 270 2 3 4 - acept not furnished 0 3270 169 50 3489\n", + "5405 Porto Alegre 25 1 1 0 3 acept not furnished 100 790 13 12 915\n", + "5406 São Paulo 78 1 1 1 12 acept furnished 574 3850 225 49 4698\n", + "5407 São Paulo 82 2 2 1 2 acept not furnished 1500 2450 192 32 4174\n", + "5408 Belo Horizonte 55 2 1 2 7 acept not furnished 160 1100 0 15 1275\n", + "5409 São Paulo 420 4 5 4 - acept not furnished 0 10000 667 151 10820\n", + "5410 Campinas 115 2 3 2 4 acept furnished 687 3500 220 45 4452\n", + "5411 Belo Horizonte 45 2 1 1 3 acept not furnished 0 1000 0 14 1014\n", + "5412 São Paulo 47 3 1 1 9 acept not furnished 300 1420 0 18 1738\n", + "5413 São Paulo 250 3 3 2 8 acept not furnished 1600 2500 300 32 4432\n", + "5414 Rio de Janeiro 95 3 2 1 4 acept not furnished 1602 5000 36 65 6703\n", + "5415 Rio de Janeiro 54 2 2 1 6 acept not furnished 829 700 142 10 1681\n", + "5416 Belo Horizonte 200 3 2 2 - acept not furnished 0 12000 369 197 12570\n", + "5417 São Paulo 380 3 3 5 - acept not furnished 0 10900 1713 164 12780\n", + "5418 Rio de Janeiro 60 2 2 0 7 acept not furnished 1300 4000 1 52 5353\n", + "5419 São Paulo 300 3 3 2 - acept not furnished 0 6000 197 91 6288\n", + "5420 Belo Horizonte 75 3 1 1 1 not acept not furnished 160 1100 80 15 1355\n", + "5421 Belo Horizonte 32 1 1 1 8 acept not furnished 197 1500 126 20 1843\n", + "5422 Rio de Janeiro 24 1 1 0 11 acept not furnished 206 1400 21 19 1646\n", + "5423 São Paulo 49 1 1 1 4 not acept not furnished 486 3200 0 13 3699\n", + "5424 Porto Alegre 50 2 1 0 13 acept furnished 488 1400 41 21 1950\n", + "5425 Rio de Janeiro 40 1 1 0 12 acept not furnished 600 2200 61 29 2890\n", + "5426 São Paulo 30 1 1 1 16 not acept furnished 1900 2000 150 26 4076\n", + "5427 São Paulo 70 2 1 1 1 acept not furnished 300 1100 14 14 1428\n", + "5428 Campinas 146 2 1 1 8 acept not furnished 730 1620 128 21 2499\n", + "5429 Rio de Janeiro 120 2 2 0 1 acept furnished 1200 4750 389 62 6401\n", + "5430 Campinas 67 3 1 1 1 not acept not furnished 351 890 40 12 1293\n", + "5431 Belo Horizonte 347 4 4 3 4 acept not furnished 2700 9000 589 120 12410\n", + "5432 Belo Horizonte 80 2 2 1 - not acept not furnished 0 1705 61 14 1780\n", + "5433 São Paulo 40 2 1 0 11 acept not furnished 526 2500 129 32 3187\n", + "5434 Campinas 44 2 1 1 3 acept not furnished 192 1020 0 13 1225\n", + "5435 São Paulo 80 2 1 0 7 not acept not furnished 563 2200 59 28 2850\n", + "5436 Porto Alegre 106 3 3 1 2 acept not furnished 800 3000 230 44 4074\n", + "5437 Campinas 137 3 4 2 2 acept not furnished 1176 3800 257 49 5282\n", + "5438 São Paulo 248 3 4 4 - acept not furnished 0 9000 1531 136 10670\n", + "5439 São Paulo 350 4 3 2 - acept not furnished 0 13500 1006 203 14710\n", + "5440 Rio de Janeiro 90 2 1 2 5 not acept not furnished 717 2800 13 37 3567\n", + "5441 São Paulo 16 1 1 0 - not acept not furnished 0 1420 0 18 1438\n", + "5442 São Paulo 108 3 3 2 2 acept not furnished 1200 3400 334 44 4978\n", + "5443 Rio de Janeiro 120 3 2 1 2 acept not furnished 992 2414 223 32 3661\n", + "5444 Campinas 54 2 1 1 3 acept not furnished 320 1800 72 23 2215\n", + "5445 São Paulo 190 1 2 10 - acept not furnished 0 3900 34 59 3993\n", + "5446 Belo Horizonte 100 3 3 1 1 acept not furnished 300 1800 105 24 2229\n", + "5447 Belo Horizonte 120 3 2 1 2 acept furnished 1083 2100 179 28 3390\n", + "5448 São Paulo 40 1 1 1 4 acept furnished 915 5000 115 36 6066\n", + "5449 São Paulo 185 2 2 2 - not acept not furnished 0 1850 59 28 1937\n", + "5450 Rio de Janeiro 50 1 1 0 9 acept furnished 2300 2300 0 30 4630\n", + "5451 São Paulo 233 3 6 5 - acept not furnished 0 6000 506 91 6597\n", + "5452 São Paulo 47 2 2 2 6 acept furnished 520 2611 24 34 3189\n", + "5453 São Paulo 49 1 1 0 11 acept not furnished 443 4100 89 52 4684\n", + "5454 Porto Alegre 76 3 2 2 6 acept not furnished 250 2100 0 31 2381\n", + "5455 Rio de Janeiro 60 2 1 0 6 acept not furnished 650 1300 0 17 1967\n", + "5456 São Paulo 200 4 5 3 2 acept not furnished 2600 4500 834 58 7992\n", + "5457 Rio de Janeiro 200 3 4 2 9 acept not furnished 1730 5000 306 65 7101\n", + "5458 Porto Alegre 184 3 3 2 6 acept not furnished 1100 5445 264 80 6889\n", + "5459 São Paulo 117 3 4 2 10 acept not furnished 1350 6100 490 78 8018\n", + "5460 Porto Alegre 80 3 1 0 - not acept not furnished 0 1250 0 23 1273\n", + "5461 Rio de Janeiro 60 2 2 1 4 not acept not furnished 700 2000 67 26 2793\n", + "5462 São Paulo 140 3 2 1 - acept furnished 0 8200 0 124 8324\n", + "5463 Rio de Janeiro 55 1 1 0 12 not acept furnished 645 1500 60 20 2225\n", + "5464 São Paulo 131 3 2 1 14 acept not furnished 1685 4200 197 54 6136\n", + "5465 São Paulo 142 3 4 3 2 acept not furnished 1305 5000 414 64 6783\n", + "5466 Campinas 35 1 1 1 7 acept not furnished 392 1100 13 14 1519\n", + "5467 Porto Alegre 40 1 1 0 20 acept not furnished 135 890 21 13 1059\n", + "5468 São Paulo 57 1 1 0 4 acept furnished 300 6000 17 77 6394\n", + "5469 Porto Alegre 30 1 1 0 9 acept not furnished 270 890 34 13 1207\n", + "5470 Rio de Janeiro 800 5 7 5 - acept not furnished 0 15000 334 229 15560\n", + "5471 Porto Alegre 250 2 2 0 - acept furnished 0 4000 335 72 4407\n", + "5472 São Paulo 37 1 1 1 4 acept not furnished 500 1500 150 20 2170\n", + "5473 Belo Horizonte 240 4 5 3 11 not acept furnished 2800 10000 962 134 13900\n", + "5474 Rio de Janeiro 95 3 2 1 6 acept not furnished 702 1650 76 22 2450\n", + "5475 São Paulo 30 1 1 0 18 not acept not furnished 590 980 0 13 1583\n", + "5476 São Paulo 380 7 7 6 - acept not furnished 0 5800 417 88 6305\n", + "5477 São Paulo 50 2 1 0 5 acept not furnished 515 1900 42 25 2482\n", + "5478 Rio de Janeiro 32 1 1 1 5 not acept not furnished 465 900 0 12 1377\n", + "5479 São Paulo 104 3 3 2 6 acept not furnished 1300 6000 0 77 7377\n", + "5480 São Paulo 31 1 1 0 16 not acept not furnished 330 1575 0 20 1925\n", + "5481 São Paulo 700 4 5 2 10 acept furnished 3000 8000 402 102 11500\n", + "5482 Campinas 138 3 3 0 2 acept not furnished 1000 7000 84 89 8173\n", + "5483 São Paulo 77 2 1 1 14 acept not furnished 980 4500 18 58 5556\n", + "5484 São Paulo 35 1 1 0 1 not acept not furnished 250 1305 0 17 1572\n", + "5485 São Paulo 216 4 3 4 9 acept not furnished 1883 3500 659 45 6087\n", + "5486 Campinas 60 2 1 1 1 acept not furnished 314 1000 0 13 1327\n", + "5487 Belo Horizonte 115 3 2 2 - acept not furnished 0 3000 71 50 3121\n", + "5488 Belo Horizonte 222 4 3 4 - acept not furnished 0 3000 153 50 3203\n", + "5489 Rio de Janeiro 84 3 2 1 1 acept furnished 1500 2600 420 34 4554\n", + "5490 São Paulo 156 3 3 1 12 not acept not furnished 1600 4150 0 53 5803\n", + "5491 São Paulo 34 1 1 0 - acept not furnished 0 1050 50 16 1116\n", + "5492 Porto Alegre 60 2 1 1 5 acept not furnished 350 1150 50 17 1567\n", + "5493 Porto Alegre 50 2 2 1 4 acept not furnished 270 1300 34 19 1623\n", + "5494 São Paulo 210 3 3 2 5 acept not furnished 2970 5500 690 70 9230\n", + "5495 São Paulo 240 4 2 4 - acept not furnished 0 8000 0 121 8121\n", + "5496 São Paulo 336 4 6 5 5 acept not furnished 4950 7500 0 96 12550\n", + "5497 Campinas 60 2 1 1 3 acept not furnished 450 790 17 11 1268\n", + "5498 Belo Horizonte 194 3 3 2 10 acept not furnished 1351 4000 324 54 5729\n", + "5499 São Paulo 70 1 1 0 3 acept not furnished 250 2000 0 26 2276\n", + "5500 São Paulo 46 1 1 0 3 acept not furnished 100 1600 0 21 1721\n", + "5501 Rio de Janeiro 185 3 2 2 2 not acept not furnished 1760 6000 0 78 7838\n", + "5502 São Paulo 90 1 2 2 13 not acept furnished 1500 8000 500 102 10100\n", + "5503 Belo Horizonte 90 3 2 1 2 acept not furnished 200 1400 111 19 1730\n", + "5504 São Paulo 175 1 3 2 19 not acept furnished 900 4142 0 53 5095\n", + "5505 Rio de Janeiro 140 3 2 1 8 acept not furnished 2200 4200 331 55 6786\n", + "5506 São Paulo 400 2 5 4 - acept not furnished 0 6000 484 91 6575\n", + "5507 Porto Alegre 127 3 2 1 1 acept furnished 539 3000 120 44 3703\n", + "5508 São Paulo 60 2 2 1 27 acept furnished 654 3300 96 42 4092\n", + "5509 Belo Horizonte 230 3 3 3 5 acept not furnished 700 4000 408 54 5162\n", + "5510 São Paulo 48 1 1 1 21 not acept furnished 1137 6698 166 85 8086\n", + "5511 Campinas 62 3 2 1 12 acept not furnished 330 2975 59 38 3402\n", + "5512 São Paulo 110 3 2 1 1 acept not furnished 1130 4500 262 58 5950\n", + "5513 São Paulo 80 3 3 2 1 not acept not furnished 1180 2800 0 36 4016\n", + "5514 Rio de Janeiro 54 1 1 0 3 acept furnished 734 2400 286 31 3451\n", + "5515 São Paulo 42 1 1 1 4 not acept furnished 660 4400 41 56 5157\n", + "5516 Belo Horizonte 55 2 1 1 4 acept not furnished 176 850 60 12 1098\n", + "5517 São Paulo 161 3 5 3 12 acept not furnished 2541 6500 567 83 9691\n", + "5518 Belo Horizonte 70 2 1 1 3 acept not furnished 390 1100 74 15 1579\n", + "5519 São Paulo 35 1 1 0 9 acept furnished 450 1300 40 17 1807\n", + "5520 São Paulo 360 4 4 4 5 acept not furnished 5767 9000 2507 115 17390\n", + "5521 Belo Horizonte 45 1 1 1 6 acept not furnished 816 2900 9 39 3764\n", + "5522 São Paulo 55 1 1 0 1 not acept not furnished 150 730 0 10 890\n", + "5523 Rio de Janeiro 25 1 1 0 3 acept furnished 350 1750 46 23 2169\n", + "5524 Belo Horizonte 68 3 2 1 1 acept furnished 360 2250 95 30 2735\n", + "5525 São Paulo 900 3 4 8 - acept not furnished 0 20000 3813 301 24110\n", + "5526 Porto Alegre 71 2 1 0 1 acept not furnished 330 990 0 15 1335\n", + "5527 Rio de Janeiro 250 3 2 1 7 acept not furnished 1642 6400 746 83 8871\n", + "5528 Belo Horizonte 305 4 5 5 29 acept not furnished 4596 14000 2239 187 21020\n", + "5529 São Paulo 81 3 2 1 12 acept not furnished 580 1700 90 22 2392\n", + "5530 São Paulo 234 3 4 4 14 acept not furnished 1710 3600 1375 46 6731\n", + "5531 Campinas 54 1 2 0 1 acept not furnished 245 720 46 10 1021\n", + "5532 São Paulo 70 2 1 1 1 not acept furnished 703 4960 347 63 6073\n", + "5533 Belo Horizonte 100 3 2 1 3 acept not furnished 600 1800 140 24 2564\n", + "5534 São Paulo 48 1 1 1 4 acept furnished 1450 4200 135 54 5839\n", + "5535 Porto Alegre 88 2 2 1 3 acept not furnished 700 1900 77 28 2705\n", + "5536 São Paulo 40 1 1 0 - acept not furnished 0 2000 53 31 2084\n", + "5537 Porto Alegre 76 1 1 0 5 not acept furnished 503 1490 177 22 2192\n", + "5538 São Paulo 109 3 2 2 13 acept not furnished 1156 6500 319 83 8058\n", + "5539 Belo Horizonte 160 3 3 2 3 acept not furnished 1364 2650 269 36 4319\n", + "5540 São Paulo 106 2 1 0 2 acept not furnished 110 1790 0 23 1923\n", + "5541 Rio de Janeiro 90 4 2 0 4 acept furnished 568 1900 55 25 2548\n", + "5542 São Paulo 70 2 2 1 12 acept not furnished 665 2000 0 26 2691\n", + "5543 São Paulo 120 2 1 4 - acept not furnished 0 2000 207 31 2238\n", + "5544 São Paulo 230 3 3 3 7 acept not furnished 2500 3916 586 50 7052\n", + "5545 São Paulo 130 2 2 2 - acept not furnished 0 3500 448 53 4001\n", + "5546 São Paulo 67 2 2 1 9 acept not furnished 730 1970 205 25 2930\n", + "5547 Campinas 140 4 3 2 14 acept not furnished 1030 3500 220 45 4795\n", + "5548 Rio de Janeiro 80 3 2 0 4 acept not furnished 300 1500 71 20 1891\n", + "5549 São Paulo 40 1 1 0 3 acept not furnished 307 1350 0 18 1675\n", + "5550 Belo Horizonte 49 2 1 1 4 acept not furnished 225 1000 0 14 1239\n", + "5551 São Paulo 73 3 1 1 4 acept furnished 1270 3800 138 49 5257\n", + "5552 São Paulo 110 2 3 3 - acept not furnished 0 2200 8 34 2242\n", + "5553 São Paulo 79 3 2 1 8 acept furnished 580 2400 62 31 3073\n", + "5554 Belo Horizonte 40 1 1 0 4 not acept not furnished 300 1155 55 16 1526\n", + "5555 São Paulo 370 4 6 0 8 acept not furnished 3417 7900 2386 101 13800\n", + "5556 Belo Horizonte 140 4 3 2 3 acept not furnished 822 2200 132 30 3184\n", + "5557 Rio de Janeiro 300 4 4 2 1 acept not furnished 2500 8000 1275 104 11880\n", + "5558 São Paulo 40 1 1 1 2 not acept furnished 375 1635 0 21 2031\n", + "5559 Rio de Janeiro 100 3 2 2 8 acept furnished 1129 1600 250 21 3000\n", + "5560 São Paulo 63 2 2 1 6 acept not furnished 650 1890 9 24 2573\n", + "5561 São Paulo 150 3 2 1 6 not acept not furnished 1246 5500 0 70 6816\n", + "5562 São Paulo 190 3 3 3 6 acept not furnished 3000 13000 84 165 16250\n", + "5563 Rio de Janeiro 100 3 2 2 13 acept not furnished 970 2400 395 31 3796\n", + "5564 Porto Alegre 132 6 4 2 18 acept not furnished 800 3400 117 50 4367\n", + "5565 São Paulo 127 2 3 3 3 acept not furnished 2300 3300 500 42 6142\n", + "5566 São Paulo 222 3 3 2 - acept not furnished 0 2400 292 21 2713\n", + "5567 São Paulo 80 2 2 1 - acept not furnished 0 1680 9 26 1715\n", + "5568 São Paulo 208 4 4 3 5 acept not furnished 3600 12000 1084 153 16840\n", + "5569 São Paulo 480 4 4 6 - acept not furnished 0 10000 1000 151 11150\n", + "5570 São Paulo 360 3 5 2 1 acept not furnished 3500 15000 834 191 19530\n", + "5571 São Paulo 142 3 2 2 8 acept not furnished 1026 1750 243 23 3042\n", + "5572 Rio de Janeiro 150 3 3 0 6 not acept not furnished 1100 5100 242 66 6508\n", + "5573 Rio de Janeiro 54 2 1 1 9 acept not furnished 560 1600 0 21 2181\n", + "5574 Rio de Janeiro 35 1 1 0 6 acept not furnished 480 1000 0 13 1493\n", + "5575 Campinas 44 2 1 1 5 acept not furnished 250 1090 10 14 1364\n", + "5576 São Paulo 130 3 2 1 1 acept not furnished 1200 4500 100 58 5858\n", + "5577 Porto Alegre 70 2 2 0 4 not acept furnished 250 1550 42 23 1865\n", + "5578 São Paulo 68 2 1 0 1 acept not furnished 230 1300 0 17 1547\n", + "5579 São Paulo 212 4 3 4 1 acept not furnished 3300 15000 1272 191 19760\n", + "5580 Rio de Janeiro 35 1 1 1 4 acept furnished 580 3300 112 43 4035\n", + "5581 São Paulo 116 3 2 1 6 acept not furnished 950 1700 90 22 2762\n", + "5582 São Paulo 80 1 1 0 11 acept furnished 427 1900 0 25 2352\n", + "5583 São Paulo 47 1 1 1 6 acept not furnished 756 2250 114 29 3149\n", + "5584 Rio de Janeiro 60 3 2 1 1 acept furnished 842 1000 63 13 1918\n", + "5585 Rio de Janeiro 75 2 1 0 4 acept not furnished 440 1200 0 16 1656\n", + "5586 Belo Horizonte 60 1 1 1 8 acept furnished 694 1098 151 15 1958\n", + "5587 São Paulo 100 2 1 0 - not acept not furnished 0 5000 125 76 5201\n", + "5588 Belo Horizonte 22 1 1 1 1 not acept furnished 0 1500 0 20 1520\n", + "5589 São Paulo 75 3 2 1 13 not acept furnished 700 2900 125 37 3762\n", + "5590 São Paulo 75 2 3 2 6 not acept not furnished 499 2500 70 32 3101\n", + "5591 Belo Horizonte 65 2 1 1 2 acept not furnished 220 700 0 10 930\n", + "5592 São Paulo 25 1 1 0 16 acept not furnished 294 1300 22 17 1633\n", + "5593 São Paulo 194 4 3 2 7 acept not furnished 2600 2999 643 38 6280\n", + "5594 São Paulo 75 2 2 0 - acept not furnished 0 2000 109 31 2140\n", + "5595 Belo Horizonte 51 2 1 0 2 acept furnished 165 1000 27 14 1206\n", + "5596 São Paulo 63 2 2 2 4 not acept not furnished 600 4080 167 52 4899\n", + "5597 Rio de Janeiro 90 2 2 1 3 acept not furnished 600 1200 17 16 1833\n", + "5598 São Paulo 45 2 1 1 2 not acept furnished 1300 3000 167 39 4506\n", + "5599 Rio de Janeiro 85 2 2 1 1 acept not furnished 1100 2000 82 26 3208\n", + "5600 Rio de Janeiro 70 2 2 1 6 acept not furnished 695 1700 59 22 2476\n", + "5601 Porto Alegre 66 2 1 0 1 acept not furnished 150 1700 59 25 1934\n", + "5602 Rio de Janeiro 45 1 1 0 11 acept not furnished 470 1100 0 15 1585\n", + "5603 Porto Alegre 114 3 2 1 2 acept furnished 750 2900 109 43 3802\n", + "5604 Rio de Janeiro 26 1 1 0 2 acept furnished 380 2300 61 30 2771\n", + "5605 Porto Alegre 60 1 1 2 1 acept furnished 0 2000 0 30 2030\n", + "5606 Porto Alegre 44 1 1 0 2 acept not furnished 280 1100 30 17 1427\n", + "5607 Belo Horizonte 20 1 1 0 6 not acept not furnished 420 1050 79 14 1563\n", + "5608 São Paulo 91 2 3 2 5 not acept not furnished 2065 9800 500 125 12490\n", + "5609 Rio de Janeiro 70 2 2 1 2 acept not furnished 650 1000 45 13 1708\n", + "5610 São Paulo 30 1 1 0 1 acept furnished 0 1550 21 20 1591\n", + "5611 Belo Horizonte 308 4 5 4 18 acept furnished 1750 15000 167 200 17120\n", + "5612 São Paulo 90 2 2 1 3 acept not furnished 1000 3000 50 39 4089\n", + "5613 São Paulo 217 3 5 6 - acept not furnished 0 5000 417 76 5493\n", + "5614 Campinas 47 1 1 0 2 acept not furnished 400 1700 72 22 2194\n", + "5615 Rio de Janeiro 60 2 1 1 3 acept not furnished 150 1800 0 24 1974\n", + "5616 São Paulo 35 1 1 0 1 not acept not furnished 250 1305 0 17 1572\n", + "5617 São Paulo 490 3 5 4 - acept not furnished 0 10000 2270 151 12420\n", + "5618 São Paulo 180 3 3 2 5 not acept not furnished 1600 3000 0 39 4639\n", + "5619 Porto Alegre 65 2 2 2 6 acept not furnished 400 1950 41 29 2420\n", + "5620 Porto Alegre 76 2 2 2 3 acept not furnished 600 1700 34 25 2359\n", + "5621 Campinas 56 2 1 1 5 acept not furnished 340 1400 57 18 1815\n", + "5622 São Paulo 68 1 1 0 3 acept not furnished 500 1500 0 20 2020\n", + "5623 Campinas 56 1 1 1 6 acept furnished 722 1350 50 18 2140\n", + "5624 Rio de Janeiro 131 3 2 2 3 acept not furnished 2800 10000 500 129 13430\n", + "5625 São Paulo 100 3 1 4 - acept not furnished 0 2500 226 38 2764\n", + "5626 São Paulo 72 2 2 1 18 acept not furnished 350 2500 125 32 3007\n", + "5627 Belo Horizonte 88 3 2 1 2 acept not furnished 289 1450 114 20 1873\n", + "5628 Rio de Janeiro 38 1 1 0 2 acept furnished 700 1850 150 24 2724\n", + "5629 São Paulo 49 2 1 1 15 acept not furnished 487 1300 17 17 1821\n", + "5630 São Paulo 60 1 1 1 8 acept not furnished 900 4600 100 59 5659\n", + "5631 São Paulo 80 2 1 1 2 acept not furnished 1257 2950 195 38 4440\n", + "5632 Porto Alegre 280 5 3 3 - acept furnished 0 4000 117 72 4189\n", + "5633 São Paulo 510 4 3 5 - acept not furnished 0 10000 517 151 10670\n", + "5634 São Paulo 148 1 2 4 25 acept not furnished 1845 9900 550 126 12420\n", + "5635 Porto Alegre 76 3 2 1 9 acept not furnished 550 1600 59 24 2233\n", + "5636 Belo Horizonte 110 3 2 1 2 not acept not furnished 400 1400 150 19 1969\n", + "5637 Belo Horizonte 22 1 1 1 1 not acept not furnished 0 1275 0 17 1292\n", + "5638 São Paulo 42 1 1 1 - acept furnished 450 2000 88 26 2564\n", + "5639 São Paulo 59 2 1 1 1 not acept not furnished 490 1700 0 22 2212\n", + "5640 São Paulo 158 4 4 4 10 acept furnished 2250 2500 423 32 5205\n", + "5641 Belo Horizonte 65 2 2 1 1 not acept not furnished 290 925 84 13 1312\n", + "5642 São Paulo 20 1 1 0 - acept furnished 602 1800 130 23 2555\n", + "5643 São Paulo 298 4 4 1 - acept not furnished 0 3000 0 46 3046\n", + "5644 Rio de Janeiro 38 1 1 0 4 not acept furnished 877 2280 123 30 3310\n", + "5645 São Paulo 213 4 4 3 17 acept not furnished 2600 6500 1157 83 10340\n", + "5646 São Paulo 150 3 2 3 - acept not furnished 0 1900 125 29 2054\n", + "5647 Rio de Janeiro 60 1 1 0 1 acept not furnished 350 1000 0 13 1363\n", + "5648 São Paulo 65 2 1 1 1 acept not furnished 100 1400 84 18 1602\n", + "5649 São Paulo 169 4 4 4 9 acept not furnished 1800 6450 1140 82 9472\n", + "5650 São Paulo 100 2 3 1 2 acept not furnished 1260 3973 315 51 5599\n", + "5651 São Paulo 158 4 4 3 5 acept not furnished 2100 6600 375 84 9159\n", + "5652 São Paulo 150 2 2 2 - acept not furnished 0 6000 667 91 6758\n", + "5653 Porto Alegre 49 2 1 0 4 acept not furnished 250 1650 15 25 1940\n", + "5654 São Paulo 260 4 4 4 7 acept not furnished 3400 5000 1417 64 9881\n", + "5655 Rio de Janeiro 65 1 1 1 3 acept not furnished 780 2500 241 33 3554\n", + "5656 São Paulo 380 6 5 3 - not acept not furnished 0 9000 417 136 9553\n", + "5657 Belo Horizonte 70 3 1 0 1 acept not furnished 205 1200 25 16 1446\n", + "5658 Campinas 180 2 1 0 - acept not furnished 0 2000 15 31 2046\n", + "5659 Rio de Janeiro 105 2 1 0 2 acept not furnished 400 1250 55 17 1722\n", + "5660 Belo Horizonte 300 8 3 1 - acept not furnished 0 4000 500 66 4566\n", + "5661 São Paulo 190 3 3 1 1 acept not furnished 2000 9000 492 115 11610\n", + "5662 Belo Horizonte 67 2 2 2 1 acept not furnished 202 1000 82 14 1298\n", + "5663 São Paulo 96 2 2 2 25 not acept furnished 1200 9000 0 115 10320\n", + "5664 Porto Alegre 75 2 2 1 6 acept not furnished 200 1300 250 19 1769\n", + "5665 Campinas 45 1 1 1 2 acept not furnished 367 1100 34 14 1515\n", + "5666 São Paulo 60 2 1 1 4 acept furnished 489 1900 0 25 2414\n", + "5667 São Paulo 45 1 1 1 2 not acept furnished 781 2970 92 38 3881\n", + "5668 São Paulo 38 1 1 1 5 not acept furnished 1450 3400 0 44 4894\n", + "5669 São Paulo 75 1 1 1 - not acept not furnished 0 1521 163 23 1707\n", + "5670 São Paulo 442 5 6 6 - acept not furnished 0 7500 1301 113 8914\n", + "5671 São Paulo 220 3 3 2 8 not acept furnished 1700 11000 542 140 13380\n", + "5672 São Paulo 140 3 1 2 - not acept not furnished 140 6000 273 91 6504\n", + "5673 Belo Horizonte 76 3 2 1 3 acept not furnished 375 1400 128 19 1922\n", + "5674 Campinas 60 2 1 1 4 acept not furnished 395 580 15 8 998\n", + "5675 Porto Alegre 50 1 1 0 - acept not furnished 250 803 0 12 1065\n", + "5676 São Paulo 165 4 3 2 - acept not furnished 0 5000 46 76 5122\n", + "5677 São Paulo 90 1 1 0 - not acept not furnished 0 1150 59 18 1227\n", + "5678 Campinas 62 2 1 1 6 acept not furnished 447 1200 76 16 1739\n", + "5679 São Paulo 120 3 2 2 - acept not furnished 0 3800 0 58 3858\n", + "5680 Belo Horizonte 279 4 5 4 - acept not furnished 0 4500 379 74 4953\n", + "5681 Rio de Janeiro 79 3 2 0 9 not acept furnished 781 3500 183 46 4510\n", + "5682 Rio de Janeiro 45 1 1 0 4 acept not furnished 480 980 0 13 1473\n", + "5683 Rio de Janeiro 36 1 1 0 6 acept not furnished 700 590 244 8 1542\n", + "5684 Campinas 47 1 1 0 10 not acept furnished 580 750 0 10 1340\n", + "5685 Campinas 270 4 4 8 - acept not furnished 0 3200 144 49 3393\n", + "5686 Belo Horizonte 25 1 1 0 3 not acept furnished 700 890 59 12 1661\n", + "5687 São Paulo 45 2 1 1 14 acept not furnished 280 1125 26 15 1446\n", + "5688 São Paulo 255 4 4 3 2 acept not furnished 5000 6600 1678 84 13360\n", + "5689 Campinas 55 1 2 1 4 not acept not furnished 744 954 74 13 1785\n", + "5690 São Paulo 85 3 3 2 3 not acept not furnished 1600 4940 300 63 6903\n", + "5691 Belo Horizonte 200 3 3 2 4 acept not furnished 370 2700 135 36 3241\n", + "5692 Porto Alegre 55 2 2 0 4 acept not furnished 290 1400 34 21 1745\n", + "5693 São Paulo 180 5 5 2 15 acept not furnished 1285 2287 517 29 4118\n", + "5694 Campinas 64 2 2 2 51 acept not furnished 800 1900 129 25 2854\n", + "5695 Porto Alegre 42 2 1 1 2 acept not furnished 900 923 100 14 1937\n", + "5696 São Paulo 300 3 3 5 - acept not furnished 0 5400 834 82 6316\n", + "5697 São Paulo 32 1 1 1 22 acept furnished 1800 2000 416 26 4242\n", + "5698 São Paulo 64 2 1 2 3 acept not furnished 480 1850 39 24 2393\n", + "5699 São Paulo 72 2 2 1 9 acept not furnished 626 1440 27 19 2112\n", + "5700 Rio de Janeiro 30 1 1 0 20 not acept not furnished 0 1000 0 13 1013\n", + "5701 Porto Alegre 55 2 1 0 1 acept not furnished 150 1250 85 19 1504\n", + "5702 São Paulo 253 3 5 5 9 acept not furnished 2760 6750 1770 86 11370\n", + "5703 São Paulo 147 3 2 0 9 not acept furnished 1500 4250 0 54 5804\n", + "5704 São Paulo 110 3 3 1 7 acept not furnished 1306 4575 140 58 6079\n", + "5705 São Paulo 400 4 3 4 - acept not furnished 0 3760 2084 57 5901\n", + "5706 Porto Alegre 350 5 4 2 - acept not furnished 0 4794 500 86 5380\n", + "5707 São Paulo 510 5 5 5 - not acept furnished 0 10000 2317 151 12470\n", + "5708 São Paulo 246 3 4 4 9 acept furnished 3350 10000 1480 127 14960\n", + "5709 Campinas 92 3 4 2 1 acept not furnished 804 2200 144 28 3176\n", + "5710 São Paulo 54 2 2 1 6 not acept not furnished 500 2300 167 30 2997\n", + "5711 São Paulo 130 3 2 0 12 acept not furnished 1655 3700 350 47 5752\n", + "5712 Rio de Janeiro 53 2 2 1 7 acept not furnished 950 1100 60 15 2125\n", + "5713 São Paulo 59 2 1 1 10 acept not furnished 589 1500 0 20 2109\n", + "5714 Belo Horizonte 153 3 2 2 - acept not furnished 0 9876 196 162 10230\n", + "5715 São Paulo 78 2 1 1 1 acept not furnished 430 950 32 13 1425\n", + "5716 São Paulo 305 3 3 3 8 acept not furnished 3100 5500 2167 70 10840\n", + "5717 Campinas 54 1 1 1 9 acept not furnished 758 1148 84 15 2005\n", + "5718 São Paulo 80 2 2 0 2 acept not furnished 580 1275 113 17 1985\n", + "5719 São Paulo 26 1 1 0 6 acept not furnished 308 1490 0 19 1817\n", + "5720 São Paulo 96 2 1 1 8 not acept not furnished 795 2500 159 32 3486\n", + "5721 Campinas 70 3 1 1 1 acept not furnished 650 1300 17 17 1984\n", + "5722 São Paulo 56 2 1 1 11 acept furnished 530 2500 0 32 3062\n", + "5723 Belo Horizonte 320 5 3 4 - acept not furnished 0 5500 219 91 5810\n", + "5724 São Paulo 30 1 1 0 - not acept not furnished 0 861 0 13 874\n", + "5725 Rio de Janeiro 45 1 1 0 11 not acept not furnished 340 1000 0 13 1353\n", + "5726 Campinas 60 2 1 0 1 acept not furnished 457 1134 55 15 1661\n", + "5727 São Paulo 101 2 3 1 12 acept not furnished 900 3500 267 45 4712\n", + "5728 São Paulo 220 4 4 2 10 acept not furnished 2500 3200 552 41 6293\n", + "5729 São Paulo 60 2 1 0 - not acept not furnished 0 1200 44 19 1263\n", + "5730 São Paulo 62 2 1 1 3 acept not furnished 350 1800 55 23 2228\n", + "5731 Rio de Janeiro 65 2 1 1 3 acept not furnished 800 1100 0 15 1915\n", + "5732 Porto Alegre 111 2 2 1 - acept not furnished 218 1102 33 20 1373\n", + "5733 São Paulo 140 2 1 2 - acept not furnished 0 4000 821 61 4882\n", + "5734 São Paulo 17 1 1 0 1 not acept furnished 300 2100 50 27 2477\n", + "5735 São Paulo 90 3 2 2 7 acept not furnished 1300 3500 250 45 5095\n", + "5736 São Paulo 40 1 1 0 - not acept not furnished 0 1350 80 21 1451\n", + "5737 Rio de Janeiro 70 2 2 0 7 not acept furnished 750 6100 150 79 7079\n", + "5738 São Paulo 370 4 5 5 17 acept furnished 4800 5000 1992 64 11860\n", + "5739 Porto Alegre 48 2 1 1 3 acept not furnished 400 1000 7 15 1422\n", + "5740 Belo Horizonte 130 3 2 1 2 acept not furnished 747 2500 122 34 3403\n", + "5741 São Paulo 303 3 4 4 1 acept furnished 4540 18000 0 229 22770\n", + "5742 São Paulo 150 3 4 3 6 acept not furnished 3500 10740 67 137 14440\n", + "5743 São Paulo 45 1 1 1 1 not acept furnished 3000 5520 0 70 8590\n", + "5744 Belo Horizonte 190 4 4 3 1 not acept not furnished 1740 6200 501 83 8524\n", + "5745 Belo Horizonte 250 4 4 0 - acept not furnished 0 3940 0 65 4005\n", + "5746 Campinas 78 3 2 2 3 acept not furnished 605 1690 68 22 2385\n", + "5747 São Paulo 160 3 3 2 - acept not furnished 0 2500 7 38 2545\n", + "5748 Rio de Janeiro 100 3 2 1 6 acept not furnished 1005 1850 85 24 2964\n", + "5749 São Paulo 298 3 4 3 - acept furnished 0 14700 1284 221 16210\n", + "5750 Porto Alegre 140 3 3 1 - acept not furnished 100 1500 59 27 1686\n", + "5751 São Paulo 78 2 2 2 13 acept not furnished 613 4338 0 55 5006\n", + "5752 Campinas 47 1 1 1 12 acept not furnished 1500 650 0 9 2159\n", + "5753 São Paulo 80 2 1 2 2 acept furnished 900 2424 245 31 3600\n", + "5754 São Paulo 20 1 1 0 6 acept furnished 602 1800 130 23 2555\n", + "5755 São Paulo 60 2 1 1 5 acept not furnished 675 1550 0 20 2245\n", + "5756 Rio de Janeiro 52 1 1 0 12 not acept furnished 750 2500 117 33 3400\n", + "5757 Belo Horizonte 75 3 1 1 4 acept not furnished 263 1100 61 15 1439\n", + "5758 São Paulo 45 2 1 1 4 acept furnished 430 2364 77 30 2901\n", + "5759 São Paulo 26 1 1 0 - not acept not furnished 0 900 10 12 922\n", + "5760 Belo Horizonte 120 3 2 0 - acept not furnished 0 2200 76 37 2313\n", + "5761 São Paulo 239 4 4 4 15 acept not furnished 2027 5500 974 70 8571\n", + "5762 São Paulo 22 1 1 1 19 not acept not furnished 500 2200 0 28 2728\n", + "5763 São Paulo 750 7 6 5 - acept furnished 0 5800 559 88 6447\n", + "5764 Rio de Janeiro 148 3 2 2 1 acept not furnished 1422 4000 279 52 5753\n", + "5765 Rio de Janeiro 80 2 1 0 10 not acept not furnished 700 1000 98 13 1811\n", + "5766 São Paulo 76 3 1 2 2 acept furnished 900 2280 270 29 3479\n", + "5767 São Paulo 45 1 1 1 3 acept not furnished 520 3200 105 41 3866\n", + "5768 Campinas 74 3 2 1 7 acept not furnished 650 1600 250 21 2521\n", + "5769 Porto Alegre 38 1 1 1 3 acept not furnished 360 500 6 8 874\n", + "5770 São Paulo 57 1 1 0 10 acept furnished 300 6000 17 77 6394\n", + "5771 São Paulo 40 1 1 0 - not acept not furnished 0 780 17 12 809\n", + "5772 São Paulo 147 3 3 2 7 acept not furnished 1520 2200 513 28 4261\n", + "5773 São Paulo 300 4 5 2 6 acept furnished 3600 7800 609 99 12110\n", + "5774 São Paulo 50 2 1 1 3 acept not furnished 480 1200 72 16 1768\n", + "5775 Porto Alegre 55 1 1 1 10 not acept furnished 620 3500 104 52 4276\n", + "5776 Rio de Janeiro 25 1 1 0 1 acept furnished 500 1400 26 19 1945\n", + "5777 São Paulo 80 3 2 2 6 acept not furnished 1219 3650 90 47 5006\n", + "5778 Belo Horizonte 300 2 4 3 7 acept furnished 3500 2800 667 38 7005\n", + "5779 São Paulo 680 4 5 8 - acept not furnished 0 8000 217 121 8338\n", + "5780 São Paulo 252 4 5 5 18 acept furnished 3100 12500 1750 159 17510\n", + "5781 São Paulo 208 3 3 2 2 acept furnished 2354 7000 552 89 9995\n", + "5782 Rio de Janeiro 36 1 1 0 7 acept not furnished 520 750 51 10 1331\n", + "5783 Belo Horizonte 50 2 1 1 3 acept not furnished 230 1100 28 15 1373\n", + "5784 Rio de Janeiro 70 1 2 0 - not acept not furnished 0 1200 0 19 1219\n", + "5785 Belo Horizonte 184 5 3 2 3 acept not furnished 330 2600 171 35 3136\n", + "5786 São Paulo 100 2 2 2 - acept not furnished 0 5590 280 85 5955\n", + "5787 Porto Alegre 73 2 1 0 1 acept furnished 260 1350 25 20 1655\n", + "5788 Rio de Janeiro 140 3 2 1 5 acept furnished 1585 1290 330 17 3222\n", + "5789 Rio de Janeiro 240 3 2 1 5 acept furnished 1900 8000 459 104 10460\n", + "5790 São Paulo 60 2 1 1 2 acept not furnished 0 2700 0 35 2735\n", + "5791 São Paulo 170 3 3 2 9 acept not furnished 1500 4500 503 58 6561\n", + "5792 Porto Alegre 59 2 1 1 4 acept furnished 260 1930 50 29 2269\n", + "5793 Rio de Janeiro 169 3 2 1 7 acept not furnished 1300 2700 308 35 4343\n", + "5794 Campinas 58 1 2 2 2 acept not furnished 630 1235 80 16 1961\n", + "5795 Campinas 110 2 1 1 2 acept not furnished 130 980 52 13 1175\n", + "5796 São Paulo 70 2 2 0 - not acept not furnished 0 1500 0 23 1523\n", + "5797 Porto Alegre 27 1 1 0 2 acept not furnished 100 960 75 15 1150\n", + "5798 São Paulo 200 3 2 3 3 acept not furnished 1600 4000 0 51 5651\n", + "5799 Rio de Janeiro 180 3 2 2 10 not acept not furnished 2000 7000 100 91 9191\n", + "5800 São Paulo 33 1 1 1 5 not acept furnished 1750 1000 100 13 2863\n", + "5801 São Paulo 120 2 3 0 - acept not furnished 0 7000 450 106 7556\n", + "5802 Porto Alegre 47 1 1 1 1 not acept furnished 400 2200 0 33 2633\n", + "5803 São Paulo 470 5 4 6 - acept not furnished 0 7200 667 109 7976\n", + "5804 Campinas 277 3 4 4 - acept not furnished 0 3170 28 48 3246\n", + "5805 Rio de Janeiro 71 3 2 0 1 not acept not furnished 300 1450 8 19 1777\n", + "5806 São Paulo 40 1 1 1 - acept not furnished 0 1200 0 19 1219\n", + "5807 São Paulo 90 2 1 0 9 not acept not furnished 1200 3850 130 49 5229\n", + "5808 São Paulo 244 3 4 2 - acept not furnished 0 4500 535 68 5103\n", + "5809 Campinas 55 1 1 1 2 acept not furnished 570 1100 0 14 1684\n", + "5810 Campinas 92 3 2 2 13 acept furnished 720 3200 139 41 4100\n", + "5811 São Paulo 318 5 3 2 - acept furnished 0 3840 600 58 4498\n", + "5812 Rio de Janeiro 74 3 1 0 - acept not furnished 0 1600 40 25 1665\n", + "5813 São Paulo 60 2 2 1 7 acept not furnished 600 2200 49 28 2877\n", + "5814 Belo Horizonte 120 3 3 1 3 acept furnished 330 2300 173 31 2834\n", + "5815 São Paulo 30 1 1 1 18 not acept not furnished 2000 1950 229 25 4204\n", + "5816 São Paulo 55 1 1 1 2 acept furnished 1950 5000 375 64 7389\n", + "5817 Porto Alegre 38 1 1 0 5 acept not furnished 350 770 38 12 1170\n", + "5818 Porto Alegre 55 3 1 0 - not acept not furnished 0 720 8 13 741\n", + "5819 São Paulo 182 3 2 1 6 acept not furnished 1990 9000 283 115 11390\n", + "5820 Rio de Janeiro 77 2 2 1 21 acept not furnished 932 1950 137 26 3045\n", + "5821 Campinas 160 3 1 4 - not acept not furnished 0 3400 135 52 3587\n", + "5822 São Paulo 346 4 4 4 6 acept not furnished 2200 4080 2704 52 9036\n", + "5823 Rio de Janeiro 80 2 1 0 8 acept not furnished 900 1300 220 17 2437\n", + "5824 Campinas 88 3 2 2 1 acept furnished 900 1950 104 25 2979\n", + "5825 Rio de Janeiro 75 2 2 1 8 acept not furnished 900 2500 273 33 3706\n", + "5826 Rio de Janeiro 120 3 2 0 3 acept not furnished 1333 3500 259 46 5138\n", + "5827 Rio de Janeiro 28 1 1 0 12 acept not furnished 600 1230 50 16 1896\n", + "5828 São Paulo 29 1 1 0 5 acept furnished 400 2000 5 26 2431\n", + "5829 Belo Horizonte 67 3 1 1 3 acept not furnished 235 900 70 12 1217\n", + "5830 São Paulo 110 3 2 1 1 not acept furnished 1172 6500 193 83 7948\n", + "5831 São Paulo 170 3 2 1 12 acept furnished 1700 5500 415 70 7685\n", + "5832 São Paulo 80 2 2 1 - not acept not furnished 0 1500 75 23 1598\n", + "5833 São Paulo 72 2 1 1 4 acept not furnished 860 1440 0 19 2319\n", + "5834 Belo Horizonte 76 1 2 2 6 acept not furnished 892 4000 354 54 5300\n", + "5835 Rio de Janeiro 126 2 2 1 2 acept not furnished 1949 3500 312 46 5807\n", + "5836 São Paulo 150 1 2 2 24 acept not furnished 1100 5500 300 70 6970\n", + "5837 Rio de Janeiro 40 1 1 0 9 acept not furnished 300 1505 25 20 1850\n", + "5838 São Paulo 84 3 2 3 8 not acept not furnished 1450 3200 413 41 5104\n", + "5839 Rio de Janeiro 100 4 4 1 - acept furnished 1350 4350 0 57 5757\n", + "5840 São Paulo 209 3 3 0 4 acept not furnished 2200 4000 803 51 7054\n", + "5841 Belo Horizonte 100 3 2 1 2 acept not furnished 745 1400 119 19 2283\n", + "5842 São Paulo 50 2 1 1 3 acept not furnished 360 1300 0 17 1677\n", + "5843 Campinas 110 3 3 2 - acept not furnished 560 3200 88 49 3897\n", + "5844 Rio de Janeiro 23 1 1 0 4 not acept not furnished 550 1500 0 20 2070\n", + "5845 São Paulo 50 1 1 0 - not acept not furnished 0 1200 84 19 1303\n", + "5846 São Paulo 68 1 2 1 11 acept not furnished 1200 4500 100 58 5858\n", + "5847 Porto Alegre 86 2 1 0 - acept not furnished 250 1150 58 21 1479\n", + "5848 São Paulo 57 2 2 1 8 acept not furnished 465 1150 10 15 1640\n", + "5849 Belo Horizonte 110 2 2 1 6 acept not furnished 700 4000 84 54 4838\n", + "5850 São Paulo 69 2 1 1 3 acept not furnished 470 1550 70 20 2110\n", + "5851 Campinas 48 1 1 1 1 not acept not furnished 450 550 42 7 1049\n", + "5852 São Paulo 240 3 5 3 14 acept furnished 3500 10800 1250 137 15690\n", + "5853 Belo Horizonte 84 3 2 0 3 acept not furnished 250 1250 130 17 1647\n", + "5854 São Paulo 88 2 2 3 20 acept furnished 3114 3400 463 44 7021\n", + "5855 São Paulo 270 3 2 2 15 acept not furnished 2168 10000 407 127 12700\n", + "5856 Rio de Janeiro 66 2 1 1 5 acept not furnished 800 1560 88 21 2469\n", + "5857 Rio de Janeiro 81 3 1 1 7 acept not furnished 725 1500 49 20 2294\n", + "5858 São Paulo 184 4 3 3 2 acept furnished 1200 4500 750 58 6508\n", + "5859 São Paulo 170 3 2 2 - not acept not furnished 0 3000 50 46 3096\n", + "5860 São Paulo 500 3 5 2 11 acept not furnished 5000 15000 1000 191 21190\n", + "5861 São Paulo 200 3 4 3 18 acept furnished 2350 6200 1084 79 9713\n", + "5862 São Paulo 70 2 2 1 7 acept not furnished 569 1900 25 25 2519\n", + "5863 Belo Horizonte 155 4 5 3 15 acept not furnished 1700 6200 542 83 8525\n", + "5864 São Paulo 100 3 1 0 - acept furnished 870 2650 0 34 3554\n", + "5865 São Paulo 198 1 1 3 2 not acept furnished 1100 10700 350 136 12290\n", + "5866 São Paulo 45 2 1 0 5 not acept furnished 400 2800 0 36 3236\n", + "5867 São Paulo 40 1 1 1 8 not acept furnished 1800 4800 350 61 7011\n", + "5868 Porto Alegre 30 1 1 0 2 acept furnished 200 1100 42 17 1359\n", + "5869 São Paulo 44 1 1 1 5 acept furnished 760 2572 91 33 3456\n", + "5870 São Paulo 98 3 2 2 12 not acept not furnished 958 4300 180 55 5493\n", + "5871 Belo Horizonte 73 3 1 0 1 acept not furnished 200 900 38 12 1150\n", + "5872 São Paulo 340 4 4 4 15 acept furnished 2500 8700 0 111 11310\n", + "5873 Porto Alegre 101 3 2 0 3 acept furnished 450 1920 87 29 2486\n", + "5874 Rio de Janeiro 30 1 1 0 11 acept not furnished 500 1720 0 23 2243\n", + "5875 São Paulo 80 1 1 0 - acept not furnished 0 1600 60 25 1685\n", + "5876 Rio de Janeiro 30 1 1 1 3 acept not furnished 0 500 0 7 507\n", + "5877 São Paulo 999 4 5 6 - acept not furnished 2500 15000 2500 226 20230\n", + "5878 São Paulo 171 3 5 3 16 acept not furnished 1320 10600 870 135 12930\n", + "5879 São Paulo 100 3 2 1 1 acept not furnished 879 1600 90 21 2590\n", + "5880 São Paulo 70 2 1 1 9 acept not furnished 767 2707 0 11 3485\n", + "5881 São Paulo 49 1 1 0 1 acept furnished 768 2600 66 33 3467\n", + "5882 Belo Horizonte 62 2 2 0 1 acept not furnished 0 1300 0 18 1318\n", + "5883 São Paulo 162 4 5 3 16 acept not furnished 1720 3700 525 47 5992\n", + "5884 São Paulo 260 4 4 4 4 acept not furnished 3247 15000 1589 191 20030\n", + "5885 Rio de Janeiro 266 4 4 2 4 acept not furnished 1704 4850 659 63 7276\n", + "5886 São Paulo 250 3 5 5 18 acept furnished 3427 15000 1834 191 20450\n", + "5887 São Paulo 124 3 3 2 2 not acept not furnished 2019 2500 430 32 4981\n", + "5888 Belo Horizonte 57 3 1 1 4 acept not furnished 300 900 56 12 1268\n", + "5889 São Paulo 218 3 4 2 6 not acept not furnished 1800 7800 334 99 10030\n", + "5890 São Paulo 210 4 4 4 5 acept not furnished 3000 13100 1325 166 17590\n", + "5891 Porto Alegre 274 3 2 2 1 acept not furnished 300 2500 253 37 3090\n", + "5892 São Paulo 52 2 2 1 2 acept furnished 391 1800 0 23 2214\n", + "5893 São Paulo 254 4 6 5 14 not acept furnished 4000 7740 1584 99 13420\n", + "5894 São Paulo 147 3 3 3 13 acept not furnished 1157 3600 309 46 5112\n", + "5895 Rio de Janeiro 78 2 2 1 2 acept not furnished 180 1650 0 26 1856\n", + "5896 São Paulo 60 2 2 0 - acept not furnished 518 1300 170 10 1998\n", + "5897 Rio de Janeiro 130 3 2 0 6 acept not furnished 1350 2700 300 35 4385\n", + "5898 São Paulo 50 1 1 1 21 acept furnished 765 2700 105 35 3605\n", + "5899 São Paulo 110 3 2 3 11 acept not furnished 1150 2600 334 33 4117\n", + "5900 Rio de Janeiro 80 2 1 0 2 acept not furnished 270 2850 173 37 3330\n", + "5901 São Paulo 376 5 6 4 13 acept not furnished 4252 12000 1980 153 18390\n", + "5902 São Paulo 50 2 1 0 12 acept not furnished 500 1370 7 18 1895\n", + "5903 São Paulo 179 3 2 2 5 acept not furnished 2080 10000 443 127 12650\n", + "5904 Campinas 163 3 5 3 20 acept not furnished 1450 9800 350 125 11730\n", + "5905 Rio de Janeiro 110 3 1 1 8 acept not furnished 1055 1820 124 24 3023\n", + "5906 São Paulo 330 6 4 3 - acept not furnished 0 13000 1156 196 14350\n", + "5907 São Paulo 35 1 1 0 18 acept not furnished 250 1850 0 24 2124\n", + "5908 Campinas 96 3 3 2 4 not acept not furnished 590 4147 243 53 5033\n", + "5909 Belo Horizonte 90 2 3 0 - acept not furnished 0 2080 9 35 2124\n", + "5910 São Paulo 45 1 1 0 - acept not furnished 0 1500 76 23 1599\n", + "5911 São Paulo 130 3 1 1 - acept not furnished 0 5600 0 85 5685\n", + "5912 Rio de Janeiro 77 2 1 0 5 acept not furnished 705 1200 59 16 1980\n", + "5913 São Paulo 35 1 1 1 2 acept not furnished 762 2650 127 34 3573\n", + "5914 São Paulo 280 3 4 4 14 not acept furnished 3700 12000 1150 153 17000\n", + "5915 São Paulo 24606 5 4 4 12 acept not furnished 2254 8100 7859 103 18320\n", + "5916 Belo Horizonte 344 4 4 3 - not acept not furnished 0 3500 121 58 3679\n", + "5917 Belo Horizonte 140 4 2 2 3 acept not furnished 877 1950 271 26 3124\n", + "5918 Belo Horizonte 95 3 4 1 9 acept not furnished 957 3000 254 40 4251\n", + "5919 Campinas 55 2 1 1 1 acept not furnished 270 900 34 12 1216\n", + "5920 Campinas 54 1 2 0 1 acept not furnished 245 720 46 10 1021\n", + "5921 Belo Horizonte 50 2 1 2 6 acept not furnished 220 850 109 12 1191\n", + "5922 São Paulo 200 4 5 4 16 acept not furnished 2607 10000 1150 127 13880\n", + "5923 São Paulo 50 1 1 1 2 acept not furnished 650 2350 24 30 3054\n", + "5924 São Paulo 200 4 2 3 - acept furnished 0 4500 0 68 4568\n", + "5925 São Paulo 67 2 2 1 1 acept not furnished 1250 2840 255 36 4381\n", + "5926 São Paulo 62 3 2 1 8 not acept not furnished 300 2050 0 26 2376\n", + "5927 Rio de Janeiro 50 1 1 0 2 acept furnished 532 1700 77 22 2331\n", + "5928 Porto Alegre 77 2 2 2 3 acept not furnished 450 2500 0 37 2987\n", + "5929 São Paulo 220 3 3 2 13 acept not furnished 250 4680 184 60 5174\n", + "5930 São Paulo 253 4 5 3 1 acept not furnished 2100 4100 0 52 6252\n", + "5931 São Paulo 500 4 4 3 - acept not furnished 0 9000 0 136 9136\n", + "5932 São Paulo 35 1 1 0 6 acept not furnished 380 900 0 12 1292\n", + "5933 São Paulo 23 1 1 1 26 acept not furnished 472 2300 59 30 2861\n", + "5934 São Paulo 325 4 3 2 3 acept not furnished 4500 8500 1111 108 14220\n", + "5935 Porto Alegre 28 1 1 0 4 acept not furnished 150 800 15 12 977\n", + "5936 Rio de Janeiro 76 2 2 1 9 acept furnished 1400 3360 203 44 5007\n", + "5937 São Paulo 70 2 1 1 7 acept not furnished 500 1300 48 17 1865\n", + "5938 São Paulo 120 3 4 2 5 acept furnished 2200 2040 667 26 4933\n", + "5939 Rio de Janeiro 180 3 3 0 - acept not furnished 20 2500 170 39 2729\n", + "5940 São Paulo 350 4 3 4 - acept not furnished 0 6000 743 91 6834\n", + "5941 Porto Alegre 60 1 1 0 2 acept not furnished 200 750 42 11 1003\n", + "5942 Porto Alegre 87 2 2 2 19 acept not furnished 630 2900 67 43 3640\n", + "5943 São Paulo 80 3 1 0 - not acept not furnished 0 2837 342 36 3215\n", + "5944 São Paulo 90 3 1 0 - acept not furnished 0 2700 66 41 2807\n", + "5945 São Paulo 200 4 3 8 - acept not furnished 0 8700 1917 131 10750\n", + "5946 São Paulo 260 4 4 3 13 acept not furnished 4070 15000 1500 191 20760\n", + "5947 Rio de Janeiro 100 3 1 2 1 acept not furnished 1890 4500 213 58 6661\n", + "5948 São Paulo 50 2 2 0 1 not acept not furnished 200 950 0 13 1163\n", + "5949 São Paulo 800 4 7 8 - acept not furnished 0 12000 1667 181 13850\n", + "5950 São Paulo 75 1 2 2 19 acept not furnished 1092 2500 321 32 3945\n", + "5951 São Paulo 213 3 2 0 9 acept not furnished 1490 4100 230 52 5872\n", + "5952 São Paulo 70 2 2 1 - acept not furnished 0 1650 102 25 1777\n", + "5953 Porto Alegre 55 2 1 0 2 acept not furnished 287 1000 42 15 1344\n", + "5954 São Paulo 264 3 3 2 16 acept furnished 2480 5300 665 68 8513\n", + "5955 Belo Horizonte 66 2 1 1 1 not acept not furnished 250 1650 83 22 2005\n", + "5956 Campinas 269 4 5 0 12 acept not furnished 3000 5100 963 65 9128\n", + "5957 Rio de Janeiro 50 2 1 1 5 acept furnished 470 1550 13 20 2053\n", + "5958 São Paulo 400 4 5 5 - acept not furnished 0 10000 1896 151 12050\n", + "5959 São Paulo 38 1 1 0 3 not acept not furnished 200 1685 30 22 1937\n", + "5960 Rio de Janeiro 50 2 1 0 5 acept furnished 460 1800 50 24 2334\n", + "5961 São Paulo 84 1 1 1 1 not acept not furnished 929 2500 246 32 3707\n", + "5962 Campinas 40 1 1 1 1 not acept furnished 560 1000 33 13 1606\n", + "5963 São Paulo 50 1 1 0 - not acept not furnished 0 690 0 11 701\n", + "5964 Porto Alegre 27 1 1 0 2 acept not furnished 100 960 75 15 1150\n", + "5965 São Paulo 90 2 2 0 1 acept furnished 320 3200 0 41 3561\n", + "5966 Porto Alegre 50 1 1 0 2 not acept not furnished 250 1500 50 22 1822\n", + "5967 São Paulo 220 3 4 1 6 acept not furnished 1680 12000 334 153 14170\n", + "5968 São Paulo 106 3 3 1 2 acept not furnished 970 2500 350 32 3852\n", + "5969 São Paulo 65 2 1 2 7 acept not furnished 980 1800 167 23 2970\n", + "5970 Porto Alegre 70 2 1 1 2 acept not furnished 390 930 45 14 1379\n", + "5971 São Paulo 260 2 3 4 - acept not furnished 0 5500 142 83 5725\n", + "5972 Campinas 60 2 1 1 3 acept not furnished 345 820 16 11 1192\n", + "5973 Rio de Janeiro 80 2 2 0 3 acept not furnished 450 1275 0 17 1742\n", + "5974 São Paulo 132 3 2 3 - acept not furnished 0 2500 59 38 2597\n", + "5975 São Paulo 85 2 2 2 7 not acept not furnished 900 7200 417 92 8609\n", + "5976 São Paulo 600 4 6 6 - acept not furnished 0 12000 2592 181 14770\n", + "5977 São Paulo 87 2 2 1 5 acept not furnished 2100 2975 117 38 5230\n", + "5978 São Paulo 78 3 1 2 7 acept furnished 1350 2330 150 30 3860\n", + "5979 São Paulo 188 3 3 3 4 acept furnished 1800 8000 841 102 10740\n", + "5980 Rio de Janeiro 38 1 1 1 3 acept not furnished 423 1450 0 19 1892\n", + "5981 São Paulo 209 4 4 5 10 acept furnished 3990 9800 0 125 13920\n", + "5982 São Paulo 280 4 5 4 14 acept not furnished 3200 13000 1000 165 17370\n", + "5983 São Paulo 420 4 4 4 9 acept not furnished 6000 15000 3334 191 24530\n", + "5984 Belo Horizonte 68 2 1 0 - acept not furnished 35 1000 0 17 1052\n", + "5985 Porto Alegre 46 1 1 0 5 acept not furnished 280 990 30 15 1315\n", + "5986 Porto Alegre 63 2 1 2 6 acept furnished 700 2750 92 41 3583\n", + "5987 São Paulo 220 3 3 3 - acept not furnished 0 3700 324 56 4080\n", + "5988 São Paulo 150 3 4 2 - acept not furnished 0 3000 42 46 3088\n", + "5989 São Paulo 98 2 2 2 29 acept not furnished 1450 8500 450 108 10510\n", + "5990 Rio de Janeiro 119 3 3 2 7 acept not furnished 1200 3000 129 39 4368\n", + "5991 Porto Alegre 40 1 1 0 2 not acept not furnished 210 796 26 12 1044\n", + "5992 Porto Alegre 110 3 1 1 2 acept not furnished 450 2700 83 40 3273\n", + "5993 São Paulo 50 2 3 0 - not acept not furnished 0 1740 84 27 1851\n", + "5994 São Paulo 25 1 1 0 23 acept not furnished 432 2200 45 28 2705\n", + "5995 São Paulo 75 2 1 1 5 not acept not furnished 748 2000 0 26 2774\n", + "5996 São Paulo 50 2 1 1 7 not acept not furnished 347 1500 0 20 1867\n", + "5997 Rio de Janeiro 152 4 2 1 7 acept furnished 1944 3500 357 46 5847\n", + "5998 São Paulo 330 4 2 8 - not acept not furnished 0 4000 388 61 4449\n", + "5999 São Paulo 251 3 2 2 - acept not furnished 0 3400 336 52 3788\n", + "6000 Rio de Janeiro 120 3 3 2 6 acept not furnished 1316 3000 504 39 4859\n", + "6001 São Paulo 64 1 2 2 15 acept not furnished 691 2100 92 27 2910\n", + "6002 Porto Alegre 180 3 2 1 3 not acept not furnished 1300 2000 125 30 3455\n", + "6003 Belo Horizonte 61 3 1 1 2 acept not furnished 300 1500 85 20 1905\n", + "6004 Campinas 62 2 1 0 2 acept not furnished 430 800 25 11 1266\n", + "6005 São Paulo 35 1 1 1 1 not acept furnished 444 3388 124 43 3999\n", + "6006 Belo Horizonte 60 2 1 1 2 acept not furnished 250 1300 30 18 1598\n", + "6007 Porto Alegre 58 1 2 2 2 acept not furnished 450 2200 0 33 2683\n", + "6008 São Paulo 146 3 5 2 8 acept not furnished 1100 6600 424 84 8208\n", + "6009 São Paulo 176 3 4 3 4 acept not furnished 1600 6500 775 83 8958\n", + "6010 São Paulo 220 6 2 2 - acept not furnished 0 3600 125 55 3780\n", + "6011 Belo Horizonte 47 2 1 1 4 not acept not furnished 250 1300 0 18 1568\n", + "6012 São Paulo 30 1 1 0 - not acept not furnished 0 650 38 9 697\n", + "6013 São Paulo 103 3 2 0 14 acept not furnished 950 2160 39 28 3177\n", + "6014 Rio de Janeiro 600 7 6 2 - not acept furnished 0 9000 1084 138 10220\n", + "6015 Rio de Janeiro 200 4 5 3 - acept not furnished 0 6200 155 95 6450\n", + "6016 São Paulo 34 1 1 0 10 acept not furnished 200 1530 25 20 1775\n", + "6017 São Paulo 95 2 1 1 - acept not furnished 0 2900 0 44 2944\n", + "6018 São Paulo 215 4 4 2 16 not acept furnished 2600 6000 917 77 9594\n", + "6019 Rio de Janeiro 60 2 1 1 3 not acept not furnished 530 1230 88 16 1864\n", + "6020 Rio de Janeiro 145 3 2 1 3 acept not furnished 3300 9000 700 116 13120\n", + "6021 São Paulo 102 3 2 2 - acept not furnished 0 1600 0 25 1625\n", + "6022 São Paulo 44 1 1 1 19 acept furnished 385 3600 125 46 4156\n", + "6023 São Paulo 90 2 2 0 3 acept not furnished 1600 4200 250 54 6104\n", + "6024 São Paulo 180 4 3 1 4 acept furnished 1572 5000 240 64 6876\n", + "6025 Porto Alegre 123 3 3 1 2 not acept not furnished 0 3000 0 44 3044\n", + "6026 São Paulo 54 2 2 1 8 not acept not furnished 769 2200 216 28 3213\n", + "6027 São Paulo 50 1 1 1 6 acept furnished 1000 1884 0 11 2895\n", + "6028 São Paulo 100 2 1 1 - acept not furnished 0 1690 84 26 1800\n", + "6029 Porto Alegre 36 1 1 1 17 acept not furnished 225 1200 35 18 1478\n", + "6030 São Paulo 92 1 2 1 6 acept not furnished 810 3010 16 39 3875\n", + "6031 São Paulo 68 2 2 1 7 acept not furnished 500 2000 79 26 2605\n", + "6032 São Paulo 94 3 3 3 4 acept furnished 1400 4450 330 57 6237\n", + "6033 Rio de Janeiro 25 1 1 0 - acept not furnished 50 700 0 10 760\n", + "6034 São Paulo 60 2 2 0 - acept not furnished 0 1300 0 20 1320\n", + "6035 São Paulo 321 5 3 5 - acept not furnished 0 13000 2250 196 15450\n", + "6036 São Paulo 116 3 4 2 1 acept furnished 1242 3900 413 50 5605\n", + "6037 São Paulo 40 1 1 0 - not acept not furnished 0 1010 0 16 1026\n", + "6038 Porto Alegre 100 3 2 2 - acept not furnished 1 2300 84 41 2426\n", + "6039 São Paulo 70 2 1 0 - acept not furnished 0 1300 163 20 1483\n", + "6040 São Paulo 48 1 1 1 2 acept furnished 530 1700 71 22 2323\n", + "6041 São Paulo 115 3 5 2 10 acept not furnished 1830 7000 495 89 9414\n", + "6042 São Paulo 90 1 1 1 12 acept not furnished 870 3600 73 14 4557\n", + "6043 Rio de Janeiro 89 2 2 1 2 acept not furnished 800 2900 148 38 3886\n", + "6044 Porto Alegre 30 1 1 0 3 acept not furnished 140 1360 24 20 1544\n", + "6045 Porto Alegre 39 1 1 0 11 acept not furnished 340 600 13 9 962\n", + "6046 São Paulo 42 1 1 1 27 not acept furnished 560 5250 100 67 5977\n", + "6047 São Paulo 400 4 5 5 - acept not furnished 0 7200 350 109 7659\n", + "6048 São Paulo 47 1 2 1 2 acept furnished 490 2500 125 32 3147\n", + "6049 São Paulo 124 2 2 2 - acept furnished 0 7200 94 109 7403\n", + "6050 Campinas 120 3 2 3 - acept not furnished 0 2200 180 34 2414\n", + "6051 Campinas 45 1 1 0 - not acept not furnished 0 700 25 11 736\n", + "6052 São Paulo 270 3 2 4 - acept not furnished 0 6500 1167 98 7765\n", + "6053 São Paulo 108 3 2 1 10 acept not furnished 1000 3655 240 47 4942\n", + "6054 São Paulo 128 3 4 4 13 not acept furnished 1306 8000 595 102 10000\n", + "6055 Rio de Janeiro 179 4 2 0 9 acept not furnished 1600 3040 484 40 5164\n", + "6056 Belo Horizonte 140 4 2 2 3 acept not furnished 777 2000 237 27 3041\n", + "6057 Belo Horizonte 27 1 1 0 1 not acept furnished 0 1167 334 16 1517\n", + "6058 São Paulo 250 3 4 2 16 acept not furnished 3300 6000 517 77 9894\n", + "6059 Porto Alegre 350 4 3 3 - acept furnished 0 4400 209 79 4688\n", + "6060 São Paulo 208 3 2 2 3 acept not furnished 1800 5000 500 64 7364\n", + "6061 São Paulo 80 3 1 0 - not acept not furnished 185 2100 0 27 2312\n", + "6062 São Paulo 34 1 1 1 4 acept not furnished 620 3100 45 40 3805\n", + "6063 São Paulo 150 4 3 0 2 acept not furnished 0 2850 275 37 3162\n", + "6064 São Paulo 127 3 3 2 17 not acept furnished 1775 7000 421 89 9285\n", + "6065 São Paulo 296 4 5 2 - acept not furnished 0 8500 1000 128 9628\n", + "6066 São Paulo 61 1 1 0 1 not acept furnished 437 2700 0 35 3172\n", + "6067 São Paulo 375 4 4 3 19 acept furnished 2500 9000 917 115 12530\n", + "6068 São Paulo 370 5 4 3 - acept not furnished 0 14000 1290 211 15500\n", + "6069 Porto Alegre 30 1 1 0 2 acept furnished 280 1270 42 19 1611\n", + "6070 São Paulo 480 5 7 5 19 acept not furnished 6200 8500 3700 108 18510\n", + "6071 São Paulo 33 1 1 1 18 not acept furnished 1500 3500 0 45 5045\n", + "6072 Rio de Janeiro 84 3 1 0 1 not acept not furnished 900 3100 209 40 4249\n", + "6073 São Paulo 340 8 5 4 - acept not furnished 0 7000 1400 106 8506\n", + "6074 Porto Alegre 97 3 3 3 5 acept not furnished 850 3000 164 44 4058\n", + "6075 Rio de Janeiro 110 3 2 1 8 acept not furnished 1488 2500 190 33 4211\n", + "6076 Belo Horizonte 77 3 3 2 2 acept furnished 1010 2200 306 30 3546\n", + "6077 Rio de Janeiro 105 3 2 1 4 acept not furnished 1590 2500 258 33 4381\n", + "6078 São Paulo 33 1 1 1 1 not acept furnished 190 1800 90 23 2103\n", + "6079 São Paulo 25 1 1 0 5 acept not furnished 340 2040 0 26 2406\n", + "6080 São Paulo 130 2 2 2 - acept furnished 0 4400 92 67 4559\n", + "6081 São Paulo 480 4 7 5 - acept not furnished 0 7500 1250 113 8863\n", + "6082 São Paulo 240 3 3 3 11 acept furnished 3000 10000 1200 127 14330\n", + "6083 Rio de Janeiro 80 2 2 1 8 acept not furnished 760 2500 300 33 3593\n", + "6084 São Paulo 50 2 1 2 1 not acept not furnished 850 1900 42 25 2817\n", + "6085 Belo Horizonte 32 1 1 0 9 not acept not furnished 300 1000 100 14 1414\n", + "6086 Belo Horizonte 48 2 1 1 2 acept not furnished 170 1400 12 19 1601\n", + "6087 São Paulo 90 3 3 1 - acept not furnished 0 2600 11 40 2651\n", + "6088 Rio de Janeiro 30 1 1 0 14 acept furnished 706 1100 133 15 1954\n", + "6089 Porto Alegre 75 2 2 1 4 acept not furnished 488 2800 135 41 3464\n", + "6090 Porto Alegre 59 2 2 1 2 acept not furnished 490 1450 48 22 2010\n", + "6091 São Paulo 25 1 1 0 2 not acept furnished 0 1750 0 23 1773\n", + "6092 Campinas 140 4 3 2 2 acept not furnished 1070 3000 250 39 4359\n", + "6093 São Paulo 100 2 1 1 11 acept not furnished 1173 4000 120 51 5344\n", + "6094 Campinas 23 1 1 0 - not acept furnished 0 990 0 13 1003\n", + "6095 São Paulo 124 3 2 1 4 not acept furnished 1070 2750 289 35 4144\n", + "6096 São Paulo 84 2 3 2 32 not acept furnished 850 8500 450 108 9908\n", + "6097 São Paulo 69 2 2 1 21 acept not furnished 662 4000 146 51 4859\n", + "6098 Belo Horizonte 100 3 1 0 - acept not furnished 0 2000 216 33 2249\n", + "6099 São Paulo 70 1 2 1 3 acept not furnished 1054 4000 106 51 5211\n", + "6100 Belo Horizonte 88 3 2 1 3 acept not furnished 320 1290 0 18 1628\n", + "6101 Belo Horizonte 465 7 7 2 - acept furnished 0 15000 435 246 15680\n", + "6102 São Paulo 90 3 2 2 1 acept not furnished 1800 2730 334 35 4899\n", + "6103 São Paulo 120 3 3 1 5 acept not furnished 1656 3000 189 39 4884\n", + "6104 São Paulo 277 3 4 2 17 acept not furnished 3000 7650 784 97 11530\n", + "6105 São Paulo 270 4 6 3 - acept not furnished 0 5000 669 76 5745\n", + "6106 Porto Alegre 216 3 2 1 23 acept not furnished 1400 3800 167 56 5423\n", + "6107 Campinas 150 1 2 0 - acept not furnished 0 1200 0 19 1219\n", + "6108 São Paulo 360 4 7 5 7 acept not furnished 3900 3995 2504 51 10450\n", + "6109 Belo Horizonte 110 2 4 2 5 acept not furnished 690 2700 213 36 3639\n", + "6110 Porto Alegre 50 2 1 1 3 acept furnished 334 1300 16 19 1669\n", + "6111 São Paulo 98 2 2 2 24 acept furnished 1650 7500 400 96 9646\n", + "6112 São Paulo 190 3 3 3 4 not acept furnished 2000 5000 667 64 7731\n", + "6113 São Paulo 35 1 1 1 9 acept not furnished 239 2500 90 32 2861\n", + "6114 São Paulo 350 3 5 3 - acept not furnished 0 12000 1250 181 13430\n", + "6115 Belo Horizonte 950 6 6 2 - acept not furnished 1130 10000 1375 164 12670\n", + "6116 São Paulo 213 4 5 4 18 acept not furnished 3900 9900 1084 126 15010\n", + "6117 Rio de Janeiro 100 3 2 1 7 not acept not furnished 1100 3000 190 39 4329\n", + "6118 São Paulo 240 4 4 4 5 acept not furnished 2700 16000 1667 203 20570\n", + "6119 Belo Horizonte 77 2 1 1 2 acept furnished 400 960 129 13 1502\n", + "6120 São Paulo 217 3 4 4 17 acept furnished 2400 14500 910 184 17990\n", + "6121 São Paulo 218 4 4 3 10 acept furnished 2347 8400 1105 107 11960\n", + "6122 São Paulo 31 2 1 0 2 acept not furnished 0 1040 0 14 1054\n", + "6123 São Paulo 380 4 7 7 15 acept not furnished 6000 15000 2500 191 23690\n", + "6124 Rio de Janeiro 40 1 2 0 7 acept not furnished 500 1800 53 24 2377\n", + "6125 São Paulo 48 1 1 1 12 acept furnished 766 3800 150 49 4765\n", + "6126 São Paulo 55 1 1 0 - acept not furnished 0 1400 138 22 1560\n", + "6127 São Paulo 270 3 3 3 - acept not furnished 3500 5740 834 87 10160\n", + "6128 Rio de Janeiro 80 2 3 1 12 acept furnished 850 4500 0 58 5408\n", + "6129 Rio de Janeiro 50 1 1 0 - acept not furnished 0 1850 0 24 1874\n", + "6130 São Paulo 38 2 1 0 5 acept furnished 577 3200 50 41 3868\n", + "6131 Belo Horizonte 320 4 5 4 6 not acept not furnished 3480 5000 940 67 9487\n", + "6132 São Paulo 500 3 6 0 - acept not furnished 0 6400 1667 97 8164\n", + "6133 Rio de Janeiro 110 3 3 0 - acept not furnished 200 2400 57 37 2694\n", + "6134 São Paulo 300 3 3 2 - acept not furnished 0 10500 768 158 11430\n", + "6135 São Paulo 30 1 1 0 - not acept not furnished 0 650 25 10 685\n", + "6136 São Paulo 58 2 2 1 12 not acept furnished 942 3400 71 44 4457\n", + "6137 São Paulo 18 1 1 0 - acept not furnished 0 1720 0 22 1742\n", + "6138 São Paulo 139 4 4 8 - acept not furnished 0 3500 265 53 3818\n", + "6139 Rio de Janeiro 210 4 5 2 2 acept not furnished 2300 8000 850 104 11250\n", + "6140 Porto Alegre 50 2 1 1 5 acept not furnished 188 1180 0 18 1386\n", + "6141 São Paulo 70 1 1 2 9 acept furnished 2150 7000 542 89 9781\n", + "6142 São Paulo 36 1 1 0 4 acept not furnished 175 1275 0 5 1455\n", + "6143 São Paulo 48 1 1 0 - acept not furnished 0 1100 0 14 1114\n", + "6144 Belo Horizonte 92 3 2 1 1 acept not furnished 220 1600 0 22 1842\n", + "6145 Rio de Janeiro 189 3 2 0 3 acept not furnished 1371 4500 452 58 6381\n", + "6146 Porto Alegre 38 1 1 1 9 acept not furnished 350 2500 42 37 2929\n", + "6147 São Paulo 351 3 4 2 17 not acept furnished 2400 9500 1192 121 13210\n", + "6148 Rio de Janeiro 64 2 1 1 4 acept not furnished 650 2700 120 35 3505\n", + "6149 São Paulo 31 1 1 1 11 acept not furnished 478 2400 75 31 2984\n", + "6150 São Paulo 90 3 2 2 3 acept not furnished 1100 2450 117 32 3699\n", + "6151 São Paulo 40 1 1 0 6 acept not furnished 890 3463 0 32 4385\n", + "6152 São Paulo 180 3 4 4 4 acept not furnished 4000 15000 1417 191 20610\n", + "6153 São Paulo 64 3 1 1 5 acept not furnished 504 1500 53 20 2077\n", + "6154 São Paulo 190 3 4 3 1 acept not furnished 2100 5500 525 70 8195\n", + "6155 São Paulo 400 3 3 4 - acept not furnished 0 14000 300 211 14510\n", + "6156 Rio de Janeiro 180 4 5 3 4 acept not furnished 1200 10000 725 129 12050\n", + "6157 São Paulo 73 1 1 0 8 acept furnished 864 3000 57 39 3960\n", + "6158 São Paulo 64 2 2 2 4 acept not furnished 404 2600 75 33 3112\n", + "6159 São Paulo 65 3 1 1 6 acept not furnished 461 2530 90 33 3114\n", + "6160 São Paulo 400 4 5 4 7 acept not furnished 3240 12800 1345 163 17550\n", + "6161 São Paulo 48 2 1 1 6 not acept furnished 582 5470 8 70 6130\n", + "6162 São Paulo 40 1 1 1 14 not acept not furnished 642 1700 20 22 2384\n", + "6163 Porto Alegre 61 2 1 0 3 not acept not furnished 400 1445 0 22 1867\n", + "6164 Rio de Janeiro 85 2 1 0 1 acept not furnished 460 1700 58 22 2240\n", + "6165 Belo Horizonte 235 4 3 1 - acept not furnished 0 12000 563 197 12760\n", + "6166 São Paulo 347 4 5 4 5 acept furnished 3500 12000 1500 153 17150\n", + "6167 Rio de Janeiro 25 1 1 0 2 acept not furnished 250 540 0 7 797\n", + "6168 Rio de Janeiro 85 2 2 1 2 acept not furnished 1140 3600 363 47 5150\n", + "6169 São Paulo 103 3 3 2 3 acept furnished 1310 6500 448 83 8341\n", + "6170 São Paulo 159 3 3 2 - not acept not furnished 0 3300 225 50 3575\n", + "6171 São Paulo 42 1 1 1 9 acept not furnished 600 3600 125 46 4371\n", + "6172 São Paulo 100 3 2 1 12 acept not furnished 700 1946 0 7 2653\n", + "6173 São Paulo 111 1 2 2 9 acept not furnished 1400 8000 466 102 9968\n", + "6174 Porto Alegre 40 1 1 1 2 acept furnished 300 1500 23 22 1845\n", + "6175 Campinas 92 3 2 3 1 acept furnished 752 2525 0 32 3309\n", + "6176 Rio de Janeiro 480 5 6 4 3 acept not furnished 3236 8000 1600 104 12940\n", + "6177 Belo Horizonte 55 2 2 2 3 acept not furnished 670 2000 177 27 2874\n", + "6178 Belo Horizonte 24 1 1 1 7 not acept not furnished 157 1200 0 16 1373\n", + "6179 São Paulo 50 1 1 1 - not acept not furnished 200 1000 0 16 1216\n", + "6180 Rio de Janeiro 80 2 1 0 9 acept not furnished 500 1600 158 21 2279\n", + "6181 São Paulo 230 3 2 0 1 acept not furnished 0 2500 500 32 3032\n", + "6182 Porto Alegre 72 2 1 0 1 acept not furnished 200 1200 67 18 1485\n", + "6183 Porto Alegre 90 2 1 0 1 acept not furnished 300 1353 77 20 1750\n", + "6184 Belo Horizonte 22 1 1 0 1 not acept furnished 0 700 0 10 710\n", + "6185 São Paulo 455 4 5 4 5 acept not furnished 8500 19500 3334 248 31580\n", + "6186 São Paulo 140 3 2 1 6 not acept not furnished 1740 2400 340 31 4511\n", + "6187 Belo Horizonte 23 1 1 1 7 acept not furnished 144 1300 132 18 1594\n", + "6188 Porto Alegre 46 1 1 0 2 acept not furnished 0 1070 56 16 1142\n", + "6189 Campinas 70 1 1 1 2 acept furnished 460 2350 6 30 2846\n", + "6190 Belo Horizonte 150 5 3 0 - acept not furnished 0 3250 100 54 3404\n", + "6191 Campinas 55 1 1 0 5 acept not furnished 473 500 17 7 997\n", + "6192 São Paulo 40 1 1 0 - not acept not furnished 0 2040 70 31 2141\n", + "6193 São Paulo 91 2 1 1 1 acept not furnished 615 1750 90 23 2478\n", + "6194 São Paulo 140 2 1 3 - acept not furnished 0 2500 194 38 2732\n", + "6195 São Paulo 50 1 1 0 1 acept not furnished 600 1300 0 17 1917\n", + "6196 Campinas 52 2 1 1 7 acept not furnished 248 980 77 13 1318\n", + "6197 Rio de Janeiro 100 3 1 1 1 acept not furnished 1700 3000 250 39 4989\n", + "6198 São Paulo 160 4 3 3 3 acept not furnished 1600 7000 542 89 9231\n", + "6199 São Paulo 50 1 1 0 - not acept not furnished 0 750 0 12 762\n", + "6200 Campinas 137 3 2 1 4 acept not furnished 1500 1800 250 23 3573\n", + "6201 Porto Alegre 42 1 1 0 2 acept not furnished 250 1200 27 18 1495\n", + "6202 São Paulo 650 3 7 2 - acept not furnished 0 9900 600 149 10650\n", + "6203 Rio de Janeiro 90 3 2 0 1 not acept not furnished 0 2000 0 31 2031\n", + "6204 Rio de Janeiro 30 1 1 0 9 acept furnished 550 1854 0 11 2415\n", + "6205 São Paulo 254 4 4 3 7 acept furnished 1300 6780 478 86 8644\n", + "6206 São Paulo 40 1 1 1 5 not acept not furnished 700 3600 180 46 4526\n", + "6207 Rio de Janeiro 130 4 2 1 2 not acept furnished 700 3300 145 43 4188\n", + "6208 Campinas 128 3 3 2 1 acept not furnished 1236 2650 682 34 4602\n", + "6209 São Paulo 78 2 1 3 - acept not furnished 0 1600 163 25 1788\n", + "6210 Campinas 42 1 1 0 1 acept not furnished 0 690 12 9 711\n", + "6211 Campinas 140 3 3 2 8 acept not furnished 900 2370 0 31 3301\n", + "6212 São Paulo 46 1 1 0 3 acept not furnished 100 1600 0 21 1721\n", + "6213 Campinas 50 2 1 1 3 acept not furnished 300 1170 0 15 1485\n", + "6214 São Paulo 54 1 1 1 13 not acept not furnished 1484 4130 250 53 5917\n", + "6215 São Paulo 40 1 1 1 13 acept not furnished 584 3200 95 41 3920\n", + "6216 São Paulo 50 2 1 1 5 acept not furnished 570 1100 0 14 1684\n", + "6217 São Paulo 75 3 1 1 1 not acept not furnished 475 1800 0 23 2298\n", + "6218 São Paulo 472 3 2 4 - acept not furnished 0 6500 650 98 7248\n", + "6219 Porto Alegre 360 5 3 6 - acept furnished 0 4800 197 86 5083\n", + "6220 São Paulo 308 4 4 3 1 acept not furnished 4780 15000 1917 191 21890\n", + "6221 São Paulo 50 1 1 1 8 not acept furnished 2204 3700 209 47 6160\n", + "6222 São Paulo 540 4 5 5 13 acept not furnished 3414 5100 2236 65 10820\n", + "6223 São Paulo 321 3 5 2 - acept furnished 0 7318 1072 111 8501\n", + "6224 São Paulo 70 3 2 1 3 acept not furnished 380 1290 92 17 1779\n", + "6225 Campinas 130 3 2 2 4 acept furnished 1150 2800 184 36 4170\n", + "6226 São Paulo 170 3 2 2 - acept not furnished 0 4500 267 68 4835\n", + "6227 São Paulo 60 2 2 1 11 not acept furnished 1158 5500 150 70 6878\n", + "6228 Rio de Janeiro 45 1 1 0 4 not acept furnished 450 4500 80 58 5088\n", + "6229 Belo Horizonte 60 2 1 1 1 acept not furnished 467 750 78 10 1305\n", + "6230 São Paulo 340 5 4 2 7 acept not furnished 220000 12000 1000 153 233200\n", + "6231 Porto Alegre 58 2 1 0 2 acept not furnished 299 750 30 11 1090\n", + "6232 São Paulo 195 4 3 3 7 not acept not furnished 2600 10000 1336 127 14060\n", + "6233 São Paulo 100 2 4 0 1 acept not furnished 0 3000 0 39 3039\n", + "6234 São Paulo 50 1 1 0 - acept not furnished 0 700 67 11 778\n", + "6235 Campinas 54 2 1 1 3 acept not furnished 286 999 23 13 1321\n", + "6236 Belo Horizonte 55 2 1 1 3 acept not furnished 270 1300 85 18 1673\n", + "6237 São Paulo 48 1 1 2 1 acept furnished 1966 3550 486 45 6047\n", + "6238 São Paulo 58 2 1 1 6 acept not furnished 850 1700 165 22 2737\n", + "6239 São Paulo 200 3 4 3 19 acept furnished 2247 8500 1000 33 11780\n", + "6240 Campinas 77 3 1 2 3 acept not furnished 486 1500 49 20 2055\n", + "6241 Belo Horizonte 72 2 1 1 9 acept not furnished 421 1200 83 16 1720\n", + "6242 São Paulo 50 2 1 2 8 not acept not furnished 504 1800 59 23 2386\n", + "6243 Rio de Janeiro 95 2 2 1 11 acept not furnished 1024 3000 28120 39 32180\n", + "6244 São Paulo 130 3 2 0 1 acept furnished 550 4800 215 61 5626\n", + "6245 Rio de Janeiro 30 1 1 0 6 not acept not furnished 500 700 0 10 1210\n", + "6246 São Paulo 300 4 3 4 9 acept not furnished 2400 15000 0 191 17590\n", + "6247 Rio de Janeiro 95 3 2 1 3 acept not furnished 1000 2245 268 29 3542\n", + "6248 São Paulo 80 3 1 1 1 acept not furnished 620 1750 0 23 2393\n", + "6249 São Paulo 310 3 3 2 16 not acept not furnished 2720 15000 846 191 18760\n", + "6250 Porto Alegre 170 3 2 0 3 acept furnished 1750 1000 165 15 2930\n", + "6251 Rio de Janeiro 46 2 1 0 9 not acept not furnished 550 820 0 11 1381\n", + "6252 Rio de Janeiro 97 3 2 0 5 acept not furnished 900 2734 270 36 3940\n", + "6253 São Paulo 130 3 2 1 4 not acept furnished 1134 7900 386 101 9521\n", + "6254 Rio de Janeiro 30 1 1 0 2 not acept not furnished 350 1140 0 15 1505\n", + "6255 São Paulo 40 1 1 1 11 not acept not furnished 390 2600 96 35 3121\n", + "6256 São Paulo 90 3 2 2 6 not acept furnished 890 2100 150 27 3167\n", + "6257 São Paulo 89 2 2 2 8 acept furnished 1440 7700 351 98 9589\n", + "6258 São Paulo 240 3 3 5 1 acept not furnished 3000 3500 0 45 6545\n", + "6259 São Paulo 106 3 2 0 6 acept not furnished 1139 2430 0 31 3600\n", + "6260 São Paulo 80 2 1 1 18 not acept not furnished 550 1500 167 20 2237\n", + "6261 São Paulo 22 1 1 1 25 acept not furnished 471 2200 55 28 2754\n", + "6262 São Paulo 141 4 3 2 3 acept not furnished 1500 4010 542 51 6103\n", + "6263 São Paulo 340 4 6 6 - acept furnished 0 15000 250 226 15480\n", + "6264 São Paulo 105 4 2 2 3 acept not furnished 1659 6500 400 83 8642\n", + "6265 São Paulo 70 3 1 1 2 acept not furnished 380 1290 180 17 1867\n", + "6266 São Paulo 200 3 2 1 8 acept not furnished 1500 8000 42 102 9644\n", + "6267 Campinas 62 2 1 0 1 acept not furnished 280 709 22 9 1020\n", + "6268 São Paulo 74 2 3 2 24 acept not furnished 450 3200 40 41 3731\n", + "6269 Rio de Janeiro 333 5 4 3 5 acept not furnished 2100 7000 1000 91 10190\n", + "6270 São Paulo 250 4 2 5 - acept not furnished 841 4000 701 61 5603\n", + "6271 São Paulo 70 1 1 1 10 acept furnished 469 3590 83 46 4188\n", + "6272 Rio de Janeiro 120 3 2 2 1 acept furnished 1790 5500 509 71 7870\n", + "6273 Porto Alegre 35 1 1 0 1 acept not furnished 100 960 75 15 1150\n", + "6274 Rio de Janeiro 67 2 1 0 4 acept not furnished 810 1529 80 17 2436\n", + "6275 São Paulo 220 4 3 4 11 acept furnished 1800 3000 1000 39 5839\n", + "6276 Campinas 80 3 2 2 17 acept not furnished 560 2500 175 32 3267\n", + "6277 São Paulo 57 1 1 1 5 acept not furnished 769 4800 194 61 5824\n", + "6278 Porto Alegre 100 2 2 2 - acept not furnished 120 2200 159 33 2512\n", + "6279 Rio de Janeiro 60 1 1 0 5 acept not furnished 500 750 100 10 1360\n", + "6280 Campinas 87 3 2 1 12 acept furnished 870 1450 100 19 2439\n", + "6281 São Paulo 530 4 4 6 - acept not furnished 0 9520 1334 144 11000\n", + "6282 São Paulo 35 1 1 0 - acept not furnished 0 700 80 11 791\n", + "6283 São Paulo 140 3 2 2 - acept not furnished 0 3000 2500 46 5546\n", + "6284 São Paulo 45 2 2 0 - not acept not furnished 0 1630 84 25 1739\n", + "6285 São Paulo 70 1 1 1 12 acept furnished 1000 3500 171 45 4716\n", + "6286 São Paulo 140 3 3 1 1 acept not furnished 1144 1360 256 18 2778\n", + "6287 Belo Horizonte 80 3 2 1 7 acept not furnished 820 2000 152 27 2999\n", + "6288 São Paulo 50 1 1 0 - not acept not furnished 0 1150 50 18 1218\n", + "6289 São Paulo 108 3 2 2 12 not acept not furnished 900 2900 202 37 4039\n", + "6290 São Paulo 60 3 1 1 15 acept furnished 556 2200 4 31 2791\n", + "6291 São Paulo 30 1 1 1 14 not acept furnished 460 3500 100 45 4105\n", + "6292 São Paulo 110 3 3 2 2 acept furnished 1000 3800 192 49 5041\n", + "6293 Rio de Janeiro 70 2 1 1 5 acept furnished 843 1100 84 15 2042\n", + "6294 São Paulo 360 3 5 4 22 acept not furnished 2330 3635 1644 47 7656\n", + "6295 Campinas 348 3 3 3 - acept not furnished 0 6000 350 91 6441\n", + "6296 São Paulo 270 3 4 3 10 acept not furnished 3809 7900 1792 101 13600\n", + "6297 Rio de Janeiro 86 2 2 1 1 not acept furnished 1500 5500 375 71 7446\n", + "6298 São Paulo 100 3 4 2 6 not acept not furnished 1380 3000 470 39 4889\n", + "6299 São Paulo 30 1 1 1 10 acept furnished 574 1850 0 24 2448\n", + "6300 São Paulo 146 3 4 3 20 acept furnished 1540 10000 667 127 12330\n", + "6301 Belo Horizonte 100 3 3 1 1 acept not furnished 350 1600 120 22 2092\n", + "6302 Rio de Janeiro 185 3 2 1 3 acept not furnished 2488 6900 0 89 9477\n", + "6303 São Paulo 300 3 5 2 7 acept not furnished 0 4600 609 70 5279\n", + "6304 São Paulo 120 3 4 0 - acept not furnished 250 3200 226 41 3717\n", + "6305 São Paulo 195 3 3 2 - acept not furnished 0 2990 330 45 3365\n", + "6306 São Paulo 110 1 3 2 6 acept not furnished 1500 8000 417 102 10020\n", + "6307 São Paulo 210 3 3 3 17 acept not furnished 2300 7000 717 89 10110\n", + "6308 Campinas 400 4 6 3 - acept not furnished 1200 6800 700 103 8803\n", + "6309 Belo Horizonte 42 2 1 1 4 acept not furnished 175 690 63 10 938\n", + "6310 Belo Horizonte 180 3 1 0 - acept not furnished 0 3400 367 56 3823\n", + "6311 Campinas 329 4 2 2 9 acept not furnished 2040 6300 420 80 8840\n", + "6312 São Paulo 44 1 1 0 1 acept not furnished 100 1400 0 18 1518\n", + "6313 Belo Horizonte 28 1 1 1 - not acept furnished 550 1250 0 17 1817\n", + "6314 Rio de Janeiro 90 3 2 1 2 not acept furnished 1000 3800 310 49 5159\n", + "6315 São Paulo 90 2 1 0 2 acept not furnished 622 2150 212 28 3012\n", + "6316 São Paulo 200 2 1 0 - acept not furnished 0 2800 291 43 3134\n", + "6317 Porto Alegre 240 3 4 3 - acept not furnished 0 6000 184 107 6291\n", + "6318 Porto Alegre 55 2 1 0 19 acept not furnished 500 1200 84 18 1802\n", + "6319 Belo Horizonte 90 3 2 0 8 not acept not furnished 630 4200 150 56 5036\n", + "6320 São Paulo 85 3 1 2 6 acept not furnished 955 1900 270 25 3150\n", + "6321 São Paulo 255 4 4 3 13 acept furnished 0 11900 0 151 12050\n", + "6322 São Paulo 280 5 2 1 - acept not furnished 0 8000 0 121 8121\n", + "6323 Rio de Janeiro 32 1 1 0 8 acept not furnished 574 1400 66 19 2059\n", + "6324 Belo Horizonte 29 1 1 0 1 not acept not furnished 0 1100 8 15 1123\n", + "6325 São Paulo 48 1 1 1 15 acept furnished 487 3000 142 39 3668\n", + "6326 Campinas 170 3 2 2 - acept not furnished 0 2300 98 35 2433\n", + "6327 Belo Horizonte 45 1 1 1 3 not acept furnished 300 3000 0 40 3340\n", + "6328 Campinas 341 4 6 4 - acept not furnished 660 13000 608 196 14460\n", + "6329 Porto Alegre 80 2 2 0 - acept furnished 330 1638 0 19 1987\n", + "6330 Rio de Janeiro 153 3 2 1 2 acept not furnished 1500 2550 157 33 4240\n", + "6331 Rio de Janeiro 120 3 2 1 2 acept not furnished 1260 2200 0 29 3489\n", + "6332 São Paulo 33 1 1 0 3 acept not furnished 350 1650 0 21 2021\n", + "6333 São Paulo 180 4 4 2 10 acept not furnished 1900 5500 507 70 7977\n", + "6334 Campinas 84 3 1 1 3 acept not furnished 950 1200 147 16 2313\n", + "6335 São Paulo 73 3 2 1 12 acept not furnished 923 2700 171 35 3829\n", + "6336 São Paulo 50 1 2 1 9 not acept furnished 850 3000 210 39 4099\n", + "6337 São Paulo 40 1 1 1 5 not acept not furnished 603 4320 181 55 5159\n", + "6338 São Paulo 216 3 4 4 7 acept furnished 2300 15000 900 191 18390\n", + "6339 São Paulo 44 1 1 1 8 acept not furnished 480 2300 70 30 2880\n", + "6340 Belo Horizonte 120 3 2 2 1 not acept not furnished 318 1700 331 23 2372\n", + "6341 Porto Alegre 150 3 3 2 10 acept furnished 1300 8900 250 130 10580\n", + "6342 São Paulo 136 3 2 3 12 acept furnished 1400 2500 325 32 4257\n", + "6343 Porto Alegre 54 1 1 0 2 acept not furnished 400 1000 25 15 1440\n", + "6344 São Paulo 100 2 1 1 5 acept furnished 1400 3800 234 49 5483\n", + "6345 São Paulo 50 2 1 1 1 acept not furnished 496 1200 0 16 1712\n", + "6346 Campinas 60 2 1 0 - not acept not furnished 0 800 138 13 951\n", + "6347 Rio de Janeiro 125 3 2 1 5 acept furnished 1460 3500 295 46 5301\n", + "6348 Rio de Janeiro 28 1 1 0 1 acept not furnished 450 1870 0 25 2345\n", + "6349 Porto Alegre 78 2 1 0 3 acept not furnished 280 1480 32 22 1814\n", + "6350 Porto Alegre 46 1 1 0 6 acept not furnished 345 850 27 13 1235\n", + "6351 São Paulo 35 1 1 1 8 not acept furnished 593 2896 78 37 3604\n", + "6352 São Paulo 104 3 2 2 2 acept not furnished 1500 4200 432 54 6186\n", + "6353 São Paulo 215 3 3 2 1 not acept furnished 3000 15000 834 191 19030\n", + "6354 Campinas 100 3 2 2 - acept not furnished 0 2250 15 34 2299\n", + "6355 Belo Horizonte 30 1 1 1 - not acept not furnished 0 705 0 10 715\n", + "6356 Porto Alegre 43 1 1 0 3 acept furnished 250 1500 25 22 1797\n", + "6357 São Paulo 234 3 4 3 13 acept not furnished 2400 7000 84 89 9573\n", + "6358 São Paulo 37 1 1 0 4 acept furnished 1320 1730 142 22 3214\n", + "6359 São Paulo 50 2 1 0 1 acept not furnished 54 2000 42 26 2122\n", + "6360 Rio de Janeiro 71 2 2 1 12 acept furnished 1170 3500 190 46 4906\n", + "6361 São Paulo 118 3 3 2 17 acept furnished 1000 3890 356 50 5296\n", + "6362 Campinas 122 3 2 1 4 acept not furnished 250 1750 117 23 2140\n", + "6363 Rio de Janeiro 58 2 2 1 3 acept not furnished 745 1200 44 16 2005\n", + "6364 São Paulo 270 3 3 2 - acept not furnished 0 9800 0 148 9948\n", + "6365 Porto Alegre 90 3 2 2 9 acept not furnished 1163 2500 202 37 3902\n", + "6366 São Paulo 400 4 3 3 - acept not furnished 0 8000 1250 121 9371\n", + "6367 Campinas 155 3 3 2 - acept not furnished 960 5500 15 83 6558\n", + "6368 Rio de Janeiro 85 2 1 0 8 acept furnished 1500 2975 134 39 4648\n", + "6369 São Paulo 280 4 4 4 1 acept furnished 3600 12000 1667 172 17440\n", + "6370 Rio de Janeiro 30 1 1 0 8 acept furnished 500 2000 45 26 2571\n", + "6371 São Paulo 54 1 2 0 7 acept not furnished 390 3500 0 45 3935\n", + "6372 Porto Alegre 25 1 1 0 8 acept not furnished 277 750 27 11 1065\n", + "6373 Belo Horizonte 176 4 2 2 - acept not furnished 0 4500 226 74 4800\n", + "6374 São Paulo 570 4 6 4 - acept not furnished 0 10500 1834 158 12490\n", + "6375 Belo Horizonte 95 2 2 1 10 acept not furnished 735 1600 170 22 2527\n", + "6376 São Paulo 30 1 1 0 4 acept not furnished 250 1153 0 4 1407\n", + "6377 São Paulo 250 3 4 3 - acept not furnished 0 3571 430 54 4055\n", + "6378 São Paulo 98 3 3 2 - acept not furnished 0 2500 0 38 2538\n", + "6379 Belo Horizonte 68 2 2 2 3 acept not furnished 168 800 59 11 1038\n", + "6380 São Paulo 83 3 2 2 7 acept not furnished 804 3690 317 47 4858\n", + "6381 Belo Horizonte 70 2 2 2 6 acept not furnished 625 2250 211 30 3116\n", + "6382 Belo Horizonte 50 2 1 1 3 acept not furnished 170 1000 28 14 1212\n", + "6383 São Paulo 480 4 5 3 - acept not furnished 2200 4100 1700 62 8062\n", + "6384 São Paulo 250 3 2 8 - acept not furnished 0 10000 0 151 10150\n", + "6385 São Paulo 191 4 3 3 13 not acept not furnished 2800 9500 1200 121 13620\n", + "6386 São Paulo 140 3 3 3 7 not acept not furnished 2200 8000 800 102 11100\n", + "6387 São Paulo 49 1 1 1 5 acept not furnished 284 2600 134 33 3051\n", + "6388 Belo Horizonte 362 5 4 4 15 not acept not furnished 1400 7900 1504 106 10910\n", + "6389 Rio de Janeiro 61 2 1 0 3 acept not furnished 640 1297 21 17 1975\n", + "6390 Porto Alegre 156 3 2 1 - acept not furnished 0 1615 110 29 1754\n", + "6391 São Paulo 179 3 2 1 3 acept not furnished 1457 5400 359 69 7285\n", + "6392 Rio de Janeiro 120 3 3 2 5 acept furnished 1100 2800 150 37 4087\n", + "6393 Belo Horizonte 200 4 2 2 - acept furnished 0 12000 233 197 12430\n", + "6394 São Paulo 185 3 3 3 20 acept not furnished 2670 5600 907 71 9248\n", + "6395 São Paulo 120 2 2 0 1 acept not furnished 300 3600 120 46 4066\n", + "6396 São Paulo 50 2 1 1 13 acept not furnished 407 1715 12 22 2156\n", + "6397 Belo Horizonte 400 3 3 2 - acept not furnished 0 4800 0 79 4879\n", + "6398 São Paulo 240 3 4 2 - acept not furnished 1 8200 625 124 8950\n", + "6399 São Paulo 60 2 1 1 13 acept furnished 550 1520 80 20 2170\n", + "6400 São Paulo 100 2 1 3 - not acept not furnished 0 2700 378 41 3119\n", + "6401 São Paulo 250 4 4 3 - not acept not furnished 0 7500 417 113 8030\n", + "6402 Porto Alegre 100 4 2 1 2 acept not furnished 750 1820 167 27 2764\n", + "6403 Rio de Janeiro 72 1 2 1 6 acept not furnished 580 2000 0 26 2606\n", + "6404 Rio de Janeiro 70 2 1 0 2 acept furnished 250 2000 7 26 2283\n", + "6405 São Paulo 16 1 1 0 2 acept not furnished 0 2700 5 35 2740\n", + "6406 São Paulo 98 3 2 2 10 acept not furnished 900 4500 0 58 5458\n", + "6407 São Paulo 170 3 3 1 6 acept not furnished 1300 2060 200 27 3587\n", + "6408 São Paulo 45 2 1 0 - not acept not furnished 70 1450 43 22 1585\n", + "6409 São Paulo 90 2 2 1 7 acept furnished 760 5500 142 70 6472\n", + "6410 São Paulo 30 1 1 1 11 acept furnished 500 2570 0 8 3078\n", + "6411 São Paulo 140 3 3 2 3 acept not furnished 2350 4905 59 63 7377\n", + "6412 São Paulo 90 2 2 2 2 acept not furnished 1230 3640 342 47 5259\n", + "6413 Belo Horizonte 62 2 2 0 1 acept not furnished 0 1300 0 18 1318\n", + "6414 Rio de Janeiro 80 2 2 0 6 acept not furnished 650 2500 0 33 3183\n", + "6415 São Paulo 40 1 1 0 - not acept not furnished 0 750 0 12 762\n", + "6416 Rio de Janeiro 65 1 1 0 - acept not furnished 300 1800 30 24 2154\n", + "6417 São Paulo 300 3 2 1 - acept not furnished 0 3900 538 59 4497\n", + "6418 São Paulo 340 4 4 3 - acept not furnished 0 10000 1084 151 11240\n", + "6419 São Paulo 72 2 2 1 6 acept not furnished 1100 5270 334 67 6771\n", + "6420 São Paulo 250 4 3 3 - not acept not furnished 0 13000 950 196 14150\n", + "6421 Rio de Janeiro 100 2 2 3 12 not acept not furnished 1470 3478 180 45 5173\n", + "6422 São Paulo 45 1 1 1 1 not acept furnished 3000 5520 0 70 8590\n", + "6423 Porto Alegre 98 3 1 0 1 not acept not furnished 240 12750 50 187 13230\n", + "6424 Belo Horizonte 164 3 2 2 - acept not furnished 0 3200 131 53 3384\n", + "6425 São Paulo 250 3 3 4 - acept furnished 250 6500 309 98 7157\n", + "6426 Rio de Janeiro 28 1 1 0 3 acept furnished 609 1189 0 16 1814\n", + "6427 Rio de Janeiro 60 2 1 0 11 not acept furnished 600 1650 0 22 2272\n", + "6428 São Paulo 105 3 3 2 4 not acept not furnished 1380 2720 417 35 4552\n", + "6429 São Paulo 220 2 4 3 26 not acept not furnished 2000 12960 834 165 15960\n", + "6430 Rio de Janeiro 250 5 3 1 - acept not furnished 500 4000 100 61 4661\n", + "6431 São Paulo 171 3 3 1 13 acept not furnished 2395 5100 259 65 7819\n", + "6432 Rio de Janeiro 156 4 3 2 4 acept not furnished 1350 3900 600 51 5901\n", + "6433 São Paulo 150 3 5 3 - acept furnished 0 4500 189 68 4757\n", + "6434 Belo Horizonte 75 3 2 1 3 acept not furnished 500 1500 50 20 2070\n", + "6435 São Paulo 254 3 5 4 18 acept not furnished 2000 10000 990 127 13120\n", + "6436 São Paulo 68 1 2 1 6 acept furnished 2304 9000 532 115 11950\n", + "6437 São Paulo 55 2 1 0 5 not acept not furnished 337 1528 0 20 1885\n", + "6438 Porto Alegre 40 1 1 0 10 acept not furnished 200 800 19 12 1031\n", + "6439 São Paulo 230 2 3 1 1 acept furnished 3000 12000 450 153 15600\n", + "6440 Porto Alegre 70 2 2 0 3 not acept furnished 400 1995 80 30 2505\n", + "6441 São Paulo 170 4 5 2 - acept not furnished 0 3700 0 56 3756\n", + "6442 Porto Alegre 40 1 1 1 1 acept not furnished 402 1050 67 16 1535\n", + "6443 São Paulo 45 1 1 1 1 not acept furnished 3000 5520 0 70 8590\n", + "6444 São Paulo 270 3 4 3 4 acept furnished 3700 7500 1471 96 12770\n", + "6445 Campinas 54 2 1 1 10 acept not furnished 320 1500 23 20 1863\n", + "6446 Campinas 291 4 3 2 - acept not furnished 0 3300 208 50 3558\n", + "6447 Belo Horizonte 86 2 1 1 1 acept not furnished 200 1310 130 18 1658\n", + "6448 São Paulo 77 2 1 1 5 acept not furnished 886 2200 0 28 3114\n", + "6449 São Paulo 86 3 2 2 10 acept furnished 550 2900 190 37 3677\n", + "6450 Campinas 200 3 4 2 4 not acept not furnished 2500 2000 275 26 4801\n", + "6451 São Paulo 90 2 2 2 16 not acept furnished 867 4800 203 61 5931\n", + "6452 São Paulo 64 2 2 2 12 acept not furnished 790 3400 161 44 4395\n", + "6453 Porto Alegre 54 2 1 2 2 acept not furnished 240 1310 30 20 1600\n", + "6454 Porto Alegre 387 7 5 3 - acept furnished 0 6000 394 107 6501\n", + "6455 São Paulo 100 2 3 2 20 not acept furnished 1080 10000 138 127 11350\n", + "6456 São Paulo 50 2 2 1 9 acept not furnished 390 1800 0 23 2213\n", + "6457 Belo Horizonte 520 3 3 4 20 not acept not furnished 2224 12000 1133 160 15520\n", + "6458 São Paulo 23 1 1 0 25 acept not furnished 393 2100 59 27 2579\n", + "6459 Rio de Janeiro 60 1 1 0 3 acept not furnished 520 1580 0 21 2121\n", + "6460 São Paulo 96 2 1 1 4 not acept not furnished 800 3000 0 39 3839\n", + "6461 São Paulo 140 3 1 0 - acept not furnished 0 2700 167 41 2908\n", + "6462 Rio de Janeiro 103 3 2 0 4 acept not furnished 812 2750 200 36 3798\n", + "6463 São Paulo 148 4 4 4 10 acept furnished 2580 2000 406 26 5012\n", + "6464 São Paulo 172 4 3 1 - acept not furnished 0 3500 114 53 3667\n", + "6465 São Paulo 93 2 3 2 5 acept not furnished 1006 3200 350 41 4597\n", + "6466 São Paulo 72 2 2 1 4 acept not furnished 690 2300 200 30 3220\n", + "6467 Campinas 68 2 1 1 1 acept not furnished 400 1500 70 20 1990\n", + "6468 São Paulo 350 4 3 4 - acept not furnished 0 4000 209 61 4270\n", + "6469 Rio de Janeiro 70 2 2 1 1 acept furnished 950 3500 225 46 4721\n", + "6470 São Paulo 400 5 4 3 - acept not furnished 2600 6900 1017 104 10620\n", + "6471 Porto Alegre 38 1 1 0 1 acept not furnished 280 690 9 11 990\n", + "6472 São Paulo 107 2 2 1 12 not acept not furnished 1300 8400 293 107 10100\n", + "6473 São Paulo 38 1 1 0 1 not acept not furnished 60 950 0 13 1023\n", + "6474 São Paulo 111 3 2 0 7 acept not furnished 1370 2500 264 32 4166\n", + "6475 São Paulo 140 4 3 2 10 acept not furnished 2000 3800 334 49 6183\n", + "6476 São Paulo 35 1 1 0 - acept not furnished 0 1150 30 15 1195\n", + "6477 São Paulo 178 3 3 4 12 not acept furnished 2180 15000 850 191 18220\n", + "6478 São Paulo 200 2 2 1 10 acept furnished 2700 9500 600 121 12920\n", + "6479 São Paulo 33 1 1 0 1 not acept not furnished 338 1000 63 13 1414\n", + "6480 Belo Horizonte 90 3 2 1 2 not acept not furnished 300 1600 140 22 2062\n", + "6481 Rio de Janeiro 65 2 1 0 1 not acept not furnished 560 1600 67 21 2248\n", + "6482 São Paulo 320 3 3 8 - acept not furnished 0 5500 572 83 6155\n", + "6483 Porto Alegre 68 2 1 0 2 acept not furnished 160 1320 26 20 1526\n", + "6484 Porto Alegre 180 6 2 3 1 acept not furnished 0 4800 242 71 5113\n", + "6485 São Paulo 50 2 1 1 - not acept not furnished 0 1300 69 20 1389\n", + "6486 São Paulo 137 3 2 1 6 acept not furnished 1480 4700 293 60 6533\n", + "6487 São Paulo 165 3 2 2 8 acept furnished 1750 6500 779 83 9112\n", + "6488 São Paulo 180 2 2 1 15 acept not furnished 1800 5350 0 68 7218\n", + "6489 São Paulo 220 4 4 3 12 acept not furnished 3600 5100 892 65 9657\n", + "6490 Belo Horizonte 85 2 2 1 1 acept not furnished 541 2800 0 38 3379\n", + "6491 Rio de Janeiro 37 1 1 0 8 not acept furnished 700 1400 209 19 2328\n", + "6492 Porto Alegre 64 2 3 2 2 acept not furnished 400 2750 113 41 3304\n", + "6493 Rio de Janeiro 97 2 2 1 7 acept not furnished 1770 4400 334 57 6561\n", + "6494 Belo Horizonte 90 3 2 1 1 acept not furnished 135 1300 115 18 1568\n", + "6495 Rio de Janeiro 130 3 2 1 9 acept not furnished 1350 4500 209 58 6117\n", + "6496 Campinas 128 4 2 1 7 not acept not furnished 900 3400 59 44 4403\n", + "6497 São Paulo 58 2 2 1 12 not acept furnished 928 4000 256 51 5235\n", + "6498 Belo Horizonte 76 2 1 1 2 not acept not furnished 200 900 0 12 1112\n", + "6499 São Paulo 220 2 4 2 - acept furnished 0 6200 1200 94 7494\n", + "6500 São Paulo 40 1 1 0 - not acept not furnished 30 780 17 12 839\n", + "6501 São Paulo 235 3 4 3 2 acept not furnished 2000 2550 1000 33 5583\n", + "6502 Belo Horizonte 45 1 1 0 9 acept not furnished 285 1100 55 15 1455\n", + "6503 São Paulo 47 2 1 1 4 not acept not furnished 580 1100 0 14 1694\n", + "6504 Belo Horizonte 471 5 6 3 - acept not furnished 0 14000 1297 230 15530\n", + "6505 Campinas 50 1 1 0 4 acept not furnished 418 520 23 7 968\n", + "6506 Belo Horizonte 344 3 4 4 16 not acept not furnished 3158 15000 1231 200 19590\n", + "6507 São Paulo 38 1 1 1 12 not acept furnished 353 1850 28 24 2255\n", + "6508 Porto Alegre 42 2 1 0 - acept not furnished 0 860 13 16 889\n", + "6509 Belo Horizonte 60 1 1 1 9 acept not furnished 270 1400 101 19 1790\n", + "6510 São Paulo 500 4 6 4 - acept not furnished 0 13000 2200 196 15400\n", + "6511 São Paulo 49 2 1 1 5 acept not furnished 300 1700 21 22 2043\n", + "6512 Belo Horizonte 48 2 1 1 3 acept not furnished 120 900 96 12 1128\n", + "6513 São Paulo 45 2 1 0 - not acept not furnished 0 1300 109 20 1429\n", + "6514 Porto Alegre 72 2 2 1 2 acept not furnished 570 1200 60 18 1848\n", + "6515 Belo Horizonte 400 3 2 1 - acept not furnished 0 1600 258 27 1885\n", + "6516 São Paulo 28 1 1 0 1 not acept furnished 0 1750 0 23 1773\n", + "6517 Rio de Janeiro 189 3 2 2 9 acept not furnished 2500 8500 489 110 11600\n", + "6518 São Paulo 160 3 2 0 12 acept not furnished 1239 3900 150 50 5339\n", + "6519 Rio de Janeiro 330 4 4 2 21 acept not furnished 1300 15000 1084 110 17490\n", + "6520 São Paulo 200 3 5 4 6 acept not furnished 1970 1720 959 22 4671\n", + "6521 São Paulo 375 4 5 5 1 acept not furnished 4793 15000 2805 191 22790\n", + "6522 São Paulo 68 2 2 1 7 acept furnished 489 1877 0 24 2390\n", + "6523 São Paulo 70 2 1 1 8 acept not furnished 850 2500 92 32 3474\n", + "6524 Rio de Janeiro 110 3 2 0 10 not acept furnished 1260 2950 303 39 4552\n", + "6525 São Paulo 103 3 3 2 7 not acept not furnished 1470 5600 330 71 7471\n", + "6526 Rio de Janeiro 26 1 1 0 2 not acept not furnished 50 1500 59 20 1629\n", + "6527 Belo Horizonte 88 3 2 2 2 not acept not furnished 312 1200 109 16 1637\n", + "6528 São Paulo 165 3 4 3 7 acept not furnished 1700 4500 573 58 6831\n", + "6529 São Paulo 80 2 2 0 - not acept not furnished 0 1100 167 17 1284\n", + "6530 Porto Alegre 90 3 2 2 9 acept not furnished 433 2780 116 41 3370\n", + "6531 São Paulo 380 4 1 2 - not acept not furnished 0 4000 386 61 4447\n", + "6532 São Paulo 174 3 4 2 2 acept not furnished 1936 6000 390 77 8403\n", + "6533 São Paulo 128 4 5 1 - acept not furnished 0 6800 71 87 6958\n", + "6534 São Paulo 160 3 4 4 2 acept not furnished 2250 2100 480 27 4857\n", + "6535 Rio de Janeiro 168 3 2 0 1 acept not furnished 1000 3700 417 48 5165\n", + "6536 Campinas 100 3 2 2 1 acept furnished 700 2200 105 28 3033\n", + "6537 Rio de Janeiro 69 2 1 1 9 acept furnished 500 1370 56 18 1944\n", + "6538 Belo Horizonte 300 3 3 0 - acept furnished 0 5000 0 82 5082\n", + "6539 Belo Horizonte 163 4 4 0 14 acept not furnished 1005 7500 22 100 8627\n", + "6540 São Paulo 86 3 1 1 5 acept furnished 1000 2200 116 28 3344\n", + "6541 São Paulo 236 4 3 3 13 acept not furnished 3070 1600 1015 21 5706\n", + "6542 Rio de Janeiro 112 3 2 0 7 acept not furnished 1344 3900 271 51 5566\n", + "6543 São Paulo 600 5 5 6 - acept not furnished 0 12750 1059 192 14000\n", + "6544 Campinas 256 4 5 4 8 acept not furnished 3900 3000 1167 39 8106\n", + "6545 São Paulo 220 3 4 2 - not acept not furnished 0 3500 276 53 3829\n", + "6546 São Paulo 257 4 4 4 14 not acept not furnished 5000 12000 1584 153 18740\n", + "6547 Belo Horizonte 75 3 1 1 4 acept not furnished 280 1500 66 20 1866\n", + "6548 Rio de Janeiro 400 3 1 1 - acept furnished 0 7650 666 117 8433\n", + "6549 São Paulo 560 4 6 5 - acept not furnished 0 6550 1700 99 8349\n", + "6550 São Paulo 220 4 4 5 3 not acept furnished 1700 4600 0 59 6359\n", + "6551 Rio de Janeiro 70 1 1 1 4 acept not furnished 1065 3500 255 46 4866\n", + "6552 Belo Horizonte 19 1 1 0 1 not acept not furnished 0 1200 37 16 1253\n", + "6553 São Paulo 35 1 1 0 - acept not furnished 0 900 11 14 925\n", + "6554 São Paulo 70 1 1 1 4 acept not furnished 740 2600 66 33 3439\n", + "6555 São Paulo 40 1 1 0 12 not acept furnished 370 3300 74 42 3786\n", + "6556 Porto Alegre 37 1 1 0 2 acept not furnished 330 1500 67 22 1919\n", + "6557 São Paulo 180 2 2 1 12 acept not furnished 3400 9000 480 115 13000\n", + "6558 Rio de Janeiro 60 1 1 0 2 not acept not furnished 600 2300 140 30 3070\n", + "6559 Rio de Janeiro 90 3 2 1 9 acept not furnished 700 2050 60 27 2837\n", + "6560 São Paulo 208 4 2 4 - acept not furnished 0 4500 282 68 4850\n", + "6561 Rio de Janeiro 160 3 2 1 11 acept not furnished 1860 4700 275 61 6896\n", + "6562 Belo Horizonte 180 4 2 1 3 acept furnished 770 3610 248 49 4677\n", + "6563 Porto Alegre 150 4 3 0 - acept not furnished 0 3300 800 59 4159\n", + "6564 Campinas 75 2 1 1 - acept not furnished 0 1080 80 17 1177\n", + "6565 Rio de Janeiro 90 2 2 1 4 acept not furnished 1660 1039 350 14 3063\n", + "6566 São Paulo 170 4 2 2 - acept not furnished 0 2900 50 44 2994\n", + "6567 São Paulo 193 2 4 4 7 acept not furnished 1948 13000 1323 165 16440\n", + "6568 São Paulo 40 1 1 0 22 acept furnished 473 2300 39 30 2842\n", + "6569 São Paulo 45 1 1 1 5 acept furnished 519 3850 209 49 4627\n", + "6570 São Paulo 116 3 4 2 4 acept not furnished 1036 8000 584 102 9722\n", + "6571 São Paulo 67 2 2 1 1 acept furnished 650 2300 0 30 2980\n", + "6572 São Paulo 40 1 1 0 8 not acept furnished 685 1920 117 25 2747\n", + "6573 São Paulo 140 2 3 1 - acept not furnished 0 3850 150 58 4058\n", + "6574 Campinas 52 2 1 1 7 acept not furnished 248 980 77 13 1318\n", + "6575 São Paulo 350 3 4 6 - acept not furnished 0 3850 834 58 4742\n", + "6576 São Paulo 420 3 4 4 - not acept not furnished 0 6000 417 91 6508\n", + "6577 Porto Alegre 204 4 4 2 - acept not furnished 0 3440 100 62 3602\n", + "6578 São Paulo 110 2 2 1 - acept not furnished 0 2200 192 34 2426\n", + "6579 São Paulo 645 5 8 8 - acept not furnished 0 15000 2334 226 17560\n", + "6580 São Paulo 260 4 5 5 3 acept not furnished 3428 11000 2441 140 17010\n", + "6581 São Paulo 160 2 1 0 12 not acept not furnished 1200 2400 0 31 3631\n", + "6582 São Paulo 50 2 1 0 - acept not furnished 0 1200 42 19 1261\n", + "6583 Rio de Janeiro 40 1 2 0 7 acept not furnished 500 1800 53 24 2377\n", + "6584 Rio de Janeiro 60 2 1 0 1 acept furnished 615 3000 84 39 3738\n", + "6585 Rio de Janeiro 30 1 1 0 12 acept not furnished 0 1000 50 13 1063\n", + "6586 Rio de Janeiro 75 3 2 0 8 acept not furnished 800 1615 124 12 2551\n", + "6587 Rio de Janeiro 78 3 3 1 2 acept not furnished 930 2850 206 37 4023\n", + "6588 Belo Horizonte 140 4 2 2 1 acept not furnished 1000 3500 413 47 4960\n", + "6589 Campinas 500 3 7 5 14 acept furnished 1890 7950 900 101 10840\n", + "6590 Porto Alegre 80 1 1 0 - acept not furnished 0 971 15 18 1004\n", + "6591 Porto Alegre 182 3 4 2 - acept not furnished 164 2900 74 52 3190\n", + "6592 São Paulo 90 2 1 1 - acept not furnished 0 2735 19 42 2796\n", + "6593 São Paulo 103 3 2 1 2 acept not furnished 1133 1500 137 6 2776\n", + "6594 Porto Alegre 180 3 2 3 2 acept furnished 0 5100 250 75 5425\n", + "6595 Belo Horizonte 32 1 1 0 - not acept furnished 550 1100 0 15 1665\n", + "6596 Campinas 52 1 1 1 6 acept not furnished 360 750 46 10 1166\n", + "6597 Rio de Janeiro 75 4 1 0 2 acept not furnished 800 2200 34 29 3063\n", + "6598 Belo Horizonte 290 4 5 4 - acept not furnished 0 6000 500 99 6599\n", + "6599 Rio de Janeiro 50 1 1 1 6 acept furnished 750 2000 0 10 2760\n", + "6600 São Paulo 550 5 6 4 - acept not furnished 0 15000 1119 226 16350\n", + "6601 São Paulo 216 4 4 4 9 acept not furnished 1710 2800 686 36 5232\n", + "6602 São Paulo 444 4 4 5 - acept furnished 0 10000 584 151 10740\n", + "6603 Porto Alegre 69 3 2 1 5 acept not furnished 395 1850 65 28 2338\n", + "6604 Belo Horizonte 76 2 1 2 3 not acept furnished 205 2100 99 28 2432\n", + "6605 São Paulo 180 3 5 3 3 acept not furnished 2900 8100 0 103 11100\n", + "6606 São Paulo 445 3 5 4 - acept furnished 3191 15000 1339 226 19760\n", + "6607 São Paulo 156 3 4 3 8 acept not furnished 1600 4200 305 54 6159\n", + "6608 São Paulo 35 1 1 0 - acept not furnished 0 1100 30 14 1144\n", + "6609 São Paulo 130 3 4 3 7 acept not furnished 1413 2400 597 31 4441\n", + "6610 Porto Alegre 92 3 2 1 4 acept furnished 720 3200 75 47 4042\n", + "6611 São Paulo 200 3 2 4 - acept not furnished 0 8500 407 128 9035\n", + "6612 São Paulo 50 2 1 1 13 acept not furnished 650 1300 4 17 1971\n", + "6613 Belo Horizonte 50 2 1 0 - not acept not furnished 0 850 25 14 889\n", + "6614 São Paulo 155 3 3 2 2 acept furnished 2300 12000 700 153 15150\n", + "6615 Belo Horizonte 1000 5 4 3 15 acept not furnished 1255 7000 634 94 8983\n", + "6616 Rio de Janeiro 42 1 1 0 8 not acept furnished 900 1920 34 25 2879\n", + "6617 São Paulo 58 2 1 0 13 acept not furnished 389 1480 52 19 1940\n", + "6618 São Paulo 35 1 1 1 6 not acept furnished 581 3365 153 43 4142\n", + "6619 Belo Horizonte 27 1 1 0 1 not acept not furnished 0 1167 334 16 1517\n", + "6620 Belo Horizonte 16 1 1 0 1 not acept not furnished 0 650 50 9 709\n", + "6621 Belo Horizonte 94 3 2 1 1 not acept furnished 450 1900 125 26 2501\n", + "6622 Porto Alegre 83 3 2 1 11 acept not furnished 750 2500 101 37 3388\n", + "6623 Belo Horizonte 360 5 4 4 - acept not furnished 0 9000 600 148 9748\n", + "6624 Belo Horizonte 360 5 2 2 1 acept not furnished 550 4600 436 62 5648\n", + "6625 Campinas 430 4 5 5 - acept not furnished 0 13000 474 196 13670\n", + "6626 Belo Horizonte 29 1 1 0 1 acept not furnished 0 1100 8 15 1123\n", + "6627 Rio de Janeiro 120 3 2 0 6 acept not furnished 650 2490 105 33 3278\n", + "6628 São Paulo 50 1 1 1 6 acept not furnished 1205 4500 251 58 6014\n", + "6629 Porto Alegre 60 2 1 0 - acept not furnished 0 650 42 12 704\n", + "6630 São Paulo 45 2 2 0 - not acept not furnished 0 1630 84 25 1739\n", + "6631 Rio de Janeiro 250 3 2 2 - acept not furnished 0 12000 542 183 12730\n", + "6632 São Paulo 200 3 2 2 - acept furnished 0 4700 184 71 4955\n", + "6633 Rio de Janeiro 70 2 1 1 9 acept not furnished 650 2500 105 33 3288\n", + "6634 São Paulo 48 1 1 0 - not acept not furnished 0 1100 9 17 1126\n", + "6635 São Paulo 70 2 1 1 2 not acept not furnished 794 2500 14 32 3340\n", + "6636 São Paulo 73 2 2 1 6 acept furnished 1072 5000 196 64 6332\n", + "6637 São Paulo 90 2 1 0 1 not acept not furnished 500 2700 25 35 3260\n", + "6638 Porto Alegre 45 1 1 0 1 acept not furnished 50 640 84 10 784\n", + "6639 São Paulo 80 2 2 2 - not acept not furnished 0 3600 390 55 4045\n", + "6640 São Paulo 106 3 2 2 6 acept not furnished 1400 5520 275 70 7265\n", + "6641 Belo Horizonte 45 2 1 1 3 acept not furnished 286 850 63 12 1211\n", + "6642 São Paulo 315 4 4 2 14 acept not furnished 3500 7450 0 95 11050\n", + "6643 São Paulo 287 3 5 0 16 acept not furnished 3693 12000 1421 153 17270\n", + "6644 Belo Horizonte 230 4 3 2 8 acept not furnished 1900 5500 48 74 7522\n", + "6645 São Paulo 42 1 2 1 6 not acept not furnished 690 2500 313700 32 316900\n", + "6646 Rio de Janeiro 152 2 2 1 3 acept not furnished 1100 1500 342 20 2962\n", + "6647 Campinas 75 3 1 2 3 acept not furnished 599 1300 74 17 1990\n", + "6648 São Paulo 94 3 2 2 3 acept not furnished 1000 2000 42 26 3068\n", + "6649 Rio de Janeiro 70 2 2 0 5 not acept not furnished 410 2100 13 28 2551\n", + "6650 São Paulo 59 2 1 0 15 acept not furnished 542 1750 0 23 2315\n", + "6651 São Paulo 380 4 3 2 12 not acept furnished 5500 15000 1000 191 21690\n", + "6652 São Paulo 217 4 4 3 1 acept not furnished 3800 4910 1417 63 10190\n", + "6653 São Paulo 110 2 1 1 2 acept not furnished 1200 2800 137 36 4173\n", + "6654 Campinas 38 1 1 0 8 acept not furnished 300 550 70 7 927\n", + "6655 São Paulo 310 4 5 5 6 acept furnished 3800 12000 2709 153 18660\n", + "6656 São Paulo 400 3 4 2 - acept not furnished 0 3150 0 48 3198\n", + "6657 Porto Alegre 55 2 1 1 4 acept not furnished 250 1500 83 22 1855\n", + "6658 São Paulo 320 3 5 0 10 not acept not furnished 4778 6000 2417 77 13270\n", + "6659 Campinas 75 3 2 2 13 not acept not furnished 700 1600 75 21 2396\n", + "6660 Belo Horizonte 235 4 5 3 6 acept not furnished 760 3300 496 44 4600\n", + "6661 Belo Horizonte 434 5 6 0 10 not acept furnished 2629 11000 2192 147 15970\n", + "6662 São Paulo 160 4 4 2 3 not acept not furnished 2700 7000 275 89 10060\n", + "6663 São Paulo 108 3 2 2 5 acept not furnished 1100 4348 250 56 5754\n", + "6664 São Paulo 280 5 5 2 1 acept furnished 4374 12750 929 162 18220\n", + "6665 Rio de Janeiro 55 2 1 1 3 acept not furnished 670 680 125 9 1484\n", + "6666 Rio de Janeiro 60 2 1 1 1 not acept not furnished 800 1500 55 20 2375\n", + "6667 São Paulo 226 4 4 3 4 not acept not furnished 3500 10000 1200 127 14830\n", + "6668 Belo Horizonte 58 2 1 1 2 acept not furnished 200 900 0 12 1112\n", + "6669 São Paulo 178 4 3 2 5 acept not furnished 1700 6700 660 85 9145\n", + "6670 Porto Alegre 40 1 1 0 2 acept furnished 120 1150 35 17 1322\n", + "6671 Campinas 205 3 2 4 - acept not furnished 0 2490 57 38 2585\n", + "6672 São Paulo 112 3 2 3 3 acept not furnished 1251 2500 332 32 4115\n", + "6673 Belo Horizonte 300 4 4 3 13 acept furnished 1850 15000 1100 200 18150\n", + "6674 São Paulo 140 3 3 2 - acept not furnished 0 5000 300 76 5376\n", + "6675 Belo Horizonte 113 2 2 2 4 acept not furnished 330 2600 116 35 3081\n", + "6676 Belo Horizonte 96 3 2 2 1 not acept not furnished 450 1400 120 19 1989\n", + "6677 São Paulo 55 1 2 1 4 acept furnished 550 3500 0 45 4095\n", + "6678 São Paulo 180 2 3 3 7 acept furnished 3300 7600 1025 54 11980\n", + "6679 São Paulo 240 7 3 4 - acept not furnished 0 6000 834 91 6925\n", + "6680 São Paulo 80 3 4 1 - acept not furnished 0 3000 0 46 3046\n", + "6681 Belo Horizonte 230 5 3 2 3 acept not furnished 500 2200 249 30 2979\n", + "6682 Belo Horizonte 127 3 2 3 1 acept not furnished 750 3000 317 40 4107\n", + "6683 Belo Horizonte 156 4 4 3 7 acept not furnished 900 6500 369 87 7856\n", + "6684 São Paulo 65 2 1 2 21 acept not furnished 1111 4000 233 51 5395\n", + "6685 São Paulo 88 2 2 2 8 acept furnished 1000 4500 134 58 5692\n", + "6686 Porto Alegre 107 3 2 1 - acept not furnished 0 2000 42 36 2078\n", + "6687 Rio de Janeiro 60 2 1 1 2 acept not furnished 550 1200 55 16 1821\n", + "6688 Porto Alegre 35 1 1 0 1 acept not furnished 230 550 9 9 798\n", + "6689 Porto Alegre 243 3 5 1 2 acept not furnished 1788 5556 667 82 8093\n", + "6690 São Paulo 30 1 1 0 - not acept not furnished 0 850 67 13 930\n", + "6691 Campinas 45 1 1 1 4 acept not furnished 700 870 46 12 1628\n", + "6692 Rio de Janeiro 130 3 2 2 - acept not furnished 0 3000 167 46 3213\n", + "6693 Porto Alegre 80 2 2 0 3 acept furnished 300 2800 0 41 3141\n", + "6694 São Paulo 98 2 2 1 13 acept not furnished 1055 2166 384 28 3633\n", + "6695 São Paulo 15 1 1 0 - not acept furnished 0 1200 83 16 1299\n", + "6696 Rio de Janeiro 57 2 2 1 9 acept not furnished 1080 1800 281 24 3185\n", + "6697 Porto Alegre 180 4 2 2 3 acept not furnished 1000 2400 109 36 3545\n", + "6698 São Paulo 200 4 4 3 5 acept not furnished 2715 7000 834 89 10640\n", + "6699 Rio de Janeiro 70 2 2 1 - acept not furnished 200 1900 55 29 2184\n", + "6700 São Paulo 350 2 1 0 - acept not furnished 0 2500 209 38 2747\n", + "6701 Porto Alegre 64 2 1 0 4 not acept furnished 250 1700 9 25 1984\n", + "6702 Porto Alegre 40 1 1 0 - not acept not furnished 0 750 0 14 764\n", + "6703 Belo Horizonte 73 1 1 0 4 acept not furnished 0 700 0 10 710\n", + "6704 São Paulo 200 3 3 2 8 acept not furnished 2500 12000 834 153 15490\n", + "6705 São Paulo 36 1 1 1 4 acept furnished 719 1990 119 26 2854\n", + "6706 Campinas 63 2 1 0 - acept not furnished 400 850 26 11 1287\n", + "6707 São Paulo 85 2 1 1 6 acept not furnished 750 3500 105 45 4400\n", + "6708 São Paulo 198 5 5 2 1 acept not furnished 1500 3801 554 49 5904\n", + "6709 Campinas 70 3 1 1 1 acept not furnished 315 940 64 12 1331\n", + "6710 Belo Horizonte 60 2 1 1 12 not acept not furnished 285 1000 20 14 1319\n", + "6711 Belo Horizonte 90 4 3 1 2 acept not furnished 150 950 83 13 1196\n", + "6712 Porto Alegre 98 2 1 0 9 acept not furnished 380 1800 91 27 2298\n", + "6713 São Paulo 103 3 2 2 6 acept not furnished 1150 3000 459 39 4648\n", + "6714 São Paulo 160 2 3 0 - acept not furnished 0 4300 124 65 4489\n", + "6715 Rio de Janeiro 100 3 2 1 8 acept furnished 1600 4000 184 52 5836\n", + "6716 São Paulo 50 2 1 1 17 acept not furnished 465 1000 0 13 1478\n", + "6717 São Paulo 55 2 1 1 4 acept not furnished 671 1100 0 14 1785\n", + "6718 São Paulo 80 2 2 0 9 not acept not furnished 600 2550 46 33 3229\n", + "6719 São Paulo 50 1 1 0 - acept not furnished 0 690 0 11 701\n", + "6720 Rio de Janeiro 25 1 1 0 3 not acept not furnished 328 1900 0 25 2253\n", + "6721 São Paulo 120 2 2 2 - acept not furnished 100 5500 158 83 5841\n", + "6722 São Paulo 127 3 3 2 1 acept not furnished 804 3800 257 49 4910\n", + "6723 São Paulo 98 3 2 1 9 acept not furnished 1350 5500 200 70 7120\n", + "6724 São Paulo 65 1 1 0 1 not acept furnished 550 3050 25 39 3664\n", + "6725 Rio de Janeiro 86 2 2 2 2 acept not furnished 700 1200 8 16 1924\n", + "6726 Porto Alegre 200 4 3 0 - not acept not furnished 0 15000 834 267 16100\n", + "6727 São Paulo 360 4 5 5 20 acept not furnished 4900 10000 1666 127 16690\n", + "6728 São Paulo 65 2 1 1 2 acept not furnished 330 1410 74 18 1832\n", + "6729 São Paulo 93 1 3 1 4 not acept not furnished 1040 3500 33 45 4618\n", + "6730 São Paulo 187 4 5 3 5 acept not furnished 3912 5300 1424 68 10700\n", + "6731 Belo Horizonte 616 5 5 6 - acept not furnished 0 12500 1103 205 13810\n", + "6732 Rio de Janeiro 86 2 2 2 2 acept not furnished 700 1200 8 16 1924\n", + "6733 São Paulo 139 2 2 1 4 acept not furnished 707 4396 153 56 5312\n", + "6734 Rio de Janeiro 100 2 2 1 21 not acept not furnished 1230 2000 13 26 3269\n", + "6735 São Paulo 285 4 4 4 9 acept not furnished 2750 8000 1750 102 12600\n", + "6736 São Paulo 52 2 1 1 8 acept not furnished 760 3000 145 39 3944\n", + "6737 São Paulo 39 1 1 0 10 acept furnished 300 2000 0 26 2326\n", + "6738 Porto Alegre 42 1 2 1 2 acept not furnished 217 1800 42 27 2086\n", + "6739 Rio de Janeiro 30 1 1 0 10 acept furnished 340 1386 34 18 1778\n", + "6740 Rio de Janeiro 70 2 1 1 7 acept not furnished 729 900 122 12 1763\n", + "6741 São Paulo 60 1 1 0 2 acept not furnished 70 1200 50 16 1336\n", + "6742 São Paulo 90 2 2 2 7 acept not furnished 1630 3040 322 39 5031\n", + "6743 Porto Alegre 61 2 1 0 2 acept not furnished 380 850 30 13 1273\n", + "6744 Porto Alegre 50 1 1 0 8 acept not furnished 320 780 25 12 1137\n", + "6745 Campinas 48 2 1 1 8 acept not furnished 380 1545 49 20 1994\n", + "6746 São Paulo 27 1 1 0 5 not acept not furnished 1405 3500 1 45 4951\n", + "6747 Belo Horizonte 100 3 3 1 4 acept furnished 1300 2600 300 35 4235\n", + "6748 São Paulo 155 2 1 1 2 acept not furnished 1700 4500 510 58 6768\n", + "6749 São Paulo 230 4 5 0 - acept furnished 0 7600 300 115 8015\n", + "6750 Campinas 47 1 1 1 8 acept not furnished 560 1100 46 14 1720\n", + "6751 Campinas 55 2 1 1 - acept not furnished 400 730 24 10 1164\n", + "6752 Campinas 60 1 1 1 8 acept not furnished 340 1100 1 14 1455\n", + "6753 Belo Horizonte 380 5 6 2 - acept not furnished 0 4500 125 74 4699\n", + "6754 São Paulo 180 3 2 4 - not acept furnished 0 11000 667 166 11830\n", + "6755 Porto Alegre 196 3 4 2 7 acept furnished 2000 4600 325 68 6993\n", + "6756 Porto Alegre 70 2 1 0 - acept not furnished 350 1300 42 19 1711\n", + "6757 São Paulo 227 4 3 3 10 acept furnished 4000 10000 1700 127 15830\n", + "6758 São Paulo 60 2 1 1 6 acept furnished 620 2650 63 34 3367\n", + "6759 Porto Alegre 63 2 2 1 8 acept not furnished 500 1960 6 29 2495\n", + "6760 São Paulo 150 3 3 2 7 acept not furnished 1300 3400 200 44 4944\n", + "6761 Campinas 144 4 3 2 13 acept not furnished 1357 1750 210 23 3340\n", + "6762 Rio de Janeiro 200 2 1 0 - acept not furnished 0 3000 0 46 3046\n", + "6763 São Paulo 34 2 1 0 10 acept not furnished 300 2200 15 28 2543\n", + "6764 São Paulo 74 2 3 2 24 acept not furnished 450 3200 40 41 3731\n", + "6765 Porto Alegre 73 3 1 0 2 acept not furnished 415 1800 44 27 2286\n", + "6766 São Paulo 368 4 5 6 1 not acept not furnished 4384 8500 2037 108 15030\n", + "6767 Rio de Janeiro 160 3 2 1 7 acept not furnished 2305 2300 205 30 4840\n", + "6768 Belo Horizonte 120 4 3 2 4 acept not furnished 0 3250 0 44 3294\n", + "6769 Belo Horizonte 180 4 3 4 6 not acept not furnished 1633 12000 695 160 14490\n", + "6770 Belo Horizonte 290 3 3 0 - acept not furnished 0 6000 276 99 6375\n", + "6771 São Paulo 225 4 3 2 - acept not furnished 0 3995 132 61 4188\n", + "6772 Campinas 60 3 1 1 - not acept not furnished 450 1087 67 14 1618\n", + "6773 São Paulo 35 1 1 0 1 not acept not furnished 250 1305 0 17 1572\n", + "6774 São Paulo 95 3 2 1 11 acept not furnished 1334 6500 280 83 8197\n", + "6775 Belo Horizonte 260 4 4 0 5 acept not furnished 562 6500 241 87 7390\n", + "6776 São Paulo 260 4 4 4 8 acept not furnished 3150 10000 1163 127 14440\n", + "6777 Rio de Janeiro 350 3 2 3 - acept not furnished 0 15000 834 229 16060\n", + "6778 São Paulo 500 4 4 0 - acept not furnished 0 6000 467 91 6558\n", + "6779 Porto Alegre 42 1 1 1 2 acept not furnished 255 2198 0 33 2486\n", + "6780 São Paulo 80 2 1 1 2 acept furnished 1600 3500 188 45 5333\n", + "6781 São Paulo 100 5 5 2 - not acept not furnished 0 4500 382 68 4950\n", + "6782 São Paulo 110 2 2 2 9 acept not furnished 1090 2300 109 30 3529\n", + "6783 São Paulo 70 1 1 0 - not acept not furnished 0 1520 125 23 1668\n", + "6784 São Paulo 12 1 1 0 - not acept not furnished 0 950 50 13 1013\n", + "6785 São Paulo 62 1 1 1 - not acept not furnished 0 1300 9 20 1329\n", + "6786 São Paulo 90 2 1 1 1 acept not furnished 800 1600 84 21 2505\n", + "6787 São Paulo 220 3 3 2 11 acept not furnished 4500 9000 584 115 14200\n", + "6788 Porto Alegre 197 3 2 3 3 acept not furnished 1780 7000 425 103 9308\n", + "6789 São Paulo 214 3 2 5 4 acept not furnished 4226 14000 2469 178 20870\n", + "6790 Rio de Janeiro 105 3 2 1 2 acept not furnished 1200 1750 147 23 3120\n", + "6791 Belo Horizonte 390 5 5 5 8 not acept not furnished 1300 8000 797 107 10200\n", + "6792 São Paulo 390 4 5 4 - acept furnished 0 11500 784 173 12460\n", + "6793 Rio de Janeiro 105 3 2 1 5 acept not furnished 1350 3700 380 28 5458\n", + "6794 São Paulo 270 3 6 2 8 acept furnished 2800 3270 1000 42 7112\n", + "6795 Belo Horizonte 260 4 4 5 5 not acept not furnished 295 4500 407 60 5262\n", + "6796 Rio de Janeiro 344 4 3 2 16 acept furnished 2414 3612 419 47 6492\n", + "6797 São Paulo 100 2 1 0 - not acept not furnished 0 2000 110 31 2141\n", + "6798 Rio de Janeiro 50 2 1 0 5 acept furnished 460 1800 50 24 2334\n", + "6799 São Paulo 183 4 3 4 3 acept not furnished 2380 5950 192 76 8598\n", + "6800 São Paulo 270 4 5 3 19 acept furnished 2500 9753 1500 124 13880\n", + "6801 São Paulo 180 2 3 2 9 acept not furnished 2000 5900 604 75 8579\n", + "6802 São Paulo 52 2 1 1 9 not acept not furnished 350 1580 0 21 1951\n", + "6803 São Paulo 260 4 4 4 - acept not furnished 0 4500 0 68 4568\n", + "6804 Rio de Janeiro 38 1 1 1 3 acept not furnished 423 1450 0 19 1892\n", + "6805 São Paulo 40 1 1 1 13 acept not furnished 1840 2990 409 38 5277\n", + "6806 São Paulo 360 4 5 4 18 acept not furnished 3150 7800 1350 99 12400\n", + "6807 Porto Alegre 160 3 3 3 8 acept furnished 2200 8950 621 131 11900\n", + "6808 São Paulo 120 3 2 2 - acept not furnished 0 4800 192 73 5065\n", + "6809 São Paulo 70 2 1 1 1 acept not furnished 280 1000 138 13 1431\n", + "6810 Campinas 203 3 1 2 - acept not furnished 0 3300 117 50 3467\n", + "6811 São Paulo 18 1 1 0 1 not acept not furnished 0 1260 0 16 1276\n", + "6812 Rio de Janeiro 50 2 1 1 5 acept furnished 470 1550 13 20 2053\n", + "6813 São Paulo 33 1 1 0 4 acept not furnished 400 1300 50 17 1767\n", + "6814 São Paulo 30 1 1 0 - acept not furnished 0 1090 75 14 1179\n", + "6815 São Paulo 330 2 4 3 - acept not furnished 0 6000 2000 91 8091\n", + "6816 Porto Alegre 60 2 2 1 4 not acept not furnished 600 2170 67 32 2869\n", + "6817 São Paulo 144 3 4 3 4 acept furnished 856 7200 589 92 8737\n", + "6818 Rio de Janeiro 93 2 1 1 7 acept furnished 1200 5500 317 71 7088\n", + "6819 São Paulo 100 2 1 1 - acept not furnished 0 1900 84 29 2013\n", + "6820 Porto Alegre 71 3 1 0 1 acept not furnished 320 1250 46 19 1635\n", + "6821 Rio de Janeiro 67 1 1 1 11 acept not furnished 508 800 123 11 1442\n", + "6822 São Paulo 70 2 1 0 1 acept not furnished 521 3000 50 39 3610\n", + "6823 Belo Horizonte 300 4 6 4 2 acept furnished 2350 13000 1387 174 16910\n", + "6824 São Paulo 240 3 2 2 17 not acept not furnished 2680 9800 667 125 13270\n", + "6825 São Paulo 96 3 1 2 1 acept not furnished 600 1847 15 24 2486\n", + "6826 São Paulo 200 4 3 2 10 acept furnished 2400 4500 1334 58 8292\n", + "6827 Campinas 54 1 2 1 6 acept furnished 400 3500 0 45 3945\n", + "6828 São Paulo 174 3 5 3 24 acept not furnished 1350 6800 4565 87 12800\n", + "6829 São Paulo 350 3 4 4 - acept furnished 0 15000 1234 226 16460\n", + "6830 Belo Horizonte 92 3 2 2 3 acept not furnished 300 1950 171 26 2447\n", + "6831 Belo Horizonte 125 3 2 0 2 acept not furnished 704 1850 384 25 2963\n", + "6832 Campinas 308 3 4 4 - acept not furnished 0 8000 478 121 8599\n", + "6833 São Paulo 375 4 5 4 - acept not furnished 0 12750 959 192 13900\n", + "6834 São Paulo 137 3 4 2 2 acept not furnished 1300 2200 334 28 3862\n", + "6835 Belo Horizonte 70 1 1 0 1 acept not furnished 200 1100 135 15 1450\n", + "6836 Belo Horizonte 65 2 2 1 3 acept not furnished 220 1200 96 16 1532\n", + "6837 São Paulo 107 2 2 2 18 acept furnished 1800 12800 417 163 15180\n", + "6838 São Paulo 85 2 2 1 13 acept not furnished 1470 4131 311 53 5965\n", + "6839 São Paulo 69 2 1 0 4 acept not furnished 525 3000 0 22 3547\n", + "6840 Belo Horizonte 110 3 2 1 2 not acept not furnished 400 1400 150 19 1969\n", + "6841 Porto Alegre 113 3 2 3 4 acept not furnished 599 2200 100 33 2932\n", + "6842 São Paulo 213 4 3 0 3 acept furnished 440 5100 0 65 5605\n", + "6843 São Paulo 140 2 2 2 - not acept not furnished 0 2700 56 41 2797\n", + "6844 Belo Horizonte 253 3 3 3 4 acept not furnished 326 2400 251 32 3009\n", + "6845 Belo Horizonte 490 4 4 3 - acept not furnished 0 9000 585 148 9733\n", + "6846 São Paulo 96 4 2 2 - acept not furnished 0 3710 412 56 4178\n", + "6847 São Paulo 23 1 1 0 25 acept not furnished 393 2100 59 27 2579\n", + "6848 Rio de Janeiro 80 2 2 1 9 not acept furnished 3908 5000 380 65 9353\n", + "6849 São Paulo 92 3 2 2 10 acept not furnished 990 3500 317 45 4852\n", + "6850 Rio de Janeiro 25 1 1 0 2 acept furnished 530 1900 350 25 2805\n", + "6851 São Paulo 220 3 2 8 - acept not furnished 0 4335 263 66 4664\n", + "6852 São Paulo 70 3 1 1 1 acept not furnished 1080 2000 67 26 3173\n", + "6853 São Paulo 130 3 2 1 1 not acept not furnished 1144 4300 167 55 5666\n", + "6854 Rio de Janeiro 120 3 2 0 5 acept furnished 980 1800 162 24 2966\n", + "6855 São Paulo 208 3 2 1 5 acept not furnished 1749 7000 384 89 9222\n", + "6856 Belo Horizonte 70 2 1 2 3 acept not furnished 240 2000 27 27 2294\n", + "6857 São Paulo 160 5 3 3 - acept not furnished 0 4460 321 68 4849\n", + "6858 Belo Horizonte 214 4 3 3 1 not acept not furnished 1760 5600 798 75 8233\n", + "6859 São Paulo 40 1 1 1 3 acept furnished 820 3179 0 41 4040\n", + "6860 Rio de Janeiro 64 2 1 0 6 not acept not furnished 950 3500 125 46 4621\n", + "6861 São Paulo 290 4 5 2 6 acept not furnished 4300 10000 875 127 15300\n", + "6862 Porto Alegre 35 1 1 0 - acept furnished 220 850 9 13 1092\n", + "6863 São Paulo 138 2 3 2 13 acept not furnished 1800 8000 455 102 10360\n", + "6864 Belo Horizonte 78 2 3 2 3 acept not furnished 407 2500 209 34 3150\n", + "6865 Belo Horizonte 92 3 1 1 2 acept not furnished 270 1900 81 26 2277\n", + "6866 Porto Alegre 513 3 2 2 3 acept furnished 350 2900 100 43 3393\n", + "6867 Campinas 58 1 1 1 1 acept not furnished 797 1270 64 17 2148\n", + "6868 São Paulo 51 1 1 1 25 acept furnished 714 4650 190 59 5613\n", + "6869 Belo Horizonte 200 4 5 3 5 not acept furnished 1900 9000 134 120 11150\n", + "6870 Porto Alegre 115 1 1 0 4 acept furnished 350 1600 150 24 2124\n", + "6871 Rio de Janeiro 64 2 1 1 1 acept furnished 2244 1900 258 25 4427\n", + "6872 Campinas 40 1 1 1 2 not acept not furnished 1300 1000 0 13 2313\n", + "6873 Rio de Janeiro 159 3 2 2 12 acept not furnished 1350 1900 650 25 3925\n", + "6874 Rio de Janeiro 35 1 1 0 1 acept furnished 0 1850 74 24 1948\n", + "6875 São Paulo 192 3 1 0 - not acept not furnished 0 1560 125 24 1709\n", + "6876 São Paulo 250 5 5 0 - acept not furnished 0 4500 0 68 4568\n", + "6877 Campinas 43 1 1 0 5 not acept not furnished 323 660 14 9 1006\n", + "6878 Belo Horizonte 142 3 3 2 - acept not furnished 0 2000 114 33 2147\n", + "6879 Belo Horizonte 244 4 3 3 3 acept not furnished 600 2900 276 39 3815\n", + "6880 São Paulo 200 3 2 3 14 acept furnished 3000 8000 667 102 11770\n", + "6881 Campinas 55 2 1 1 4 acept not furnished 395 700 40 9 1144\n", + "6882 São Paulo 108 4 2 0 9 acept not furnished 1013 5500 142 70 6725\n", + "6883 São Paulo 120 3 1 0 - acept not furnished 0 2200 0 34 2234\n", + "6884 São Paulo 44 1 1 1 13 not acept furnished 2102 4300 477 55 6934\n", + "6885 Belo Horizonte 50 2 1 1 4 acept not furnished 158 1140 0 16 1314\n", + "6886 São Paulo 87 2 2 2 15 acept not furnished 722 3800 250 49 4821\n", + "6887 São Paulo 88 3 2 2 11 acept furnished 1350 5870 108 75 7403\n", + "6888 São Paulo 376 3 3 2 - acept not furnished 0 1800 300 28 2128\n", + "6889 Porto Alegre 38 1 1 1 8 acept not furnished 350 1490 46 22 1908\n", + "6890 Campinas 45 1 1 1 15 acept not furnished 653 880 38 12 1583\n", + "6891 Rio de Janeiro 36 1 1 0 4 not acept furnished 1 1627 1 21 1650\n", + "6892 Rio de Janeiro 75 2 1 1 4 acept furnished 500 1360 33 18 1911\n", + "6893 São Paulo 85 2 2 1 6 not acept furnished 850 3000 71 39 3960\n", + "6894 São Paulo 35 1 1 0 - acept not furnished 0 1100 30 14 1144\n", + "6895 Porto Alegre 58 2 2 2 8 acept not furnished 500 2470 0 37 3007\n", + "6896 São Paulo 90 2 3 1 - acept not furnished 270 2300 3 35 2608\n", + "6897 Porto Alegre 87 2 1 1 6 acept furnished 300 1550 43 23 1916\n", + "6898 São Paulo 136 3 2 2 8 not acept furnished 1490 8090 417 103 10100\n", + "6899 Rio de Janeiro 124 3 2 2 8 not acept furnished 1250 5400 250 70 6970\n", + "6900 São Paulo 51 1 1 0 13 acept furnished 340 2500 79 32 2951\n", + "6901 Campinas 90 2 1 0 - not acept not furnished 0 1700 105 26 1831\n", + "6902 Porto Alegre 270 2 3 1 - acept not furnished 0 6500 38 116 6654\n", + "6903 Campinas 200 4 3 2 1 acept not furnished 1150 3400 209 44 4803\n", + "6904 Porto Alegre 79 3 1 0 10 acept furnished 480 1140 500 17 2137\n", + "6905 São Paulo 40 2 1 1 1 acept not furnished 700 3300 0 42 4042\n", + "6906 São Paulo 300 3 5 4 - acept not furnished 470 6600 634 100 7804\n", + "6907 São Paulo 44 1 1 0 13 not acept furnished 450 1900 104 25 2479\n", + "6908 São Paulo 130 3 2 2 - acept not furnished 0 2200 0 34 2234\n", + "6909 São Paulo 180 3 4 3 15 acept furnished 1441 6400 690 82 8613\n", + "6910 São Paulo 79 3 2 2 4 not acept furnished 660 3200 26 41 3927\n", + "6911 Belo Horizonte 50 1 1 1 4 not acept furnished 530 1850 202 25 2607\n", + "6912 Campinas 110 3 1 1 - acept not furnished 0 1500 50 23 1573\n", + "6913 São Paulo 17 1 1 0 1 not acept furnished 300 2200 50 28 2578\n", + "6914 Belo Horizonte 60 2 1 1 8 acept not furnished 405 2100 162 28 2695\n", + "6915 Rio de Janeiro 95 2 2 0 5 acept not furnished 900 1700 141 22 2763\n", + "6916 São Paulo 145 2 2 1 - acept not furnished 0 2975 190 45 3210\n", + "6917 São Paulo 125 3 4 5 - acept not furnished 0 10000 666 151 10820\n", + "6918 Rio de Janeiro 70 1 1 1 3 acept furnished 750 2000 250 26 3026\n", + "6919 Rio de Janeiro 90 2 2 1 4 not acept not furnished 900 2700 105 35 3740\n", + "6920 São Paulo 28 1 1 0 6 acept furnished 280 2500 22 32 2834\n", + "6921 Campinas 110 3 3 2 - acept not furnished 560 3200 88 49 3897\n", + "6922 Belo Horizonte 165 3 3 3 - acept not furnished 0 3000 192 50 3242\n", + "6923 São Paulo 25 1 1 0 9 acept furnished 160 1750 0 23 1933\n", + "6924 São Paulo 195 4 3 4 7 acept not furnished 1808 2700 1067 35 5610\n", + "6925 Belo Horizonte 70 3 1 1 3 acept not furnished 90 900 1 12 1003\n", + "6926 Campinas 50 1 1 0 1 not acept furnished 640 2000 100 26 2766\n", + "6927 São Paulo 44 1 1 0 6 acept not furnished 660 2800 110 36 3606\n", + "6928 Belo Horizonte 245 4 5 2 7 acept not furnished 1400 2025 234 27 3686\n", + "6929 São Paulo 46 2 1 0 1 acept not furnished 267 1700 0 22 1989\n", + "6930 Belo Horizonte 70 2 1 1 2 acept not furnished 140 950 32 13 1135\n", + "6931 Rio de Janeiro 50 1 1 0 1 acept furnished 250 750 0 10 1010\n", + "6932 Belo Horizonte 40 2 2 1 2 not acept not furnished 210 900 0 12 1122\n", + "6933 São Paulo 94 3 2 2 17 acept not furnished 915 2173 295 28 3411\n", + "6934 São Paulo 323 3 5 6 - acept not furnished 0 10000 985 151 11140\n", + "6935 Rio de Janeiro 140 3 2 2 7 acept furnished 2320 7400 543 96 10360\n", + "6936 Rio de Janeiro 102 3 2 1 4 acept not furnished 1600 5000 38 65 6703\n", + "6937 São Paulo 170 3 2 1 14 not acept not furnished 1050 4500 263 58 5871\n", + "6938 Belo Horizonte 250 4 2 2 - acept furnished 600 3500 0 47 4147\n", + "6939 São Paulo 44 1 1 0 1 not acept not furnished 0 1200 30 16 1246\n", + "6940 São Paulo 54 2 2 1 4 acept not furnished 954 2800 199 36 3989\n", + "6941 Rio de Janeiro 125 4 4 2 8 acept not furnished 1600 6130 217 79 8026\n", + "6942 São Paulo 80 3 1 1 8 acept furnished 703 2500 87 32 3322\n", + "6943 São Paulo 150 3 2 4 - acept not furnished 0 9670 55 146 9871\n", + "6944 Belo Horizonte 50 2 1 1 10 acept not furnished 160 800 0 11 971\n", + "6945 São Paulo 270 4 4 4 - acept furnished 0 8840 667 133 9640\n", + "6946 São Paulo 53 1 1 1 6 not acept furnished 0 3500 0 45 3545\n", + "6947 São Paulo 486 8 4 6 - acept not furnished 0 25000 2200 376 27580\n", + "6948 Belo Horizonte 200 3 1 1 - acept not furnished 0 3800 361 63 4224\n", + "6949 São Paulo 218 3 3 3 9 acept furnished 1850 15000 809 191 17850\n", + "6950 São Paulo 50 1 1 1 - acept not furnished 0 1750 0 27 1777\n", + "6951 Porto Alegre 112 2 2 2 10 acept not furnished 1100 3153 100 47 4400\n", + "6952 Campinas 300 4 5 4 - acept not furnished 0 4000 362 61 4423\n", + "6953 Belo Horizonte 75 2 1 2 - acept not furnished 0 1500 63 25 1588\n", + "6954 São Paulo 700 3 3 8 - acept furnished 1200 13500 1210 203 16110\n", + "6955 São Paulo 250 2 2 1 - acept not furnished 0 4800 534 73 5407\n", + "6956 Campinas 50 1 1 0 - acept not furnished 0 940 50 15 1005\n", + "6957 Rio de Janeiro 91 2 2 1 14 acept furnished 5197 9800 620 127 15740\n", + "6958 Rio de Janeiro 83 2 1 1 4 acept not furnished 850 2330 74 31 3285\n", + "6959 São Paulo 335 4 6 4 2 acept furnished 3500 4500 0 58 8058\n", + "6960 São Paulo 520 4 4 3 - acept furnished 0 12000 1688 181 13870\n", + "6961 São Paulo 235 3 2 2 5 acept furnished 3650 7200 626 92 11570\n", + "6962 São Paulo 50 1 1 0 3 acept not furnished 400 1500 59 20 1979\n", + "6963 São Paulo 280 5 5 4 13 acept not furnished 3100 10000 1167 127 14390\n", + "6964 São Paulo 80 1 1 1 2 not acept not furnished 0 1200 0 16 1216\n", + "6965 São Paulo 70 2 2 1 - acept not furnished 0 2100 9 27 2136\n", + "6966 São Paulo 139 3 2 0 7 acept not furnished 1250 8000 103 102 9455\n", + "6967 Belo Horizonte 325 4 3 0 - acept not furnished 0 9000 236 148 9384\n", + "6968 São Paulo 60 2 1 1 6 acept not furnished 1064 1100 0 14 2178\n", + "6969 Porto Alegre 238 4 3 1 5 acept furnished 1200 4250 300 63 5813\n", + "6970 São Paulo 50 1 1 0 - not acept not furnished 0 1093 0 17 1110\n", + "6971 São Paulo 128 3 3 0 9 acept not furnished 1260 2900 226 37 4423\n", + "6972 São Paulo 300 3 6 6 - not acept not furnished 0 5000 1000 76 6076\n", + "6973 São Paulo 160 3 3 1 - acept not furnished 0 8000 0 121 8121\n", + "6974 Belo Horizonte 400 5 5 8 - acept not furnished 0 7900 513 130 8543\n", + "6975 Rio de Janeiro 62 2 1 0 3 acept not furnished 605 1200 197 16 2018\n", + "6976 São Paulo 300 4 5 2 - acept not furnished 0 4200 250 64 4514\n", + "6977 São Paulo 300 5 5 4 8 acept not furnished 3200 4792 1500 61 9553\n", + "6978 Campinas 30 1 1 0 - not acept not furnished 0 1400 0 22 1422\n", + "6979 Belo Horizonte 155 1 4 0 4 not acept not furnished 1117000 2790 64 38 1120000\n", + "6980 São Paulo 300 3 2 3 - acept furnished 0 3700 130 56 3886\n", + "6981 São Paulo 37 1 1 1 12 acept furnished 399 3700 0 47 4146\n", + "6982 São Paulo 35 1 1 0 16 not acept furnished 2000 1500 309 20 3829\n", + "6983 Porto Alegre 55 1 1 0 1 acept not furnished 250 700 32 11 993\n", + "6984 São Paulo 50 1 1 0 1 acept not furnished 325 1550 25 20 1920\n", + "6985 São Paulo 64 2 1 2 10 not acept furnished 2530 4000 342 51 6923\n", + "6986 São Paulo 49 2 1 1 5 acept not furnished 360 2000 0 26 2386\n", + "6987 Campinas 87 3 2 1 9 acept not furnished 743 1800 109 23 2675\n", + "6988 São Paulo 250 3 4 2 - acept not furnished 300 3480 360 53 4193\n", + "6989 São Paulo 72 3 2 1 3 not acept not furnished 790 1750 3 23 2566\n", + "6990 São Paulo 76 3 3 2 1 acept not furnished 900 2662 284 34 3880\n", + "6991 Porto Alegre 163 3 4 2 3 acept furnished 1916 8000 217 117 10250\n", + "6992 São Paulo 75 2 1 0 5 acept furnished 500 4000 0 51 4551\n", + "6993 Campinas 89 3 2 1 7 acept not furnished 860 1800 70 23 2753\n", + "6994 São Paulo 93 3 3 2 5 acept furnished 1203 4200 267 54 5724\n", + "6995 São Paulo 420 3 6 4 - not acept not furnished 0 6500 0 98 6598\n", + "6996 Belo Horizonte 640 6 7 5 - acept furnished 0 6141 667 101 6909\n", + "6997 São Paulo 326 3 4 5 12 acept furnished 3600 15000 3000 191 21790\n", + "6998 São Paulo 136 3 4 3 4 not acept not furnished 1546 3500 350 45 5441\n", + "6999 Porto Alegre 39 1 1 0 2 acept furnished 120 780 8 12 920\n", + "7000 Belo Horizonte 70 2 1 1 1 acept not furnished 490 900 0 8 1398\n", + "7001 São Paulo 480 4 6 5 - acept not furnished 0 15000 1572 226 16800\n", + "7002 São Paulo 50 2 1 0 5 acept not furnished 515 1900 42 25 2482\n", + "7003 São Paulo 180 3 3 5 - acept not furnished 0 2500 232 38 2770\n", + "7004 Belo Horizonte 100 3 2 2 9 acept furnished 850 3000 371 40 4261\n", + "7005 Belo Horizonte 100 3 2 1 - acept furnished 100 2000 74 33 2207\n", + "7006 São Paulo 560 5 5 6 - acept not furnished 0 15000 1917 226 17140\n", + "7007 São Paulo 180 5 3 2 - not acept not furnished 0 9000 0 136 9136\n", + "7008 Rio de Janeiro 44 1 1 0 3 acept not furnished 505 2350 67 31 2953\n", + "7009 São Paulo 18 1 1 1 3 not acept not furnished 690 1090 84 14 1878\n", + "7010 Campinas 154 2 2 1 - acept not furnished 0 1300 109 20 1429\n", + "7011 São Paulo 80 2 2 1 1 not acept furnished 2224 2800 334 36 5394\n", + "7012 Belo Horizonte 308 2 3 3 - acept not furnished 0 2000 171 33 2204\n", + "7013 São Paulo 150 4 4 1 - acept furnished 0 4500 615 68 5183\n", + "7014 São Paulo 80 2 2 2 4 acept not furnished 850 2450 250 32 3582\n", + "7015 São Paulo 70 2 1 1 1 acept not furnished 280 1000 138 13 1431\n", + "7016 São Paulo 136 3 2 1 7 acept furnished 1780 4000 250 51 6081\n", + "7017 Porto Alegre 55 1 1 1 6 acept not furnished 450 935 45 14 1444\n", + "7018 Porto Alegre 90 3 2 1 2 acept furnished 650 2200 60 33 2943\n", + "7019 Campinas 48 2 1 1 8 acept not furnished 380 1545 49 20 1994\n", + "7020 São Paulo 224 4 5 3 12 acept not furnished 9500 9500 1650 121 20770\n", + "7021 Porto Alegre 32 1 1 1 4 acept not furnished 450 2500 42 37 3029\n", + "7022 Rio de Janeiro 60 2 1 1 8 acept not furnished 355 500 47 7 909\n", + "7023 Rio de Janeiro 150 3 2 1 12 acept furnished 1100 4200 234 55 5589\n", + "7024 São Paulo 260 3 5 3 3 acept not furnished 4400 4500 134 58 9092\n", + "7025 São Paulo 42 1 1 0 3 acept not furnished 350 1120 34 14 1518\n", + "7026 Belo Horizonte 320 4 3 3 10 not acept furnished 1700 7000 600 94 9394\n", + "7027 Porto Alegre 460 4 4 4 - acept not furnished 0 4000 270 72 4342\n", + "7028 São Paulo 208 3 3 3 13 acept not furnished 2204 5960 641 76 8881\n", + "7029 São Paulo 360 4 5 4 12 acept not furnished 4350 6593 1830 84 12860\n", + "7030 São Paulo 30 1 1 0 1 not acept furnished 1200 1500 25 20 2745\n", + "7031 São Paulo 132 2 2 0 1 acept furnished 978 2900 0 37 3915\n", + "7032 Belo Horizonte 250 6 6 2 - acept not furnished 0 9000 495 148 9643\n", + "7033 São Paulo 29 1 1 1 10 not acept furnished 1500 3050 200 39 4789\n", + "7034 São Paulo 100 1 2 2 - acept not furnished 0 2000 84 31 2115\n", + "7035 Rio de Janeiro 100 3 2 1 12 acept not furnished 700 1920 217 25 2862\n", + "7036 Porto Alegre 120 3 3 0 7 acept furnished 1126 7500 284 110 9020\n", + "7037 Belo Horizonte 390 6 3 2 - acept not furnished 0 11000 417 181 11600\n", + "7038 São Paulo 80 3 1 0 - acept not furnished 0 2400 60 37 2497\n", + "7039 São Paulo 140 3 3 1 2 acept furnished 1100 3000 59 39 4198\n", + "7040 São Paulo 146 3 2 2 14 acept furnished 1400 3500 600 45 5545\n", + "7041 Belo Horizonte 360 4 2 4 - acept not furnished 0 6000 189 99 6288\n", + "7042 São Paulo 165 3 3 4 9 acept not furnished 2000 5000 584 64 7648\n", + "7043 São Paulo 100 3 2 2 - acept furnished 550 3570 63 54 4237\n", + "7044 São Paulo 80 3 2 2 11 acept not furnished 890 3100 90 40 4120\n", + "7045 São Paulo 29 1 1 0 18 acept not furnished 298 2300 25 30 2653\n", + "7046 Campinas 46 1 1 1 4 not acept not furnished 560 935 45 12 1552\n", + "7047 São Paulo 110 3 2 2 14 not acept furnished 1850 5500 341 70 7761\n", + "7048 São Paulo 300 3 3 3 - acept not furnished 1 3400 417 52 3870\n", + "7049 São Paulo 62 2 2 3 7 acept not furnished 2890 7000 384 89 10360\n", + "7050 São Paulo 150 3 1 0 3 not acept not furnished 200 4200 12 54 4466\n", + "7051 Porto Alegre 92 3 1 0 3 acept not furnished 600 1800 42 27 2469\n", + "7052 Belo Horizonte 50 2 1 1 4 acept not furnished 150 900 0 12 1062\n", + "7053 São Paulo 220 3 3 3 9 acept not furnished 3500 8900 1466 113 13980\n", + "7054 Rio de Janeiro 250 4 3 2 6 acept not furnished 2870 5300 852 69 9091\n", + "7055 Rio de Janeiro 160 3 2 1 2 acept not furnished 2000 4000 417 52 6469\n", + "7056 Rio de Janeiro 110 3 2 1 7 acept not furnished 1250 2500 309 33 4092\n", + "7057 São Paulo 120 4 4 4 - acept not furnished 0 4000 0 61 4061\n", + "7058 Porto Alegre 101 3 2 1 3 acept not furnished 630 2900 142 43 3715\n", + "7059 São Paulo 60 2 1 0 8 not acept furnished 435 1800 0 23 2258\n", + "7060 São Paulo 60 2 1 1 - not acept not furnished 0 1700 23 26 1749\n", + "7061 São Paulo 330 4 3 0 9 acept not furnished 4400 10000 1084 127 15610\n", + "7062 São Paulo 350 3 6 4 28 acept furnished 2100 12000 1417 153 15670\n", + "7063 Rio de Janeiro 26 1 1 0 1 acept not furnished 0 2100 167 28 2295\n", + "7064 São Paulo 110 4 5 3 - acept not furnished 0 3900 625 59 4584\n", + "7065 São Paulo 233 3 4 4 15 not acept furnished 3780 4300 2567 55 10700\n", + "7066 Belo Horizonte 441 5 5 8 - acept not furnished 0 8000 553 132 8685\n", + "7067 Porto Alegre 44 1 1 0 4 acept furnished 270 550 6 9 835\n", + "7068 São Paulo 150 3 4 3 - acept furnished 0 4600 500 70 5170\n", + "7069 São Paulo 50 1 1 0 - acept not furnished 0 820 8 13 841\n", + "7070 Belo Horizonte 136 4 3 1 1 acept not furnished 347 2300 72 31 2750\n", + "7071 São Paulo 455 3 2 4 - acept not furnished 0 11000 1834 166 13000\n", + "7072 Belo Horizonte 160 4 4 3 12 not acept furnished 1634 6500 696 87 8917\n", + "7073 São Paulo 58 1 1 2 2 acept not furnished 640 2000 0 26 2666\n", + "7074 Porto Alegre 75 2 1 0 1 acept not furnished 380 2500 100 37 3017\n", + "7075 Rio de Janeiro 160 3 2 1 1 acept not furnished 2300 3150 3700 41 9191\n", + "7076 São Paulo 310 5 2 2 15 acept not furnished 2800 5000 1084 64 8948\n", + "7077 São Paulo 180 3 2 2 3 acept not furnished 2200 2500 542 32 5274\n", + "7078 São Paulo 207 3 4 3 3 acept not furnished 2600 2500 817 32 5949\n", + "7079 São Paulo 91 3 3 3 5 not acept not furnished 1312 2438 850 31 4631\n", + "7080 São Paulo 275 4 3 4 5 acept furnished 3000 10000 0 127 13130\n", + "7081 São Paulo 265 4 6 3 6 not acept not furnished 2400 2500 1284 32 6216\n", + "7082 São Paulo 57 1 1 1 4 acept furnished 300 6000 17 77 6394\n", + "7083 Porto Alegre 450 5 5 2 - acept not furnished 1100 8000 417 143 9660\n", + "7084 São Paulo 245 4 5 4 9 acept not furnished 2641 3200 744 41 6626\n", + "7085 São Paulo 216 3 4 2 10 acept not furnished 3400 4675 870 60 9005\n", + "7086 Campinas 74 3 2 1 4 acept not furnished 390 900 24 12 1326\n", + "7087 São Paulo 80 2 1 1 6 acept not furnished 654 2300 94 30 3078\n", + "7088 São Paulo 130 3 2 2 6 acept not furnished 1100 3850 209 49 5208\n", + "7089 Porto Alegre 56 1 2 1 6 acept furnished 650 2500 100 37 3287\n", + "7090 São Paulo 163 2 3 3 3 acept not furnished 1650 7000 896 89 9635\n", + "7091 Porto Alegre 70 2 1 0 8 acept furnished 400 1200 34 18 1652\n", + "7092 Campinas 45 1 1 0 3 acept not furnished 412 860 66 11 1349\n", + "7093 São Paulo 80 1 2 0 6 not acept not furnished 1174 3900 135 50 5259\n", + "7094 São Paulo 80 2 1 0 11 not acept not furnished 600 1950 0 25 2575\n", + "7095 São Paulo 600 3 3 4 - acept not furnished 0 6800 966 103 7869\n", + "7096 Belo Horizonte 150 3 2 2 3 acept not furnished 1350 1600 108 22 3080\n", + "7097 Belo Horizonte 28 1 1 1 - not acept furnished 550 1250 0 17 1817\n", + "7098 São Paulo 265 3 3 2 - acept furnished 0 8712 1167 131 10010\n", + "7099 Belo Horizonte 100 4 2 2 - acept not furnished 0 2840 369 47 3256\n", + "7100 Campinas 55 1 1 1 3 not acept not furnished 260 1100 30 14 1404\n", + "7101 Campinas 48 2 1 1 4 acept not furnished 243 850 0 11 1104\n", + "7102 Rio de Janeiro 82 2 2 0 2 acept not furnished 1296 3000 232 39 4567\n", + "7103 Belo Horizonte 140 4 3 3 4 acept not furnished 1320 3300 292 44 4956\n", + "7104 Belo Horizonte 360 5 6 4 - acept furnished 0 12000 329 197 12530\n", + "7105 São Paulo 35 1 1 0 7 acept not furnished 400 1200 0 16 1616\n", + "7106 Porto Alegre 72 2 2 1 2 acept not furnished 650 950 100 14 1714\n", + "7107 Belo Horizonte 133 3 2 3 1 not acept not furnished 806 2100 161 28 3095\n", + "7108 Porto Alegre 95 3 1 2 2 acept not furnished 510 1300 96 19 1925\n", + "7109 Porto Alegre 27 1 1 0 2 acept not furnished 100 960 75 15 1150\n", + "7110 São Paulo 30 1 1 1 6 not acept furnished 2400 3500 0 45 5945\n", + "7111 Belo Horizonte 350 5 5 3 3 not acept not furnished 500 2000 252 27 2779\n", + "7112 São Paulo 179 3 3 3 12 acept furnished 1800 3200 900 41 5941\n", + "7113 Porto Alegre 65 3 2 1 3 acept not furnished 400 850 24 13 1287\n", + "7114 Rio de Janeiro 150 4 3 2 - acept not furnished 0 5000 717 77 5794\n", + "7115 São Paulo 35 1 1 0 1 not acept not furnished 0 1310 0 17 1327\n", + "7116 Porto Alegre 47 1 1 1 1 not acept furnished 400 2200 0 33 2633\n", + "7117 Belo Horizonte 360 6 3 4 - acept not furnished 0 7000 1108 115 8223\n", + "7118 São Paulo 115 2 2 1 18 acept furnished 950 6500 125 83 7658\n", + "7119 São Paulo 341 3 3 2 6 acept not furnished 2600 4400 825 56 7881\n", + "7120 Porto Alegre 89 2 2 1 2 acept not furnished 350 1850 0 28 2228\n", + "7121 Rio de Janeiro 46 1 1 0 3 acept not furnished 650 2350 131 31 3162\n", + "7122 São Paulo 226 3 4 3 6 acept not furnished 2200 6900 1209 88 10400\n", + "7123 Rio de Janeiro 32 1 1 0 10 acept not furnished 360 1430 62 19 1871\n", + "7124 São Paulo 115 2 3 2 8 acept not furnished 1380 12000 790 153 14320\n", + "7125 Porto Alegre 164 3 3 0 5 acept not furnished 1680 4500 225 66 6471\n", + "7126 São Paulo 37 1 1 1 8 acept furnished 500 3000 125 39 3664\n", + "7127 São Paulo 160 3 2 2 - acept not furnished 0 4000 267 61 4328\n", + "7128 São Paulo 175 4 3 2 - acept not furnished 0 3200 380 49 3629\n", + "7129 Belo Horizonte 140 3 2 1 11 not acept furnished 1000 3300 184 44 4528\n", + "7130 São Paulo 400 4 6 5 - acept not furnished 0 5300 984 80 6364\n", + "7131 São Paulo 45 1 2 0 1 acept not furnished 0 1430 0 22 1452\n", + "7132 Belo Horizonte 153 4 2 2 1 acept not furnished 1000 3500 426 47 4973\n", + "7133 Campinas 56 2 1 1 1 acept not furnished 345 760 11 10 1126\n", + "7134 São Paulo 383 4 5 6 - acept not furnished 2780 9500 1760 143 14180\n", + "7135 São Paulo 146 3 4 2 8 acept furnished 1800 11000 592 140 13530\n", + "7136 São Paulo 135 3 2 0 3 acept not furnished 1400 4500 317 58 6275\n", + "7137 São Paulo 37 1 1 1 18 not acept not furnished 676 3000 112 39 3827\n", + "7138 São Paulo 238 3 5 3 1 acept furnished 2700 15000 834 191 18730\n", + "7139 São Paulo 55 1 1 0 1 acept not furnished 0 1100 0 14 1114\n", + "7140 São Paulo 92 2 2 2 17 acept furnished 840 2288 244 29 3401\n", + "7141 Porto Alegre 215 6 6 6 - acept not furnished 0 5000 109 89 5198\n", + "7142 Porto Alegre 320 4 4 2 13 acept furnished 1500 4500 2900 66 8966\n", + "7143 Campinas 64 1 2 1 11 not acept not furnished 930 1540 68 20 2558\n", + "7144 Belo Horizonte 92 2 2 2 16 acept not furnished 1169 5000 67 67 6303\n", + "7145 Rio de Janeiro 72 2 1 1 3 acept not furnished 300 800 15 11 1126\n", + "7146 Rio de Janeiro 65 1 1 0 4 acept not furnished 350 2200 30 29 2609\n", + "7147 Rio de Janeiro 500 5 5 2 11 acept furnished 2500 8000 459 104 11060\n", + "7148 São Paulo 131 4 4 2 11 acept not furnished 1400 4500 317 58 6275\n", + "7149 São Paulo 70 3 2 2 16 acept furnished 650 2500 120 32 3302\n", + "7150 São Paulo 530 4 6 4 11 acept not furnished 4310 2569 2417 33 9329\n", + "7151 Belo Horizonte 85 3 3 2 2 not acept not furnished 270 1750 165 24 2209\n", + "7152 São Paulo 20 1 1 0 1 acept furnished 602 1800 130 23 2555\n", + "7153 São Paulo 139 3 4 2 12 not acept furnished 1350 11000 500 140 12990\n", + "7154 São Paulo 45 1 1 1 1 not acept furnished 3000 5520 0 70 8590\n", + "7155 Belo Horizonte 266 4 3 2 - acept not furnished 0 7500 236 123 7859\n", + "7156 Belo Horizonte 110 3 2 4 - acept not furnished 30 2100 145 35 2310\n", + "7157 São Paulo 182 3 4 3 - acept not furnished 0 7000 459 106 7565\n", + "7158 São Paulo 318 4 6 4 - not acept not furnished 2500 12000 334 153 14990\n", + "7159 São Paulo 380 4 6 1 - not acept furnished 0 10840 334 163 11330\n", + "7160 Rio de Janeiro 85 2 3 0 1 acept not furnished 0 1940 167 25 2132\n", + "7161 Porto Alegre 62 2 1 0 3 acept not furnished 80 1250 40 19 1389\n", + "7162 Rio de Janeiro 42 1 1 0 8 acept not furnished 500 1300 42 17 1859\n", + "7163 São Paulo 50 2 2 1 10 acept not furnished 400 1900 0 25 2325\n", + "7164 Belo Horizonte 52 2 1 1 3 acept not furnished 300 860 61 12 1233\n", + "7165 São Paulo 179 4 4 3 8 acept furnished 1100 8500 751 108 10460\n", + "7166 Rio de Janeiro 100 2 3 0 12 acept not furnished 800 2662 373 35 3870\n", + "7167 Rio de Janeiro 80 2 2 1 4 acept not furnished 1090 2500 119 33 3742\n", + "7168 São Paulo 180 3 1 1 1 acept not furnished 100 2500 84 38 2722\n", + "7169 Porto Alegre 650 4 6 5 - acept furnished 0 13800 650 246 14700\n", + "7170 Porto Alegre 51 1 1 1 4 acept not furnished 450 2000 61 30 2541\n", + "7171 Campinas 48 2 1 1 1 not acept furnished 295 1400 27 18 1740\n", + "7172 Rio de Janeiro 350 4 4 2 14 acept furnished 1980 9000 833 116 11930\n", + "7173 São Paulo 354 5 6 3 - acept not furnished 0 8850 958 134 9942\n", + "7174 São Paulo 250 4 5 0 6 acept not furnished 2023 12000 1584 153 15760\n", + "7175 São Paulo 55 2 2 1 2 acept not furnished 600 1300 67 17 1984\n", + "7176 São Paulo 60 2 2 1 7 acept furnished 752 3800 130 49 4731\n", + "7177 São Paulo 350 4 3 4 - acept not furnished 1 7300 600 110 8011\n", + "7178 Rio de Janeiro 70 3 2 0 1 acept not furnished 0 1500 50 20 1570\n", + "7179 Belo Horizonte 150 4 2 1 - acept not furnished 0 2250 9 37 2296\n", + "7180 São Paulo 32 1 1 0 5 acept not furnished 400 2001 0 26 2427\n", + "7181 Rio de Janeiro 50 1 1 0 1 not acept furnished 400 2960 200 39 3599\n", + "7182 Belo Horizonte 744 6 6 8 - acept furnished 450 11000 3000 181 14630\n", + "7183 Belo Horizonte 26 1 1 1 1 acept not furnished 60 750 67 10 887\n", + "7184 São Paulo 63 2 2 1 1 acept furnished 720 3500 113 45 4378\n", + "7185 São Paulo 60 2 1 0 6 acept not furnished 450 1600 0 21 2071\n", + "7186 São Paulo 120 3 2 1 7 acept furnished 1400 3280 125 42 4847\n", + "7187 Rio de Janeiro 47 2 1 1 5 acept not furnished 513 1000 0 13 1526\n", + "7188 Campinas 93 3 2 2 2 acept not furnished 657 1700 73 22 2452\n", + "7189 São Paulo 92 3 2 0 13 acept not furnished 870 5800 242 74 6986\n", + "7190 Porto Alegre 84 3 2 1 8 acept not furnished 500 2200 77 33 2810\n", + "7191 São Paulo 100 2 2 1 - not acept not furnished 0 1450 80 22 1552\n", + "7192 Campinas 380 4 6 6 - not acept not furnished 0 4100 269 62 4431\n", + "7193 São Paulo 130 3 2 1 13 acept not furnished 1600 2900 200 37 4737\n", + "7194 São Paulo 200 3 3 2 7 not acept furnished 2500 6000 125 77 8702\n", + "7195 São Paulo 33 1 1 1 26 not acept furnished 1500 2000 250 26 3776\n", + "7196 São Paulo 100 3 1 0 - acept not furnished 0 2200 350 34 2584\n", + "7197 São Paulo 115 2 1 0 5 acept not furnished 1500 2200 67 28 3795\n", + "7198 São Paulo 327 4 4 5 9 acept furnished 5200 7000 2662 89 14950\n", + "7199 Belo Horizonte 45 2 1 1 1 acept not furnished 0 880 0 12 892\n", + "7200 Porto Alegre 124 3 3 1 7 acept not furnished 970 1942 68 29 3009\n", + "7201 São Paulo 64 1 2 1 15 acept furnished 650 8900 154 64 9768\n", + "7202 Belo Horizonte 212 4 2 1 5 acept furnished 1364 2100 250 28 3742\n", + "7203 São Paulo 100 2 3 2 4 acept not furnished 1800 2200 209 28 4237\n", + "7204 São Paulo 38 1 1 1 3 acept furnished 475 3008 0 39 3522\n", + "7205 São Paulo 330 3 5 5 8 acept furnished 3300 7500 1400 96 12300\n", + "7206 São Paulo 71 2 1 1 8 acept not furnished 800 2140 0 28 2968\n", + "7207 São Paulo 70 2 2 1 16 not acept not furnished 662 4500 122 58 5342\n", + "7208 São Paulo 220 4 3 3 3 acept not furnished 1600 3400 0 44 5044\n", + "7209 São Paulo 128 3 2 2 1 acept not furnished 1100 2500 293 32 3925\n", + "7210 São Paulo 35 1 1 1 16 acept furnished 572 4900 70 63 5605\n", + "7211 Porto Alegre 220 4 3 1 - not acept furnished 230 2000 0 36 2266\n", + "7212 São Paulo 380 4 6 6 11 acept furnished 4500 12000 3000 153 19650\n", + "7213 São Paulo 43 2 1 1 1 not acept not furnished 750 1375 17 18 2160\n", + "7214 São Paulo 60 1 1 0 1 acept not furnished 0 1250 280 16 1546\n", + "7215 Rio de Janeiro 53 1 1 0 7 acept not furnished 1 1700 74 22 1797\n", + "7216 São Paulo 50 2 1 1 25 acept furnished 428 3900 71 50 4449\n", + "7217 São Paulo 65 2 2 0 6 acept not furnished 400 1910 0 25 2335\n", + "7218 São Paulo 150 3 2 1 - acept not furnished 0 1450 0 22 1472\n", + "7219 Belo Horizonte 70 3 1 0 4 acept not furnished 330 970 85 13 1398\n", + "7220 São Paulo 49 1 1 1 7 acept furnished 1730 6200 0 79 8009\n", + "7221 São Paulo 30 1 1 0 - not acept not furnished 0 1200 0 19 1219\n", + "7222 São Paulo 45 1 1 0 7 acept not furnished 265 1275 0 17 1557\n", + "7223 Porto Alegre 260 2 2 1 4 acept not furnished 170 2000 25 30 2225\n", + "7224 Porto Alegre 32 1 1 1 4 acept not furnished 450 2500 42 37 3029\n", + "7225 São Paulo 197 3 4 1 10 acept not furnished 2665 4500 459 58 7682\n", + "7226 Rio de Janeiro 500 2 5 5 - not acept not furnished 0 1810 54 28 1892\n", + "7227 São Paulo 136 3 3 2 5 acept not furnished 1439 2200 339 28 4006\n", + "7228 Belo Horizonte 120 4 4 2 6 acept not furnished 1100 3000 493 40 4633\n", + "7229 São Paulo 115 3 2 1 9 acept furnished 1082 6300 224 80 7686\n", + "7230 São Paulo 130 2 1 1 9 acept not furnished 1159 3850 160 49 5218\n", + "7231 São Paulo 87 3 3 2 12 not acept furnished 930 3000 253 39 4222\n", + "7232 São Paulo 95 3 2 0 2 acept not furnished 0 2350 0 36 2386\n", + "7233 Campinas 70 1 2 1 11 not acept furnished 1700 1500 184 20 3404\n", + "7234 Rio de Janeiro 87 2 2 1 8 acept not furnished 1110 3500 249 46 4905\n", + "7235 Belo Horizonte 50 1 1 0 - not acept not furnished 0 1050 39 18 1107\n", + "7236 São Paulo 50 1 1 1 1 acept not furnished 795 3500 213 45 4553\n", + "7237 São Paulo 128 3 4 2 8 not acept furnished 1337 5000 609 64 7010\n", + "7238 Rio de Janeiro 86 3 2 1 7 acept furnished 1300 3300 228 43 4871\n", + "7239 São Paulo 100 3 2 1 4 not acept furnished 950 2700 71 35 3756\n", + "7240 São Paulo 139 4 5 2 6 not acept not furnished 1500 10000 584 127 12210\n", + "7241 Campinas 72 2 1 0 2 not acept not furnished 606 780 60 10 1456\n", + "7242 Belo Horizonte 120 3 3 3 1 acept not furnished 750 2650 434 36 3870\n", + "7243 São Paulo 24 1 1 0 4 not acept furnished 368 2530 55 33 2986\n", + "7244 Campinas 135 2 2 2 2 acept not furnished 1175 3800 255 49 5279\n", + "7245 São Paulo 280 3 4 4 6 acept not furnished 4095 5450 1042 70 10660\n", + "7246 São Paulo 49 1 1 1 18 not acept furnished 600 5400 0 69 6069\n", + "7247 São Paulo 40 1 1 0 18 not acept furnished 0 2600 0 33 2633\n", + "7248 São Paulo 320 3 3 4 - acept not furnished 0 8000 1167 121 9288\n", + "7249 São Paulo 52 1 1 1 8 not acept not furnished 1700 4420 188 57 6365\n", + "7250 São Paulo 20 1 1 0 3 not acept furnished 300 600 40 8 948\n", + "7251 São Paulo 240 3 3 4 22 acept not furnished 3538 12000 1975 153 17670\n", + "7252 Porto Alegre 109 3 2 1 7 acept not furnished 992 2080 167 31 3270\n", + "7253 São Paulo 119 3 3 1 8 not acept furnished 790 3750 135 48 4723\n", + "7254 São Paulo 340 4 6 4 8 acept furnished 3100 2800 1667 36 7603\n", + "7255 São Paulo 790 4 4 2 - acept not furnished 2500 10000 2500 151 15150\n", + "7256 São Paulo 35 1 1 0 5 acept furnished 700 1618 29 21 2368\n", + "7257 São Paulo 98 3 3 2 1 acept furnished 1975 2900 459 37 5371\n", + "7258 São Paulo 260 4 4 4 24 acept not furnished 2622 4000 600 51 7273\n", + "7259 São Paulo 45 2 1 0 3 not acept not furnished 162 1610 8 21 1801\n", + "7260 São Paulo 270 2 2 3 17 acept not furnished 2200 8650 0 110 10960\n", + "7261 São Paulo 50 1 1 0 - acept not furnished 0 1400 1 22 1423\n", + "7262 Rio de Janeiro 30 1 1 1 2 acept not furnished 600 900 60 12 1572\n", + "7263 São Paulo 45 2 1 1 8 acept not furnished 300 1100 38 14 1452\n", + "7264 São Paulo 150 3 1 2 9 acept not furnished 1300 3000 0 39 4339\n", + "7265 Porto Alegre 42 1 1 1 3 acept not furnished 390 1390 54 21 1855\n", + "7266 São Paulo 210 3 4 3 6 acept not furnished 3900 13000 1417 165 18480\n", + "7267 São Paulo 58 2 1 0 9 acept furnished 397 1780 0 23 2200\n", + "7268 Campinas 76 2 2 2 9 acept furnished 679 3100 146 40 3965\n", + "7269 Porto Alegre 28 1 1 0 2 acept not furnished 184 850 12 13 1059\n", + "7270 São Paulo 130 2 4 4 5 not acept not furnished 1300 2700 411 35 4446\n", + "7271 São Paulo 60 1 1 0 - not acept not furnished 0 1300 144 20 1464\n", + "7272 São Paulo 54 2 1 1 7 not acept not furnished 475 1460 0 19 1954\n", + "7273 São Paulo 111 3 3 2 - acept not furnished 0 4000 357 61 4418\n", + "7274 Belo Horizonte 80 2 3 2 5 acept not furnished 980 2800 350 38 4168\n", + "7275 São Paulo 600 6 5 5 - acept furnished 0 12000 3334 181 15520\n", + "7276 Porto Alegre 73 2 1 1 2 acept not furnished 213 1200 39 18 1470\n", + "7277 Rio de Janeiro 80 2 2 1 7 acept furnished 3985 5000 395 65 9445\n", + "7278 São Paulo 145 3 3 1 1 acept not furnished 1225 5800 375 74 7474\n", + "7279 São Paulo 42 1 1 1 3 acept not furnished 450 2700 52 35 3237\n", + "7280 São Paulo 98 2 1 1 1 acept not furnished 650 1800 8 23 2481\n", + "7281 Porto Alegre 80 3 2 2 4 acept not furnished 300 1850 50 28 2228\n", + "7282 Porto Alegre 367 4 3 2 3 acept furnished 1400 4500 309 66 6275\n", + "7283 Porto Alegre 68 2 2 2 9 acept not furnished 400 2400 100 20 2920\n", + "7284 Porto Alegre 90 3 2 1 12 acept not furnished 500 1480 79 22 2081\n", + "7285 Rio de Janeiro 154 4 5 2 3 acept furnished 3756 10000 750 129 14640\n", + "7286 Porto Alegre 47 2 1 1 7 acept not furnished 389 1200 0 18 1607\n", + "7287 São Paulo 230 5 3 2 - acept furnished 0 3491 291 53 3835\n", + "7288 Rio de Janeiro 180 3 3 1 2 acept not furnished 2000 2910 459 38 5407\n", + "7289 Rio de Janeiro 120 3 2 1 8 acept furnished 1300 4500 219 58 6077\n", + "7290 Belo Horizonte 110 3 2 0 5 acept not furnished 480 1600 93 22 2195\n", + "7291 São Paulo 450 4 6 4 - acept not furnished 0 11600 1042 175 12820\n", + "7292 Belo Horizonte 400 7 6 4 - acept furnished 0 6800 234 112 7146\n", + "7293 Rio de Janeiro 25 1 1 0 6 not acept furnished 478 2718 17 36 3249\n", + "7294 São Paulo 62 1 2 1 2 acept furnished 2061 11000 262 140 13460\n", + "7295 São Paulo 95 2 1 1 15 acept not furnished 900 3000 67 39 4006\n", + "7296 Belo Horizonte 110 3 3 2 3 acept furnished 350 2200 220 30 2800\n", + "7297 Rio de Janeiro 140 3 2 1 3 acept not furnished 1100 2200 95 29 3424\n", + "7298 São Paulo 34 1 1 1 1 not acept furnished 0 2890 0 37 2927\n", + "7299 São Paulo 22 1 1 1 7 not acept furnished 580 3000 8 39 3627\n", + "7300 São Paulo 177 3 3 3 4 not acept not furnished 4500 8500 1250 108 14360\n", + "7301 São Paulo 96 2 1 1 2 acept not furnished 1080 4300 118 55 5553\n", + "7302 Campinas 100 2 2 0 - acept not furnished 0 1700 200 26 1926\n", + "7303 São Paulo 68 2 2 1 6 acept not furnished 750 2600 196 33 3579\n", + "7304 São Paulo 300 3 5 4 - acept not furnished 0 4490 334 68 4892\n", + "7305 Rio de Janeiro 160 3 2 1 5 acept not furnished 1815 3000 256 39 5110\n", + "7306 São Paulo 140 3 2 2 - acept not furnished 0 2000 51 31 2082\n", + "7307 São Paulo 136 4 2 3 12 acept not furnished 1200 3300 250 42 4792\n", + "7308 São Paulo 65 2 2 2 19 not acept not furnished 907 3500 0 45 4452\n", + "7309 Belo Horizonte 200 3 6 4 9 acept not furnished 1867 4000 731 54 6652\n", + "7310 Porto Alegre 120 3 3 2 7 acept furnished 1000 3240 100 48 4388\n", + "7311 Rio de Janeiro 62 2 1 0 5 acept not furnished 997 3000 212 39 4248\n", + "7312 São Paulo 390 3 3 2 1 not acept not furnished 1800 6500 1000 83 9383\n", + "7313 São Paulo 67 2 1 0 12 acept not furnished 477 1200 0 16 1693\n", + "7314 São Paulo 52 1 1 1 1 acept furnished 410 4667 64 60 5201\n", + "7315 São Paulo 39 1 1 1 5 acept not furnished 1144 2500 312 32 3988\n", + "7316 São Paulo 270 3 3 4 1 acept not furnished 3300 3200 1667 41 8208\n", + "7317 São Paulo 82 3 2 2 2 acept not furnished 1400 1800 290 23 3513\n", + "7318 São Paulo 200 2 4 3 16 acept not furnished 4021 12500 1335 159 18020\n", + "7319 São Paulo 33 1 1 0 4 acept not furnished 305 1500 0 20 1825\n", + "7320 São Paulo 110 3 2 2 2 acept not furnished 834 5500 297 70 6701\n", + "7321 São Paulo 70 3 1 1 12 acept not furnished 800 3000 0 39 3839\n", + "7322 São Paulo 93 3 3 2 7 acept furnished 1230 3750 359 48 5387\n", + "7323 Rio de Janeiro 65 1 1 0 - acept not furnished 300 1800 30 24 2154\n", + "7324 São Paulo 280 4 5 4 18 not acept not furnished 3600 12000 917 153 16670\n", + "7325 Belo Horizonte 130 4 2 2 2 acept not furnished 1150 2350 274 32 3806\n", + "7326 São Paulo 100 2 2 1 - not acept not furnished 0 4550 75 69 4694\n", + "7327 Porto Alegre 40 1 1 0 4 not acept not furnished 300 1200 0 18 1518\n", + "7328 São Paulo 140 3 4 2 1 not acept furnished 1300 3000 234 39 4573\n", + "7329 Belo Horizonte 170 4 2 2 2 acept not furnished 1100 4000 297 54 5451\n", + "7330 São Paulo 110 2 1 1 10 not acept not furnished 705 1800 0 23 2528\n", + "7331 Belo Horizonte 45 1 1 1 4 acept furnished 700 1500 130 20 2350\n", + "7332 Belo Horizonte 275 5 4 2 - acept not furnished 0 9000 646 148 9794\n", + "7333 Rio de Janeiro 46 1 1 0 5 acept furnished 380 1200 196 16 1792\n", + "7334 São Paulo 98 2 3 2 8 acept furnished 1907 8500 468 108 10980\n", + "7335 São Paulo 120 3 1 4 - acept not furnished 0 3500 260 53 3813\n", + "7336 São Paulo 180 3 2 1 23 acept not furnished 1850 7000 299 89 9238\n", + "7337 São Paulo 250 4 3 3 2 acept not furnished 2000 4000 167 51 6218\n", + "7338 Campinas 85 3 2 1 3 not acept furnished 500 1690 63 22 2275\n", + "7339 São Paulo 126 3 4 3 4 acept not furnished 1560 4000 1021 51 6632\n", + "7340 São Paulo 132 3 4 2 10 acept not furnished 1405 3200 317 41 4963\n", + "7341 Porto Alegre 216 3 3 3 - acept not furnished 0 2390 94 43 2527\n", + "7342 São Paulo 54 2 1 1 3 acept not furnished 750 1200 84 16 2050\n", + "7343 Porto Alegre 160 2 4 2 8 not acept furnished 950 3100 200 46 4296\n", + "7344 São Paulo 62 3 1 1 7 not acept not furnished 400 1600 25 21 2046\n", + "7345 Rio de Janeiro 270 4 3 1 10 not acept not furnished 2000 4000 1000 52 7052\n", + "7346 São Paulo 145 3 4 3 10 not acept not furnished 1300 2850 459 37 4646\n", + "7347 Porto Alegre 63 2 1 0 12 acept not furnished 500 1170 34 18 1722\n", + "7348 Rio de Janeiro 115 2 2 1 5 not acept furnished 2500 8500 625 110 11740\n", + "7349 Campinas 51 1 1 0 1 not acept not furnished 368 680 15 9 1072\n", + "7350 Rio de Janeiro 70 3 1 1 7 acept not furnished 680 1200 71 16 1967\n", + "7351 São Paulo 165 3 4 6 - acept furnished 0 4800 100 73 4973\n", + "7352 São Paulo 208 4 5 2 2 acept not furnished 2900 7000 792 89 10780\n", + "7353 São Paulo 87 3 2 1 4 acept not furnished 1191 3600 93 46 4930\n", + "7354 Belo Horizonte 90 3 2 0 2 not acept not furnished 335 1400 136 19 1890\n", + "7355 São Paulo 300 2 4 2 - acept furnished 0 3250 0 49 3299\n", + "7356 São Paulo 200 3 2 3 - acept not furnished 0 3950 800 60 4810\n", + "7357 Rio de Janeiro 65 2 1 0 2 not acept furnished 970 2950 192 39 4151\n", + "7358 Belo Horizonte 42 1 1 1 15 not acept furnished 410 2690 172 36 3308\n", + "7359 Porto Alegre 42 1 1 2 2 acept furnished 240 1000 80 15 1335\n", + "7360 Rio de Janeiro 28 1 1 0 5 acept not furnished 320 1300 42 17 1679\n", + "7361 São Paulo 140 2 3 2 2 acept not furnished 1600 4000 250 51 5901\n", + "7362 São Paulo 53 2 2 1 10 not acept furnished 579 3000 89 39 3707\n", + "7363 São Paulo 120 3 2 2 - acept not furnished 0 2000 323 31 2354\n", + "7364 Rio de Janeiro 100 3 2 1 2 acept not furnished 1735 3000 324 39 5098\n", + "7365 Porto Alegre 360 3 1 4 - acept not furnished 0 2800 417 50 3267\n", + "7366 São Paulo 227 4 4 3 6 acept not furnished 4000 9000 1417 115 14530\n", + "7367 Rio de Janeiro 30 1 1 0 2 acept furnished 433 1380 0 18 1831\n", + "7368 São Paulo 90 2 2 1 - acept not furnished 959 2968 67 38 4032\n", + "7369 São Paulo 110 4 4 1 - acept not furnished 0 6800 167 103 7070\n", + "7370 São Paulo 400 3 3 4 - acept not furnished 0 4250 160 64 4474\n", + "7371 Rio de Janeiro 49 1 1 0 4 acept furnished 550 2190 155 29 2924\n", + "7372 São Paulo 100 3 3 1 - acept not furnished 0 7000 881 106 7987\n", + "7373 São Paulo 83 3 1 1 3 acept not furnished 180 2500 0 32 2712\n", + "7374 Porto Alegre 40 1 1 0 6 acept not furnished 180 1250 6 19 1455\n", + "7375 São Paulo 311 4 4 4 7 acept furnished 2100 15000 0 191 17290\n", + "7376 Belo Horizonte 120 4 2 2 - acept not furnished 0 3000 397 50 3447\n", + "7377 São Paulo 67 2 1 1 3 acept not furnished 0 1800 0 23 1823\n", + "7378 São Paulo 100 2 2 0 1 acept not furnished 0 2700 265 35 3000\n", + "7379 Belo Horizonte 100 2 1 0 2 not acept not furnished 50 1096 59 15 1220\n", + "7380 São Paulo 301 3 4 4 - acept not furnished 0 8000 2917 121 11040\n", + "7381 Rio de Janeiro 86 3 2 1 9 acept not furnished 1365 2630 201 34 4230\n", + "7382 Rio de Janeiro 45 1 1 0 9 not acept furnished 580 2500 75 33 3188\n", + "7383 São Paulo 55 2 1 1 2 not acept not furnished 470 1330 0 17 1817\n", + "7384 Porto Alegre 63 2 1 0 2 acept not furnished 180 1000 42 15 1237\n", + "7385 São Paulo 220 3 4 2 - acept furnished 0 4500 197 68 4765\n", + "7386 Belo Horizonte 202 3 2 5 - acept not furnished 0 5500 285 91 5876\n", + "7387 Rio de Janeiro 85 2 1 0 8 acept not furnished 800 3420 209 45 4474\n", + "7388 Porto Alegre 80 2 2 1 6 acept not furnished 580 3300 50 49 3979\n", + "7389 São Paulo 400 4 4 4 - acept furnished 0 10000 912 151 11060\n", + "7390 Belo Horizonte 400 5 4 4 - acept furnished 0 5500 167 91 5758\n", + "7391 São Paulo 22 1 1 0 7 acept not furnished 200 1650 0 21 1871\n", + "7392 Campinas 128 3 3 2 3 acept not furnished 700 3700 117 47 4564\n", + "7393 Campinas 170 2 3 3 16 acept not furnished 1350 5900 167 75 7492\n", + "7394 Belo Horizonte 55 2 1 1 3 not acept not furnished 200 850 81 12 1143\n", + "7395 Campinas 51 1 1 0 3 acept not furnished 486 740 15 10 1251\n", + "7396 Porto Alegre 50 2 1 1 1 acept not furnished 100 1440 0 22 1562\n", + "7397 Rio de Janeiro 81 2 1 0 6 acept not furnished 800 1600 90 21 2511\n", + "7398 São Paulo 40 1 1 0 1 not acept not furnished 50 1100 50 14 1214\n", + "7399 Porto Alegre 83 2 2 1 3 acept not furnished 700 2500 101 37 3338\n", + "7400 São Paulo 420 4 6 4 1 not acept not furnished 4200 14000 1417 178 19800\n", + "7401 São Paulo 204 4 3 1 2 acept furnished 1774 6000 0 77 7851\n", + "7402 São Paulo 240 2 2 4 - acept not furnished 0 3500 362 53 3915\n", + "7403 São Paulo 56 2 1 1 10 acept not furnished 550 1160 0 15 1725\n", + "7404 Porto Alegre 82 2 2 2 3 acept furnished 570 4150 200 61 4981\n", + "7405 Belo Horizonte 327 4 4 2 - acept not furnished 0 8799 563 145 9507\n", + "7406 São Paulo 96 1 2 1 10 acept furnished 1835 4250 167 54 6306\n", + "7407 São Paulo 54 1 1 0 6 acept not furnished 495 2306 0 30 2831\n", + "7408 Porto Alegre 41 1 1 1 6 acept not furnished 400 2100 17 31 2548\n", + "7409 Porto Alegre 218 3 5 2 3 acept furnished 1160 4950 409 73 6592\n", + "7410 Rio de Janeiro 20 1 1 0 10 acept furnished 214 2150 0 28 2392\n", + "7411 São Paulo 170 4 4 3 10 not acept furnished 2493 5000 750 22 8265\n", + "7412 São Paulo 250 3 3 0 4 acept not furnished 3850 2500 1336 32 7718\n", + "7413 São Paulo 40 1 1 0 - acept not furnished 0 1100 195 17 1312\n", + "7414 São Paulo 400 4 6 4 8 acept furnished 4285 10000 2050 127 16460\n", + "7415 São Paulo 350 5 4 6 - acept not furnished 0 6000 640 91 6731\n", + "7416 Campinas 94 3 1 1 6 acept not furnished 565 2000 60 26 2651\n", + "7417 São Paulo 30 1 1 0 - not acept not furnished 0 850 67 13 930\n", + "7418 São Paulo 142 3 3 2 15 acept not furnished 1600 9000 475 115 11190\n", + "7419 Rio de Janeiro 177 3 3 4 2 acept not furnished 2700 6900 509 89 10200\n", + "7420 Belo Horizonte 126 4 2 2 1 acept not furnished 380 2550 168 34 3132\n", + "7421 Porto Alegre 160 3 2 2 4 acept not furnished 890 1990 50 30 2960\n", + "7422 São Paulo 54 1 1 0 5 acept not furnished 730 1500 0 20 2250\n", + "7423 São Paulo 20 1 1 0 3 not acept furnished 150 3142 67 40 3399\n", + "7424 São Paulo 75 2 2 0 1 not acept not furnished 750 2125 146 27 3048\n", + "7425 Rio de Janeiro 60 2 1 0 7 acept not furnished 528 1100 86 15 1729\n", + "7426 Belo Horizonte 150 4 4 2 6 acept furnished 1305 3350 359 45 5059\n", + "7427 São Paulo 156 3 3 3 7 acept furnished 1600 8000 628 102 10330\n", + "7428 São Paulo 206 3 3 1 11 acept furnished 2914 7400 586 94 10990\n", + "7429 São Paulo 100 2 1 0 7 not acept not furnished 800 1659 0 22 2481\n", + "7430 Porto Alegre 47 1 1 1 2 not acept not furnished 230 940 5 14 1189\n", + "7431 São Paulo 220 3 4 4 12 not acept not furnished 1710 3550 790 45 6095\n", + "7432 São Paulo 60 2 1 1 10 acept not furnished 350 1650 0 21 2021\n", + "7433 Porto Alegre 457 6 6 2 - acept furnished 0 8500 417 152 9069\n", + "7434 São Paulo 340 4 4 5 5 acept furnished 4000 7000 1660 89 12750\n", + "7435 Rio de Janeiro 93 3 2 2 10 acept furnished 1342 4950 286 64 6642\n", + "7436 São Paulo 200 3 2 5 - acept not furnished 0 7000 963 106 8069\n", + "7437 São Paulo 340 4 5 4 2 acept not furnished 2930 8000 1334 102 12370\n", + "7438 Rio de Janeiro 108 3 2 1 3 acept furnished 1340 5200 252 68 6860\n", + "7439 São Paulo 240 3 5 6 - acept not furnished 0 4900 100 74 5074\n", + "7440 Rio de Janeiro 82 2 2 1 1 acept furnished 1000 1950 79 26 3055\n", + "7441 Rio de Janeiro 480 4 7 3 14 not acept furnished 2800 6500 115 84 9499\n", + "7442 Belo Horizonte 35 1 1 1 1 not acept not furnished 0 700 0 10 710\n", + "7443 Porto Alegre 105 4 2 1 3 acept not furnished 505 2200 114 33 2852\n", + "7444 São Paulo 66 1 1 2 1 acept furnished 800 2800 200 36 3836\n", + "7445 São Paulo 85 2 1 1 - acept not furnished 0 1450 0 22 1472\n", + "7446 Porto Alegre 45 2 1 1 4 acept not furnished 280 750 67 11 1108\n", + "7447 São Paulo 50 1 1 1 17 not acept furnished 728 3500 100 45 4373\n", + "7448 São Paulo 30 4 4 2 - acept furnished 0 5000 4247 76 9323\n", + "7449 São Paulo 450 3 2 0 - acept not furnished 0 5800 917 88 6805\n", + "7450 Porto Alegre 52 1 1 1 20 acept not furnished 800 2500 1 37 3338\n", + "7451 São Paulo 235 3 2 1 - acept not furnished 0 6000 825 91 6916\n", + "7452 São Paulo 141 3 3 2 3 acept not furnished 1100 7935 167 101 9303\n", + "7453 São Paulo 80 2 1 0 - acept not furnished 0 1200 67 19 1286\n", + "7454 Belo Horizonte 247 4 2 1 - acept not furnished 0 2600 264 43 2907\n", + "7455 São Paulo 49 2 1 1 6 acept not furnished 277 2100 104 27 2508\n", + "7456 São Paulo 325 4 5 4 1 acept furnished 4950 15000 2209 191 22350\n", + "7457 São Paulo 200 3 3 4 5 acept not furnished 1950 3230 680 41 5901\n", + "7458 Belo Horizonte 220 3 4 3 10 acept furnished 922 8000 625 107 9654\n", + "7459 Rio de Janeiro 170 3 1 1 10 not acept not furnished 2888 5000 5404 65 13360\n", + "7460 São Paulo 46 2 1 0 7 acept furnished 510 2880 27 37 3454\n", + "7461 Porto Alegre 63 2 1 0 3 acept furnished 200 1400 53 21 1674\n", + "7462 São Paulo 160 4 4 3 2 acept not furnished 2500 11000 0 140 13640\n", + "7463 São Paulo 100 2 1 1 - acept not furnished 0 3800 270 58 4128\n", + "7464 São Paulo 23 1 1 0 23 acept not furnished 399 2100 42 27 2568\n", + "7465 São Paulo 35 1 1 1 5 not acept furnished 420 1250 0 16 1686\n", + "7466 São Paulo 120 3 2 1 18 acept not furnished 1150 5300 167 68 6685\n", + "7467 São Paulo 150 3 4 3 1 acept furnished 1300 5120 834 65 7319\n", + "7468 São Paulo 220 3 4 2 - acept furnished 0 7000 434 106 7540\n", + "7469 São Paulo 48 2 1 1 12 not acept not furnished 405 2050 104 26 2585\n", + "7470 Campinas 45 1 1 1 3 acept furnished 492 1320 28 17 1857\n", + "7471 São Paulo 160 3 3 2 - acept not furnished 0 4680 212 71 4963\n", + "7472 Campinas 46 1 1 0 6 acept not furnished 399 850 15 11 1275\n", + "7473 Porto Alegre 34 1 1 1 6 acept furnished 180 1500 6 22 1708\n", + "7474 Belo Horizonte 540 5 4 8 - acept not furnished 0 7000 912 115 8027\n", + "7475 São Paulo 171 3 3 4 5 not acept not furnished 2489 8700 820 111 12120\n", + "7476 São Paulo 30 1 1 0 - not acept not furnished 0 700 59 11 770\n", + "7477 Belo Horizonte 118 3 2 0 1 not acept not furnished 350 1500 71 20 1941\n", + "7478 São Paulo 80 2 2 2 10 acept not furnished 721 1850 45 24 2640\n", + "7479 São Paulo 55 1 2 1 18 acept furnished 2270 5500 18 70 7858\n", + "7480 São Paulo 55 2 1 1 - acept not furnished 0 1200 122 19 1341\n", + "7481 São Paulo 380 3 2 2 9 acept not furnished 3835 6650 667 85 11240\n", + "7482 Belo Horizonte 300 3 4 2 - not acept not furnished 0 7000 84 115 7199\n", + "7483 São Paulo 100 3 2 2 6 not acept not furnished 1200 2000 0 26 3226\n", + "7484 São Paulo 180 3 3 3 - acept not furnished 0 5000 235 76 5311\n", + "7485 São Paulo 300 4 5 4 9 acept furnished 4300 7000 1417 89 12810\n", + "7486 Porto Alegre 193 3 2 2 6 acept not furnished 1800 2400 297 36 4533\n", + "7487 São Paulo 110 2 2 0 8 acept furnished 781 4750 146 61 5738\n", + "7488 Rio de Janeiro 20 1 1 0 4 not acept not furnished 400 720 50 10 1180\n", + "7489 Rio de Janeiro 300 3 4 1 11 acept not furnished 2860 8300 917 107 12180\n", + "7490 São Paulo 52 1 2 1 3 acept furnished 850 4100 116 52 5118\n", + "7491 Rio de Janeiro 120 2 3 2 10 acept not furnished 1339 1935 81 25 3380\n", + "7492 São Paulo 97 3 2 2 14 acept not furnished 1600 1700 125 22 3447\n", + "7493 São Paulo 58 2 1 1 3 acept not furnished 100 1200 0 16 1316\n", + "7494 São Paulo 343 4 4 4 - acept not furnished 0 6000 1042 91 7133\n", + "7495 São Paulo 205 4 4 6 5 acept not furnished 2450 2720 959 35 6164\n", + "7496 São Paulo 68 3 2 1 5 acept furnished 960 1500 84 20 2564\n", + "7497 São Paulo 67 3 2 1 16 acept not furnished 600 1700 180 22 2502\n", + "7498 Rio de Janeiro 40 1 1 0 12 acept furnished 700 5000 72 65 5837\n", + "7499 São Paulo 62 3 1 1 10 acept not furnished 750 1200 0 16 1966\n", + "7500 São Paulo 120 5 2 4 - acept not furnished 0 6500 680 98 7278\n", + "7501 São Paulo 50 2 1 1 10 acept not furnished 494 1400 0 18 1912\n", + "7502 Porto Alegre 40 1 1 0 1 acept not furnished 328 500 140 8 976\n", + "7503 São Paulo 22 1 1 0 - not acept not furnished 50 700 5 9 764\n", + "7504 São Paulo 110 3 3 1 10 acept furnished 1280 4700 138 60 6178\n", + "7505 Rio de Janeiro 80 2 1 1 14 acept not furnished 1009 680 48 9 1746\n", + "7506 São Paulo 224 3 4 2 9 acept not furnished 3300 6000 679 77 10060\n", + "7507 São Paulo 93 2 1 2 19 not acept not furnished 1300 6800 460 87 8647\n", + "7508 São Paulo 45 1 1 0 - not acept not furnished 0 1050 34 16 1100\n", + "7509 São Paulo 120 3 2 1 5 acept not furnished 1700 2500 347 32 4579\n", + "7510 Campinas 73 3 2 2 5 acept furnished 762 2000 204 26 2992\n", + "7511 São Paulo 50 2 1 1 1 not acept not furnished 520 1600 0 21 2141\n", + "7512 São Paulo 136 4 3 1 3 acept not furnished 1800 4200 312 54 6366\n", + "7513 São Paulo 235 3 4 4 2 acept furnished 1950 15000 1150 191 18290\n", + "7514 Porto Alegre 110 3 3 0 1 acept not furnished 400 3250 75 48 3773\n", + "7515 São Paulo 400 4 6 1 8 not acept not furnished 3355 4000 2650 51 10060\n", + "7516 São Paulo 220 3 3 3 - acept furnished 0 2800 250 43 3093\n", + "7517 Rio de Janeiro 82 2 2 1 5 acept not furnished 820 2000 102 26 2948\n", + "7518 São Paulo 100 3 3 2 1 acept not furnished 1200 2800 384 36 4420\n", + "7519 São Paulo 250 4 4 4 15 acept not furnished 2600 15000 1250 191 19040\n", + "7520 Belo Horizonte 90 2 3 1 4 acept not furnished 600 3760 280 51 4691\n", + "7521 São Paulo 47 1 1 0 - not acept not furnished 100 1000 76 13 1189\n", + "7522 São Paulo 35 1 1 0 7 not acept not furnished 411 1080 35 14 1540\n", + "7523 Rio de Janeiro 150 2 1 0 2 acept not furnished 450 1500 180 20 2150\n", + "7524 São Paulo 69 2 1 0 10 acept furnished 1880 7540 380 96 9896\n", + "7525 Campinas 38 1 1 1 9 acept not furnished 500 740 30 10 1280\n", + "7526 São Paulo 62 2 2 2 4 acept not furnished 720 1720 120 22 2582\n", + "7527 São Paulo 100 2 2 0 - acept not furnished 0 2500 220 38 2758\n", + "7528 São Paulo 300 3 5 3 9 acept furnished 4000 5780 1250 74 11100\n", + "7529 São Paulo 160 3 3 1 1 acept not furnished 2800 4500 450 58 7808\n", + "7530 Campinas 55 1 1 1 7 not acept not furnished 200 2000 9 26 2235\n", + "7531 São Paulo 61 2 1 1 11 not acept furnished 2065 3300 216 42 5623\n", + "7532 São Paulo 70 2 1 1 12 acept not furnished 1400 3000 3000 39 7439\n", + "7533 Campinas 308 3 3 4 - acept not furnished 0 4700 673 71 5444\n", + "7534 Rio de Janeiro 230 3 3 1 8 acept furnished 1800 10500 300 136 12740\n", + "7535 São Paulo 51 2 1 1 4 acept not furnished 455 2500 23 32 3010\n", + "7536 São Paulo 58 2 2 1 3 acept not furnished 400 2300 250 30 2980\n", + "7537 São Paulo 76 2 1 1 12 not acept furnished 906 4250 217 54 5427\n", + "7538 São Paulo 236 4 5 4 7 acept not furnished 3500 10000 1834 127 15460\n", + "7539 São Paulo 86 2 2 2 4 acept not furnished 622 1950 267 25 2864\n", + "7540 São Paulo 100 3 3 2 11 acept furnished 1035 4062 150 52 5299\n", + "7541 Porto Alegre 54 2 1 0 4 acept not furnished 260 1100 42 17 1419\n", + "7542 São Paulo 22 1 1 0 11 not acept furnished 400 1956 50 25 2431\n", + "7543 São Paulo 600 3 2 2 - acept not furnished 0 7500 1000 113 8613\n", + "7544 Rio de Janeiro 68 2 2 0 1 acept not furnished 851 1830 92 24 2797\n", + "7545 Belo Horizonte 55 1 1 0 - acept not furnished 0 895 0 15 910\n", + "7546 São Paulo 36 1 1 0 6 acept not furnished 300 1600 60 21 1981\n", + "7547 São Paulo 205 4 4 0 14 acept not furnished 3050 9800 623 125 13600\n", + "7548 São Paulo 60 2 1 1 8 acept not furnished 950 1980 0 26 2956\n", + "7549 São Paulo 171 4 5 4 4 acept not furnished 1900 8000 715 102 10720\n", + "7550 Belo Horizonte 100 2 1 1 - acept not furnished 0 1000 75 17 1092\n", + "7551 São Paulo 71 2 2 1 - acept not furnished 250 1830 153 24 2257\n", + "7552 São Paulo 69 2 1 1 5 acept not furnished 550 1600 5 21 2176\n", + "7553 Rio de Janeiro 15 1 1 0 - acept not furnished 50 700 0 10 760\n", + "7554 São Paulo 90 3 3 1 11 acept not furnished 1347 4650 241 59 6297\n", + "7555 Rio de Janeiro 80 2 2 0 4 acept not furnished 800 4100 165 53 5118\n", + "7556 Rio de Janeiro 84 2 1 0 2 acept not furnished 420 1700 85 22 2227\n", + "7557 São Paulo 834 5 5 7 - not acept not furnished 0 10500 3417 158 14080\n", + "7558 São Paulo 269 4 3 4 8 acept not furnished 2300 5000 0 64 7364\n", + "7559 Porto Alegre 43 1 1 1 18 acept furnished 600 3300 100 49 4049\n", + "7560 São Paulo 70 3 2 3 10 acept furnished 813 2300 266 30 3409\n", + "7561 Porto Alegre 336 2 2 2 2 acept furnished 4106 5556 591 82 10340\n", + "7562 Campinas 76 3 2 1 4 acept not furnished 547 950 97 13 1607\n", + "7563 Rio de Janeiro 280 3 3 1 4 acept not furnished 1400 2190 14 29 3633\n", + "7564 São Paulo 290 4 4 2 6 acept furnished 3200 7800 584 99 11680\n", + "7565 São Paulo 200 4 3 3 6 acept not furnished 2600 5000 1212 64 8876\n", + "7566 São Paulo 130 2 2 0 6 acept not furnished 1343 3974 71 51 5439\n", + "7567 São Paulo 70 3 2 1 3 acept not furnished 1087 3700 38 47 4872\n", + "7568 São Paulo 22 1 1 0 6 not acept furnished 380 6000 9 77 6466\n", + "7569 Rio de Janeiro 80 3 2 2 11 acept not furnished 1412 1358 213 18 3001\n", + "7570 São Paulo 50 1 1 1 3 acept not furnished 455 1900 0 25 2380\n", + "7571 Belo Horizonte 120 3 4 3 8 acept furnished 2077 6000 726 80 8883\n", + "7572 São Paulo 120 2 1 2 7 acept not furnished 660 1470 12 19 2161\n", + "7573 Rio de Janeiro 90 3 2 0 3 acept not furnished 1330 1300 120 17 2767\n", + "7574 Belo Horizonte 100 3 3 2 6 acept not furnished 1300 1600 210 13 3123\n", + "7575 São Paulo 98 4 4 2 23 acept not furnished 930 2485 0 32 3447\n", + "7576 Porto Alegre 300 3 2 3 - acept not furnished 0 2400 88 43 2531\n", + "7577 São Paulo 107 4 3 2 1 acept not furnished 830 3560 225 46 4661\n", + "7578 São Paulo 33 1 1 1 5 acept furnished 613 3700 109 47 4469\n", + "7579 Belo Horizonte 250 4 3 4 2 acept not furnished 2745 10000 1228 134 14110\n", + "7580 Belo Horizonte 65 2 2 0 - not acept not furnished 200 800 50 11 1061\n", + "7581 São Paulo 150 3 3 2 3 acept not furnished 2177 3700 567 47 6491\n", + "7582 Belo Horizonte 97 2 1 0 11 not acept not furnished 561 1633 0 8 2202\n", + "7583 São Paulo 410 5 7 3 - acept furnished 0 12000 750 181 12930\n", + "7584 São Paulo 52 1 1 1 15 not acept furnished 1218 5000 284 64 6566\n", + "7585 Rio de Janeiro 65 2 2 0 2 acept furnished 720 1500 60 20 2300\n", + "7586 Belo Horizonte 250 4 4 6 7 acept not furnished 300 8000 834 107 9241\n", + "7587 Belo Horizonte 256 4 3 2 - acept not furnished 0 11000 123 181 11300\n", + "7588 São Paulo 53 2 2 1 6 not acept not furnished 400 1250 5 16 1671\n", + "7589 Rio de Janeiro 30 1 1 0 - not acept not furnished 400 900 100 12 1412\n", + "7590 Rio de Janeiro 45 2 1 0 5 acept not furnished 400 700 15 10 1125\n", + "7591 Rio de Janeiro 44 2 1 0 4 acept not furnished 385 2650 82 35 3152\n", + "7592 Belo Horizonte 506 4 5 0 - acept not furnished 0 8000 452 132 8584\n", + "7593 Rio de Janeiro 190 4 3 1 4 acept not furnished 1570 3500 506 46 5622\n", + "7594 São Paulo 48 1 1 0 1 not acept not furnished 460 2500 82 32 3074\n", + "7595 São Paulo 162 3 3 1 8 acept not furnished 2150 7000 492 89 9731\n", + "7596 São Paulo 54 2 2 0 13 acept furnished 2009 5150 345 66 7570\n", + "7597 São Paulo 320 4 3 8 - acept not furnished 0 2150 450 33 2633\n", + "7598 São Paulo 60 1 1 1 15 acept furnished 1000 5500 200 70 6770\n", + "7599 São Paulo 194 3 4 4 5 acept not furnished 2600 12000 1667 153 16420\n", + "7600 Porto Alegre 54 1 1 1 4 not acept not furnished 250 1250 11 19 1530\n", + "7601 Rio de Janeiro 90 2 2 0 10 acept furnished 1900 3500 255 46 5701\n", + "7602 São Paulo 60 2 1 0 - acept not furnished 0 1080 94 17 1191\n", + "7603 São Paulo 40 1 1 1 1 not acept furnished 1100 1600 160 21 2881\n", + "7604 Belo Horizonte 175 4 4 3 10 acept not furnished 2600 4700 496 63 7859\n", + "7605 Porto Alegre 233 4 6 4 - acept not furnished 0 14000 584 249 14830\n", + "7606 São Paulo 800 5 4 6 - acept furnished 0 12000 459 181 12640\n", + "7607 Belo Horizonte 200 5 4 3 15 acept furnished 841 5000 531 67 6439\n", + "7608 São Paulo 120 4 4 2 5 acept not furnished 2500 9500 116 121 12240\n", + "7609 Belo Horizonte 23 1 1 0 1 not acept furnished 200 900 25 12 1137\n", + "7610 Porto Alegre 27 1 1 0 9 acept not furnished 200 750 13 11 974\n", + "7611 São Paulo 64 2 2 1 - not acept not furnished 773 1900 152 29 2854\n", + "7612 Belo Horizonte 180 4 1 3 - acept not furnished 0 5900 180 97 6177\n", + "7613 São Paulo 241 4 4 3 3 acept not furnished 2851 5525 848 71 9295\n", + "7614 Rio de Janeiro 80 2 2 1 4 acept not furnished 1000 3060 181 40 4281\n", + "7615 Campinas 20 1 1 0 1 not acept not furnished 210 930 9 12 1161\n", + "7616 Rio de Janeiro 140 3 3 0 4 acept not furnished 1700 3800 359 49 5908\n", + "7617 Rio de Janeiro 160 3 1 0 3 not acept not furnished 2450 4100 474 53 7077\n", + "7618 São Paulo 45 1 1 0 5 acept not furnished 406 2700 59 35 3200\n", + "7619 Porto Alegre 79 2 1 0 - acept not furnished 448 1105 84 17 1654\n", + "7620 Rio de Janeiro 100 3 2 0 8 not acept furnished 1600 5000 234 65 6899\n", + "7621 São Paulo 73 1 2 1 18 acept not furnished 912 3300 185 42 4439\n", + "7622 São Paulo 36 1 1 2 11 not acept furnished 517 3000 152 39 3708\n", + "7623 Porto Alegre 30 1 1 0 5 acept not furnished 300 545 17 8 870\n", + "7624 Rio de Janeiro 180 4 3 1 8 not acept furnished 2900 12850 1250 166 17170\n", + "7625 Porto Alegre 42 1 1 0 4 acept not furnished 400 1200 33 18 1651\n", + "7626 Porto Alegre 60 2 1 0 - not acept not furnished 0 1500 34 27 1561\n", + "7627 São Paulo 20 1 1 0 1 acept furnished 602 1800 130 23 2555\n", + "7628 São Paulo 42 1 1 1 4 acept not furnished 500 2200 100 28 2828\n", + "7629 Belo Horizonte 140 4 3 3 8 acept not furnished 1805 3200 545 43 5593\n", + "7630 São Paulo 320 4 4 5 - acept not furnished 0 15000 1750 226 16980\n", + "7631 Belo Horizonte 120 3 2 1 1 acept not furnished 300 2100 149 28 2577\n", + "7632 São Paulo 65 2 2 1 - not acept not furnished 120 1850 0 28 1998\n", + "7633 São Paulo 215 3 4 4 - acept not furnished 0 10000 373 151 10520\n", + "7634 São Paulo 52 2 1 0 1 acept not furnished 199 1000 30 13 1242\n", + "7635 São Paulo 272 4 4 4 2 acept not furnished 5600 13000 2250 165 21020\n", + "7636 São Paulo 32 1 1 1 11 not acept furnished 1680 2200 142 28 4050\n", + "7637 São Paulo 191 3 3 4 1 acept furnished 2605 15000 1299 191 19100\n", + "7638 São Paulo 288 4 5 4 2 acept furnished 3600 4800 1167 61 9628\n", + "7639 Campinas 37 1 1 1 7 not acept not furnished 415 825 33 11 1284\n", + "7640 Belo Horizonte 113 2 2 2 4 acept not furnished 343 2500 118 34 2995\n", + "7641 Rio de Janeiro 50 1 1 0 4 acept not furnished 450 850 3 11 1314\n", + "7642 São Paulo 53 2 1 1 11 acept not furnished 831 2622 75 34 3562\n", + "7643 São Paulo 76 2 2 2 3 acept furnished 900 4500 0 58 5458\n", + "7644 São Paulo 158 3 3 2 1 acept furnished 2063 10900 706 139 13810\n", + "7645 Belo Horizonte 659 5 4 6 - acept not furnished 0 11000 913 181 12090\n", + "7646 São Paulo 180 3 3 1 - not acept not furnished 0 3000 117 46 3163\n", + "7647 São Paulo 42 1 1 1 7 acept furnished 530 2900 35 37 3502\n", + "7648 Campinas 89 2 1 1 3 acept not furnished 750 880 127 12 1769\n", + "7649 Belo Horizonte 220 4 3 2 4 acept not furnished 345 3000 209 40 3594\n", + "7650 São Paulo 90 2 2 0 - acept not furnished 0 1700 38 26 1764\n", + "7651 Rio de Janeiro 280 3 3 3 6 acept not furnished 2500 4000 990 52 7542\n", + "7652 São Paulo 40 1 1 0 - acept not furnished 0 600 30 10 640\n", + "7653 São Paulo 277 3 3 0 11 acept not furnished 2332 8500 550 108 11490\n", + "7654 Porto Alegre 70 3 2 1 7 acept not furnished 530 2300 111 34 2975\n", + "7655 Campinas 200 2 1 1 - acept not furnished 0 1410 250 22 1682\n", + "7656 Campinas 74 3 2 2 11 acept furnished 477 1600 0 21 2098\n", + "7657 São Paulo 165 3 2 3 7 acept not furnished 1874 3600 500 46 6020\n", + "7658 São Paulo 60 2 2 1 10 acept furnished 1938 3400 300 44 5682\n", + "7659 Rio de Janeiro 85 2 1 0 9 acept furnished 900 7000 365 91 8356\n", + "7660 Porto Alegre 56 2 1 0 4 acept not furnished 300 637 32 10 979\n", + "7661 Rio de Janeiro 18 1 1 0 1 not acept not furnished 0 900 0 12 912\n", + "7662 São Paulo 175 3 5 1 - acept not furnished 0 5900 390 89 6379\n", + "7663 Rio de Janeiro 60 2 2 1 2 not acept not furnished 592 1250 0 17 1859\n", + "7664 São Paulo 220 4 2 3 - acept furnished 0 5200 705 79 5984\n", + "7665 São Paulo 132 3 3 2 1 not acept furnished 2084 2700 606 35 5425\n", + "7666 São Paulo 100 1 2 2 1 acept furnished 2344 7000 757 89 10190\n", + "7667 Campinas 415 4 4 6 1 acept not furnished 3900 9500 880 121 14400\n", + "7668 Porto Alegre 300 3 5 3 - acept not furnished 0 5500 360 98 5958\n", + "7669 São Paulo 130 3 3 2 - acept not furnished 0 6000 84 91 6175\n", + "7670 São Paulo 300 4 4 1 11 acept not furnished 3000 7200 700 92 10990\n", + "7671 Campinas 165 3 2 1 1 acept not furnished 1100 1800 294 23 3217\n", + "7672 Campinas 32 1 1 0 9 not acept not furnished 300 600 4 8 912\n", + "7673 Belo Horizonte 117 3 1 1 - acept not furnished 0 1530 110 26 1666\n", + "7674 São Paulo 890 5 6 8 - not acept not furnished 0 11000 9500 166 20670\n", + "7675 Porto Alegre 350 6 5 2 - not acept not furnished 0 4000 334 72 4406\n", + "7676 São Paulo 212 3 3 3 9 acept not furnished 4000 9000 1084 115 14200\n", + "7677 São Paulo 61 2 1 1 1 acept not furnished 609 1140 0 15 1764\n", + "7678 Belo Horizonte 62 2 1 1 3 acept not furnished 200 950 0 13 1163\n", + "7679 São Paulo 884 5 7 6 8 acept not furnished 9000 12750 5917 162 27830\n", + "7680 Campinas 44 2 1 1 2 acept not furnished 244 1000 0 13 1257\n", + "7681 São Paulo 157 3 2 0 7 acept not furnished 1325 4500 302 58 6185\n", + "7682 São Paulo 61 1 2 1 9 acept furnished 866 5100 250 65 6281\n", + "7683 São Paulo 50 1 1 0 1 acept not furnished 50 750 25 10 835\n", + "7684 São Paulo 45 1 1 1 - not acept not furnished 0 1500 80 23 1603\n", + "7685 Campinas 36 1 1 0 5 acept not furnished 290 700 10 9 1009\n", + "7686 Campinas 48 2 1 1 3 acept not furnished 183 1190 0 16 1389\n", + "7687 São Paulo 216 4 3 0 17 acept furnished 2250 8000 609 102 10960\n", + "7688 São Paulo 485 4 7 7 - acept not furnished 0 10900 1032 164 12100\n", + "7689 São Paulo 110 2 2 2 12 acept not furnished 1971 3800 480 49 6300\n", + "7690 São Paulo 58 2 1 0 4 not acept not furnished 968 2400 10 31 3409\n", + "7691 Rio de Janeiro 40 1 1 0 3 acept not furnished 480 1480 9 20 1989\n", + "7692 Porto Alegre 30 1 1 1 3 acept not furnished 200 1110 0 17 1327\n", + "7693 Belo Horizonte 44 1 1 1 15 acept not furnished 550 3400 222 46 4218\n", + "7694 São Paulo 30 1 1 0 1 not acept not furnished 350 550 70 7 977\n", + "7695 São Paulo 190 3 2 1 6 acept not furnished 3040 6800 56 87 9983\n", + "7696 São Paulo 32 1 1 1 13 acept furnished 500 2744 0 35 3279\n", + "7697 Porto Alegre 79 3 2 2 6 acept furnished 550 2300 50 34 2934\n", + "7698 São Paulo 90 3 3 2 12 not acept not furnished 897 3500 0 45 4442\n", + "7699 Porto Alegre 61 2 1 0 1 acept not furnished 470 1200 22 18 1710\n", + "7700 São Paulo 65 2 1 1 1 acept not furnished 950 1950 213 25 3138\n", + "7701 São Paulo 76 2 2 0 1 acept not furnished 909 5500 299 70 6778\n", + "7702 Rio de Janeiro 84 3 1 1 1 acept not furnished 600 1550 57 20 2227\n", + "7703 São Paulo 60 2 1 1 6 acept not furnished 760 1790 70 23 2643\n", + "7704 São Paulo 40 1 1 1 14 not acept furnished 470 3990 90 51 4601\n", + "7705 São Paulo 254 3 3 3 11 acept furnished 4255 12750 1692 162 18860\n", + "7706 São Paulo 50 1 1 0 - not acept not furnished 0 1250 34 19 1303\n", + "7707 Belo Horizonte 400 4 4 4 - acept not furnished 0 4900 320 81 5301\n", + "7708 São Paulo 35 2 1 0 1 acept not furnished 190 1290 0 17 1497\n", + "7709 Rio de Janeiro 76 3 2 1 4 acept not furnished 571 1800 65 24 2460\n", + "7710 São Paulo 470 4 4 5 19 acept not furnished 6900 6741 0 86 13730\n", + "7711 São Paulo 40 2 1 1 2 acept not furnished 0 1300 30 17 1347\n", + "7712 Belo Horizonte 200 3 1 2 - acept not furnished 0 1630 117 27 1774\n", + "7713 Rio de Janeiro 65 2 1 1 4 acept not furnished 677 1100 59 15 1851\n", + "7714 São Paulo 97 2 2 0 27 not acept furnished 1100 10200 0 130 11430\n", + "7715 São Paulo 113 3 2 2 2 acept not furnished 1300 4800 250 61 6411\n", + "7716 São Paulo 300 3 2 2 - acept not furnished 0 3210 1417 49 4676\n", + "7717 São Paulo 60 1 1 0 - acept furnished 0 4100 400 62 4562\n", + "7718 São Paulo 20 1 1 0 - acept furnished 602 1800 130 23 2555\n", + "7719 São Paulo 62 2 1 1 8 not acept not furnished 735 1345 35 18 2133\n", + "7720 São Paulo 400 3 4 4 - acept furnished 0 15000 0 226 15230\n", + "7721 São Paulo 100 3 3 2 - acept not furnished 900 4100 100 62 5162\n", + "7722 São Paulo 182 3 2 3 12 acept not furnished 2307 12000 786 153 15250\n", + "7723 São Paulo 50 2 1 2 9 not acept not furnished 640 2200 93 28 2961\n", + "7724 São Paulo 50 2 2 1 3 not acept not furnished 840 3700 142 47 4729\n", + "7725 São Paulo 84 1 2 1 14 acept not furnished 1200 3353 0 25 4578\n", + "7726 São Paulo 167 3 3 2 - acept not furnished 0 3700 311 56 4067\n", + "7727 Belo Horizonte 60 2 1 0 - not acept not furnished 0 1150 50 19 1219\n", + "7728 Campinas 220 3 1 4 - not acept not furnished 0 2800 334 43 3177\n", + "7729 São Paulo 67 2 1 0 3 acept not furnished 230 1050 31 14 1325\n", + "7730 Rio de Janeiro 78 2 1 1 8 acept not furnished 999 1275 125 17 2416\n", + "7731 Rio de Janeiro 63 2 2 0 2 acept not furnished 1014 1200 51 16 2281\n", + "7732 Rio de Janeiro 45 1 1 0 4 not acept furnished 603 2000 96 26 2725\n", + "7733 Campinas 151 3 2 3 10 acept furnished 1400 2500 251 32 4183\n", + "7734 Belo Horizonte 90 2 2 0 7 acept not furnished 336 1250 55 17 1658\n", + "7735 Belo Horizonte 54 2 1 1 4 acept not furnished 197 1280 57 18 1552\n", + "7736 São Paulo 40 1 1 0 - not acept not furnished 0 1094 0 17 1111\n", + "7737 Rio de Janeiro 160 2 3 1 14 acept not furnished 1486 1800 323 24 3633\n", + "7738 Rio de Janeiro 230 3 3 2 3 acept not furnished 2100 9000 1000 116 12220\n", + "7739 São Paulo 22 1 1 0 25 acept not furnished 472 2200 55 28 2755\n", + "7740 São Paulo 105 3 2 3 4 acept not furnished 1100 2530 428 33 4091\n", + "7741 São Paulo 63 2 1 2 12 acept not furnished 1200 5500 220 70 6990\n", + "7742 São Paulo 700 5 7 8 - acept furnished 0 6000 1800 91 7891\n", + "7743 Campinas 80 2 1 1 3 acept not furnished 418 1000 0 13 1431\n", + "7744 São Paulo 50 1 1 0 - acept not furnished 0 1600 0 25 1625\n", + "7745 São Paulo 234 4 3 3 6 acept not furnished 2688 1920 423 25 5056\n", + "7746 São Paulo 30 1 1 1 11 not acept furnished 1600 2900 180 37 4717\n", + "7747 São Paulo 62 2 1 1 7 acept not furnished 450 1800 125 23 2398\n", + "7748 São Paulo 350 3 3 3 - acept not furnished 0 30000 560 451 31010\n", + "7749 São Paulo 125 3 2 0 2 not acept not furnished 1551 2700 495 35 4781\n", + "7750 Porto Alegre 102 2 1 0 4 acept not furnished 420 1250 88 19 1777\n", + "7751 Belo Horizonte 65 2 2 2 3 acept not furnished 230 1700 115 23 2068\n", + "7752 São Paulo 130 3 2 1 - not acept not furnished 0 2500 421 38 2959\n", + "7753 São Paulo 151 3 2 1 3 acept furnished 1842 5000 474 64 7380\n", + "7754 Belo Horizonte 82 3 2 2 1 acept not furnished 200 1200 69 16 1485\n", + "7755 São Paulo 65 2 1 1 3 acept not furnished 590 2748 0 25 3479\n", + "7756 São Paulo 189 3 4 3 8 acept not furnished 2300 6000 67 77 8444\n", + "7757 São Paulo 186 3 4 3 2 acept not furnished 1400 8000 667 102 10170\n", + "7758 Campinas 650 4 7 5 - acept not furnished 0 8000 334 121 8455\n", + "7759 São Paulo 65 2 2 1 9 acept not furnished 748 2800 222 36 3806\n", + "7760 São Paulo 363 3 5 4 10 not acept not furnished 4040 3072 1112 39 8263\n", + "7761 São Paulo 71 3 2 2 10 acept not furnished 680 2500 50 32 3262\n", + "7762 Rio de Janeiro 90 2 3 1 3 not acept furnished 1200 2960 265 39 4464\n", + "7763 Belo Horizonte 266 4 3 4 - acept not furnished 0 4500 362 74 4936\n", + "7764 São Paulo 200 3 3 2 - not acept not furnished 0 2800 186 43 3029\n", + "7765 Porto Alegre 185 3 4 2 - acept not furnished 164 2900 74 52 3190\n", + "7766 São Paulo 138 3 3 2 5 acept furnished 1112 5800 475 74 7461\n", + "7767 Rio de Janeiro 140 3 2 1 1 acept not furnished 1000 3500 20 46 4566\n", + "7768 São Paulo 90 1 2 1 12 acept furnished 1235 4200 58 54 5547\n", + "7769 São Paulo 35 1 1 1 - not acept not furnished 60 1249 0 8 1317\n", + "7770 Belo Horizonte 25 2 1 0 1 not acept not furnished 0 2200 104 30 2334\n", + "7771 Belo Horizonte 180 3 3 0 - acept not furnished 0 3200 180 53 3433\n", + "7772 São Paulo 200 3 3 2 7 acept not furnished 3000 4000 770 51 7821\n", + "7773 São Paulo 80 2 1 1 13 not acept not furnished 937 2900 84 37 3958\n", + "7774 Porto Alegre 90 2 1 1 1 acept not furnished 0 1090 50 16 1156\n", + "7775 Porto Alegre 170 3 3 2 - acept not furnished 0 8000 209 143 8352\n", + "7776 Campinas 380 3 3 5 - acept not furnished 1300 6500 413 98 8311\n", + "7777 Campinas 76 2 1 0 3 acept not furnished 300 700 100 9 1109\n", + "7778 São Paulo 180 3 3 2 16 acept not furnished 2200 11000 131 140 13470\n", + "7779 São Paulo 20 1 1 0 - acept not furnished 0 2060 0 27 2087\n", + "7780 São Paulo 90 2 1 0 - acept not furnished 0 1800 280 28 2108\n", + "7781 São Paulo 64 2 1 1 7 acept not furnished 600 2000 108 26 2734\n", + "7782 São Paulo 129 3 2 2 6 acept not furnished 1580 2600 542 33 4755\n", + "7783 Belo Horizonte 150 4 2 1 2 not acept not furnished 580 1800 218 24 2622\n", + "7784 Porto Alegre 72 2 1 0 23 acept not furnished 600 1100 9 17 1726\n", + "7785 São Paulo 220 3 4 4 13 acept not furnished 3354 3375 1240 43 8012\n", + "7786 Campinas 42 2 1 1 3 acept not furnished 190 846 0 11 1047\n", + "7787 São Paulo 79 1 2 2 25 not acept furnished 800 5500 199 70 6569\n", + "7788 São Paulo 110 3 1 0 - acept not furnished 0 2000 0 31 2031\n", + "7789 São Paulo 220 4 4 4 11 not acept not furnished 1850 5500 834 70 8254\n", + "7790 São Paulo 55 2 1 1 4 acept furnished 100 1530 0 20 1650\n", + "7791 São Paulo 64 2 2 2 7 acept not furnished 875 3400 47 44 4366\n", + "7792 São Paulo 143 3 2 3 7 acept not furnished 1100 4500 625 58 6283\n", + "7793 Belo Horizonte 360 3 4 4 - acept not furnished 0 2700 264 45 3009\n", + "7794 São Paulo 500 2 2 1 - acept not furnished 129 2140 0 33 2302\n", + "7795 Rio de Janeiro 105 3 2 1 6 acept not furnished 1881 3200 184 42 5307\n", + "7796 Rio de Janeiro 137 3 3 1 1 acept furnished 1180 2900 214 38 4332\n", + "7797 São Paulo 53 2 1 1 7 acept not furnished 450 4000 42 51 4543\n", + "7798 São Paulo 58 1 1 1 2 acept furnished 1500 2800 334 36 4670\n", + "7799 São Paulo 129 3 2 1 13 not acept not furnished 1317 3100 167 40 4624\n", + "7800 São Paulo 97 3 1 1 2 acept furnished 915 6000 50 77 7042\n", + "7801 São Paulo 89 2 3 3 9 acept furnished 1158 4300 244 55 5757\n", + "7802 Campinas 480 3 6 4 - acept not furnished 700 5400 584 82 6766\n", + "7803 Campinas 45 1 1 0 7 not acept not furnished 506 500 24 7 1037\n", + "7804 Porto Alegre 44 1 1 0 3 acept not furnished 330 1300 40 19 1689\n", + "7805 São Paulo 105 3 2 1 14 not acept not furnished 1130 3600 60 46 4836\n", + "7806 São Paulo 192 3 3 2 - acept not furnished 0 2750 0 42 2792\n", + "7807 Rio de Janeiro 450 4 4 2 - acept not furnished 0 14000 1250 214 15460\n", + "7808 São Paulo 38 1 1 0 - acept furnished 610 4500 6 58 5174\n", + "7809 Campinas 63 1 1 0 6 acept furnished 700 1280 24 17 2021\n", + "7810 São Paulo 151 3 3 3 13 acept not furnished 1900 4000 292 51 6243\n", + "7811 São Paulo 55 2 1 1 - acept not furnished 0 1381 305 21 1707\n", + "7812 São Paulo 50 2 1 1 1 not acept not furnished 765 2650 25 34 3474\n", + "7813 Campinas 202 3 2 2 - acept not furnished 0 1890 267 29 2186\n", + "7814 Rio de Janeiro 53 2 1 0 5 acept not furnished 643 1000 0 13 1656\n", + "7815 Porto Alegre 80 3 3 0 4 acept not furnished 300 2200 0 33 2533\n", + "7816 São Paulo 55 2 1 1 1 acept not furnished 349 1450 0 19 1818\n", + "7817 São Paulo 120 4 2 3 6 acept furnished 950 2960 459 38 4407\n", + "7818 São Paulo 396 4 5 7 - acept not furnished 0 5500 534 83 6117\n", + "7819 São Paulo 44 1 1 0 3 acept not furnished 314 2300 0 30 2644\n", + "7820 Porto Alegre 147 4 4 2 2 acept not furnished 1100 1800 305 27 3232\n", + "7821 São Paulo 290 5 3 3 6 acept not furnished 3800 4100 1435 52 9387\n", + "7822 São Paulo 270 1 1 0 - acept not furnished 0 1400 0 22 1422\n", + "7823 São Paulo 260 3 2 3 10 acept not furnished 3000 8500 1084 108 12690\n", + "7824 São Paulo 71 2 1 1 10 acept not furnished 1000 2900 97 37 4034\n", + "7825 Belo Horizonte 306 4 3 3 10 acept not furnished 1801 7900 454 106 10260\n", + "7826 Campinas 83 2 1 8 - acept not furnished 0 4550 405 69 5024\n", + "7827 São Paulo 89 3 2 1 14 acept not furnished 800 1760 100 23 2683\n", + "7828 São Paulo 150 4 2 1 - acept not furnished 0 3900 0 59 3959\n", + "7829 Rio de Janeiro 70 2 1 0 6 not acept not furnished 655 2300 112 30 3097\n", + "7830 São Paulo 212 4 3 2 17 acept not furnished 2835 13800 694 175 17500\n", + "7831 São Paulo 87 3 2 2 17 acept not furnished 1308 2350 321 30 4009\n", + "7832 Campinas 86 2 2 1 2 acept not furnished 480 1190 67 16 1753\n", + "7833 São Paulo 250 4 2 6 - acept not furnished 0 5000 458 76 5534\n", + "7834 Rio de Janeiro 52 1 1 0 3 acept furnished 650 3400 17 44 4111\n", + "7835 Rio de Janeiro 439 13 4 3 - acept not furnished 0 15000 667 229 15900\n", + "7836 Belo Horizonte 70 3 1 1 3 acept furnished 250 1210 50 17 1527\n", + "7837 São Paulo 51 2 1 1 12 acept not furnished 446 2200 114 28 2788\n", + "7838 Campinas 44 1 1 1 2 acept not furnished 525 850 27 11 1413\n", + "7839 Campinas 170 3 2 2 - acept not furnished 0 1800 41 28 1869\n", + "7840 Rio de Janeiro 60 2 2 1 12 acept not furnished 840 1050 57 14 1961\n", + "7841 São Paulo 136 3 2 2 9 not acept not furnished 1650 6818 332 87 8887\n", + "7842 São Paulo 34 1 1 1 - acept not furnished 0 1350 138 21 1509\n", + "7843 Belo Horizonte 30 1 1 0 - not acept not furnished 0 700 0 10 710\n", + "7844 Rio de Janeiro 107 3 2 2 4 acept not furnished 1500 5000 317 65 6882\n", + "7845 Campinas 140 4 4 2 6 acept not furnished 1700 3300 330 42 5372\n", + "7846 Belo Horizonte 58 2 2 2 1 acept not furnished 304 1700 100 23 2127\n", + "7847 Belo Horizonte 250 3 4 4 4 acept not furnished 2900 8075 1333 108 12420\n", + "7848 São Paulo 147 3 3 3 5 acept furnished 2000 12000 1000 153 15150\n", + "7849 Belo Horizonte 180 3 2 2 2 acept not furnished 1502 2300 231 31 4064\n", + "7850 São Paulo 120 3 4 1 - not acept not furnished 0 4000 4 61 4065\n", + "7851 São Paulo 113 2 2 1 4 acept not furnished 1000 3000 50 39 4089\n", + "7852 Porto Alegre 27 1 1 0 1 acept not furnished 100 960 75 15 1150\n", + "7853 São Paulo 202 4 4 2 7 acept not furnished 1600 3000 250 39 4889\n", + "7854 Belo Horizonte 95 3 2 2 3 acept not furnished 350 2600 155 35 3140\n", + "7855 São Paulo 62 3 1 1 1 acept not furnished 750 1100 0 14 1864\n", + "7856 São Paulo 188 3 4 3 1 acept not furnished 2800 4800 750 61 8411\n", + "7857 Campinas 38 1 1 0 5 not acept not furnished 440 892 17 12 1361\n", + "7858 São Paulo 45 1 1 0 - not acept not furnished 0 950 17 15 982\n", + "7859 São Paulo 150 4 3 2 13 acept not furnished 1200 3800 220 49 5269\n", + "7860 São Paulo 76 3 2 2 5 acept furnished 754 4500 205 58 5517\n", + "7861 Belo Horizonte 68 3 1 2 3 acept not furnished 170 850 0 12 1032\n", + "7862 São Paulo 166 3 2 2 2 acept not furnished 2124 7000 882 89 10100\n", + "7863 Porto Alegre 36 2 1 1 2 acept not furnished 370 1350 75 20 1815\n", + "7864 Belo Horizonte 300 4 3 2 10 acept furnished 900 5500 100 74 6574\n", + "7865 São Paulo 350 4 4 4 - acept not furnished 0 13000 1417 196 14610\n", + "7866 Belo Horizonte 200 4 3 2 6 acept not furnished 1320 4500 397 60 6277\n", + "7867 Porto Alegre 140 3 1 0 8 acept not furnished 900 2000 150 30 3080\n", + "7868 São Paulo 60 2 2 1 7 acept furnished 625 2750 125 35 3535\n", + "7869 São Paulo 194 4 6 4 6 not acept not furnished 940 8189 0 104 9233\n", + "7870 Belo Horizonte 358 4 4 2 8 acept not furnished 2241 4100 317 55 6713\n", + "7871 São Paulo 199 2 3 3 1 not acept furnished 2000 12500 725 159 15380\n", + "7872 Rio de Janeiro 130 3 2 1 2 acept not furnished 1272 2750 265 36 4323\n", + "7873 São Paulo 70 1 1 1 8 not acept furnished 800 3110 200 40 4150\n", + "7874 São Paulo 170 3 5 3 10 acept furnished 1648 3480 1085 45 6258\n", + "7875 Rio de Janeiro 60 2 1 1 10 acept not furnished 594 810 80 11 1495\n", + "7876 São Paulo 48 1 1 1 9 not acept furnished 925 4300 90 55 5370\n", + "7877 São Paulo 70 2 1 0 - acept not furnished 0 1550 0 24 1574\n", + "7878 São Paulo 75 1 1 2 2 acept not furnished 460 2500 0 32 2992\n", + "7879 Belo Horizonte 216 5 2 2 - acept not furnished 0 4500 431 74 5005\n", + "7880 Belo Horizonte 48 2 1 1 2 acept not furnished 170 1400 12 19 1601\n", + "7881 São Paulo 167 3 3 3 4 acept not furnished 2334 1670 555 22 4581\n", + "7882 São Paulo 92 3 1 0 1 not acept furnished 150 1700 13 22 1885\n", + "7883 São Paulo 48 2 1 1 10 acept not furnished 370 1610 0 21 2001\n", + "7884 São Paulo 300 6 6 4 - acept not furnished 0 4700 584 71 5355\n", + "7885 Campinas 245 4 3 2 9 acept not furnished 2100 10500 167 134 12900\n", + "7886 São Paulo 500 7 4 3 - acept furnished 0 14000 785 211 15000\n", + "7887 São Paulo 138 2 3 2 9 acept furnished 2082 2180 606 28 4896\n", + "7888 São Paulo 85 3 1 1 - acept not furnished 0 1650 115 25 1790\n", + "7889 Porto Alegre 104 3 2 1 2 acept not furnished 1080 3400 125 50 4655\n", + "7890 São Paulo 200 3 4 3 8 acept not furnished 1400 7080 0 90 8570\n", + "7891 Porto Alegre 50 1 1 1 4 acept not furnished 420 1190 0 18 1628\n", + "7892 Belo Horizonte 88 3 1 1 2 acept not furnished 180 1359 0 7 1546\n", + "7893 Rio de Janeiro 90 2 2 1 9 acept furnished 1105 2250 208 29 3592\n", + "7894 São Paulo 225 2 2 3 - acept not furnished 0 4800 450 73 5323\n", + "7895 Porto Alegre 180 3 3 1 12 acept not furnished 1500 2000 0 30 3530\n", + "7896 Belo Horizonte 784 5 6 8 - acept furnished 0 12000 1641 197 13840\n", + "7897 São Paulo 92 3 3 1 3 acept furnished 750 4250 21 54 5075\n", + "7898 São Paulo 170 3 3 3 7 acept not furnished 2450 3000 1015 39 6504\n", + "7899 Rio de Janeiro 400 3 4 2 12 acept not furnished 3800 15000 1834 194 20830\n", + "7900 Rio de Janeiro 40 1 1 0 2 acept furnished 450 2950 97 39 3536\n", + "7901 São Paulo 85 2 2 0 5 acept not furnished 700 2600 100 33 3433\n", + "7902 São Paulo 40 1 1 1 13 not acept furnished 1440 1890 170 24 3524\n", + "7903 São Paulo 280 4 6 3 8 acept not furnished 4500 4800 1500 61 10860\n", + "7904 Rio de Janeiro 98 3 2 0 13 acept not furnished 1040 3390 239 44 4713\n", + "7905 São Paulo 70 2 1 0 - not acept not furnished 0 1300 0 20 1320\n", + "7906 São Paulo 660 4 6 4 - acept not furnished 500 6000 4283 91 10870\n", + "7907 Belo Horizonte 449 5 7 4 - acept not furnished 0 15000 308 246 15550\n", + "7908 São Paulo 306 4 3 4 12 not acept not furnished 3441 5330 2599 68 11440\n", + "7909 São Paulo 150 3 2 2 - acept not furnished 0 2500 0 38 2538\n", + "7910 São Paulo 80 3 2 2 19 acept not furnished 490 2500 100 32 3122\n", + "7911 São Paulo 22 1 1 0 25 acept not furnished 385 2100 40 27 2552\n", + "7912 Porto Alegre 82 3 2 1 3 acept not furnished 690 1780 90 26 2586\n", + "7913 São Paulo 119 3 3 1 4 not acept furnished 1500 3370 209 43 5122\n", + "7914 São Paulo 113 1 1 2 9 acept furnished 650 6400 0 82 7132\n", + "7915 Porto Alegre 46 2 1 0 1 acept not furnished 177 807 30 12 1026\n", + "7916 São Paulo 138 3 1 0 - acept not furnished 0 3500 445 53 3998\n", + "7917 São Paulo 75 2 3 2 5 acept not furnished 499 2400 71 31 3001\n", + "7918 São Paulo 98 3 2 1 5 acept furnished 1520 2400 0 31 3951\n", + "7919 Rio de Janeiro 25 1 1 0 3 not acept not furnished 590 1336 63 18 2007\n", + "7920 Belo Horizonte 202 3 2 2 - not acept not furnished 0 3000 172 50 3222\n", + "7921 Campinas 326 3 3 4 - acept not furnished 870 4200 523 64 5657\n", + "7922 São Paulo 49 2 1 1 17 not acept furnished 230 1625 25 21 1901\n", + "7923 São Paulo 52 1 1 1 11 acept not furnished 730 2500 38 32 3300\n", + "7924 Belo Horizonte 258 4 4 3 1 acept not furnished 1000 3500 338 47 4885\n", + "7925 São Paulo 80 3 1 1 7 acept not furnished 978 2400 105 31 3514\n", + "7926 São Paulo 100 3 3 0 5 acept not furnished 820 6330 148 81 7379\n", + "7927 Porto Alegre 87 2 1 0 4 acept furnished 450 2200 75 33 2758\n", + "7928 Porto Alegre 42 2 1 0 - acept not furnished 0 858 15 16 889\n", + "7929 Rio de Janeiro 82 4 3 1 10 acept not furnished 920 4800 167 62 5949\n", + "7930 São Paulo 200 2 1 1 - acept not furnished 0 2450 200 37 2687\n", + "7931 São Paulo 60 2 1 0 1 acept not furnished 150 3040 167 39 3396\n", + "7932 São Paulo 250 3 4 4 2 not acept furnished 3200 10000 834 127 14160\n", + "7933 Rio de Janeiro 60 1 1 1 15 acept furnished 2000 3900 167 51 6118\n", + "7934 São Paulo 70 2 2 1 2 acept not furnished 665 2000 0 26 2691\n", + "7935 São Paulo 79 2 2 1 3 acept furnished 1300 3594 267 46 5207\n", + "7936 São Paulo 220 3 4 2 - acept not furnished 0 4800 0 73 4873\n", + "7937 Porto Alegre 38 1 1 0 11 not acept not furnished 240 1150 35 17 1442\n", + "7938 São Paulo 310 5 4 5 3 acept not furnished 4364 2700 2506 35 9605\n", + "7939 São Paulo 87 2 2 2 12 acept not furnished 650 3300 209 42 4201\n", + "7940 São Paulo 236 4 5 7 4 acept furnished 3000 10800 1084 137 15020\n", + "7941 São Paulo 113 2 3 2 10 acept not furnished 1400 13500 375 172 15450\n", + "7942 São Paulo 45 2 1 0 2 not acept not furnished 350 1500 50 20 1920\n", + "7943 São Paulo 144 4 2 0 - not acept not furnished 0 3200 209 49 3458\n", + "7944 Rio de Janeiro 24 1 1 0 10 acept not furnished 587 1412 25 19 2043\n", + "7945 Porto Alegre 94 3 2 1 7 acept not furnished 988 3200 242 47 4477\n", + "7946 Porto Alegre 27 1 1 0 2 not acept furnished 300 1400 13 21 1734\n", + "7947 São Paulo 210 3 4 3 5 acept furnished 4100 9945 1000 127 15170\n", + "7948 Belo Horizonte 180 3 2 2 - acept not furnished 0 2000 184 33 2217\n", + "7949 Porto Alegre 25 1 1 0 4 acept not furnished 200 915 43 14 1172\n", + "7950 Belo Horizonte 100 3 1 2 2 acept not furnished 300 1400 77 19 1796\n", + "7951 São Paulo 180 3 1 1 18 acept not furnished 1800 9000 482 115 11400\n", + "7952 Rio de Janeiro 46 2 1 0 1 acept not furnished 352 1400 0 19 1771\n", + "7953 São Paulo 352 4 4 4 - not acept furnished 0 8600 479 130 9209\n", + "7954 São Paulo 360 3 5 5 3 acept furnished 4980 9000 2120 115 16220\n", + "7955 São Paulo 33 1 1 0 18 acept furnished 350 1300 21 17 1688\n", + "7956 Rio de Janeiro 125 4 2 2 1 not acept not furnished 1676 4500 40 58 6274\n", + "7957 São Paulo 360 4 5 5 - acept furnished 0 9600 584 145 10330\n", + "7958 São Paulo 416 3 5 4 15 acept not furnished 5300 10000 0 127 15430\n", + "7959 São Paulo 400 3 4 5 - acept furnished 0 9500 1875 143 11520\n", + "7960 São Paulo 43 2 1 1 - acept not furnished 280 1900 0 25 2205\n", + "7961 Rio de Janeiro 180 4 2 1 2 acept furnished 1955 6000 633 78 8666\n", + "7962 São Paulo 100 3 1 0 1 acept not furnished 500 2630 334 34 3498\n", + "7963 São Paulo 31 1 1 1 3 not acept furnished 2000 1990 125 26 4141\n", + "7964 Rio de Janeiro 60 1 1 1 12 not acept furnished 1862 2400 123 10 4395\n", + "7965 São Paulo 165 3 4 3 7 acept not furnished 2460 3500 617 45 6622\n", + "7966 Rio de Janeiro 250 5 2 5 - acept not furnished 0 4675 270 72 5017\n", + "7967 São Paulo 190 3 3 2 10 acept not furnished 2700 4000 667 51 7418\n", + "7968 São Paulo 276 3 3 0 14 not acept furnished 2308 12000 795 153 15260\n", + "7969 Rio de Janeiro 140 3 2 2 3 acept not furnished 1900 5500 546 71 8017\n", + "7970 Porto Alegre 70 1 1 1 8 not acept furnished 650 1050 34 16 1750\n", + "7971 São Paulo 300 4 7 3 - not acept furnished 0 7000 121 106 7227\n", + "7972 São Paulo 70 2 1 0 5 acept not furnished 285 2197 0 28 2510\n", + "7973 Campinas 85 2 2 1 3 acept not furnished 810 1100 70 14 1994\n", + "7974 Rio de Janeiro 75 2 1 0 - not acept not furnished 0 2000 34 18 2052\n", + "7975 Rio de Janeiro 120 3 1 0 3 not acept furnished 1250 3300 238 43 4831\n", + "7976 Rio de Janeiro 92 2 2 0 2 acept furnished 700 3000 195 39 3934\n", + "7977 Rio de Janeiro 98 2 1 0 11 acept not furnished 701 2186 146 29 3062\n", + "7978 São Paulo 118 3 2 2 4 acept not furnished 1520 8950 402 114 10990\n", + "7979 Rio de Janeiro 75 3 1 0 3 acept not furnished 545 1800 21 24 2390\n", + "7980 Porto Alegre 75 2 2 1 2 acept not furnished 396 2000 91 30 2517\n", + "7981 São Paulo 315 4 5 5 20 not acept not furnished 2500 4000 1000 29 7529\n", + "7982 São Paulo 55 2 1 1 2 acept not furnished 280 1000 0 13 1293\n", + "7983 São Paulo 132 3 2 1 11 acept not furnished 1477 2950 45 38 4510\n", + "7984 São Paulo 100 2 1 1 - acept not furnished 0 2700 98 41 2839\n", + "7985 São Paulo 252 3 4 1 - acept not furnished 0 12000 1233 181 13410\n", + "7986 São Paulo 65 2 1 0 4 acept not furnished 1261 1450 166 19 2896\n", + "7987 São Paulo 20 1 1 0 3 acept furnished 602 1800 130 23 2555\n", + "7988 Campinas 150 3 4 2 9 acept not furnished 1200 3400 0 44 4644\n", + "7989 São Paulo 500 5 5 8 1 acept not furnished 0 9800 92 148 10040\n", + "7990 Porto Alegre 27 1 1 0 8 not acept furnished 360 1000 13 15 1388\n", + "7991 São Paulo 500 3 4 7 - not acept not furnished 0 9300 1060 140 10500\n", + "7992 São Paulo 40 1 1 0 2 acept not furnished 250 1020 70 13 1353\n", + "7993 Belo Horizonte 45 1 1 1 6 acept not furnished 808 2900 9 39 3756\n", + "7994 Rio de Janeiro 86 2 2 2 3 acept furnished 585 1500 116 20 2221\n", + "7995 São Paulo 200 3 3 0 - acept not furnished 0 5000 200 76 5276\n", + "7996 Porto Alegre 49 1 1 0 1 acept not furnished 250 790 21 12 1073\n", + "7997 São Paulo 115 2 2 1 2 acept not furnished 1755 4500 245 58 6558\n", + "7998 Belo Horizonte 50 2 1 0 - not acept not furnished 0 644 25 9 678\n", + "7999 São Paulo 20 1 1 0 - acept furnished 602 1800 130 23 2555\n", + "8000 Campinas 55 2 1 1 10 acept not furnished 399 900 25 12 1336\n", + "8001 Rio de Janeiro 78 2 1 1 6 acept not furnished 557 1050 84 14 1705\n", + "8002 São Paulo 127 4 3 0 11 not acept not furnished 1154 5300 407 68 6929\n", + "8003 São Paulo 450 3 4 2 3 acept not furnished 4187 15000 1450 191 20830\n", + "8004 São Paulo 132 3 1 2 7 not acept furnished 920 8000 400 102 9422\n", + "8005 São Paulo 62 2 2 1 7 acept furnished 520 3500 59 45 4124\n", + "8006 Belo Horizonte 300 5 3 1 - acept not furnished 0 3770 167 62 3999\n", + "8007 Rio de Janeiro 195 4 1 0 - acept not furnished 0 2990 156 46 3192\n", + "8008 Campinas 45 2 1 0 2 not acept not furnished 250 1000 0 13 1263\n", + "8009 Rio de Janeiro 52 1 1 0 1 not acept furnished 850 1850 56 24 2780\n", + "8010 São Paulo 46 2 1 1 8 acept not furnished 589 1100 72 14 1775\n", + "8011 Belo Horizonte 179 3 3 0 10 acept not furnished 1050 2400 203 32 3685\n", + "8012 Rio de Janeiro 60 1 1 0 9 acept not furnished 649 3100 100 40 3889\n", + "8013 São Paulo 45 1 1 0 4 acept not furnished 0 1000 0 13 1367\n", + "8014 Belo Horizonte 200 4 3 2 - acept not furnished 0 3400 713 56 4169\n", + "8015 Rio de Janeiro 15 1 1 0 - acept not furnished 0 700 0 10 710\n", + "8016 Belo Horizonte 30 1 1 0 1 not acept not furnished 0 650 0 9 659\n", + "8017 Belo Horizonte 100 3 3 1 3 not acept not furnished 350 1670 100 23 2143\n", + "8018 Rio de Janeiro 120 3 3 0 5 acept furnished 600 5500 167 71 6338\n", + "8019 São Paulo 105 2 3 2 6 acept not furnished 1850 3200 385 41 5476\n", + "8020 São Paulo 97 2 3 2 11 acept furnished 700 2660 167 34 3561\n", + "8021 Rio de Janeiro 140 3 2 1 7 acept not furnished 1400 4200 250 55 5905\n", + "8022 São Paulo 90 3 3 2 1 acept not furnished 870 2630 417 34 3951\n", + "8023 São Paulo 50 1 1 0 7 acept not furnished 388 2200 0 28 2616\n", + "8024 Belo Horizonte 330 5 4 2 - acept not furnished 0 8000 267 132 8399\n", + "8025 São Paulo 367 3 5 3 10 acept furnished 3400 6000 1500 77 10980\n", + "8026 São Paulo 75 3 2 1 10 acept not furnished 1000 3900 0 50 4950\n", + "8027 Porto Alegre 63 2 1 0 3 acept furnished 200 1400 53 21 1674\n", + "8028 Campinas 72 2 1 2 16 acept not furnished 730 1200 89 16 2035\n", + "8029 Campinas 52 2 1 1 4 acept furnished 320 1800 70 23 2213\n", + "8030 São Paulo 57 2 2 1 10 not acept not furnished 570 2600 0 33 3203\n", + "8031 São Paulo 200 3 3 1 11 not acept not furnished 3200 3800 834 49 7883\n", + "8032 Rio de Janeiro 64 3 2 0 10 acept not furnished 700 1300 251 17 2268\n", + "8033 São Paulo 211 3 2 2 6 acept not furnished 2800 11000 483 140 14420\n", + "8034 Campinas 164 3 2 2 - acept not furnished 0 2100 293 32 2425\n", + "8035 São Paulo 240 3 3 2 - acept not furnished 0 4500 250 68 4818\n", + "8036 Campinas 64 2 1 1 10 acept not furnished 540 820 122 11 1493\n", + "8037 São Paulo 89 2 3 1 - acept furnished 360 5700 204 73 6337\n", + "8038 Campinas 120 3 3 2 4 not acept not furnished 400 1850 0 24 2274\n", + "8039 São Paulo 69 2 2 1 11 not acept furnished 1000 4100 234 52 5386\n", + "8040 São Paulo 140 3 4 2 2 acept not furnished 1400 2500 517 32 4449\n", + "8041 São Paulo 103 2 1 0 - acept not furnished 0 1300 80 20 1400\n", + "8042 São Paulo 82 2 2 0 15 not acept not furnished 680 2800 135 36 3651\n", + "8043 São Paulo 30 1 1 0 4 acept not furnished 415 1585 30 21 2051\n", + "8044 Campinas 60 2 1 1 16 not acept not furnished 300 1400 60 18 1778\n", + "8045 São Paulo 162 3 2 2 7 acept furnished 1250 8000 42 102 9394\n", + "8046 São Paulo 59 2 1 1 8 acept not furnished 0 3000 0 39 3039\n", + "8047 São Paulo 230 3 3 3 6 not acept not furnished 2100 10500 792 134 13530\n", + "8048 São Paulo 110 3 2 1 14 not acept not furnished 950 4500 0 58 5508\n", + "8049 Campinas 210 3 3 3 7 acept not furnished 1900 2300 459 30 4689\n", + "8050 São Paulo 218 3 2 2 6 not acept not furnished 2000 7800 550 99 10450\n", + "8051 Campinas 50 1 1 1 2 not acept not furnished 718 1600 13 21 2352\n", + "8052 Belo Horizonte 115 3 3 2 6 acept not furnished 700 1920 209 26 2855\n", + "8053 São Paulo 100 2 2 0 1 acept not furnished 900 2000 63 26 2989\n", + "8054 São Paulo 230 3 4 4 6 acept not furnished 2100 5000 0 64 7164\n", + "8055 Rio de Janeiro 25 1 1 0 - acept not furnished 50 700 0 10 760\n", + "8056 São Paulo 280 3 4 2 - not acept furnished 2000 15000 684 226 17910\n", + "8057 São Paulo 390 3 4 4 10 not acept not furnished 2710 9000 2682 115 14510\n", + "8058 São Paulo 60 2 2 2 20 acept not furnished 450 2872 238 37 3597\n", + "8059 São Paulo 150 3 2 2 16 acept not furnished 1700 5000 484 64 7248\n", + "8060 Rio de Janeiro 60 2 1 1 8 not acept not furnished 560 1000 500 13 2073\n", + "8061 São Paulo 22 1 1 0 - not acept not furnished 250 1080 14 14 1358\n", + "8062 Rio de Janeiro 30 1 1 1 2 acept not furnished 570 850 70 11 1501\n", + "8063 São Paulo 49 2 2 1 8 acept not furnished 500 1550 100 20 2170\n", + "8064 São Paulo 230 3 4 3 7 acept not furnished 3500 4700 834 60 9094\n", + "8065 Rio de Janeiro 200 3 4 2 11 acept furnished 2100 8000 600 104 10800\n", + "8066 Belo Horizonte 167 4 4 3 5 acept not furnished 2000 4600 642 62 7304\n", + "8067 Belo Horizonte 420 4 6 5 14 not acept not furnished 2000 15000 167 200 17370\n", + "8068 Porto Alegre 98 2 1 0 3 acept furnished 477 1800 92 27 2396\n", + "8069 Belo Horizonte 80 3 1 1 12 acept not furnished 554 1300 69 18 1941\n", + "8070 Campinas 30 1 1 0 15 acept not furnished 280 500 10 7 797\n", + "8071 São Paulo 296 4 5 5 4 acept furnished 4300 12900 2105 164 19470\n", + "8072 Rio de Janeiro 70 2 1 0 3 not acept not furnished 800 1100 42 15 1957\n", + "8073 Rio de Janeiro 160 2 2 2 1 acept furnished 2400 7500 250 97 10250\n", + "8074 São Paulo 73 2 2 1 11 acept not furnished 700 1250 150 16 2116\n", + "8075 Rio de Janeiro 15 1 1 0 - acept not furnished 50 700 0 10 760\n", + "8076 São Paulo 174 3 1 1 - acept not furnished 0 3300 236 50 3586\n", + "8077 Porto Alegre 54 1 1 1 6 acept not furnished 450 1200 42 18 1710\n", + "8078 São Paulo 50 1 1 1 10 not acept furnished 1300 8800 250 112 10460\n", + "8079 São Paulo 240 3 3 3 8 acept not furnished 2999 10500 417 134 14050\n", + "8080 Belo Horizonte 260 4 4 2 - acept not furnished 0 15000 203 246 15450\n", + "8081 São Paulo 210 3 4 4 2 not acept not furnished 1990 6375 625 81 9071\n", + "8082 São Paulo 119 3 4 3 14 acept not furnished 800 3680 30 47 4557\n", + "8083 Belo Horizonte 150 3 1 3 - acept not furnished 0 3500 750 58 4308\n", + "8084 São Paulo 750 4 7 8 - acept furnished 0 15000 1667 226 16890\n", + "8085 São Paulo 67 2 1 1 13 not acept not furnished 626 1800 40 23 2489\n", + "8086 Rio de Janeiro 50 1 1 0 1 acept not furnished 640 1428 81 6 2155\n", + "8087 Rio de Janeiro 36 1 1 0 5 acept not furnished 487 2500 55 33 3075\n", + "8088 São Paulo 120 3 2 2 5 acept not furnished 1500 1900 377 25 3802\n", + "8089 Porto Alegre 65 3 1 1 1 acept not furnished 400 850 31 13 1294\n", + "8090 Belo Horizonte 240 4 4 2 3 acept furnished 590 8000 150 107 8847\n", + "8091 São Paulo 93 2 2 2 3 acept not furnished 800 3500 200 45 4545\n", + "8092 Porto Alegre 35 1 1 0 1 acept not furnished 120 1170 92 18 1400\n", + "8093 São Paulo 51 2 1 1 9 not acept not furnished 450 2200 109 28 2787\n", + "8094 São Paulo 85 2 2 1 14 acept not furnished 709 3300 94 42 4145\n", + "8095 Campinas 57 1 2 1 12 acept not furnished 391 2961 111 38 3501\n", + "8096 Campinas 50 1 1 0 8 acept not furnished 300 550 0 3 853\n", + "8097 São Paulo 75 2 1 0 - acept not furnished 0 1500 325 23 1848\n", + "8098 São Paulo 161 3 3 3 17 acept not furnished 2700 10000 667 127 13490\n", + "8099 Campinas 210 4 4 3 7 not acept not furnished 1964 3600 495 46 6105\n", + "8100 São Paulo 350 3 2 4 - acept not furnished 0 12500 1334 188 14020\n", + "8101 Porto Alegre 112 3 3 2 1 acept not furnished 1000 3000 234 44 4278\n", + "8102 Campinas 78 3 2 2 3 acept furnished 755 1900 37 25 2717\n", + "8103 São Paulo 54 2 2 1 6 acept not furnished 954 2800 199 36 3989\n", + "8104 Campinas 25 1 1 0 3 not acept not furnished 200 1020 0 4 1224\n", + "8105 São Paulo 62 2 2 0 3 not acept not furnished 600 2000 0 26 2626\n", + "8106 São Paulo 117 2 2 1 11 not acept furnished 630 7130 150 91 8001\n", + "8107 São Paulo 120 4 2 2 - acept not furnished 0 3500 10 53 3563\n", + "8108 Campinas 113 3 2 2 11 acept not furnished 700 1450 79 19 2248\n", + "8109 São Paulo 65 2 1 1 3 acept not furnished 700 2306 0 30 3036\n", + "8110 Campinas 70 2 1 1 - not acept not furnished 341 1100 60 14 1515\n", + "8111 Porto Alegre 67 3 2 2 7 acept not furnished 400 2000 50 30 2480\n", + "8112 São Paulo 651 7 7 8 - acept not furnished 0 8500 1595 128 10220\n", + "8113 São Paulo 180 3 1 5 - acept not furnished 0 6500 567 98 7165\n", + "8114 São Paulo 30 1 1 0 - acept not furnished 0 1000 21 13 1034\n", + "8115 São Paulo 100 3 3 3 5 acept not furnished 1000 3500 417 45 4962\n", + "8116 São Paulo 45 1 1 0 11 acept not furnished 325 1450 55 19 1849\n", + "8117 São Paulo 400 4 4 4 - acept not furnished 0 8500 1250 128 9878\n", + "8118 São Paulo 100 3 1 0 1 acept not furnished 0 2200 139 28 2367\n", + "8119 Porto Alegre 111 2 2 0 15 acept not furnished 850 1612 100 24 2586\n", + "8120 Belo Horizonte 70 2 2 2 5 acept not furnished 610 2100 240 28 2978\n", + "8121 Porto Alegre 179 3 2 2 - acept furnished 0 3700 67 66 3833\n", + "8122 Rio de Janeiro 140 3 2 2 1 acept not furnished 1800 5700 579 74 8153\n", + "8123 São Paulo 260 3 4 2 - acept not furnished 0 7609 876 115 8600\n", + "8124 Belo Horizonte 268 4 2 4 1 not acept not furnished 975 3000 381 40 4396\n", + "8125 Belo Horizonte 70 3 2 1 2 acept not furnished 230 1300 59 18 1607\n", + "8126 Rio de Janeiro 50 1 1 1 2 acept not furnished 1060 1500 323 20 2903\n", + "8127 Belo Horizonte 470 5 4 2 - acept not furnished 0 6000 808 99 6907\n", + "8128 São Paulo 142 3 4 3 13 acept not furnished 1900 4600 3509 33 10040\n", + "8129 São Paulo 80 1 2 2 5 acept not furnished 0 6522 0 83 6605\n", + "8130 São Paulo 100 3 3 3 - not acept not furnished 0 2500 246 38 2784\n", + "8131 Porto Alegre 47 1 1 1 1 not acept furnished 400 2200 0 33 2633\n", + "8132 Campinas 180 3 4 4 - acept not furnished 0 3230 250 49 3529\n", + "8133 Porto Alegre 180 4 1 1 - acept not furnished 1 4480 375 80 4936\n", + "8134 São Paulo 72 1 1 1 - not acept furnished 670 4000 175 51 4896\n", + "8135 São Paulo 90 2 2 1 - acept not furnished 0 2200 0 34 2234\n", + "8136 Campinas 49 1 1 0 3 acept not furnished 417 583 23 8 1031\n", + "8137 Porto Alegre 282 4 2 4 - acept furnished 0 5000 355 89 5444\n", + "8138 São Paulo 114 4 4 2 6 acept not furnished 1115 2530 321 33 3999\n", + "8139 São Paulo 170 3 3 2 8 acept not furnished 1800 7000 559 89 9448\n", + "8140 São Paulo 200 3 2 3 - acept not furnished 0 3600 251 55 3906\n", + "8141 São Paulo 130 4 4 3 2 acept not furnished 1160 3000 459 39 4658\n", + "8142 Belo Horizonte 300 3 4 4 - acept not furnished 0 7500 350 123 7973\n", + "8143 São Paulo 40 1 2 1 28 not acept furnished 1935 4200 318 54 6507\n", + "8144 São Paulo 45 1 1 0 2 not acept not furnished 150 750 0 10 910\n", + "8145 São Paulo 245 3 5 4 3 acept furnished 2300 10000 1218 127 13650\n", + "8146 São Paulo 155 2 3 2 - acept not furnished 0 4000 377 61 4438\n", + "8147 Belo Horizonte 300 3 3 4 - acept not furnished 0 3500 431 58 3989\n", + "8148 Campinas 438 5 4 0 - acept not furnished 0 7735 417 117 8269\n", + "8149 Rio de Janeiro 30 1 1 0 4 not acept furnished 380 2200 59 29 2668\n", + "8150 São Paulo 125 2 2 1 - acept furnished 0 2800 392 43 3235\n", + "8151 Campinas 76 1 2 0 1 acept not furnished 300 700 100 9 1109\n", + "8152 São Paulo 58 2 2 2 2 acept not furnished 833 2030 189 26 3078\n", + "8153 São Paulo 140 3 2 2 - acept not furnished 0 2600 45 40 2685\n", + "8154 São Paulo 49 2 1 1 1 acept not furnished 415 1368 0 18 1801\n", + "8155 Porto Alegre 45 1 1 0 11 acept not furnished 750 900 658 14 2322\n", + "8156 São Paulo 350 4 6 4 - acept not furnished 0 10000 896 151 11050\n", + "8157 São Paulo 35 1 1 0 4 acept not furnished 320 1700 0 22 2042\n", + "8158 Rio de Janeiro 100 3 1 1 - acept not furnished 495 1700 17 22 2234\n", + "8159 Porto Alegre 86 2 2 2 3 acept not furnished 1000 2950 120 44 4114\n", + "8160 Campinas 58 1 1 1 6 acept not furnished 676 3300 108 42 4126\n", + "8161 São Paulo 40 1 1 0 - not acept not furnished 0 780 17 12 809\n", + "8162 Porto Alegre 62 3 2 1 2 acept furnished 550 2100 50 31 2731\n", + "8163 Belo Horizonte 95 3 2 2 10 acept not furnished 657 2300 143 31 3131\n", + "8164 São Paulo 52 1 1 1 11 acept not furnished 730 2100 38 27 2895\n", + "8165 São Paulo 80 2 1 0 - acept not furnished 0 1280 59 20 1359\n", + "8166 Belo Horizonte 300 4 4 4 - acept not furnished 0 6500 428 107 7035\n", + "8167 São Paulo 70 2 2 0 6 acept not furnished 570 1390 212 18 2190\n", + "8168 Porto Alegre 130 3 3 1 6 acept not furnished 1000 4900 167 72 6139\n", + "8169 Campinas 39 1 1 1 1 not acept furnished 573 1128 32 15 1748\n", + "8170 Belo Horizonte 73 2 1 1 11 acept furnished 600 4500 40 60 5200\n", + "8171 São Paulo 68 2 1 1 15 acept not furnished 520 2280 9 29 2838\n", + "8172 Campinas 80 2 1 0 - acept not furnished 0 1200 0 19 1219\n", + "8173 São Paulo 30 1 1 1 15 acept not furnished 500 1560 61 20 2141\n", + "8174 Rio de Janeiro 450 4 5 1 - acept not furnished 0 3300 417 51 3768\n", + "8175 São Paulo 270 3 4 2 11 acept not furnished 3158 15000 1100 191 19450\n", + "8176 São Paulo 146 3 4 4 15 acept not furnished 1510 6000 631 77 8218\n", + "8177 Rio de Janeiro 100 3 1 0 2 acept not furnished 0 2000 209 26 2235\n", + "8178 Campinas 60 2 1 1 2 acept not furnished 314 1000 0 13 1327\n", + "8179 São Paulo 55 2 1 1 7 not acept not furnished 784 3500 135 45 4464\n", + "8180 Rio de Janeiro 140 4 2 1 1 not acept not furnished 1700 6000 380 78 8158\n", + "8181 Campinas 40 1 1 1 6 acept not furnished 600 650 35 9 1294\n", + "8182 Belo Horizonte 20 1 1 1 - acept furnished 0 1100 0 15 1115\n", + "8183 Porto Alegre 30 1 1 0 - not acept not furnished 0 500 0 9 509\n", + "8184 São Paulo 68 2 2 2 12 not acept not furnished 2600 2300 0 30 4930\n", + "8185 Campinas 35 1 1 1 11 acept not furnished 350 966 25 13 1354\n", + "8186 São Paulo 190 4 4 3 11 acept furnished 1780 6900 0 88 8768\n", + "8187 São Paulo 700 4 10 0 - acept not furnished 0 15000 8750 226 23980\n", + "8188 Rio de Janeiro 45 1 1 0 1 acept not furnished 0 1200 78 16 1294\n", + "8189 São Paulo 311 3 6 4 23 not acept furnished 1800 12500 1084 159 15540\n", + "8190 Porto Alegre 110 2 1 0 - acept not furnished 0 1070 1160 20 2250\n", + "8191 Campinas 330 3 3 2 10 not acept not furnished 2700 5100 650 65 8515\n", + "8192 São Paulo 75 3 1 1 2 acept furnished 770 1900 85 25 2780\n", + "8193 Porto Alegre 50 1 1 0 2 acept furnished 300 1600 42 24 1966\n", + "8194 São Paulo 460 4 4 6 - acept not furnished 0 5280 667 80 6027\n", + "8195 Porto Alegre 52 2 1 0 4 acept not furnished 401 730 21 11 1163\n", + "8196 São Paulo 155 3 4 2 14 acept not furnished 1400 13100 409 166 15080\n", + "8197 Belo Horizonte 55 2 1 1 1 acept not furnished 200 840 77 12 1129\n", + "8198 Rio de Janeiro 74 2 1 0 11 acept not furnished 1154 1900 189 25 3268\n", + "8199 São Paulo 26 1 1 1 3 acept furnished 402 1396 0 18 1816\n", + "8200 São Paulo 80 2 1 0 1 acept furnished 500 3000 0 39 3539\n", + "8201 São Paulo 450 4 5 5 - not acept not furnished 0 12000 1875 181 14060\n", + "8202 Campinas 150 2 2 1 - acept not furnished 0 1060 167 16 1243\n", + "8203 São Paulo 135 3 2 2 9 acept not furnished 1836 4200 543 54 6633\n", + "8204 Belo Horizonte 140 4 3 4 9 acept not furnished 500 3500 230 47 4277\n", + "8205 Campinas 76 3 1 1 2 acept not furnished 480 1300 92 17 1889\n", + "8206 São Paulo 450 4 3 6 - acept not furnished 0 11900 1084 179 13160\n", + "8207 Belo Horizonte 38 1 1 0 2 not acept not furnished 0 1300 0 18 1318\n", + "8208 São Paulo 56 2 2 1 4 acept not furnished 500 2000 0 26 2526\n", + "8209 Rio de Janeiro 30 1 1 0 8 not acept furnished 445 1512 0 7 1964\n", + "8210 São Paulo 260 2 2 2 - not acept not furnished 0 3800 567 58 4425\n", + "8211 Porto Alegre 77 3 2 1 2 not acept not furnished 284 1260 20 19 1583\n", + "8212 Rio de Janeiro 290 4 3 1 6 acept not furnished 2500 7000 459 91 10050\n", + "8213 Belo Horizonte 22 1 1 1 1 not acept furnished 0 1500 0 20 1520\n", + "8214 Rio de Janeiro 47 2 1 0 4 acept not furnished 578 1500 0 20 2098\n", + "8215 São Paulo 80 2 2 1 7 acept not furnished 1363 3700 96 47 5206\n", + "8216 São Paulo 244 4 3 4 2 acept furnished 2375 4774 1033 61 8243\n", + "8217 Campinas 45 1 1 0 9 acept not furnished 670 800 39 11 1520\n", + "8218 Belo Horizonte 85 3 2 2 3 not acept not furnished 686 1700 160 23 2569\n", + "8219 São Paulo 98 3 2 2 3 acept not furnished 1400 2000 383 26 3809\n", + "8220 São Paulo 100 2 1 1 - not acept not furnished 0 1450 0 22 1472\n", + "8221 Rio de Janeiro 120 3 2 0 2 acept not furnished 1300 3700 331 48 5379\n", + "8222 São Paulo 190 3 2 1 8 acept furnished 2180 4500 150 58 6888\n", + "8223 São Paulo 500 4 4 4 - acept not furnished 3200 10200 1800 154 15350\n", + "8224 São Paulo 105 3 2 2 1 acept furnished 1544 7800 488 99 9931\n", + "8225 Campinas 50 2 1 1 3 acept not furnished 613 1000 20 13 1646\n", + "8226 São Paulo 126 4 3 2 4 not acept not furnished 1500 4500 417 58 6475\n", + "8227 São Paulo 74 2 3 1 2 acept not furnished 1180 4500 105 58 5843\n", + "8228 Rio de Janeiro 130 3 3 2 3 acept furnished 2500 7000 500 91 10090\n", + "8229 São Paulo 140 2 1 1 6 not acept furnished 2000 5500 300 70 7870\n", + "8230 Porto Alegre 160 3 2 2 - acept not furnished 100 2000 75 36 2211\n", + "8231 São Paulo 250 3 4 3 4 acept not furnished 3570 14000 1256 178 19000\n", + "8232 Rio de Janeiro 90 2 2 1 4 acept not furnished 1090 900 144 12 2146\n", + "8233 São Paulo 35 1 1 0 6 acept furnished 420 1660 0 22 2102\n", + "8234 Rio de Janeiro 144 4 2 2 4 acept not furnished 2000 3590 378 47 6015\n", + "8235 Rio de Janeiro 170 3 1 1 10 acept furnished 600 2480 100 32 3212\n", + "8236 Rio de Janeiro 65 2 1 1 7 acept not furnished 750 1400 59 19 2228\n", + "8237 Porto Alegre 80 2 1 0 - acept not furnished 0 990 0 18 1008\n", + "8238 São Paulo 20 1 1 0 4 not acept furnished 150 3142 67 40 3399\n", + "8239 São Paulo 79 2 2 2 18 not acept furnished 800 5900 280 75 7055\n", + "8240 São Paulo 70 2 1 0 1 acept not furnished 0 2448 159 32 2639\n", + "8241 São Paulo 30 1 1 0 9 not acept furnished 423 2350 46 30 2849\n", + "8242 São Paulo 250 3 5 3 4 acept not furnished 3500 6800 0 87 10390\n", + "8243 Porto Alegre 50 1 1 0 2 acept furnished 300 930 25 14 1269\n", + "8244 São Paulo 116 3 2 2 5 acept not furnished 1726 2300 568 30 4624\n", + "8245 São Paulo 216 4 3 4 28 not acept not furnished 1868 5000 657 64 7589\n", + "8246 São Paulo 290 3 5 4 8 acept furnished 3580 7000 0 89 10670\n", + "8247 São Paulo 300 5 6 6 - acept not furnished 0 9500 2084 143 11730\n", + "8248 São Paulo 245 4 3 4 8 acept not furnished 3450 6000 1667 77 11190\n", + "8249 Belo Horizonte 150 4 2 3 18 not acept furnished 1300 4900 480 66 6746\n", + "8250 São Paulo 130 3 4 2 11 not acept not furnished 1550 2318 411 30 4309\n", + "8251 São Paulo 112 1 2 3 - acept not furnished 0 2878 84 44 3006\n", + "8252 São Paulo 78 2 2 1 8 acept not furnished 586 1680 63 22 2351\n", + "8253 Rio de Janeiro 15 1 1 0 - acept not furnished 50 700 0 10 760\n", + "8254 São Paulo 84 2 1 2 11 not acept furnished 800 4000 240 51 5091\n", + "8255 Rio de Janeiro 23 1 1 0 8 not acept not furnished 569 2000 25 26 2620\n", + "8256 Belo Horizonte 174 3 1 0 - not acept not furnished 0 5500 120 91 5711\n", + "8257 São Paulo 104 1 3 2 14 not acept not furnished 2000 4200 500 54 6754\n", + "8258 Porto Alegre 63 1 1 0 3 acept not furnished 340 900 38 14 1292\n", + "8259 São Paulo 51 2 1 1 7 acept not furnished 468 1100 75 14 1657\n", + "8260 Rio de Janeiro 70 2 2 1 4 acept not furnished 1500 3460 332 45 5337\n", + "8261 Belo Horizonte 150 4 4 2 12 acept not furnished 1218 4000 501 54 5773\n", + "8262 Rio de Janeiro 90 2 2 1 8 acept not furnished 800 2156 90 9 3055\n", + "8263 Rio de Janeiro 80 2 2 1 2 acept furnished 4100 7500 584 97 12280\n", + "8264 Porto Alegre 60 1 1 1 4 not acept not furnished 2400 800 209 12 3421\n", + "8265 Belo Horizonte 85 3 2 1 2 not acept not furnished 450 1500 85 20 2055\n", + "8266 São Paulo 70 2 1 0 24 not acept furnished 450 3200 50 41 3741\n", + "8267 Rio de Janeiro 50 1 1 0 2 not acept not furnished 800 800 26 11 1637\n", + "8268 São Paulo 38 1 1 0 6 acept not furnished 420 2080 24 27 2551\n", + "8269 Porto Alegre 147 3 3 3 - acept not furnished 0 2600 81 47 2728\n", + "8270 Porto Alegre 222 3 2 2 3 not acept furnished 770 5083 350 75 6278\n", + "8271 São Paulo 185 4 4 4 8 acept not furnished 2500 7500 1042 96 11140\n", + "8272 Campinas 284 3 5 6 - acept not furnished 550 5100 417 77 6144\n", + "8273 São Paulo 45 2 1 1 6 not acept not furnished 240 1470 30 19 1759\n", + "8274 Rio de Janeiro 290 3 3 1 9 acept not furnished 1600 5300 853 69 7822\n", + "8275 São Paulo 74 3 2 2 15 acept not furnished 850 1250 100 16 2216\n", + "8276 Campinas 115 3 2 2 15 acept not furnished 1018 2690 214 35 3957\n", + "8277 Porto Alegre 37 1 1 0 4 acept not furnished 338 1600 67 24 2029\n", + "8278 Belo Horizonte 650 7 6 3 - acept not furnished 0 13000 1250 214 14460\n", + "8279 São Paulo 30 1 1 0 1 not acept not furnished 0 1459 0 10 1469\n", + "8280 São Paulo 87 1 1 2 14 acept furnished 870 7900 150 101 9021\n", + "8281 São Paulo 553 5 6 5 15 acept furnished 6000 3360 2827 43 12230\n", + "8282 São Paulo 250 3 4 4 16 acept not furnished 3421 10700 1224 136 15480\n", + "8283 São Paulo 600 4 5 6 - acept not furnished 0 6000 3000 51 9051\n", + "8284 São Paulo 250 3 3 3 - acept not furnished 0 4500 150 68 4718\n", + "8285 São Paulo 30 1 1 1 16 acept not furnished 399 1799 0 23 2221\n", + "8286 Belo Horizonte 62 3 1 1 2 not acept not furnished 260 950 59 13 1282\n", + "8287 Rio de Janeiro 115 2 2 2 1 acept not furnished 900 3000 75 39 4014\n", + "8288 Rio de Janeiro 130 3 1 0 4 acept not furnished 1050 6800 193 28 8071\n", + "8289 São Paulo 35 1 1 0 15 acept not furnished 306 2000 0 26 2332\n", + "8290 Belo Horizonte 350 4 3 3 9 not acept not furnished 2050 10000 658 134 12840\n", + "8291 São Paulo 100 3 2 0 - not acept not furnished 0 3000 914 46 3960\n", + "8292 Campinas 85 3 2 2 9 acept not furnished 1225 2600 182 33 4040\n", + "8293 São Paulo 60 1 1 1 - acept not furnished 0 1500 100 23 1623\n", + "8294 Campinas 197 3 3 2 8 acept not furnished 1600 2500 325 32 4457\n", + "8295 São Paulo 177 4 5 4 12 acept not furnished 1500 9200 959 117 11780\n", + "8296 Rio de Janeiro 96 2 1 0 8 acept furnished 700 5000 181 65 5946\n", + "8297 São Paulo 48 1 1 0 - not acept not furnished 0 1150 34 18 1202\n", + "8298 São Paulo 678 5 6 4 - acept not furnished 0 15000 3000 226 18230\n", + "8299 Rio de Janeiro 126 2 2 1 5 acept not furnished 1800 7500 420 97 9817\n", + "8300 São Paulo 130 3 3 1 6 acept not furnished 1390 4200 257 54 5901\n", + "8301 Campinas 113 2 1 1 8 acept not furnished 670 1250 92 16 2028\n", + "8302 São Paulo 380 3 4 2 - acept not furnished 0 12000 959 181 13140\n", + "8303 São Paulo 80 1 1 1 10 acept not furnished 1800 2500 180 32 4512\n", + "8304 São Paulo 20 1 1 0 - acept furnished 602 1800 130 23 2555\n", + "8305 São Paulo 32 1 1 1 15 acept not furnished 350 1880 0 24 2254\n", + "8306 São Paulo 420 4 6 4 8 acept not furnished 3500 15000 2250 191 20940\n", + "8307 São Paulo 500 8 5 2 - acept not furnished 0 11000 1550 166 12720\n", + "8308 São Paulo 33 1 1 1 12 acept furnished 560 2900 84 37 3581\n", + "8309 São Paulo 700 4 6 6 - acept not furnished 0 12500 2176 188 14860\n", + "8310 São Paulo 50 1 1 1 - acept not furnished 0 1100 0 17 1117\n", + "8311 Porto Alegre 70 2 2 0 4 acept not furnished 330 1410 59 21 1820\n", + "8312 Belo Horizonte 332 3 2 8 - not acept not furnished 0 7000 270 115 7385\n", + "8313 Rio de Janeiro 83 2 3 2 4 acept furnished 3850 6000 1128 78 11060\n", + "8314 Campinas 62 2 2 2 5 acept not furnished 800 3000 14 39 3853\n", + "8315 São Paulo 30 1 1 0 12 acept furnished 350 3300 0 42 3692\n", + "8316 São Paulo 240 4 6 4 2 not acept not furnished 2000 4410 0 56 6466\n", + "8317 São Paulo 27 1 1 0 - not acept not furnished 0 835 0 13 848\n", + "8318 Rio de Janeiro 87 3 2 1 3 acept not furnished 1200 1440 67 19 2726\n", + "8319 Porto Alegre 238 3 3 3 2 acept furnished 700 4180 167 62 5109\n", + "8320 Rio de Janeiro 68 2 1 0 3 acept not furnished 925 2300 245 30 3500\n", + "8321 Rio de Janeiro 30 1 1 0 19 acept not furnished 590 800 126 11 1527\n", + "8322 Rio de Janeiro 24 1 1 0 5 acept furnished 500 1200 25 16 1741\n", + "8323 São Paulo 80 3 2 1 1 not acept not furnished 402 1613 80 21 2116\n", + "8324 Belo Horizonte 70 3 1 1 3 acept not furnished 275 1100 63 15 1453\n", + "8325 São Paulo 250 4 3 2 - not acept not furnished 0 10000 0 151 10150\n", + "8326 Belo Horizonte 83 3 3 2 5 acept furnished 990 3500 216 47 4753\n", + "8327 Porto Alegre 339 3 5 4 11 acept furnished 3000 14000 834 205 18040\n", + "8328 Campinas 75 2 1 1 - acept not furnished 0 1300 0 17 1317\n", + "8329 São Paulo 154 4 3 3 4 acept not furnished 1630 4350 742 56 6778\n", + "8330 Rio de Janeiro 80 2 2 1 5 acept not furnished 891 1800 125 24 2840\n", + "8331 Porto Alegre 156 3 1 0 2 acept not furnished 500 1600 142 24 2266\n", + "8332 São Paulo 190 3 4 3 2 acept not furnished 3800 5950 1209 76 11040\n", + "8333 São Paulo 200 3 2 2 - acept not furnished 0 2900 791 44 3735\n", + "8334 Belo Horizonte 600 3 5 8 - acept not furnished 800 10000 202 164 11170\n", + "8335 Belo Horizonte 57 3 2 1 2 acept not furnished 225 1100 78 15 1418\n", + "8336 Belo Horizonte 110 3 2 2 3 not acept furnished 550 2600 248 20 3418\n", + "8337 São Paulo 240 3 4 5 9 acept not furnished 3200 6400 1400 82 11080\n", + "8338 São Paulo 40 1 1 1 9 not acept not furnished 440 2800 100 36 3376\n", + "8339 Campinas 160 3 2 2 12 acept not furnished 1026 1650 243 21 2940\n", + "8340 São Paulo 120 3 2 2 1 acept not furnished 2450 3940 875 50 7315\n", + "8341 Campinas 51 1 1 1 1 acept not furnished 670 820 90 11 1591\n", + "8342 Porto Alegre 55 1 1 1 3 acept not furnished 250 2300 45 34 2629\n", + "8343 São Paulo 820 4 4 5 - acept not furnished 0 7225 3750 109 11080\n", + "8344 São Paulo 168 3 4 2 9 acept not furnished 1800 5500 65 70 7435\n", + "8345 Porto Alegre 68 1 2 1 4 acept furnished 500 2500 117 37 3154\n", + "8346 São Paulo 260 4 4 6 22 acept furnished 2480 5500 1167 70 9217\n", + "8347 São Paulo 93 2 2 1 8 acept not furnished 1258 2490 12 32 3792\n", + "8348 São Paulo 73 2 2 1 13 acept not furnished 700 1250 150 16 2116\n", + "8349 São Paulo 182 3 3 5 - acept not furnished 0 4200 250 64 4514\n", + "8350 Rio de Janeiro 215 3 2 0 5 acept not furnished 1400 4000 38 52 5490\n", + "8351 São Paulo 280 3 3 4 - acept not furnished 0 9500 990 143 10630\n", + "8352 Rio de Janeiro 68 2 1 1 5 acept not furnished 660 870 109 12 1651\n", + "8353 São Paulo 76 1 2 1 4 acept furnished 1180 4200 30 54 5464\n", + "8354 São Paulo 156 3 4 3 4 acept not furnished 1650 9000 667 115 11430\n", + "8355 Porto Alegre 271 4 3 1 7 acept not furnished 1500 3900 500 57 5957\n", + "8356 Campinas 297 4 6 2 3 acept not furnished 2800 2800 433 36 6069\n", + "8357 São Paulo 73 2 1 1 8 acept not furnished 525 1360 6 18 1909\n", + "8358 São Paulo 350 3 4 5 - acept not furnished 0 5500 1092 83 6675\n", + "8359 São Paulo 100 2 3 3 - acept furnished 1200 7650 250 97 9197\n", + "8360 São Paulo 100 3 2 0 3 not acept not furnished 800 2000 250 26 3076\n", + "8361 Campinas 180 3 4 4 - acept not furnished 1000 4500 127 68 5695\n", + "8362 São Paulo 350 7 4 2 - acept not furnished 0 4600 292 70 4962\n", + "8363 Porto Alegre 40 1 1 0 7 acept not furnished 180 1000 6 15 1201\n", + "8364 Rio de Janeiro 106 3 2 1 5 acept not furnished 1434 5000 338 65 6837\n", + "8365 São Paulo 63 2 2 1 19 acept furnished 1000 11000 133 140 12270\n", + "8366 Rio de Janeiro 200 4 3 2 6 acept furnished 2100 9200 603 119 12020\n", + "8367 Rio de Janeiro 65 2 2 0 1 acept not furnished 250 3600 103 47 4000\n", + "8368 Rio de Janeiro 25 1 1 0 4 acept furnished 356 1984 55 23 2418\n", + "8369 São Paulo 95 3 2 2 5 acept not furnished 1760 1200 296 16 3272\n", + "8370 São Paulo 36 1 1 1 8 acept furnished 600 3400 80 44 4124\n", + "8371 Rio de Janeiro 273 4 4 2 5 acept not furnished 2800 10200 632 132 13760\n", + "8372 São Paulo 159 2 2 1 8 acept furnished 1236 4200 251 54 5741\n", + "8373 Rio de Janeiro 110 2 2 1 6 acept furnished 2500 5000 1417 65 8982\n", + "8374 Porto Alegre 130 4 4 3 3 acept furnished 1600 10840 292 159 12890\n", + "8375 São Paulo 20 1 1 0 - not acept not furnished 0 990 0 13 1003\n", + "8376 São Paulo 330 4 5 4 - acept not furnished 0 4000 274 61 4335\n", + "8377 Rio de Janeiro 30 1 1 0 8 not acept not furnished 550 1216 25 16 1807\n", + "8378 São Paulo 190 4 3 2 1 acept not furnished 1733 5000 570 64 7367\n", + "8379 São Paulo 195 2 3 1 10 acept not furnished 1500 6000 334 77 7911\n", + "8380 São Paulo 43 2 7 2 11 acept not furnished 257 2270 0 29 2556\n", + "8381 Campinas 49 2 1 1 5 acept not furnished 273 950 0 13 1236\n", + "8382 São Paulo 68 3 1 1 1 acept not furnished 560 1410 115 18 2103\n", + "8383 Porto Alegre 63 2 2 2 3 acept furnished 500 2150 70 32 2752\n", + "8384 São Paulo 298 4 4 3 6 acept not furnished 3356 9000 1190 115 13660\n", + "8385 São Paulo 52 1 2 1 4 acept furnished 795 3850 297 49 4991\n", + "8386 São Paulo 350 3 2 4 - acept not furnished 0 10200 992 154 11350\n", + "8387 São Paulo 170 4 2 1 3 acept furnished 2437 5200 570 66 8273\n", + "8388 Rio de Janeiro 120 3 2 2 1 acept not furnished 1784 5300 350 69 7503\n", + "8389 Rio de Janeiro 30 1 1 0 19 acept not furnished 800 1250 0 17 2067\n", + "8390 Belo Horizonte 67 2 1 0 5 not acept furnished 388 1140 71 16 1615\n", + "8391 São Paulo 210 3 4 0 - acept furnished 0 4200 175 64 4439\n", + "8392 Porto Alegre 40 1 1 1 1 not acept furnished 250 1050 8 16 1324\n", + "8393 Porto Alegre 117 3 2 1 1 acept not furnished 706 3400 217 50 4373\n", + "8394 São Paulo 67 2 1 1 7 acept not furnished 570 1420 4 18 2012\n", + "8395 Belo Horizonte 70 3 2 2 1 acept not furnished 554 1900 228 26 2708\n", + "8396 Porto Alegre 60 2 1 2 - acept not furnished 0 1400 0 25 1425\n", + "8397 São Paulo 856 5 7 6 4 acept not furnished 7500 10000 5000 127 22630\n", + "8398 Rio de Janeiro 34 1 1 0 7 acept not furnished 625 1700 65 22 2412\n", + "8399 São Paulo 717 5 5 8 16 acept not furnished 4300 2500 5032 32 11860\n", + "8400 Porto Alegre 96 2 1 0 2 not acept not furnished 200 1000 40 15 1255\n", + "8401 São Paulo 20 1 1 0 - acept furnished 602 1800 130 23 2555\n", + "8402 Porto Alegre 70 1 2 0 - not acept not furnished 0 1500 59 27 1586\n", + "8403 Rio de Janeiro 65 1 1 0 10 not acept furnished 672 2400 116 31 3219\n", + "8404 São Paulo 58 2 2 1 18 acept not furnished 317 1783 0 23 2123\n", + "8405 São Paulo 140 3 3 3 2 acept not furnished 1640 4200 775 54 6669\n", + "8406 São Paulo 195 3 4 3 - acept not furnished 0 8500 59 128 8687\n", + "8407 Rio de Janeiro 83 2 1 1 8 acept furnished 1108 1800 104 24 3036\n", + "8408 Porto Alegre 40 1 1 1 6 acept not furnished 180 1250 6 19 1455\n", + "8409 São Paulo 70 1 1 0 - not acept not furnished 0 900 0 14 914\n", + "8410 Rio de Janeiro 94 3 3 2 4 acept not furnished 2076 5000 357 65 7498\n", + "8411 São Paulo 34 1 1 1 11 not acept furnished 620 2800 0 36 3456\n", + "8412 Campinas 30 1 1 0 4 acept not furnished 336 503 10 7 856\n", + "8413 São Paulo 73 2 2 1 12 acept not furnished 700 1250 150 16 2116\n", + "8414 Campinas 270 3 3 3 1 acept not furnished 2500 7220 560 92 10370\n", + "8415 São Paulo 40 1 1 1 16 not acept not furnished 900 3000 183 39 4122\n", + "8416 São Paulo 25 1 1 0 - not acept not furnished 0 836 0 13 849\n", + "8417 São Paulo 112 3 2 1 8 acept not furnished 810 3850 98 49 4807\n", + "8418 São Paulo 105 3 2 2 6 acept not furnished 1002 2583 35 33 3653\n", + "8419 São Paulo 130 3 2 2 - acept not furnished 0 3300 108 50 3458\n", + "8420 Belo Horizonte 118 4 2 1 1 acept not furnished 600 2300 111 31 3042\n", + "8421 Campinas 85 3 2 1 1 acept not furnished 650 1300 75 17 2042\n", + "8422 São Paulo 380 4 4 3 - acept furnished 0 7500 0 113 7613\n", + "8423 Belo Horizonte 55 2 1 1 1 acept not furnished 250 1200 83 16 1549\n", + "8424 São Paulo 109 3 2 1 2 acept not furnished 1450 5300 0 68 6818\n", + "8425 Belo Horizonte 758 5 4 5 3 acept not furnished 7630 15000 2752 200 25580\n", + "8426 Belo Horizonte 300 4 3 3 - acept not furnished 0 6290 519 104 6913\n", + "8427 Belo Horizonte 72 2 3 0 1 acept furnished 826 2400 220 32 3478\n", + "8428 Belo Horizonte 148 4 3 2 12 acept not furnished 1886 5500 399 74 7859\n", + "8429 Porto Alegre 75 2 1 0 9 acept not furnished 450 1000 34 15 1499\n", + "8430 Rio de Janeiro 68 2 2 1 7 not acept not furnished 655 1100 42 15 1812\n", + "8431 São Paulo 64 2 2 2 8 not acept not furnished 800 2100 59 27 2986\n", + "8432 Belo Horizonte 206 4 3 2 4 acept not furnished 1530 6500 565 87 8682\n", + "8433 São Paulo 320 3 4 3 8 acept not furnished 3400 6800 1 87 10290\n", + "8434 Rio de Janeiro 116 3 3 2 2 not acept not furnished 557 2500 230 33 3320\n", + "8435 Campinas 560 7 7 8 - acept not furnished 0 9000 911 136 10050\n", + "8436 São Paulo 320 4 3 4 5 acept not furnished 3000 5200 292 66 8558\n", + "8437 Rio de Janeiro 55 1 1 1 1 acept furnished 2750 2400 635 31 5816\n", + "8438 São Paulo 85 2 2 0 8 acept furnished 850 4900 0 63 5813\n", + "8439 São Paulo 100 2 2 1 6 not acept not furnished 1000 2690 8 35 3733\n", + "8440 São Paulo 400 5 5 5 - acept not furnished 0 6400 2500 97 8997\n", + "8441 Porto Alegre 220 3 2 2 - acept not furnished 0 2600 53 47 2700\n", + "8442 Rio de Janeiro 80 2 2 0 6 acept furnished 810 2000 289 26 3125\n", + "8443 Campinas 66 1 1 2 2 acept not furnished 577 1600 41 21 2239\n", + "8444 Porto Alegre 80 2 2 1 12 acept not furnished 500 2000 0 30 2530\n", + "8445 São Paulo 260 5 4 4 12 acept not furnished 3400 11000 1400 140 15940\n", + "8446 São Paulo 450 4 5 6 - not acept furnished 0 9000 1150 136 10290\n", + "8447 Porto Alegre 88 2 2 1 3 acept not furnished 550 2100 800 31 3481\n", + "8448 Campinas 157 3 5 3 1 acept not furnished 2300 7000 442 89 9831\n", + "8449 São Paulo 129 3 5 0 14 acept not furnished 1200 6000 561 77 7838\n", + "8450 São Paulo 23 1 1 1 26 acept not furnished 472 2300 59 30 2861\n", + "8451 São Paulo 692 5 6 5 - acept not furnished 4500 15000 1667 226 21390\n", + "8452 São Paulo 310 3 4 3 8 acept not furnished 2400 4500 900 58 7858\n", + "8453 Porto Alegre 215 3 4 2 1 acept not furnished 1900 3600 300 53 5853\n", + "8454 São Paulo 250 3 4 2 - acept not furnished 0 4200 192 64 4456\n", + "8455 São Paulo 140 3 2 2 13 not acept not furnished 1475 2000 171 26 3672\n", + "8456 São Paulo 100 1 1 0 - not acept not furnished 0 950 0 15 965\n", + "8457 Campinas 47 2 1 1 2 acept not furnished 253 1200 20 16 1489\n", + "8458 Campinas 48 2 1 1 - acept not furnished 250 1200 40 16 1506\n", + "8459 São Paulo 71 2 3 2 13 not acept not furnished 500 3700 50 47 4297\n", + "8460 São Paulo 70 2 1 2 - not acept not furnished 0 1400 85 22 1507\n", + "8461 São Paulo 67 2 1 1 3 not acept not furnished 722 2600 198 33 3553\n", + "8462 São Paulo 120 3 2 1 - acept not furnished 0 1850 84 28 1962\n", + "8463 São Paulo 465 5 5 2 - acept furnished 0 8960 1500 135 10600\n", + "8464 Rio de Janeiro 120 3 2 0 5 acept furnished 981 5000 168 65 6214\n", + "8465 São Paulo 92 2 1 0 9 not acept not furnished 935 1790 0 23 2748\n", + "8466 Porto Alegre 78 3 2 2 6 acept furnished 720 3500 169 52 4441\n", + "8467 Campinas 60 2 1 1 3 acept not furnished 200 1100 84 14 1398\n", + "8468 São Paulo 100 3 1 1 10 acept not furnished 700 1400 0 18 2118\n", + "8469 São Paulo 87 2 3 2 16 not acept not furnished 541 5700 216 73 6530\n", + "8470 São Paulo 160 2 2 4 - acept not furnished 0 2975 117 45 3137\n", + "8471 São Paulo 100 2 3 2 7 acept furnished 1110 4000 375 51 5536\n", + "8472 São Paulo 52 2 1 1 3 acept not furnished 403 1300 10 17 1730\n", + "8473 São Paulo 109 4 2 2 13 acept not furnished 1156 6500 319 83 8058\n", + "8474 Rio de Janeiro 26 1 1 0 8 not acept not furnished 305 1280 0 17 1602\n", + "8475 São Paulo 270 4 5 2 4 acept not furnished 4300 5500 1115 70 10990\n", + "8476 Belo Horizonte 208 3 4 3 - acept not furnished 0 6000 338 99 6437\n", + "8477 Belo Horizonte 20 1 1 1 1 not acept not furnished 0 1000 0 14 1014\n", + "8478 São Paulo 50 2 1 1 5 acept furnished 505 1100 11 14 1630\n", + "8479 Rio de Janeiro 138 2 1 0 3 acept not furnished 810 1000 175 13 1998\n", + "8480 Campinas 58 2 2 2 8 not acept furnished 347 3500 0 45 3892\n", + "8481 São Paulo 198 3 4 3 13 acept furnished 2699 8000 917 102 11720\n", + "8482 São Paulo 115 4 4 3 2 acept not furnished 2600 4000 417 51 7068\n", + "8483 Rio de Janeiro 128 3 3 2 3 acept not furnished 2300 13000 726 168 16190\n", + "8484 São Paulo 66 1 1 0 6 acept not furnished 532 3000 75 39 3646\n", + "8485 São Paulo 234 3 5 3 17 not acept furnished 2750 14000 1334 178 18260\n", + "8486 São Paulo 380 4 4 6 - acept not furnished 0 6000 417 91 6508\n", + "8487 São Paulo 113 2 1 1 5 acept not furnished 1000 3000 50 39 4089\n", + "8488 São Paulo 160 3 3 2 - acept not furnished 0 2500 192 38 2730\n", + "8489 Rio de Janeiro 80 2 1 0 3 not acept not furnished 450 1100 0 15 1565\n", + "8490 São Paulo 33 2 1 0 - not acept not furnished 0 980 0 15 995\n", + "8491 Porto Alegre 50 2 1 1 1 not acept not furnished 100 1500 0 22 1622\n", + "8492 Rio de Janeiro 65 1 1 0 4 acept not furnished 350 2200 30 29 2609\n", + "8493 São Paulo 40 1 1 0 - acept not furnished 0 850 34 13 897\n", + "8494 São Paulo 261 3 4 4 7 acept not furnished 2700 15000 834 191 18730\n", + "8495 Belo Horizonte 50 2 1 1 4 acept not furnished 158 1140 0 16 1314\n", + "8496 Porto Alegre 281 4 4 2 5 acept not furnished 1300 3500 410 52 5262\n", + "8497 São Paulo 119 2 1 1 - not acept not furnished 0 1700 84 26 1810\n", + "8498 Belo Horizonte 52 2 1 1 6 acept not furnished 370 1000 111 14 1495\n", + "8499 Porto Alegre 40 1 1 0 2 not acept not furnished 282 850 43 13 1188\n", + "8500 Porto Alegre 47 1 1 0 3 acept not furnished 300 800 21 12 1133\n", + "8501 Porto Alegre 35 1 1 0 5 acept not furnished 330 1000 20 15 1365\n", + "8502 São Paulo 40 1 1 0 - not acept not furnished 0 700 59 11 770\n", + "8503 Belo Horizonte 55 2 1 1 3 acept not furnished 170 750 0 10 930\n", + "8504 Rio de Janeiro 72 2 1 1 10 acept not furnished 870 1200 150 16 2236\n", + "8505 Porto Alegre 30 1 1 0 4 acept not furnished 360 600 17 9 986\n", + "8506 Rio de Janeiro 57 1 1 1 2 acept not furnished 2900 11500 959 149 15510\n", + "8507 São Paulo 70 1 1 1 - not acept not furnished 0 1100 0 17 1117\n", + "8508 São Paulo 63 2 2 1 20 acept not furnished 784 4500 136 58 5478\n", + "8509 São Paulo 220 3 4 3 11 acept furnished 3300 8000 1000 102 12400\n", + "8510 São Paulo 126 4 3 4 - acept not furnished 0 3300 167 50 3517\n", + "8511 Porto Alegre 147 2 3 2 2 acept furnished 400 7900 75 116 8491\n", + "8512 São Paulo 70 3 2 1 10 not acept furnished 500 1940 77 25 2542\n", + "8513 São Paulo 99 2 1 1 14 acept not furnished 800 1800 0 23 2623\n", + "8514 Rio de Janeiro 90 3 1 0 2 acept not furnished 250 1500 140 20 1910\n", + "8515 Rio de Janeiro 100 2 1 0 1 not acept not furnished 360 1700 2 22 2084\n", + "8516 Rio de Janeiro 48 1 1 0 6 acept furnished 410 1300 25 17 1752\n", + "8517 Belo Horizonte 247 4 5 4 15 acept furnished 2795 12500 1458 167 16920\n", + "8518 São Paulo 443 5 5 4 3 acept furnished 4172 7000 1417 89 12680\n", + "8519 Rio de Janeiro 200 2 3 2 1 acept not furnished 2500 5200 250 68 8018\n", + "8520 Belo Horizonte 360 4 3 4 - not acept not furnished 0 6500 181 107 6788\n", + "8521 São Paulo 20 1 1 0 - acept furnished 602 1800 130 23 2555\n", + "8522 Rio de Janeiro 90 3 2 0 3 acept not furnished 1200 2570 242 34 4046\n", + "8523 São Paulo 297 4 4 6 - acept not furnished 0 3000 392 46 3438\n", + "8524 Porto Alegre 180 3 3 2 3 acept not furnished 700 2700 175 40 3615\n", + "8525 São Paulo 54 1 2 1 13 acept furnished 1150 6000 0 77 7227\n", + "8526 Porto Alegre 90 2 2 1 3 not acept not furnished 400 2500 80 37 3017\n", + "8527 Campinas 105 3 3 2 12 acept not furnished 1150 2300 208 30 3688\n", + "8528 Porto Alegre 67 2 1 1 8 not acept furnished 600 2500 96 37 3233\n", + "8529 Campinas 45 1 1 0 1 acept not furnished 0 770 34 10 814\n", + "8530 Belo Horizonte 33 1 1 1 3 acept not furnished 170 1600 9 22 1801\n", + "8531 São Paulo 45 1 1 0 2 not acept not furnished 160 620 15 8 803\n", + "8532 Porto Alegre 127 3 3 0 5 acept not furnished 1295 1125 209 17 2646\n", + "8533 São Paulo 120 3 3 2 1 acept furnished 1100 8950 0 114 10160\n", + "8534 São Paulo 75 2 1 1 13 acept not furnished 600 1880 16 24 2520\n", + "8535 São Paulo 220 3 2 3 - acept furnished 0 7800 215 118 8133\n", + "8536 São Paulo 50 1 1 1 17 not acept furnished 750 5000 0 64 5814\n", + "8537 Porto Alegre 115 3 2 1 3 acept not furnished 900 2500 250 37 3687\n", + "8538 Campinas 75 2 2 1 3 acept not furnished 706 2400 75 31 3212\n", + "8539 Rio de Janeiro 65 2 2 0 - not acept not furnished 0 1305 0 20 1325\n", + "8540 Rio de Janeiro 39 1 1 0 2 not acept furnished 800 2300 98 30 3228\n", + "8541 São Paulo 200 2 3 2 - acept not furnished 0 4000 196 61 4257\n", + "8542 São Paulo 72 2 1 0 14 acept not furnished 600 2560 0 33 3193\n", + "8543 Rio de Janeiro 108 2 2 1 7 not acept furnished 1300 4500 350 58 6208\n", + "8544 São Paulo 32 1 1 1 1 acept furnished 700 4500 128 58 5386\n", + "8545 São Paulo 106 3 2 1 8 not acept not furnished 980 3200 260 41 4481\n", + "8546 Belo Horizonte 70 3 1 1 4 acept not furnished 240 1100 100 15 1455\n", + "8547 Rio de Janeiro 120 3 2 1 2 acept furnished 2000 4500 325 58 6883\n", + "8548 Campinas 55 1 1 0 4 acept not furnished 490 500 37 7 1034\n", + "8549 São Paulo 100 3 1 0 5 acept not furnished 900 1617 0 7 2524\n", + "8550 São Paulo 162 2 2 1 12 acept furnished 1420 5000 0 64 6484\n", + "8551 São Paulo 75 2 1 1 2 acept not furnished 710 1700 18 22 2450\n", + "8552 Campinas 44 1 1 0 7 acept not furnished 260 670 12 9 951\n", + "8553 São Paulo 130 2 2 2 11 not acept not furnished 2200 7500 780 96 10580\n", + "8554 Campinas 147 4 3 1 - acept not furnished 0 3500 62 53 3615\n", + "8555 Porto Alegre 70 2 1 0 - acept not furnished 360 1150 15 17 1542\n", + "8556 Porto Alegre 64 2 2 2 5 acept not furnished 410 2300 50 34 2794\n", + "8557 Rio de Janeiro 180 4 3 1 5 not acept not furnished 1683 4000 482 52 6217\n", + "8558 Porto Alegre 42 2 1 0 1 acept not furnished 360 1200 100 18 1678\n", + "8559 São Paulo 117 3 3 1 13 acept not furnished 1500 4620 300 59 6479\n", + "8560 Rio de Janeiro 180 3 4 2 7 acept furnished 1210 15000 369 194 16770\n", + "8561 São Paulo 65 3 2 1 10 not acept not furnished 587 3250 113 42 3992\n", + "8562 São Paulo 29 1 1 0 1 not acept furnished 250 1720 99 22 2091\n", + "8563 São Paulo 600 4 6 3 - acept furnished 200 12000 817 181 13200\n", + "8564 São Paulo 145 3 3 1 10 acept furnished 1380 11000 375 140 12900\n", + "8565 São Paulo 310 4 4 4 21 acept not furnished 4700 14000 1751 178 20630\n", + "8566 Belo Horizonte 260 4 4 3 8 not acept not furnished 1665 5250 440 70 7425\n", + "8567 São Paulo 320 3 3 2 10 acept not furnished 2200 8330 584 106 11220\n", + "8568 Belo Horizonte 70 3 1 1 3 acept not furnished 180 980 0 14 1174\n", + "8569 Rio de Janeiro 35 1 1 0 3 acept not furnished 320 800 0 11 1131\n", + "8570 Porto Alegre 320 3 4 4 - acept not furnished 0 4950 234 88 5272\n", + "8571 Porto Alegre 82 2 2 2 6 acept not furnished 280 2800 92 41 3213\n", + "8572 São Paulo 62 2 2 1 2 acept furnished 800 2580 84 33 3497\n", + "8573 Porto Alegre 60 3 1 0 3 acept not furnished 265 1550 31 23 1869\n", + "8574 Porto Alegre 78 3 2 0 8 acept not furnished 350 1700 61 25 2136\n", + "8575 São Paulo 385 4 5 6 3 acept not furnished 4200 7000 2410 89 13700\n", + "8576 Porto Alegre 214 3 3 2 4 acept not furnished 2500 3500 500 52 6552\n", + "8577 São Paulo 233 4 5 4 7 acept furnished 3240 11000 92 140 14470\n", + "8578 Rio de Janeiro 60 2 1 1 8 acept not furnished 700 1500 50 20 2270\n", + "8579 Belo Horizonte 22 1 1 0 3 not acept furnished 420 1300 75 18 1813\n", + "8580 Rio de Janeiro 100 2 3 0 1 acept not furnished 0 1700 130 22 1852\n", + "8581 São Paulo 90 2 1 1 2 acept not furnished 1000 3000 50 39 4089\n", + "8582 Rio de Janeiro 60 2 2 0 4 not acept not furnished 560 2500 83 33 3176\n", + "8583 São Paulo 22 1 1 0 25 acept not furnished 385 2100 40 27 2552\n", + "8584 Porto Alegre 80 2 1 0 - acept furnished 0 1610 0 24 1634\n", + "8585 São Paulo 110 3 4 3 8 acept not furnished 1364 2200 403 28 3995\n", + "8586 Rio de Janeiro 120 2 2 1 14 acept not furnished 858 800 18 11 1687\n", + "8587 Belo Horizonte 193 3 3 1 - acept not furnished 0 13500 236 222 13960\n", + "8588 São Paulo 55 2 1 1 4 acept not furnished 400 1460 0 19 1879\n", + "8589 Rio de Janeiro 165 3 3 1 5 acept furnished 2000 7000 420 91 9511\n", + "8590 Porto Alegre 46 1 1 2 7 acept not furnished 690 2400 98 36 3224\n", + "8591 Rio de Janeiro 55 2 1 0 1 acept not furnished 450 2200 0 29 2679\n", + "8592 São Paulo 150 2 2 1 - acept not furnished 0 2954 1 45 3000\n", + "8593 São Paulo 57 1 1 0 8 acept furnished 300 6000 17 77 6394\n", + "8594 Rio de Janeiro 160 3 2 1 3 acept furnished 2000 6700 367 87 9154\n", + "8595 São Paulo 200 4 4 2 9 acept furnished 3700 7000 850 89 11640\n", + "8596 Campinas 60 1 2 1 10 acept not furnished 630 1338 72 17 2057\n", + "8597 São Paulo 180 3 2 1 11 acept furnished 2900 4500 500 58 7958\n", + "8598 São Paulo 62 1 1 0 3 acept not furnished 550 2100 0 27 2677\n", + "8599 Rio de Janeiro 90 3 2 1 12 acept furnished 1000 3400 275 44 4719\n", + "8600 Rio de Janeiro 35 1 1 0 3 not acept furnished 585 2300 92 30 3007\n", + "8601 São Paulo 95 2 1 1 8 acept not furnished 1226 3200 92 41 4559\n", + "8602 São Paulo 320 5 5 4 4 acept not furnished 5800 5500 1500 70 12870\n", + "8603 Rio de Janeiro 127 3 2 2 4 acept not furnished 836 1700 124 22 2682\n", + "8604 São Paulo 210 3 2 2 11 acept furnished 2600 5000 417 64 8081\n", + "8605 São Paulo 160 4 3 2 20 acept furnished 1260 5600 334 71 7265\n", + "8606 São Paulo 273 3 2 5 - not acept not furnished 0 3355 215 51 3621\n", + "8607 São Paulo 211 4 5 4 2 acept not furnished 1543 3800 714 49 6106\n", + "8608 São Paulo 145 2 3 2 16 acept furnished 2000 10000 584 127 12710\n", + "8609 Porto Alegre 92 2 2 1 6 acept not furnished 450 1900 67 28 2445\n", + "8610 Campinas 70 2 3 1 7 acept not furnished 1196 2004 0 26 3226\n", + "8611 Campinas 254 3 4 2 - acept not furnished 0 3000 251 46 3297\n", + "8612 São Paulo 350 4 4 2 4 not acept not furnished 3000 6000 1316 77 10390\n", + "8613 São Paulo 55 1 1 0 13 acept not furnished 400 1177 0 15 1592\n", + "8614 São Paulo 80 3 2 2 5 acept not furnished 1045 2400 227 31 3703\n", + "8615 São Paulo 280 3 3 4 21 acept not furnished 2498 4500 1116 58 8172\n", + "8616 São Paulo 100 3 1 0 3 acept not furnished 0 1970 0 25 1995\n", + "8617 Rio de Janeiro 98 3 2 1 2 acept not furnished 1379 6000 239 78 7696\n", + "8618 São Paulo 85 2 3 1 14 acept not furnished 709 3300 94 42 4145\n", + "8619 São Paulo 78 2 2 2 1 not acept furnished 450 3500 155 45 4150\n", + "8620 São Paulo 58 2 1 1 6 acept not furnished 770 1800 75 23 2668\n", + "8621 Rio de Janeiro 50 1 1 1 3 acept not furnished 2208 2300 420 30 4958\n", + "8622 São Paulo 30 1 1 0 14 acept not furnished 400 1600 0 21 2021\n", + "8623 São Paulo 75 2 1 1 4 acept furnished 2065 6000 600 77 8742\n", + "8624 Campinas 350 4 6 6 - acept not furnished 1200 7330 55 111 8696\n", + "8625 São Paulo 136 3 4 3 2 acept not furnished 1490 2800 500 36 4826\n", + "8626 São Paulo 290 3 3 3 - acept not furnished 0 8000 542 121 8663\n", + "8627 São Paulo 99 2 2 2 4 acept not furnished 590 4000 122 51 4763\n", + "8628 Porto Alegre 750 5 3 6 - not acept furnished 0 7980 46 142 8168\n", + "8629 São Paulo 110 2 2 1 - acept not furnished 0 3500 125 53 3678\n", + "8630 Porto Alegre 340 2 3 2 5 acept not furnished 1500 4000 317 59 5876\n", + "8631 São Paulo 178 2 1 1 9 not acept not furnished 2900 3440 0 44 6384\n", + "8632 Belo Horizonte 28 1 1 1 - not acept furnished 550 1250 0 17 1817\n", + "8633 Belo Horizonte 38 1 1 0 2 not acept not furnished 0 1300 0 18 1318\n", + "8634 Porto Alegre 254 3 4 2 - acept not furnished 0 6150 200 110 6460\n", + "8635 Porto Alegre 51 2 1 1 6 acept not furnished 200 1050 75 16 1341\n", + "8636 São Paulo 134 3 3 2 18 acept furnished 900 3500 390 45 4835\n", + "8637 São Paulo 38 1 1 1 16 acept not furnished 450 2170 59 28 2707\n", + "8638 São Paulo 400 4 5 3 - not acept not furnished 0 15000 0 191 15190\n", + "8639 Rio de Janeiro 136 3 2 2 7 acept furnished 2470 8000 558 104 11130\n", + "8640 São Paulo 250 4 5 2 17 acept furnished 2000 12000 9 153 14160\n", + "8641 Campinas 94 2 2 2 3 acept not furnished 890 4000 165 51 5106\n", + "8642 Rio de Janeiro 62 2 2 1 5 acept furnished 585 1750 38 23 2396\n", + "8643 São Paulo 80 2 2 1 - acept furnished 0 2540 65 39 2644\n", + "8644 Campinas 89 3 1 1 5 not acept not furnished 820 2050 150 26 3046\n", + "8645 Campinas 51 2 1 0 2 acept not furnished 271 980 21 13 1285\n", + "8646 São Paulo 40 1 1 1 19 not acept furnished 420 3899 208 50 4577\n", + "8647 Porto Alegre 47 1 1 1 3 not acept furnished 400 2200 0 33 2633\n", + "8648 São Paulo 210 3 5 3 2 acept furnished 1900 3800 0 49 5749\n", + "8649 São Paulo 230 4 4 4 1 acept furnished 2300 13500 1084 172 17060\n", + "8650 São Paulo 70 2 2 1 5 acept not furnished 495 2450 59 32 3036\n", + "8651 Porto Alegre 117 3 1 1 3 acept not furnished 258 1550 100 23 1931\n", + "8652 Belo Horizonte 54 2 2 0 18 acept not furnished 400 1100 0 15 1515\n", + "8653 São Paulo 105 2 1 0 - acept not furnished 0 1800 125 28 1953\n", + "8654 Rio de Janeiro 47 2 2 0 5 acept furnished 990 4210 158 55 5413\n", + "8655 São Paulo 120 3 1 0 2 acept not furnished 200 2100 167 27 2494\n", + "8656 Rio de Janeiro 284 4 6 2 5 acept furnished 3300 11420 567 148 15440\n", + "8657 São Paulo 58 2 1 1 4 not acept furnished 636 2493 80 9 3218\n", + "8658 Porto Alegre 95 2 1 1 3 acept not furnished 300 2800 69 41 3210\n", + "8659 Rio de Janeiro 65 2 1 0 - acept not furnished 0 1000 47 16 1063\n", + "8660 Porto Alegre 188 3 4 2 - acept furnished 650 3800 0 68 4518\n", + "8661 Belo Horizonte 21 1 1 0 20 not acept not furnished 160 850 60 12 1082\n", + "8662 São Paulo 65 2 2 1 13 not acept furnished 700 3200 0 41 3941\n", + "8663 Rio de Janeiro 50 2 1 0 9 acept furnished 620 1660 42 22 2344\n", + "8664 São Paulo 150 4 3 3 - acept not furnished 0 7500 109 113 7722\n", + "8665 Porto Alegre 90 3 3 1 1 acept not furnished 320 2500 91 37 2948\n", + "8666 Belo Horizonte 400 3 3 6 - acept not furnished 1200 7200 218 119 8737\n", + "8667 Campinas 64 2 2 2 9 acept not furnished 460 1964 134 8 2566\n", + "8668 São Paulo 80 2 1 1 2 not acept not furnished 315 2156 0 28 2499\n", + "8669 São Paulo 300 3 5 4 12 not acept not furnished 6593 6000 1974 77 14640\n", + "8670 São Paulo 240 3 3 2 - acept furnished 0 3840 152 58 4050\n", + "8671 São Paulo 50 2 1 1 7 not acept furnished 465 1357 0 6 1828\n", + "8672 São Paulo 820 4 4 6 - acept not furnished 2500 13000 2500 196 18200\n", + "8673 Porto Alegre 58 1 1 1 4 acept furnished 350 2300 139 34 2823\n", + "8674 São Paulo 230 3 2 2 7 acept not furnished 1773 1965 441 25 4204\n", + "8675 Porto Alegre 43 1 1 1 21 acept furnished 888 2450 107 36 3481\n", + "8676 São Paulo 280 6 6 3 - acept not furnished 0 5000 1118 76 6194\n", + "8677 São Paulo 54 2 1 1 1 acept furnished 650 1350 0 18 2018\n", + "8678 Belo Horizonte 200 6 2 1 - acept not furnished 0 3400 134 56 3590\n", + "8679 São Paulo 360 3 5 6 17 acept not furnished 7552 3000 4830 39 15420\n", + "8680 São Paulo 650 5 8 7 - acept furnished 0 15000 2667 226 17890\n", + "8681 Porto Alegre 38 1 1 0 1 acept not furnished 300 850 34 13 1197\n", + "8682 Belo Horizonte 373 4 5 5 7 acept not furnished 2601 15000 188 200 17990\n", + "8683 Porto Alegre 47 1 1 1 1 not acept furnished 400 2200 0 33 2633\n", + "8684 São Paulo 133 3 2 2 - acept not furnished 0 4300 255 65 4620\n", + "8685 Belo Horizonte 150 4 2 2 1 acept not furnished 1357 3700 211 50 5318\n", + "8686 Campinas 80 3 2 1 3 acept not furnished 430 1200 74 16 1720\n", + "8687 São Paulo 129 4 2 3 2 acept furnished 1100 5500 520 70 7190\n", + "8688 São Paulo 275 3 5 6 - acept furnished 0 13000 500 196 13700\n", + "8689 Rio de Janeiro 44 1 1 0 4 acept not furnished 632 1700 86 22 2440\n", + "8690 Belo Horizonte 60 1 2 1 5 acept not furnished 750 1900 163 26 2839\n", + "8691 Belo Horizonte 170 3 4 4 13 acept not furnished 1978 8000 759 107 10840\n", + "8692 São Paulo 40 1 1 2 5 acept not furnished 915 1559 169 20 2663\n", + "8693 Belo Horizonte 200 4 4 4 4 acept not furnished 2500 4100 963 55 7618\n", + "8694 São Paulo 170 4 4 3 11 acept not furnished 2500 2499 870 32 5901\n", + "8695 São Paulo 200 5 3 2 1 acept not furnished 1480 9000 259 115 10850\n", + "8696 São Paulo 31 1 1 0 3 not acept furnished 371 1900 0 25 2296\n", + "8697 Porto Alegre 135 3 2 1 8 acept not furnished 1300 2165 209 32 3706\n", + "8698 São Paulo 400 3 3 1 3 acept not furnished 3000 11000 142 140 14280\n", + "8699 Porto Alegre 70 2 1 0 - acept not furnished 320 1200 65 18 1603\n", + "8700 São Paulo 64 1 1 0 9 acept not furnished 500 1750 0 23 2273\n", + "8701 Rio de Janeiro 73 2 1 1 4 acept not furnished 625 1200 119 16 1960\n", + "8702 São Paulo 240 3 4 3 9 acept not furnished 3211 5100 1102 65 9478\n", + "8703 São Paulo 115 2 1 1 - acept not furnished 0 1750 134 27 1911\n", + "8704 São Paulo 400 3 4 3 - acept not furnished 0 10000 1189 151 11340\n", + "8705 São Paulo 147 4 2 0 8 acept not furnished 1150 2800 258 36 4244\n", + "8706 Belo Horizonte 58 2 1 1 1 acept not furnished 500 750 80 10 1340\n", + "8707 Campinas 92 3 2 2 8 acept not furnished 700 2000 145 26 2871\n", + "8708 São Paulo 330 3 6 4 - acept not furnished 0 8500 856 128 9484\n", + "8709 Porto Alegre 60 2 1 0 2 acept not furnished 389 850 320 13 1572\n", + "8710 São Paulo 240 4 5 4 5 acept not furnished 3000 6000 834 77 9911\n", + "8711 Porto Alegre 38 1 1 0 2 acept not furnished 335 800 43 12 1190\n", + "8712 São Paulo 141 3 2 2 11 acept not furnished 2200 6900 450 88 9638\n", + "8713 Porto Alegre 43 1 1 1 17 not acept furnished 1050 2790 120 41 4001\n", + "8714 Porto Alegre 62 2 1 0 4 acept not furnished 282 940 38 14 1274\n", + "8715 Campinas 50 2 1 1 4 not acept not furnished 250 1500 35 20 1805\n", + "8716 Porto Alegre 75 2 1 1 7 acept not furnished 350 1200 34 18 1602\n", + "8717 São Paulo 180 3 2 1 - acept not furnished 0 5400 459 82 5941\n", + "8718 Campinas 33 1 1 0 11 not acept not furnished 290 600 10 8 908\n", + "8719 São Paulo 580 6 6 8 - acept not furnished 0 10000 2800 151 12950\n", + "8720 São Paulo 136 3 3 2 1 not acept not furnished 1680 3200 525 41 5446\n", + "8721 São Paulo 238 4 4 3 1 not acept not furnished 2765 5000 1220 64 9049\n", + "8722 São Paulo 109 3 2 2 20 acept furnished 1200 4500 417 58 6175\n", + "8723 São Paulo 90 2 1 0 - acept not furnished 0 2400 170 37 2607\n", + "8724 Porto Alegre 171 2 2 1 2 acept not furnished 1000 2200 200 33 3433\n", + "8725 São Paulo 40 1 1 0 16 acept not furnished 580 1105 0 14 1699\n", + "8726 Campinas 119 3 2 2 7 acept not furnished 1650 1200 212 16 3078\n", + "8727 Belo Horizonte 330 5 7 5 10 acept not furnished 1030 4800 973 64 6867\n", + "8728 São Paulo 60 1 1 1 2 acept furnished 1072 4600 115 59 5846\n", + "8729 São Paulo 118 3 2 1 4 acept furnished 1800 6000 22 77 7899\n", + "8730 São Paulo 134 2 2 1 7 not acept furnished 1493 3400 239 44 5176\n", + "8731 São Paulo 280 3 4 1 - acept not furnished 1 3700 100 56 3857\n", + "8732 São Paulo 120 3 2 1 - acept not furnished 0 1800 109 28 1937\n", + "8733 São Paulo 288 4 6 4 1 acept not furnished 3634 4200 1155 54 9043\n", + "8734 São Paulo 180 3 3 2 11 acept not furnished 1300 4000 409 51 5760\n", + "8735 São Paulo 43 1 1 1 6 acept not furnished 500 3000 11 39 3550\n", + "8736 São Paulo 57 1 1 0 7 acept furnished 300 6000 17 77 6394\n", + "8737 São Paulo 200 3 3 0 - acept not furnished 0 4500 71 68 4639\n", + "8738 São Paulo 96 3 3 0 6 acept not furnished 470 3572 30 46 4118\n", + "8739 São Paulo 320 4 5 4 - acept not furnished 300 6500 417 98 7315\n", + "8740 Belo Horizonte 110 3 2 2 1 acept not furnished 380 2150 192 29 2751\n", + "8741 São Paulo 35 1 1 1 11 not acept furnished 444 3290 124 42 3900\n", + "8742 São Paulo 270 4 5 6 - acept not furnished 0 11000 400 166 11570\n", + "8743 São Paulo 85 2 1 1 1 not acept not furnished 539 1200 74 16 1829\n", + "8744 São Paulo 60 2 2 1 14 acept furnished 600 3000 209 39 3848\n", + "8745 São Paulo 550 4 5 5 - acept not furnished 0 5000 875 76 5951\n", + "8746 São Paulo 45 1 1 0 11 not acept not furnished 413 3800 81 49 4343\n", + "8747 São Paulo 130 3 2 2 - acept not furnished 0 5100 183 77 5360\n", + "8748 Rio de Janeiro 50 1 1 0 1 acept not furnished 250 800 0 11 1061\n", + "8749 São Paulo 55 2 1 1 3 acept not furnished 800 1800 42 23 2665\n", + "8750 Porto Alegre 47 1 1 1 1 not acept furnished 400 2200 0 33 2633\n", + "8751 Belo Horizonte 192 4 3 3 2 acept furnished 412 2400 196 32 3040\n", + "8752 São Paulo 70 2 2 2 3 acept not furnished 700 1800 59 23 2582\n", + "8753 Porto Alegre 78 2 1 0 1 acept not furnished 280 1480 32 22 1814\n", + "8754 Porto Alegre 45 1 1 1 1 acept not furnished 320 900 84 14 1318\n", + "8755 Belo Horizonte 250 2 2 1 - acept not furnished 15 900 67 15 997\n", + "8756 Rio de Janeiro 90 3 1 0 18 acept furnished 500 2240 42 29 2811\n", + "8757 Rio de Janeiro 186 3 4 2 5 acept not furnished 3000 13000 475 168 16640\n", + "8758 São Paulo 33 1 1 0 14 acept not furnished 500 3999 0 51 4550\n", + "8759 Porto Alegre 250 5 4 5 - acept not furnished 0 4300 84 77 4461\n", + "8760 Rio de Janeiro 30 1 1 0 4 not acept not furnished 307 1750 79 23 2159\n", + "8761 Rio de Janeiro 106 3 1 0 2 acept not furnished 380 2000 80 26 2486\n", + "8762 São Paulo 72 2 2 1 1 acept furnished 466 3000 93 39 3598\n", + "8763 São Paulo 90 2 1 1 1 acept not furnished 1000 3000 50 39 4089\n", + "8764 São Paulo 102 3 2 1 10 acept not furnished 950 3315 75 42 4382\n", + "8765 São Paulo 126 3 3 2 7 not acept not furnished 2500 2500 317 32 5349\n", + "8766 São Paulo 220 3 2 1 - acept not furnished 0 5000 500 76 5576\n", + "8767 Porto Alegre 42 1 1 1 13 acept not furnished 500 2300 50 34 2884\n", + "8768 São Paulo 69 2 1 1 6 acept not furnished 600 1600 0 21 2221\n", + "8769 São Paulo 50 2 1 1 24 acept not furnished 380 1490 0 19 1889\n", + "8770 São Paulo 120 4 3 2 8 acept not furnished 2010 2210 334 28 4582\n", + "8771 São Paulo 160 3 3 3 10 acept furnished 1850 3500 63 45 5458\n", + "8772 São Paulo 31 1 1 0 1 acept furnished 550 2900 0 37 3487\n", + "8773 São Paulo 70 3 1 1 8 acept not furnished 523 1100 0 14 1637\n", + "8774 São Paulo 37 1 1 1 8 acept furnished 490 4000 90 51 4631\n", + "8775 São Paulo 63 1 1 1 9 not acept furnished 1283 7400 286 94 9063\n", + "8776 Rio de Janeiro 57 2 1 0 7 acept not furnished 430 1500 54 20 2004\n", + "8777 São Paulo 400 3 2 3 - acept not furnished 0 5500 1084 83 6667\n", + "8778 São Paulo 370 4 5 6 17 acept not furnished 4300 14000 1900 178 20380\n", + "8779 Rio de Janeiro 255 4 3 0 6 acept not furnished 2650 4500 692 58 7900\n", + "8780 São Paulo 110 2 2 1 1 acept not furnished 1216 2700 1144 35 5095\n", + "8781 Rio de Janeiro 82 2 2 1 4 acept not furnished 1900 2400 334 31 4665\n", + "8782 Rio de Janeiro 25 1 1 1 4 acept not furnished 1850 2805 417 37 5109\n", + "8783 São Paulo 65 2 2 1 4 acept furnished 730 1750 83 23 2586\n", + "8784 Belo Horizonte 45 1 1 0 10 acept not furnished 300 800 108 11 1219\n", + "8785 Rio de Janeiro 95 2 2 2 11 acept not furnished 1450 6300 267 82 8099\n", + "8786 Rio de Janeiro 55 1 2 1 2 acept not furnished 650 1200 55 16 1921\n", + "8787 Belo Horizonte 96 3 2 2 1 acept not furnished 600 2300 294 31 3225\n", + "8788 São Paulo 72 2 1 2 5 acept furnished 600 3200 35 41 3876\n", + "8789 Belo Horizonte 44 2 1 0 4 not acept not furnished 145 895 0 12 1052\n", + "8790 Belo Horizonte 2000 3 3 2 2 acept furnished 3000 5000 200 67 8267\n", + "8791 São Paulo 49 2 1 1 16 acept not furnished 350 1500 0 20 1870\n", + "8792 São Paulo 119 3 2 1 7 acept not furnished 1011 3500 247 45 4803\n", + "8793 São Paulo 52 1 1 1 7 acept not furnished 470 2000 89 26 2585\n", + "8794 São Paulo 80 2 1 1 19 acept not furnished 740 1300 0 17 2057\n", + "8795 São Paulo 200 3 3 3 13 acept furnished 2338 5000 835 64 8237\n", + "8796 São Paulo 181 3 4 3 8 not acept furnished 2500 8000 903 102 11510\n", + "8797 Belo Horizonte 220 4 3 2 4 acept not furnished 1263 2700 269 36 4268\n", + "8798 Porto Alegre 125 3 3 1 2 acept not furnished 1070 2400 184 36 3690\n", + "8799 Campinas 55 1 1 0 1 acept not furnished 550 915 57 12 1534\n", + "8800 Porto Alegre 28 1 1 0 1 acept not furnished 99 1200 10 18 1327\n", + "8801 Porto Alegre 48 2 1 1 10 acept furnished 380 1100 27 17 1524\n", + "8802 São Paulo 222 4 3 4 15 acept not furnished 2600 6500 1000 83 10180\n", + "8803 São Paulo 138 3 3 2 - acept not furnished 0 2700 141 41 2882\n", + "8804 São Paulo 72 2 1 1 21 acept not furnished 519 1701 155 22 2397\n", + "8805 São Paulo 171 4 4 4 1 acept not furnished 2310 10000 85 127 12520\n", + "8806 Rio de Janeiro 55 1 2 1 15 acept furnished 695 2750 50 36 3531\n", + "8807 Rio de Janeiro 120 2 3 1 9 acept not furnished 1264 2600 225 34 4123\n", + "8808 São Paulo 102 3 3 2 15 acept not furnished 1100 3990 150 51 5291\n", + "8809 São Paulo 118 3 3 2 6 acept not furnished 1200 3500 534 45 5279\n", + "8810 São Paulo 55 2 1 0 2 not acept not furnished 200 1260 0 16 1476\n", + "8811 Porto Alegre 197 4 3 2 4 acept not furnished 2000 3200 325 47 5572\n", + "8812 São Paulo 49 1 1 0 - not acept not furnished 0 1350 0 21 1371\n", + "8813 Rio de Janeiro 45 1 1 0 1 not acept furnished 750 3300 249 43 4342\n", + "8814 Campinas 104 2 2 2 7 acept furnished 1100 4200 210 54 5564\n", + "8815 Campinas 73 3 2 2 17 acept not furnished 570 2400 125 31 3126\n", + "8816 Porto Alegre 55 1 1 0 2 acept furnished 320 1150 30 17 1517\n", + "8817 São Paulo 202 4 4 3 13 acept not furnished 2200 6000 1000 77 9277\n", + "8818 São Paulo 54 2 1 1 3 acept not furnished 660 1650 50 21 2381\n", + "8819 São Paulo 75 2 1 0 1 not acept not furnished 0 1200 67 16 1283\n", + "8820 Rio de Janeiro 89 3 2 0 4 acept not furnished 1100 2750 138 36 4024\n", + "8821 São Paulo 46 1 1 0 1 acept furnished 350 1800 0 23 2173\n", + "8822 São Paulo 386 4 6 4 - acept not furnished 6700 4250 667 64 11680\n", + "8823 Porto Alegre 240 3 3 1 - acept not furnished 0 4000 392 72 4464\n", + "8824 São Paulo 61 3 2 1 4 acept not furnished 550 3000 117 39 3706\n", + "8825 São Paulo 80 2 2 1 3 acept not furnished 700 2200 0 28 2928\n", + "8826 Belo Horizonte 45 2 1 1 4 acept furnished 180 1300 39 18 1537\n", + "8827 São Paulo 18 1 1 0 - acept not furnished 0 1720 0 22 1742\n", + "8828 São Paulo 30 1 1 1 14 acept furnished 350 2580 83 33 3046\n", + "8829 São Paulo 300 4 4 6 1 acept not furnished 550 3800 33 49 4432\n", + "8830 São Paulo 69 1 1 1 8 acept not furnished 857 1200 100 16 2173\n", + "8831 Campinas 157 3 2 2 15 acept not furnished 1290 2200 208 28 3726\n", + "8832 Rio de Janeiro 30 1 1 0 3 acept not furnished 314 700 0 10 1024\n", + "8833 Belo Horizonte 32 1 1 0 9 not acept not furnished 300 1000 100 14 1414\n", + "8834 Belo Horizonte 83 3 2 2 6 acept not furnished 468 1600 130 22 2220\n", + "8835 São Paulo 55 2 2 2 3 acept not furnished 780 2001 142 26 2949\n", + "8836 São Paulo 70 1 1 1 3 acept not furnished 1000 2500 150 32 3682\n", + "8837 São Paulo 20 1 1 0 1 not acept furnished 150 3142 67 40 3399\n", + "8838 Belo Horizonte 298 4 2 3 - acept not furnished 0 3044 186 50 3280\n", + "8839 Belo Horizonte 90 3 2 1 1 acept not furnished 280 1300 100 18 1698\n", + "8840 São Paulo 147 2 2 1 8 acept not furnished 1400 4000 314 51 5765\n", + "8841 São Paulo 48 1 1 1 - acept not furnished 0 2000 0 26 2026\n", + "8842 São Paulo 32 1 1 1 9 not acept furnished 1500 3400 150 44 5094\n", + "8843 São Paulo 195 4 2 3 15 acept not furnished 1475 2500 307 32 4314\n", + "8844 Campinas 350 4 3 4 - not acept not furnished 500 6000 500 91 7091\n", + "8845 São Paulo 74 2 1 0 2 not acept not furnished 1 2500 1 32 2534\n", + "8846 São Paulo 130 3 2 2 1 not acept not furnished 1324 3250 571 42 5187\n", + "8847 Campinas 60 2 3 0 1 not acept furnished 938 1940 0 25 2903\n", + "8848 Belo Horizonte 55 2 1 1 9 not acept not furnished 655 1300 119 18 2092\n", + "8849 São Paulo 89 3 2 2 4 acept not furnished 1050 1540 115 20 2725\n", + "8850 Porto Alegre 70 2 2 2 11 acept not furnished 700 3300 115 49 4164\n", + "8851 Belo Horizonte 141 4 2 1 2 acept not furnished 0 3000 117 50 3167\n", + "8852 Belo Horizonte 260 4 2 2 - acept not furnished 0 2500 251 41 2792\n", + "8853 São Paulo 168 4 2 2 - acept not furnished 0 3100 130 47 3277\n", + "8854 Belo Horizonte 24 1 1 1 - not acept not furnished 0 550 0 10 560\n", + "8855 São Paulo 240 4 4 5 14 acept not furnished 2400 4500 750 58 7708\n", + "8856 São Paulo 178 3 4 4 18 acept not furnished 2650 10000 125 127 12900\n", + "8857 São Paulo 58 2 1 1 1 acept furnished 500 2380 120 31 3031\n", + "8858 São Paulo 800 4 7 8 - not acept not furnished 10000 8500 209 128 18840\n", + "8859 São Paulo 180 3 2 2 11 acept not furnished 2750 7000 730 89 10570\n", + "8860 São Paulo 101 3 4 2 4 not acept furnished 1037 6140 359 78 7614\n", + "8861 São Paulo 50 1 1 0 1 not acept not furnished 150 830 0 11 991\n", + "8862 Belo Horizonte 55 2 1 1 4 acept not furnished 190 600 67 8 865\n", + "8863 São Paulo 120 2 3 2 - acept not furnished 0 5400 0 82 5482\n", + "8864 Campinas 42 2 1 1 3 not acept not furnished 400 600 15 8 1023\n", + "8865 Belo Horizonte 40 1 1 1 1 not acept not furnished 0 860 0 12 872\n", + "8866 São Paulo 78 2 2 2 8 acept furnished 1400 5800 334 74 7608\n", + "8867 Porto Alegre 144 3 2 1 4 acept furnished 1450 2740 269 41 4500\n", + "8868 Rio de Janeiro 70 3 1 1 7 acept not furnished 680 1200 71 16 1967\n", + "8869 Campinas 440 4 4 4 - not acept not furnished 0 4000 417 61 4478\n", + "8870 Porto Alegre 44 1 1 1 7 acept not furnished 600 1250 65 19 1934\n", + "8871 São Paulo 596 4 5 2 - acept furnished 0 15000 2620 226 17850\n", + "8872 Porto Alegre 230 3 4 3 - acept furnished 2300 10000 417 178 12900\n", + "8873 Belo Horizonte 100 2 1 0 13 acept not furnished 750 1200 1680 16 3646\n", + "8874 São Paulo 300 3 3 8 - acept not furnished 0 5500 286 83 5869\n", + "8875 São Paulo 47 2 1 0 7 acept furnished 390 1900 0 8 2298\n", + "8876 Campinas 105 3 2 2 6 acept not furnished 1200 1620 165 21 3006\n", + "8877 São Paulo 65 2 2 1 14 not acept not furnished 610 1300 3 17 1930\n", + "8878 São Paulo 65 3 2 1 2 acept not furnished 512 1860 135 24 2531\n", + "8879 São Paulo 60 2 2 2 6 acept not furnished 1050 2100 344 27 3521\n", + "8880 Campinas 314 3 4 3 - acept not furnished 0 4000 349 61 4410\n", + "8881 São Paulo 70 2 1 0 1 acept not furnished 0 1800 92 23 1915\n", + "8882 Rio de Janeiro 80 3 2 1 5 acept not furnished 1150 1450 0 19 2619\n", + "8883 São Paulo 350 3 5 5 - acept not furnished 0 5500 675 83 6258\n", + "8884 Porto Alegre 52 1 1 0 10 acept not furnished 130 900 0 14 1044\n", + "8885 São Paulo 380 4 5 6 8 acept furnished 3150 4900 1737 63 9850\n", + "8886 Rio de Janeiro 70 1 1 0 1 acept not furnished 634 2400 263 31 3328\n", + "8887 São Paulo 45 2 1 1 4 acept furnished 430 2364 77 30 2901\n", + "8888 São Paulo 44 1 1 1 9 acept furnished 1785 2930 205 38 4958\n", + "8889 São Paulo 142 4 4 3 15 not acept not furnished 1661 2870 559 37 5127\n", + "8890 Belo Horizonte 96 3 1 1 11 acept furnished 575 2200 154 30 2959\n", + "8891 São Paulo 88 2 3 2 4 acept not furnished 1200 2803 496 36 4535\n", + "8892 São Paulo 169 3 4 3 9 acept not furnished 1800 8900 590 113 11400\n", + "8893 Rio de Janeiro 40 1 1 0 2 acept not furnished 350 900 0 12 1262\n", + "8894 São Paulo 45 1 1 0 - not acept not furnished 0 950 0 15 965\n", + "8895 Rio de Janeiro 320 3 2 0 5 not acept not furnished 2300 6000 292 78 8670\n", + "8896 São Paulo 82 1 2 1 1 not acept furnished 1000 11000 25 140 12170\n", + "8897 São Paulo 180 3 4 3 15 acept not furnished 2200 8900 782 113 12000\n", + "8898 São Paulo 340 4 4 4 4 acept furnished 3100 8500 1400 108 13110\n", + "8899 Belo Horizonte 100 3 3 1 4 acept not furnished 800 2300 206 31 3337\n", + "8900 São Paulo 160 3 3 3 9 acept furnished 2400 10000 584 127 13110\n", + "8901 São Paulo 160 4 4 3 9 acept furnished 2184 6500 858 83 9625\n", + "8902 Campinas 100 3 2 2 3 acept not furnished 885 1200 80 16 2181\n", + "8903 São Paulo 33 1 1 1 12 not acept not furnished 552 4150 95 53 4850\n", + "8904 São Paulo 35 1 2 1 2 acept not furnished 335 1870 0 7 2212\n", + "8905 Porto Alegre 52 2 2 1 12 acept not furnished 350 1900 42 28 2320\n", + "8906 São Paulo 180 3 2 2 6 acept not furnished 2066 5500 518 70 8154\n", + "8907 São Paulo 180 3 2 1 - not acept not furnished 0 3000 163 46 3209\n", + "8908 São Paulo 300 4 4 4 12 acept not furnished 3000 10000 1167 127 14290\n", + "8909 São Paulo 79 2 1 0 - acept not furnished 0 2050 218 26 2294\n", + "8910 Porto Alegre 66 2 1 0 4 acept not furnished 450 1300 42 19 1811\n", + "8911 São Paulo 26 1 1 0 2 not acept not furnished 0 2060 0 27 2087\n", + "8912 São Paulo 367 4 5 6 1 not acept not furnished 4384 8000 2110 102 14600\n", + "8913 Campinas 60 2 1 1 7 acept not furnished 486 900 74 12 1472\n", + "8914 São Paulo 80 2 3 1 5 acept not furnished 80 1800 0 28 1908\n", + "8915 Rio de Janeiro 50 2 1 0 - acept not furnished 0 1170 70 18 1258\n", + "8916 Rio de Janeiro 100 3 1 0 2 acept not furnished 1290 1250 138 17 2695\n", + "8917 São Paulo 250 3 4 3 13 acept not furnished 2800 6000 834 77 9711\n", + "8918 Porto Alegre 40 1 1 1 7 not acept furnished 1300 1200 68 18 2586\n", + "8919 São Paulo 68 2 2 1 8 not acept not furnished 600 2400 125 31 3156\n", + "8920 São Paulo 35 1 1 1 14 not acept not furnished 1700 2000 275 26 4001\n", + "8921 Porto Alegre 46 2 1 1 - acept not furnished 236 750 16 11 1013\n", + "8922 São Paulo 21 1 1 0 2 acept not furnished 0 3200 42 41 3283\n", + "8923 Rio de Janeiro 45 1 1 0 8 acept furnished 1690 3900 0 51 5641\n", + "8924 Belo Horizonte 107 3 2 2 2 acept furnished 585 2400 184 32 3201\n", + "8925 São Paulo 220 3 3 5 - acept not furnished 0 7500 0 113 7613\n", + "8926 São Paulo 380 5 7 4 - acept not furnished 0 8000 775 121 8896\n", + "8927 São Paulo 150 3 3 2 20 not acept not furnished 2300 4000 417 51 6768\n", + "8928 Rio de Janeiro 15 1 1 0 2 not acept not furnished 0 1000 0 13 1013\n", + "8929 São Paulo 35 1 1 0 1 not acept not furnished 250 1305 0 17 1572\n", + "8930 São Paulo 120 3 4 2 1 acept not furnished 1500 3000 670 39 5209\n", + "8931 São Paulo 24 2 2 1 13 acept not furnished 993 5500 141 70 6704\n", + "8932 Porto Alegre 70 2 2 1 2 acept not furnished 500 2720 75 40 3335\n", + "8933 Porto Alegre 50 1 2 0 - acept not furnished 250 1100 0 17 1367\n", + "8934 São Paulo 220 3 4 4 10 acept not furnished 3500 7000 1000 89 11590\n", + "8935 São Paulo 180 3 4 3 3 acept not furnished 1600 3500 65 45 5210\n", + "8936 Porto Alegre 148 3 2 3 3 acept furnished 1000 3000 167 44 4211\n", + "8937 São Paulo 52 2 1 1 7 acept not furnished 633 1340 8 17 1998\n", + "8938 Porto Alegre 48 2 1 0 1 acept not furnished 100 700 0 11 811\n", + "8939 São Paulo 160 4 5 2 22 acept furnished 1200 6800 500 87 8587\n", + "8940 São Paulo 40 1 1 0 1 acept not furnished 0 1000 56 13 1069\n", + "8941 São Paulo 40 1 1 0 2 not acept furnished 685 2500 0 32 3217\n", + "8942 Campinas 143 3 2 3 - acept not furnished 0 1700 70 26 1796\n", + "8943 Campinas 550 3 4 8 - acept not furnished 0 4600 380 70 5050\n", + "8944 São Paulo 35 1 1 1 3 not acept furnished 0 4200 17 54 4271\n", + "8945 Porto Alegre 50 2 1 0 18 acept not furnished 500 1300 0 19 1819\n", + "8946 São Paulo 210 4 4 3 9 acept not furnished 2100 9100 667 116 11980\n", + "8947 São Paulo 60 2 2 2 2 acept not furnished 860 1840 165 24 2889\n", + "8948 São Paulo 217 4 4 3 3 acept furnished 4180 5000 1550 64 10790\n", + "8949 Rio de Janeiro 300 3 3 2 5 acept furnished 5000 11330 3334 146 19810\n", + "8950 Rio de Janeiro 45 1 1 0 - acept furnished 250 2000 45 31 2326\n", + "8951 São Paulo 230 5 3 0 - acept not furnished 0 7200 343 109 7652\n", + "8952 Campinas 139 3 5 3 3 acept furnished 1090 6700 232 85 8107\n", + "8953 São Paulo 48 2 1 0 3 acept not furnished 100 1350 0 18 1468\n", + "8954 São Paulo 145 3 3 3 6 acept not furnished 1100 12000 667 153 13920\n", + "8955 Porto Alegre 65 1 1 0 3 acept not furnished 311 1350 525 20 2206\n", + "8956 Porto Alegre 180 3 3 2 3 acept not furnished 400 2700 250 40 3390\n", + "8957 São Paulo 438 5 6 5 - not acept not furnished 0 12000 817 181 13000\n", + "8958 São Paulo 100 2 2 1 10 acept furnished 1300 1979 225 26 3530\n", + "8959 Rio de Janeiro 430 4 4 2 6 acept not furnished 3500 10000 1119 129 14750\n", + "8960 São Paulo 315 4 5 5 20 not acept not furnished 2500 4000 1000 29 7529\n", + "8961 Porto Alegre 374 3 4 2 - acept furnished 2500 8250 473 147 11370\n", + "8962 São Paulo 270 3 2 1 9 acept not furnished 2300 3920 34 50 6304\n", + "8963 Campinas 92 2 3 2 5 not acept not furnished 1260 4200 275 54 5789\n", + "8964 Porto Alegre 220 3 3 2 8 not acept furnished 1636 10000 542 147 12330\n", + "8965 São Paulo 243 4 3 3 16 acept not furnished 3754 2000 1324 26 7104\n", + "8966 Porto Alegre 240 3 3 7 - acept furnished 0 3400 349 61 3810\n", + "8967 São Paulo 260 4 5 5 3 acept furnished 0 15000 0 191 15190\n", + "8968 Porto Alegre 63 3 2 2 11 acept not furnished 547 2050 54 30 2681\n", + "8969 São Paulo 238 4 5 3 1 not acept not furnished 2500 15000 375 58 17930\n", + "8970 São Paulo 60 2 2 2 15 acept not furnished 692 1900 90 25 2707\n", + "8971 São Paulo 82 2 2 0 3 not acept not furnished 650 1600 5 21 2276\n", + "8972 Campinas 74 3 1 1 3 acept not furnished 350 1000 54 13 1417\n", + "8973 Belo Horizonte 40 1 1 2 11 not acept furnished 1000 3500 63 47 4610\n", + "8974 Porto Alegre 70 3 1 1 3 acept not furnished 424 1100 0 17 1541\n", + "8975 Belo Horizonte 83 3 2 3 18 acept not furnished 745 2050 198 28 3021\n", + "8976 São Paulo 55 2 1 0 - acept not furnished 380 1350 0 18 1748\n", + "8977 São Paulo 290 3 2 2 - not acept furnished 0 8000 1334 121 9455\n", + "8978 Rio de Janeiro 250 5 3 4 - acept not furnished 0 5000 417 77 5494\n", + "8979 São Paulo 350 4 3 4 10 acept not furnished 1600 7500 959 96 10160\n", + "8980 São Paulo 330 5 4 2 - acept furnished 0 7650 720 115 8485\n", + "8981 Campinas 82 3 3 2 4 acept not furnished 550 1500 153 20 2223\n", + "8982 São Paulo 60 2 2 1 8 acept not furnished 700 1420 59 18 2197\n", + "8983 Rio de Janeiro 74 2 1 0 1 acept not furnished 1148 1900 212 25 3285\n", + "8984 Belo Horizonte 160 3 3 2 4 acept not furnished 150 2400 244 32 2826\n", + "8985 Porto Alegre 483 4 4 0 4 acept furnished 2000 4900 1167 72 8139\n", + "8986 São Paulo 35 1 1 0 16 acept furnished 560 2999 103 38 3700\n", + "8987 São Paulo 285 4 4 3 16 not acept not furnished 1100 4500 359 58 6017\n", + "8988 Belo Horizonte 50 2 1 1 3 acept not furnished 230 1100 28 15 1373\n", + "8989 Rio de Janeiro 77 2 2 0 4 acept not furnished 700 1950 88 26 2764\n", + "8990 São Paulo 76 2 2 1 8 not acept not furnished 825 1600 33 21 2479\n", + "8991 Porto Alegre 200 2 1 0 - acept not furnished 0 2800 0 50 2850\n", + "8992 São Paulo 300 5 4 5 - acept not furnished 0 8500 60 128 8688\n", + "8993 Rio de Janeiro 105 3 2 1 13 acept furnished 1200 12000 459 155 13810\n", + "8994 Campinas 55 1 1 1 7 acept not furnished 480 700 45 9 1234\n", + "8995 Porto Alegre 75 2 2 1 5 acept not furnished 450 1650 100 25 2225\n", + "8996 Campinas 276 3 4 3 11 acept not furnished 2590 7000 594 89 10270\n", + "8997 Belo Horizonte 70 2 2 1 3 acept not furnished 523 1050 100 14 1687\n", + "8998 São Paulo 460 7 5 5 - acept furnished 1 9000 3129 136 12270\n", + "8999 Rio de Janeiro 135 4 2 2 13 acept furnished 1300 6489 467 84 8340\n", + "9000 Belo Horizonte 64 2 1 1 1 not acept not furnished 210 1200 0 16 1426\n", + "9001 Belo Horizonte 76 2 1 1 1 acept not furnished 277 700 59 10 1046\n", + "9002 São Paulo 170 6 4 4 - acept not furnished 0 7200 0 109 7309\n", + "9003 Belo Horizonte 85 2 1 1 1 not acept not furnished 735 2150 198 29 3112\n", + "9004 Campinas 49 2 1 1 - acept not furnished 0 1000 0 13 1013\n", + "9005 Rio de Janeiro 128 4 2 0 2 not acept not furnished 1100 2000 10 26 3136\n", + "9006 São Paulo 96 3 2 2 10 acept not furnished 1616 1610 162 21 3409\n", + "9007 Rio de Janeiro 45 1 1 1 1 acept furnished 1437 3000 382 39 4858\n", + "9008 São Paulo 32 1 1 1 2 not acept furnished 1500 3250 300 42 5092\n", + "9009 Porto Alegre 37 1 1 0 4 acept not furnished 340 1500 69 22 1931\n", + "9010 Belo Horizonte 335 4 4 4 - acept not furnished 0 10000 678 164 10840\n", + "9011 Rio de Janeiro 56 2 1 1 3 acept not furnished 860 1500 90 20 2470\n", + "9012 São Paulo 330 1 3 8 - acept not furnished 0 3147 0 48 3195\n", + "9013 Rio de Janeiro 21 1 1 0 2 acept not furnished 0 2800 0 37 2837\n", + "9014 São Paulo 300 5 5 4 - acept furnished 0 6500 525 98 7123\n", + "9015 Porto Alegre 373 4 4 4 - acept furnished 350 6800 100 121 7371\n", + "9016 São Paulo 53 2 1 1 7 not acept not furnished 600 1200 60 16 1876\n", + "9017 São Paulo 156 3 3 3 20 acept not furnished 1600 4900 917 63 7480\n", + "9018 Porto Alegre 80 2 1 0 2 not acept furnished 180 1250 0 19 1449\n", + "9019 São Paulo 74 2 2 2 8 not acept not furnished 870 3300 270 42 4482\n", + "9020 São Paulo 103 3 2 1 - acept not furnished 0 4200 250 64 4514\n", + "9021 Belo Horizonte 458 8 10 4 - acept not furnished 0 7000 419 115 7534\n", + "9022 Belo Horizonte 98 2 1 0 - not acept not furnished 0 1500 58 25 1583\n", + "9023 São Paulo 40 1 1 0 - acept not furnished 1 1000 6 16 1023\n", + "9024 São Paulo 65 1 1 0 3 not acept not furnished 185 1300 63 17 1565\n", + "9025 São Paulo 70 1 1 0 4 not acept not furnished 430 1300 17 17 1764\n", + "9026 Porto Alegre 55 1 1 1 14 not acept furnished 460 3200 30 47 3737\n", + "9027 São Paulo 129 3 4 3 6 acept furnished 1650 2500 434 32 4616\n", + "9028 Porto Alegre 46 1 1 1 1 acept furnished 270 750 15 11 1046\n", + "9029 Porto Alegre 225 4 4 2 - acept not furnished 800 4445 352 79 5676\n", + "9030 São Paulo 215 3 1 1 18 acept not furnished 1100 4000 240 51 5391\n", + "9031 São Paulo 100 3 3 2 - not acept not furnished 120 2000 0 31 2151\n", + "9032 Campinas 68 1 1 1 10 not acept furnished 600 1000 48 13 1661\n", + "9033 São Paulo 82 3 1 1 8 not acept not furnished 709 1500 107 20 2336\n", + "9034 Rio de Janeiro 90 2 3 0 2 acept not furnished 620 2150 60 28 2858\n", + "9035 São Paulo 250 5 2 6 - acept not furnished 0 9000 1417 136 10550\n", + "9036 São Paulo 392 4 4 4 - acept not furnished 0 10000 1250 151 11400\n", + "9037 Rio de Janeiro 134 3 4 2 3 acept furnished 1900 7000 466 91 9457\n", + "9038 Campinas 53 2 1 1 1 acept not furnished 310 510 16 7 843\n", + "9039 Rio de Janeiro 165 2 2 0 2 acept furnished 0 2500 11 33 2544\n", + "9040 São Paulo 59 2 1 1 3 not acept not furnished 270 1400 417 18 2105\n", + "9041 Porto Alegre 55 1 1 1 3 acept not furnished 340 900 50 14 1304\n", + "9042 Rio de Janeiro 80 2 2 1 12 not acept not furnished 580 1809 226 9 2624\n", + "9043 Rio de Janeiro 71 2 1 1 2 acept not furnished 950 3140 190 41 4321\n", + "9044 Porto Alegre 200 3 3 2 - acept not furnished 1 5980 175 107 6263\n", + "9045 São Paulo 47 1 1 0 1 acept not furnished 490 1200 26 16 1732\n", + "9046 São Paulo 78 1 1 2 8 not acept furnished 1980 6000 317 77 8374\n", + "9047 Porto Alegre 70 2 1 0 9 acept not furnished 0 1750 0 26 1776\n", + "9048 Belo Horizonte 44 1 1 1 11 acept not furnished 520 3500 225 47 4292\n", + "9049 São Paulo 56 2 1 1 7 acept not furnished 380 1500 40 20 1940\n", + "9050 Belo Horizonte 70 3 2 2 10 not acept not furnished 360 1560 80 21 2021\n", + "9051 São Paulo 150 3 3 2 12 acept not furnished 1650 4000 142 51 5843\n", + "9052 Rio de Janeiro 60 1 1 0 4 not acept furnished 1400 2000 192 26 3618\n", + "9053 Belo Horizonte 200 3 4 4 10 acept not furnished 2900 5500 1021 74 9495\n", + "9054 São Paulo 250 4 5 4 5 not acept not furnished 3000 10000 0 127 13130\n", + "9055 São Paulo 250 4 5 3 - acept not furnished 0 5000 565 76 5641\n", + "9056 Porto Alegre 40 1 1 1 10 acept furnished 210 1180 20 18 1428\n", + "9057 São Paulo 117 4 5 4 10 not acept not furnished 1523 3175 711 41 5450\n", + "9058 Campinas 104 3 1 0 3 not acept not furnished 600 650 69 9 1328\n", + "9059 Rio de Janeiro 120 3 1 0 3 not acept not furnished 800 4500 234 58 5592\n", + "9060 Belo Horizonte 125 3 2 0 7 acept not furnished 1300 2968 274 40 4582\n", + "9061 São Paulo 33 2 1 0 6 acept not furnished 300 1900 0 25 2225\n", + "9062 Rio de Janeiro 99 3 2 1 10 acept not furnished 1080 3500 192 46 4818\n", + "9063 São Paulo 63 1 1 0 12 acept not furnished 870 2600 0 33 3503\n", + "9064 Rio de Janeiro 43 2 1 0 12 acept not furnished 586 2000 63 26 2675\n", + "9065 São Paulo 61 2 2 2 2 not acept furnished 1023 3160 270 41 4494\n", + "9066 Rio de Janeiro 76 2 2 1 8 acept furnished 1200 3700 167 48 5115\n", + "9067 Porto Alegre 52 2 1 1 - acept not furnished 350 950 84 14 1398\n", + "9068 São Paulo 39 1 1 0 3 acept furnished 350 1700 0 22 2072\n", + "9069 Porto Alegre 126 3 1 1 4 acept not furnished 1137 2200 125 33 3495\n", + "9070 São Paulo 305 2 3 0 10 acept not furnished 3500 5000 667 64 9231\n", + "9071 São Paulo 80 2 2 0 3 not acept not furnished 931 2700 0 35 3666\n", + "9072 Rio de Janeiro 85 2 1 1 4 acept not furnished 450 1700 100 22 2272\n", + "9073 Porto Alegre 74 3 2 2 13 acept furnished 402 2300 58 34 2794\n", + "9074 Rio de Janeiro 130 3 2 1 3 not acept not furnished 1303 2300 172 30 3805\n", + "9075 São Paulo 113 3 2 1 6 acept not furnished 1000 3000 50 39 4089\n", + "9076 São Paulo 108 2 1 3 - acept not furnished 0 5000 260 76 5336\n", + "9077 São Paulo 270 4 4 4 - acept not furnished 0 10800 800 163 11760\n", + "9078 São Paulo 111 3 4 3 1 acept not furnished 2500 2700 704 35 5939\n", + "9079 Rio de Janeiro 142 3 2 1 1 acept furnished 1732 2868 247 37 4884\n", + "9080 Porto Alegre 48 1 1 1 5 acept furnished 240 1100 16 17 1373\n", + "9081 São Paulo 76 3 2 2 10 acept not furnished 365 2500 37 32 2934\n", + "9082 São Paulo 42 1 1 0 13 not acept not furnished 760 2260 147 29 3196\n", + "9083 São Paulo 500 4 5 4 - not acept furnished 0 12750 2087 192 15030\n", + "9084 São Paulo 375 4 4 4 22 not acept not furnished 4916 4700 3025 60 12700\n", + "9085 Rio de Janeiro 690 4 5 2 21 not acept not furnished 4798 9500 1301 123 15720\n", + "9086 São Paulo 172 4 4 3 1 acept not furnished 1800 7500 792 96 10190\n", + "9087 Rio de Janeiro 15 1 1 0 - acept not furnished 0 700 0 10 710\n", + "9088 Rio de Janeiro 130 3 2 2 5 acept not furnished 2250 6500 415 84 9249\n", + "9089 São Paulo 90 3 2 2 2 acept not furnished 1320 1700 225 22 3267\n", + "9090 Campinas 68 3 2 2 9 acept furnished 550 2700 76 35 3361\n", + "9091 São Paulo 260 4 4 4 - acept not furnished 0 14000 1834 211 16050\n", + "9092 São Paulo 87 2 3 2 1 acept furnished 1200 3560 492 46 5298\n", + "9093 São Paulo 80 2 1 0 - not acept not furnished 0 1500 0 23 1523\n", + "9094 São Paulo 20 1 1 0 6 acept furnished 602 1800 130 23 2555\n", + "9095 São Paulo 140 2 1 2 - acept not furnished 0 5000 584 76 5660\n", + "9096 São Paulo 45 2 1 1 1 acept not furnished 176 1300 64 17 1557\n", + "9097 Campinas 230 3 4 4 5 acept furnished 1800 10000 715 127 12640\n", + "9098 São Paulo 125 3 3 2 4 acept not furnished 1550 3000 650 39 5239\n", + "9099 Rio de Janeiro 80 2 1 0 3 not acept furnished 800 1360 9 18 2187\n", + "9100 São Paulo 22 1 1 1 8 acept furnished 587 4500 150 58 5295\n", + "9101 Campinas 280 4 3 3 - acept not furnished 0 2167 169 33 2369\n", + "9102 São Paulo 126 3 4 3 6 acept not furnished 2500 3200 579 41 6320\n", + "9103 Porto Alegre 64 3 2 1 1 acept furnished 600 1620 0 24 2244\n", + "9104 Rio de Janeiro 70 2 1 1 3 acept not furnished 950 3800 125 49 4924\n", + "9105 São Paulo 65 2 1 0 - acept not furnished 0 1200 34 19 1253\n", + "9106 Porto Alegre 98 3 1 0 1 acept not furnished 400 1050 84 16 1550\n", + "9107 Belo Horizonte 136 3 3 2 6 acept not furnished 230 2700 234 36 3200\n", + "9108 São Paulo 80 2 2 2 - acept not furnished 0 2465 0 38 2503\n", + "9109 Porto Alegre 54 2 1 1 8 acept furnished 300 1000 50 15 1365\n", + "9110 Porto Alegre 55 1 1 1 2 acept not furnished 300 1000 50 15 1365\n", + "9111 Rio de Janeiro 190 3 2 1 4 acept not furnished 1800 5100 417 66 7383\n", + "9112 São Paulo 130 3 2 2 8 acept not furnished 1310 6500 338 83 8231\n", + "9113 São Paulo 54 2 1 1 1 acept not furnished 670 1932 73 8 2683\n", + "9114 São Paulo 200 3 4 4 2 not acept furnished 3300 12000 1167 153 16620\n", + "9115 São Paulo 150 3 3 2 3 not acept not furnished 2100 3600 499 46 6245\n", + "9116 São Paulo 205 3 4 4 13 acept not furnished 1700 6000 650 77 8427\n", + "9117 São Paulo 310 3 3 2 - not acept not furnished 0 10400 0 157 10560\n", + "9118 São Paulo 250 3 4 4 - acept not furnished 0 4500 334 68 4902\n", + "9119 São Paulo 60 2 1 1 1 acept not furnished 0 1100 0 14 1114\n", + "9120 São Paulo 66 2 2 1 5 acept furnished 750 2980 0 38 3768\n", + "9121 São Paulo 176 3 4 3 20 not acept not furnished 2004 9500 584 121 12210\n", + "9122 Porto Alegre 48 1 1 0 4 acept furnished 250 1300 34 19 1603\n", + "9123 Rio de Janeiro 90 2 1 0 3 acept not furnished 940 3490 234 45 4709\n", + "9124 Porto Alegre 67 2 2 1 9 acept not furnished 300 1700 0 25 2025\n", + "9125 Belo Horizonte 55 2 1 1 8 not acept not furnished 160 900 0 12 1072\n", + "9126 São Paulo 50 2 2 1 14 acept not furnished 520 1550 100 20 2190\n", + "9127 Rio de Janeiro 140 3 1 1 3 acept not furnished 1200 4090 0 53 5343\n", + "9128 Rio de Janeiro 18 1 1 0 14 not acept not furnished 540 880 101 12 1533\n", + "9129 Belo Horizonte 120 4 3 2 2 acept not furnished 0 3250 0 44 3294\n", + "9130 Campinas 50 1 1 0 1 not acept not furnished 298 850 15 11 1174\n", + "9131 São Paulo 220 3 4 3 - acept furnished 0 4600 126 70 4796\n", + "9132 São Paulo 25 1 1 1 4 not acept furnished 1449 3070 700 39 5258\n", + "9133 Belo Horizonte 230 4 2 1 2 acept not furnished 300 2850 190 38 3378\n", + "9134 São Paulo 80 2 1 0 - acept not furnished 0 2200 0 34 2234\n", + "9135 São Paulo 180 3 3 2 7 acept not furnished 3000 7000 292 89 10380\n", + "9136 Rio de Janeiro 62 2 1 0 - acept not furnished 50 1300 0 20 1370\n", + "9137 Porto Alegre 440 3 2 3 5 not acept not furnished 100 10500 84 154 10840\n", + "9138 São Paulo 200 3 3 3 3 acept not furnished 3162 4790 876 61 8889\n", + "9139 Porto Alegre 180 3 2 3 2 acept furnished 0 5100 250 75 5425\n", + "9140 Porto Alegre 300 8 3 0 - acept not furnished 0 5100 250 91 5441\n", + "9141 Belo Horizonte 360 6 2 0 - acept not furnished 1 6000 688 99 6788\n", + "9142 Rio de Janeiro 55 2 2 0 6 acept not furnished 740 2000 220 26 2986\n", + "9143 São Paulo 400 4 6 4 - acept not furnished 0 15000 1875 226 17100\n", + "9144 São Paulo 19 1 1 0 - not acept not furnished 0 1200 41 16 1257\n", + "9145 Porto Alegre 326 4 7 4 - acept not furnished 0 4200 184 64 4448\n", + "9146 São Paulo 240 4 4 3 4 acept not furnished 8000 2000 2000 26 12030\n", + "9147 Campinas 35 1 1 0 - acept not furnished 0 1600 0 25 1625\n", + "9148 Rio de Janeiro 110 3 1 0 1 acept not furnished 1100 1800 131 24 3055\n", + "9149 São Paulo 103 2 3 2 17 acept furnished 7000 9000 500 115 16620\n", + "9150 São Paulo 273 3 5 4 5 acept not furnished 2695 10900 1057 139 14790\n", + "9151 São Paulo 250 4 5 2 - acept not furnished 0 8000 338 121 8459\n", + "9152 Porto Alegre 67 2 2 1 2 acept furnished 413 1240 55 19 1727\n", + "9153 São Paulo 45 1 1 1 3 acept furnished 2000 4850 334 62 7246\n", + "9154 São Paulo 19 1 1 0 - not acept not furnished 0 1200 0 16 1216\n", + "9155 Rio de Janeiro 90 3 2 1 13 acept not furnished 1300 2050 230 27 3607\n", + "9156 São Paulo 143 3 3 2 20 acept not furnished 1900 8400 539 107 10950\n", + "9157 São Paulo 75 2 1 1 14 not acept furnished 1200 2380 196 31 3807\n", + "9158 Rio de Janeiro 115 3 2 1 2 acept not furnished 1200 2900 317 38 4455\n", + "9159 Belo Horizonte 100 3 2 2 3 not acept not furnished 400 2300 165 31 2896\n", + "9160 São Paulo 63 2 2 1 19 acept not furnished 184 4400 136 56 4776\n", + "9161 Rio de Janeiro 70 2 2 1 2 acept not furnished 1100 2500 230 33 3863\n", + "9162 Belo Horizonte 80 3 2 2 1 not acept furnished 400 2500 126 34 3060\n", + "9163 São Paulo 215 3 4 2 - acept not furnished 0 5000 318 76 5394\n", + "9164 Campinas 75 3 2 1 3 not acept not furnished 550 2125 67 27 2769\n", + "9165 São Paulo 35 1 1 0 1 not acept not furnished 250 1305 0 17 1572\n", + "9166 São Paulo 400 3 5 4 11 acept not furnished 3830 3500 1419 45 8794\n", + "9167 Porto Alegre 109 4 2 3 1 acept not furnished 280 1950 63 29 2322\n", + "9168 Rio de Janeiro 75 2 2 1 3 acept not furnished 684 1800 84 24 2592\n", + "9169 São Paulo 23 1 1 0 25 acept not furnished 399 2150 0 28 2577\n", + "9170 São Paulo 172 4 3 2 5 acept furnished 1050 8300 180 106 9636\n", + "9171 São Paulo 73 2 2 1 16 acept not furnished 550 2160 105 28 2843\n", + "9172 Porto Alegre 25 1 1 0 12 not acept not furnished 240 750 22 11 1023\n", + "9173 Campinas 56 2 1 1 2 acept not furnished 420 1050 24 14 1508\n", + "9174 São Paulo 96 2 1 2 3 acept not furnished 880 1648 80 21 2629\n", + "9175 São Paulo 240 3 2 3 - acept not furnished 0 5900 500 89 6489\n", + "9176 São Paulo 57 2 1 1 24 acept furnished 540 3500 135 45 4220\n", + "9177 Rio de Janeiro 130 3 2 1 9 acept furnished 2000 8700 650 113 11460\n", + "9178 São Paulo 35 1 1 1 10 not acept furnished 1400 2800 205 36 4441\n", + "9179 São Paulo 115 3 2 1 8 acept not furnished 826 2300 195 30 3351\n", + "9180 Porto Alegre 45 2 1 0 2 acept not furnished 74 1040 42 16 1172\n", + "9181 Rio de Janeiro 40 1 1 0 2 not acept not furnished 450 2390 114 31 2985\n", + "9182 Rio de Janeiro 95 3 1 1 - acept furnished 1434 3500 230 46 5210\n", + "9183 São Paulo 60 2 2 1 11 acept furnished 1680 6000 200 77 7957\n", + "9184 Campinas 160 4 2 2 16 acept not furnished 1448 2800 207 36 4491\n", + "9185 São Paulo 315 3 4 3 15 acept furnished 1715 5000 340 64 7119\n", + "9186 Belo Horizonte 365 4 4 3 8 acept furnished 3500 8800 459 118 12880\n", + "9187 São Paulo 45 2 1 1 4 acept not furnished 284 1100 0 14 1398\n", + "9188 Rio de Janeiro 108 2 1 0 1 acept not furnished 450 2125 47 28 2650\n", + "9189 Campinas 76 3 2 2 3 not acept not furnished 450 2200 120 28 2798\n", + "9190 Belo Horizonte 140 4 3 2 9 acept not furnished 1720 4000 284 54 6058\n", + "9191 Belo Horizonte 30 1 1 0 3 not acept not furnished 0 750 57 10 817\n", + "9192 Campinas 50 2 2 1 2 not acept not furnished 262 1400 63 18 1743\n", + "9193 São Paulo 16 1 1 0 1 not acept not furnished 0 850 9 11 870\n", + "9194 Porto Alegre 110 2 1 0 1 acept not furnished 260 2100 92 31 2483\n", + "9195 São Paulo 270 4 4 4 - acept not furnished 0 10800 800 163 11760\n", + "9196 São Paulo 125 3 1 0 4 acept not furnished 650 2700 142 35 3527\n", + "9197 Campinas 46 2 1 1 3 acept not furnished 250 970 42 13 1275\n", + "9198 São Paulo 55 2 2 1 21 acept not furnished 480 2000 9 26 2515\n", + "9199 São Paulo 82 3 2 2 8 acept not furnished 903 1500 59 20 2482\n", + "9200 Rio de Janeiro 42 1 1 0 9 acept furnished 682 1800 56 24 2562\n", + "9201 Belo Horizonte 285 3 2 0 6 acept not furnished 1000 6000 492 80 7572\n", + "9202 São Paulo 76 2 2 1 6 not acept not furnished 500 1350 5 18 1873\n", + "9203 Rio de Janeiro 338 4 2 2 - acept not furnished 0 4300 190 66 4556\n", + "9204 São Paulo 300 6 8 3 - acept not furnished 0 10900 1917 164 12980\n", + "9205 São Paulo 30 1 1 1 10 not acept furnished 1700 4600 0 59 6359\n", + "9206 São Paulo 320 5 5 3 - acept furnished 320 8000 267 121 8708\n", + "9207 Porto Alegre 80 2 1 0 1 acept not furnished 171 1900 50 28 2149\n", + "9208 São Paulo 43 1 1 0 6 not acept not furnished 350 1080 57 14 1501\n", + "9209 São Paulo 102 2 2 2 - acept not furnished 0 3400 248 52 3700\n", + "9210 São Paulo 47 2 1 1 1 acept not furnished 350 1000 0 13 1363\n", + "9211 Rio de Janeiro 120 4 2 1 5 acept furnished 1890 12000 367 155 14410\n", + "9212 Belo Horizonte 178 3 3 3 10 acept not furnished 1840 7500 542 100 9982\n", + "9213 São Paulo 27 1 1 0 - not acept not furnished 0 1480 0 19 1499\n", + "9214 Rio de Janeiro 174 4 2 1 1 acept not furnished 1682 2400 500 31 4613\n", + "9215 São Paulo 40 1 1 1 5 acept not furnished 350 1780 0 23 2153\n", + "9216 São Paulo 64 1 2 1 3 acept not furnished 800 2600 0 33 3433\n", + "9217 Belo Horizonte 252 3 4 1 1 acept not furnished 250 2500 165 34 2949\n", + "9218 Porto Alegre 85 2 1 0 1 acept not furnished 400 870 56 13 1339\n", + "9219 São Paulo 101 3 2 2 7 acept furnished 1097 3200 319 41 4657\n", + "9220 Porto Alegre 44 1 2 0 3 acept not furnished 140 1350 100 20 1610\n", + "9221 São Paulo 200 3 2 1 5 acept not furnished 1618 2380 161 31 4190\n", + "9222 Belo Horizonte 55 2 2 1 2 acept not furnished 202 1000 67 14 1283\n", + "9223 São Paulo 200 4 3 3 14 not acept not furnished 2400 6400 0 82 8882\n", + "9224 São Paulo 240 3 3 3 3 acept not furnished 4132 3800 952 49 8933\n", + "9225 Rio de Janeiro 90 3 2 1 6 acept not furnished 1270 3170 225 41 4706\n", + "9226 São Paulo 31 1 1 0 22 acept not furnished 330 1330 0 17 1677\n", + "9227 Belo Horizonte 240 4 3 4 3 acept not furnished 2677 7200 161 96 10130\n", + "9228 Belo Horizonte 118 4 3 3 4 acept not furnished 920 2500 326 34 3780\n", + "9229 São Paulo 350 4 5 2 - acept furnished 0 15000 667 226 15890\n", + "9230 São Paulo 65 3 2 1 5 acept not furnished 526 2090 21 27 2664\n", + "9231 Rio de Janeiro 145 3 2 1 3 acept not furnished 2400 5800 500 75 8775\n", + "9232 São Paulo 93 3 2 2 18 acept not furnished 1000 3400 209 44 4653\n", + "9233 São Paulo 98 1 2 2 4 not acept furnished 1750 8400 580 107 10840\n", + "9234 São Paulo 174 3 1 2 - acept not furnished 0 3600 284 55 3939\n", + "9235 São Paulo 160 4 4 3 6 acept furnished 1646 4700 750 60 7156\n", + "9236 São Paulo 200 4 5 3 3 acept furnished 1650 3700 600 47 5997\n", + "9237 São Paulo 80 2 2 2 - acept not furnished 50 1850 173 28 2101\n", + "9238 São Paulo 50 2 1 1 3 acept not furnished 520 1490 0 19 2029\n", + "9239 Belo Horizonte 115 3 3 3 4 acept not furnished 655 3100 272 42 4069\n", + "9240 São Paulo 20 1 1 0 - acept furnished 602 1800 130 23 2555\n", + "9241 Campinas 12732 3 2 0 3 acept not furnished 700 1600 96 21 2417\n", + "9242 São Paulo 38 1 1 0 1 acept furnished 330 3000 38 39 3407\n", + "9243 Porto Alegre 42 1 1 1 2 acept not furnished 260 1200 65 18 1543\n", + "9244 São Paulo 380 2 4 0 21 acept furnished 3490 6800 2863 87 13240\n", + "9245 Belo Horizonte 70 2 1 1 6 acept not furnished 500 1500 63 20 2083\n", + "9246 São Paulo 37 1 1 1 1 not acept furnished 1700 1196 0 16 2912\n", + "9247 Rio de Janeiro 31 1 1 0 5 acept not furnished 400 1350 67 18 1835\n", + "9248 São Paulo 156 2 4 2 11 acept not furnished 2690 10000 520 127 13340\n", + "9249 São Paulo 100 3 3 2 3 not acept not furnished 1100 4350 350 56 5856\n", + "9250 Belo Horizonte 50 2 1 1 2 acept not furnished 226 750 0 10 986\n", + "9251 São Paulo 116 2 2 2 8 not acept furnished 1215 8000 250 102 9567\n", + "9252 São Paulo 25 1 1 0 - acept not furnished 20 1200 25 19 1264\n", + "9253 Belo Horizonte 260 4 5 0 21 not acept not furnished 1920 13000 138 174 15230\n", + "9254 Porto Alegre 102 2 1 0 3 acept not furnished 407 1600 103 24 2134\n", + "9255 São Paulo 160 2 3 2 12 acept furnished 1500 4210 225 54 5989\n", + "9256 Belo Horizonte 95 3 2 2 3 not acept not furnished 882 2200 173 30 3285\n", + "9257 São Paulo 189 4 4 4 12 acept not furnished 2326 12000 817 153 15300\n", + "9258 São Paulo 22 1 1 1 14 not acept not furnished 450 1900 84 25 2459\n", + "9259 São Paulo 400 4 3 3 - acept not furnished 0 7000 900 106 8006\n", + "9260 Belo Horizonte 280 4 4 5 10 acept not furnished 850 6500 384 87 7821\n", + "9261 Porto Alegre 45 1 1 0 2 acept not furnished 340 950 42 14 1346\n", + "9262 São Paulo 50 2 1 1 5 acept not furnished 650 1260 100 16 2026\n", + "9263 São Paulo 61 3 2 0 - acept not furnished 400 1500 96 20 2016\n", + "9264 Rio de Janeiro 100 2 2 1 4 acept not furnished 860 1600 0 21 2481\n", + "9265 São Paulo 78 2 2 1 2 acept not furnished 560 2750 0 35 3345\n", + "9266 Rio de Janeiro 140 3 2 1 6 acept not furnished 1900 5000 334 65 7299\n", + "9267 São Paulo 220 3 4 2 7 acept not furnished 2000 3900 750 50 6700\n", + "9268 Belo Horizonte 105 3 2 2 4 not acept not furnished 350 1500 135 20 2005\n", + "9269 Belo Horizonte 550 3 3 5 - acept not furnished 0 7500 350 123 7973\n", + "9270 São Paulo 250 4 6 4 12 not acept not furnished 3000 14500 875 184 18560\n", + "9271 Rio de Janeiro 30 1 1 0 7 acept not furnished 700 1550 58 20 2328\n", + "9272 Belo Horizonte 90 2 3 2 15 acept not furnished 1054 2100 196 28 3378\n", + "9273 São Paulo 110 2 3 2 6 acept not furnished 1500 2310 409 30 4249\n", + "9274 São Paulo 65 2 2 2 6 acept not furnished 717 2000 0 26 2743\n", + "9275 São Paulo 160 1 4 2 2 not acept not furnished 1000 3500 10 45 4555\n", + "9276 São Paulo 34 1 1 1 4 acept not furnished 550 3800 109 49 4508\n", + "9277 Porto Alegre 65 2 1 1 1 acept not furnished 500 950 38 14 1502\n", + "9278 São Paulo 355 4 5 5 21 not acept furnished 5700 15000 2977 191 23870\n", + "9279 Belo Horizonte 100 2 1 0 13 acept not furnished 750 1200 1680 16 3646\n", + "9280 Campinas 320 3 3 2 9 acept furnished 2000 8500 340 108 10950\n", + "9281 Rio de Janeiro 42 1 1 0 4 acept furnished 480 1900 84 25 2489\n", + "9282 São Paulo 79 2 2 1 2 acept furnished 678 2800 4 36 3518\n", + "9283 São Paulo 130 2 2 2 3 acept not furnished 1750 3000 284 39 5073\n", + "9284 São Paulo 84 2 2 0 1 acept furnished 850 6000 250 77 7177\n", + "9285 Campinas 300 3 3 4 - acept not furnished 1 3800 450 58 4309\n", + "9286 São Paulo 74 2 1 1 2 acept not furnished 650 1700 0 22 2372\n", + "9287 São Paulo 450 4 4 3 - acept not furnished 0 11500 875 173 12550\n", + "9288 Porto Alegre 27 1 1 0 2 acept not furnished 100 960 75 15 1150\n", + "9289 São Paulo 84 3 2 2 7 not acept not furnished 900 2800 740 36 4476\n", + "9290 São Paulo 93 3 3 0 16 not acept furnished 1221 5500 367 70 7158\n", + "9291 Porto Alegre 58 2 2 2 12 acept not furnished 450 2550 0 38 3038\n", + "9292 Campinas 130 3 2 0 - acept not furnished 0 1400 10 22 1432\n", + "9293 São Paulo 35 1 1 1 9 not acept furnished 1050 2600 317 33 4000\n", + "9294 São Paulo 156 3 2 1 17 acept not furnished 1500 5500 267 70 7337\n", + "9295 São Paulo 250 4 3 3 - acept furnished 0 5000 334 76 5410\n", + "9296 Belo Horizonte 109 3 2 2 2 acept not furnished 400 1800 130 24 2354\n", + "9297 Campinas 40 1 2 1 7 acept not furnished 550 807 43 3 1403\n", + "9298 Belo Horizonte 75 3 2 1 5 acept not furnished 487 1280 109 18 1894\n", + "9299 São Paulo 100 3 3 2 13 acept not furnished 980 6300 491 80 7851\n", + "9300 São Paulo 60 2 1 1 5 acept not furnished 545 1210 75 16 1846\n", + "9301 Campinas 110 3 3 2 - acept not furnished 560 3200 88 49 3897\n", + "9302 Belo Horizonte 63 3 1 1 3 acept not furnished 200 1000 65 14 1279\n", + "9303 São Paulo 550 3 5 8 - acept not furnished 0 10000 3825 151 13980\n", + "9304 São Paulo 112 3 2 2 12 acept not furnished 1239 2670 188 34 4131\n", + "9305 São Paulo 115 3 2 1 - not acept not furnished 0 10000 0 151 10150\n", + "9306 Belo Horizonte 65 2 1 1 3 acept not furnished 566 1100 84 15 1765\n", + "9307 Belo Horizonte 65 3 2 2 2 acept not furnished 180 913 90 13 1196\n", + "9308 Rio de Janeiro 200 4 2 1 7 acept not furnished 2188 4250 400 55 6893\n", + "9309 Rio de Janeiro 46 2 1 1 8 acept not furnished 750 1800 230 24 2804\n", + "9310 São Paulo 320 4 5 4 - acept not furnished 0 7000 700 106 7806\n", + "9311 Rio de Janeiro 140 3 2 0 2 acept not furnished 1345 3200 300 42 4887\n", + "9312 Porto Alegre 87 3 3 2 5 acept not furnished 1300 4000 150 59 5509\n", + "9313 Belo Horizonte 78 1 1 1 15 not acept not furnished 775 2300 128 31 3234\n", + "9314 São Paulo 25 1 1 0 7 not acept not furnished 290 2000 130 26 2446\n", + "9315 São Paulo 50 2 2 1 6 acept furnished 560 2800 67 36 3463\n", + "9316 Rio de Janeiro 40 1 1 0 4 not acept not furnished 530 1949 100 26 2605\n", + "9317 Rio de Janeiro 30 1 1 1 3 acept not furnished 0 500 0 7 507\n", + "9318 Belo Horizonte 65 3 1 1 2 acept furnished 175 1100 0 15 1290\n", + "9319 Porto Alegre 181 3 3 2 - acept not furnished 286 2400 1300 43 4029\n", + "9320 Belo Horizonte 503 5 5 4 - acept not furnished 0 6000 407 99 6506\n", + "9321 São Paulo 50 1 1 0 - not acept not furnished 0 1200 0 19 1219\n", + "9322 Rio de Janeiro 180 3 3 1 4 acept furnished 2300 6500 117 84 9001\n", + "9323 São Paulo 180 3 3 2 1 acept not furnished 2000 7200 900 92 10190\n", + "9324 Porto Alegre 75 2 1 0 2 acept not furnished 180 1600 0 24 1804\n", + "9325 Belo Horizonte 70 3 2 1 1 acept not furnished 377 950 70 13 1410\n", + "9326 Porto Alegre 40 1 1 0 3 not acept furnished 0 2000 0 30 2030\n", + "9327 São Paulo 100 3 2 1 2 acept furnished 450 1600 50 21 2121\n", + "9328 São Paulo 22 1 1 1 25 acept not furnished 471 2200 55 28 2754\n", + "9329 São Paulo 50 2 2 1 12 not acept not furnished 400 1200 124 16 1740\n", + "9330 São Paulo 90 3 1 2 6 acept not furnished 1250 4100 300 52 5702\n", + "9331 Belo Horizonte 150 3 3 2 - not acept not furnished 0 3400 265 56 3721\n", + "9332 São Paulo 20 1 1 0 3 not acept furnished 150 3142 67 40 3399\n", + "9333 São Paulo 120 2 1 1 - not acept not furnished 0 3500 100 53 3653\n", + "9334 Rio de Janeiro 50 2 2 1 5 acept not furnished 440 1450 50 19 1959\n", + "9335 Rio de Janeiro 93 2 2 1 4 acept not furnished 200 1200 64 16 1480\n", + "9336 São Paulo 18 1 1 0 - acept not furnished 0 1720 0 22 1742\n", + "9337 Porto Alegre 30 1 1 0 16 not acept furnished 260 1490 15 22 1787\n", + "9338 São Paulo 80 2 1 1 - acept not furnished 484 1600 135 21 2240\n", + "9339 Porto Alegre 46 1 1 1 5 not acept not furnished 450 1500 46 22 2018\n", + "9340 Rio de Janeiro 90 2 2 0 4 acept not furnished 735 1000 97 13 1845\n", + "9341 Rio de Janeiro 75 2 2 0 2 acept not furnished 591 2400 150 31 3172\n", + "9342 Belo Horizonte 136 4 3 3 9 acept not furnished 1240 3900 434 52 5626\n", + "9343 Campinas 30 1 1 0 1 not acept not furnished 70 1100 9 14 1193\n", + "9344 Rio de Janeiro 58 2 2 1 1 acept not furnished 761 1190 105 16 2072\n", + "9345 São Paulo 95 2 2 0 1 acept furnished 621 1550 82 20 2273\n", + "9346 Porto Alegre 39 1 1 0 3 acept not furnished 290 550 24 9 873\n", + "9347 Belo Horizonte 170 4 3 3 6 acept not furnished 1800 6000 881 80 8761\n", + "9348 Campinas 59 2 1 1 1 acept not furnished 437 1000 20 13 1470\n", + "9349 Belo Horizonte 46 1 1 1 4 not acept not furnished 870 2500 158 34 3562\n", + "9350 São Paulo 124 3 1 0 8 not acept not furnished 1200 1200 100 16 2516\n", + "9351 Rio de Janeiro 160 4 3 2 2 acept not furnished 1550 6200 375 80 8205\n", + "9352 Belo Horizonte 85 3 1 1 1 not acept not furnished 275 1600 62 22 1959\n", + "9353 Rio de Janeiro 80 2 1 1 4 acept not furnished 800 2499 117 33 3449\n", + "9354 Campinas 50 1 1 1 2 not acept not furnished 718 1600 13 21 2352\n", + "9355 São Paulo 110 3 3 3 17 acept furnished 1250 4500 355 58 6163\n", + "9356 Belo Horizonte 62 2 1 1 2 acept not furnished 100 1050 84 14 1248\n", + "9357 São Paulo 500 4 6 6 - acept not furnished 0 5510 2084 83 7677\n", + "9358 São Paulo 230 3 4 2 12 acept furnished 2662 5900 680 75 9317\n", + "9359 Belo Horizonte 115 3 3 1 1 not acept not furnished 485 1750 172 24 2431\n", + "9360 Belo Horizonte 285 4 4 2 - acept not furnished 0 3000 200 50 3250\n", + "9361 São Paulo 89 3 3 2 8 not acept not furnished 965 3800 150 49 4964\n", + "9362 São Paulo 49 2 1 1 2 acept not furnished 503 985 0 13 1501\n", + "9363 Belo Horizonte 500 4 6 4 - not acept not furnished 0 15000 434 246 15680\n", + "9364 São Paulo 35 1 1 1 1 not acept furnished 444 3486 124 45 4099\n", + "9365 Porto Alegre 58 2 1 1 1 acept not furnished 300 1350 25 20 1695\n", + "9366 Campinas 300 4 5 2 - acept not furnished 0 6000 0 91 6091\n", + "9367 Porto Alegre 58 1 1 0 2 acept not furnished 309 700 28 11 1048\n", + "9368 São Paulo 800 5 7 6 - acept not furnished 1 15000 2051 226 17280\n", + "9369 São Paulo 60 2 1 1 5 acept furnished 600 3300 67 42 4009\n", + "9370 São Paulo 200 4 4 2 - acept not furnished 0 5525 167 84 5776\n", + "9371 Campinas 420 4 5 4 - acept not furnished 600 7225 584 109 8518\n", + "9372 Campinas 165 3 2 0 - acept not furnished 0 3000 129 46 3175\n", + "9373 Belo Horizonte 260 4 3 4 - not acept not furnished 0 4500 480 74 5054\n", + "9374 São Paulo 55 2 1 0 - acept not furnished 0 1600 50 25 1675\n", + "9375 Rio de Janeiro 55 1 1 0 1 acept not furnished 585 800 0 11 1396\n", + "9376 São Paulo 47 2 1 0 1 acept not furnished 0 1600 0 21 1621\n", + "9377 São Paulo 38 1 1 0 5 acept not furnished 819 1650 0 21 2490\n", + "9378 Rio de Janeiro 60 2 1 0 - acept not furnished 0 1800 72 28 1900\n", + "9379 Belo Horizonte 90 3 2 1 3 acept not furnished 500 1800 183 24 2507\n", + "9380 Belo Horizonte 70 2 1 2 1 acept not furnished 222 1600 100 22 1944\n", + "9381 Rio de Janeiro 41 1 1 1 2 not acept furnished 2100 3200 355 24 5679\n", + "9382 São Paulo 35 1 1 1 1 not acept furnished 444 3486 124 45 4099\n", + "9383 São Paulo 70 2 1 1 9 acept furnished 628 3100 108 40 3876\n", + "9384 Campinas 43 1 1 1 5 acept not furnished 518 900 45 12 1475\n", + "9385 Rio de Janeiro 80 1 1 0 4 acept not furnished 0 4000 150 52 4202\n", + "9386 Belo Horizonte 251 3 3 4 16 not acept not furnished 3000 12000 1463 160 16620\n", + "9387 São Paulo 185 4 5 4 5 acept not furnished 2800 7100 1081 90 11070\n", + "9388 São Paulo 520 3 4 2 - acept not furnished 0 9000 1500 136 10640\n", + "9389 São Paulo 30 1 1 0 1 acept not furnished 50 1150 50 15 1265\n", + "9390 São Paulo 387 3 5 3 7 acept not furnished 4600 7000 1334 89 13020\n", + "9391 Rio de Janeiro 65 2 2 1 2 acept not furnished 532 1820 49 24 2425\n", + "9392 São Paulo 155 3 3 2 - acept not furnished 0 2650 233 40 2923\n", + "9393 Porto Alegre 90 2 1 0 2 acept not furnished 0 1380 21 21 1422\n", + "9394 Porto Alegre 61 2 1 2 4 not acept not furnished 350 2200 1 33 2584\n", + "9395 São Paulo 60 2 1 0 1 acept not furnished 0 1100 56 14 1170\n", + "9396 São Paulo 250 4 4 4 14 acept not furnished 2600 3600 0 46 6246\n", + "9397 Belo Horizonte 57 2 1 1 3 not acept not furnished 225 800 0 11 1036\n", + "9398 São Paulo 36 1 1 1 8 acept not furnished 323 2150 85 28 2586\n", + "9399 Campinas 231 3 5 4 4 acept furnished 2200 12000 642 153 15000\n", + "9400 São Paulo 67 3 1 1 2 acept not furnished 592 2900 150 37 3679\n", + "9401 São Paulo 120 1 2 2 4 acept not furnished 3100 4200 750 54 8104\n", + "9402 São Paulo 215 3 4 2 9 not acept not furnished 1800 7000 450 89 9339\n", + "9403 Campinas 100 4 3 1 4 acept not furnished 750 2240 17 29 3036\n", + "9404 Rio de Janeiro 50 2 1 1 5 acept furnished 430 1150 9 15 1604\n", + "9405 Porto Alegre 40 1 1 1 11 acept furnished 1300 1200 68 18 2586\n", + "9406 São Paulo 20 1 1 0 5 acept furnished 602 1800 130 23 2555\n", + "9407 São Paulo 96 2 2 2 23 not acept furnished 800 4000 273 51 5124\n", + "9408 Porto Alegre 42 1 1 0 1 acept not furnished 250 985 49 15 1299\n", + "9409 Porto Alegre 37 1 1 0 4 acept not furnished 335 1600 67 24 2026\n", + "9410 Porto Alegre 110 2 2 1 1 acept not furnished 250 1453 20 22 1745\n", + "9411 São Paulo 25 1 1 0 - acept not furnished 20 1200 25 19 1264\n", + "9412 São Paulo 96 2 2 2 5 acept not furnished 1200 1600 400 21 3221\n", + "9413 São Paulo 98 3 2 0 - acept not furnished 580 1580 61 21 2242\n", + "9414 São Paulo 70 2 1 0 1 not acept not furnished 350 1050 116 14 1530\n", + "9415 Rio de Janeiro 127 1 2 1 18 not acept not furnished 850 6300 440 82 7672\n", + "9416 São Paulo 138 3 3 2 11 acept not furnished 960 3000 100 39 4099\n", + "9417 Rio de Janeiro 79 2 2 1 4 acept not furnished 838 1664 60 22 2584\n", + "9418 São Paulo 45 1 1 0 - not acept not furnished 0 1030 0 16 1046\n", + "9419 São Paulo 35 1 1 0 - not acept not furnished 0 1100 84 17 1201\n", + "9420 São Paulo 180 3 4 3 5 acept furnished 2800 9000 1125 115 13040\n", + "9421 Campinas 220 3 5 3 4 not acept furnished 2000 7900 417 101 10420\n", + "9422 Porto Alegre 72 2 2 2 12 acept not furnished 500 2100 56 31 2687\n", + "9423 Rio de Janeiro 150 3 3 0 10 acept furnished 850 6000 467 78 7395\n", + "9424 São Paulo 40 1 1 1 - acept not furnished 0 1300 68 20 1388\n", + "9425 São Paulo 45 2 1 1 25 not acept not furnished 375 1756 0 23 2176\n", + "9426 Belo Horizonte 100 3 3 1 3 acept not furnished 300 1400 0 19 1719\n", + "9427 São Paulo 140 3 2 2 2 acept not furnished 1480 3700 167 47 5394\n", + "9428 Porto Alegre 313 3 3 4 5 acept furnished 650 4500 150 66 5366\n", + "9429 São Paulo 25 1 1 0 5 not acept furnished 270 2600 67 33 2970\n", + "9430 Rio de Janeiro 300 5 4 5 - acept not furnished 0 4080 234 63 4377\n", + "9431 Porto Alegre 28 1 1 0 4 acept not furnished 200 500 25 8 733\n", + "9432 São Paulo 249 4 4 3 - acept not furnished 0 6800 0 103 6903\n", + "9433 Porto Alegre 112 4 2 1 2 acept not furnished 765 1880 75 28 2748\n", + "9434 Porto Alegre 50 2 1 1 3 acept not furnished 268 900 33 14 1215\n", + "9435 São Paulo 80 2 2 2 6 acept not furnished 1770 3000 39 39 4848\n", + "9436 Belo Horizonte 117 2 1 0 - acept not furnished 0 2000 191 33 2224\n", + "9437 Porto Alegre 85 2 2 1 8 not acept furnished 500 2800 100 41 3441\n", + "9438 São Paulo 45 1 1 0 7 acept not furnished 265 1275 0 17 1557\n", + "9439 São Paulo 76 3 2 2 8 acept not furnished 679 3400 201 44 4324\n", + "9440 Rio de Janeiro 30 1 1 0 5 not acept not furnished 1100 505 85 7 1697\n", + "9441 Porto Alegre 20 1 1 1 - acept furnished 0 950 75 14 1039\n", + "9442 São Paulo 250 2 2 8 - acept furnished 0 4500 459 68 5027\n", + "9443 São Paulo 60 2 2 1 1 acept not furnished 862 2514 0 32 3408\n", + "9444 Porto Alegre 65 2 2 1 2 acept not furnished 680 1300 142 19 2141\n", + "9445 Campinas 55 1 1 1 1 not acept not furnished 600 2230 0 29 2859\n", + "9446 São Paulo 150 2 1 2 - acept not furnished 0 5500 0 83 5583\n", + "9447 São Paulo 55 2 1 1 6 not acept not furnished 450 1700 111 22 2283\n", + "9448 São Paulo 40 1 1 0 - not acept not furnished 0 650 0 10 660\n", + "9449 Rio de Janeiro 27 1 1 0 2 acept furnished 0 2400 25 31 2456\n", + "9450 Porto Alegre 99 3 3 1 2 not acept not furnished 600 2500 167 37 3304\n", + "9451 Rio de Janeiro 100 3 2 1 2 acept not furnished 1300 4190 181 54 5725\n", + "9452 São Paulo 425 3 4 4 7 not acept furnished 5719 11000 3084 140 19940\n", + "9453 São Paulo 44 2 1 1 12 acept not furnished 400 1340 0 17 1757\n", + "9454 São Paulo 76 1 1 1 - not acept not furnished 0 1400 17 22 1439\n", + "9455 São Paulo 100 3 2 1 4 acept not furnished 1200 6650 200 85 8135\n", + "9456 Belo Horizonte 380 4 5 4 - acept not furnished 0 8500 857 140 9497\n", + "9457 São Paulo 292 4 3 3 8 acept furnished 2700 11480 709 146 15030\n", + "9458 São Paulo 350 5 3 6 - acept not furnished 0 5670 1084 86 6840\n", + "9459 São Paulo 420 4 5 0 - acept not furnished 0 6460 1480 98 8038\n", + "9460 Rio de Janeiro 100 2 1 1 4 acept not furnished 1700 5000 0 65 6765\n", + "9461 Belo Horizonte 80 2 1 0 2 acept not furnished 0 1150 75 16 1241\n", + "9462 Porto Alegre 61 2 1 1 2 acept not furnished 210 1700 50 25 1985\n", + "9463 Campinas 48 2 1 0 2 acept not furnished 250 700 18 9 977\n", + "9464 Campinas 100 3 2 8 - acept not furnished 0 2000 82 31 2113\n", + "9465 São Paulo 50 2 1 1 1 acept not furnished 611 2895 133 37 3676\n", + "9466 São Paulo 141 4 3 1 5 not acept not furnished 1200 4320 550 55 6125\n", + "9467 São Paulo 25 1 1 0 2 not acept not furnished 160 620 15 8 803\n", + "9468 São Paulo 60 1 1 0 - acept not furnished 0 800 0 13 813\n", + "9469 Porto Alegre 75 2 1 0 3 acept not furnished 260 880 38 13 1191\n", + "9470 São Paulo 45 2 1 1 11 acept not furnished 380 1598 0 21 1999\n", + "9471 Porto Alegre 74 2 2 0 10 acept not furnished 550 2700 50 40 3340\n", + "9472 São Paulo 38 1 1 0 1 not acept not furnished 60 950 0 13 1023\n", + "9473 Porto Alegre 47 1 1 1 1 not acept furnished 400 2200 0 33 2633\n", + "9474 São Paulo 63 2 3 1 1 acept not furnished 690 2114 150 27 2981\n", + "9475 Porto Alegre 33 1 1 0 1 acept not furnished 220 900 90 12 1222\n", + "9476 São Paulo 40 1 1 0 11 not acept not furnished 370 3400 74 44 3888\n", + "9477 Belo Horizonte 180 3 3 2 4 acept furnished 350 2800 150 38 3338\n", + "9478 São Paulo 56 2 2 1 2 not acept not furnished 542 1510 131 20 2203\n", + "9479 São Paulo 250 4 2 8 - acept not furnished 0 13040 500 197 13740\n", + "9480 Belo Horizonte 400 4 3 3 - not acept not furnished 0 7000 613 115 7728\n", + "9481 Belo Horizonte 120 4 3 2 1 acept not furnished 0 3250 0 44 3294\n", + "9482 Rio de Janeiro 200 4 3 1 1 not acept furnished 2400 6800 534 88 9822\n", + "9483 São Paulo 200 3 3 2 7 acept not furnished 4200 7225 642 92 12160\n", + "9484 São Paulo 63 2 2 1 7 not acept not furnished 250 2500 0 32 2782\n", + "9485 São Paulo 54 1 1 1 8 acept furnished 1250 3850 209 49 5358\n", + "9486 São Paulo 80 3 2 3 1 acept not furnished 1150 1615 160 21 2946\n", + "9487 Rio de Janeiro 110 3 1 1 1 acept not furnished 1000 3000 30 39 4069\n", + "9488 São Paulo 88 2 3 2 11 acept not furnished 980 6835 0 44 7859\n", + "9489 Belo Horizonte 90 3 2 1 - not acept not furnished 0 1890 0 31 1921\n", + "9490 São Paulo 291 4 3 2 1 acept not furnished 2600 5400 434 69 8503\n", + "9491 Porto Alegre 48 2 1 1 1 acept not furnished 410 1400 30 21 1861\n", + "9492 Campinas 70 2 1 2 5 acept not furnished 771 2100 55 27 2953\n", + "9493 São Paulo 193 4 4 4 3 not acept not furnished 1700 9000 917 115 11730\n", + "9494 São Paulo 170 4 4 3 12 acept furnished 4000 1440 834 19 6293\n", + "9495 São Paulo 30 1 1 0 - not acept not furnished 0 1200 0 19 1219\n", + "9496 São Paulo 86 1 2 1 13 acept furnished 1800 6500 375 83 8758\n", + "9497 Campinas 50 1 1 1 4 acept not furnished 400 700 26 9 1135\n", + "9498 Rio de Janeiro 40 1 1 0 1 acept not furnished 295 1100 0 15 1410\n", + "9499 São Paulo 72 2 2 1 7 acept not furnished 864 2500 234 32 3630\n", + "9500 São Paulo 47 1 1 0 4 not acept not furnished 100 1000 76 13 1189\n", + "9501 Rio de Janeiro 60 2 1 1 2 acept not furnished 550 1200 55 16 1821\n", + "9502 Rio de Janeiro 55 1 1 0 7 not acept not furnished 795 2410 87 32 3324\n", + "9503 Belo Horizonte 462 4 6 0 9 acept furnished 1320 7600 884 102 9906\n", + "9504 Belo Horizonte 280 4 4 3 10 acept not furnished 1000 6500 458 87 8045\n", + "9505 São Paulo 230 6 4 8 - acept not furnished 0 10000 0 151 10150\n", + "9506 Belo Horizonte 100 3 2 3 15 acept not furnished 880 2300 233 31 3444\n", + "9507 São Paulo 69 2 1 1 3 acept not furnished 733 1400 98 18 2249\n", + "9508 São Paulo 50 2 1 1 7 not acept not furnished 800 3400 200 44 4444\n", + "9509 São Paulo 71 3 2 2 11 acept furnished 630 2190 92 28 2940\n", + "9510 São Paulo 163 3 4 3 13 acept furnished 2900 3000 822 39 6761\n", + "9511 Rio de Janeiro 450 4 5 3 11 not acept not furnished 2600 7500 825 97 11020\n", + "9512 Porto Alegre 29 1 1 0 11 not acept not furnished 250 1042 24 8 1324\n", + "9513 Rio de Janeiro 70 2 2 0 2 acept not furnished 950 2140 125 28 3243\n", + "9514 São Paulo 40 1 1 0 - not acept not furnished 180 850 41 13 1084\n", + "9515 Porto Alegre 22 1 1 0 6 acept not furnished 180 800 20 12 1012\n", + "9516 São Paulo 299 4 5 4 8 acept not furnished 3103 6300 1096 80 10580\n", + "9517 São Paulo 73 3 2 2 14 acept not furnished 550 2520 192 32 3294\n", + "9518 São Paulo 440 6 7 0 - acept not furnished 0 5950 2320 90 8360\n", + "9519 São Paulo 330 4 5 5 13 acept not furnished 4913 3911 2176 50 11050\n", + "9520 Porto Alegre 600 3 4 4 - acept not furnished 0 3300 186 59 3545\n", + "9521 Rio de Janeiro 195 3 3 0 8 acept furnished 1300 10000 375 129 11800\n", + "9522 São Paulo 62 3 2 1 9 acept not furnished 500 2000 125 26 2651\n", + "9523 São Paulo 230 3 6 5 18 acept furnished 2200 11050 1500 141 14890\n", + "9524 São Paulo 64 2 1 1 9 acept not furnished 400 1090 25 14 1529\n", + "9525 Campinas 60 2 1 1 3 acept not furnished 470 1400 26 18 1914\n", + "9526 Rio de Janeiro 76 2 2 2 7 not acept not furnished 1250 3300 226 43 4819\n", + "9527 São Paulo 230 3 3 1 3 acept not furnished 1580 5800 589 74 8043\n", + "9528 São Paulo 200 2 2 1 - acept not furnished 0 2300 92 35 2427\n", + "9529 Rio de Janeiro 25 1 1 0 2 not acept furnished 0 1800 40 24 1864\n", + "9530 São Paulo 90 2 1 1 2 acept not furnished 1000 3000 50 39 4089\n", + "9531 Belo Horizonte 100 3 3 2 2 acept not furnished 1200 3000 305 40 4545\n", + "9532 São Paulo 382 4 4 4 5 acept not furnished 2190 3200 710 41 6141\n", + "9533 São Paulo 68 3 1 1 9 acept not furnished 430 1450 0 19 1899\n", + "9534 Belo Horizonte 120 4 2 0 1 acept not furnished 0 1800 60 30 1890\n", + "9535 São Paulo 85 2 1 1 1 acept not furnished 400 1600 0 21 2021\n", + "9536 São Paulo 108 3 2 2 3 not acept not furnished 823 3000 350 39 4212\n", + "9537 Rio de Janeiro 100 3 2 0 3 not acept furnished 1250 2900 259 38 4447\n", + "9538 São Paulo 42 1 1 0 10 acept furnished 420 1700 0 22 2142\n", + "9539 Porto Alegre 336 3 4 3 - acept not furnished 2000 12500 500 183 15180\n", + "9540 Belo Horizonte 200 4 3 2 - acept not furnished 0 13000 236 214 13450\n", + "9541 Belo Horizonte 50 2 1 0 - not acept not furnished 0 750 59 13 822\n", + "9542 São Paulo 30 1 1 0 2 acept not furnished 300 1550 125 20 1995\n", + "9543 São Paulo 35 1 1 1 17 acept not furnished 350 1950 84 25 2409\n", + "9544 Rio de Janeiro 100 2 2 0 1 acept not furnished 1550 2956 310 39 4855\n", + "9545 São Paulo 112 1 2 2 7 acept furnished 0 8389 0 107 8496\n", + "9546 São Paulo 40 1 1 1 5 acept furnished 766 2156 123 28 3073\n", + "9547 São Paulo 58 2 1 1 1 acept not furnished 1077 1900 100 25 3102\n", + "9548 São Paulo 250 3 4 4 15 acept not furnished 2530 4000 1100 51 7681\n", + "9549 Porto Alegre 62 2 1 0 - not acept not furnished 80 1250 40 19 1389\n", + "9550 São Paulo 65 2 2 0 2 acept not furnished 450 2200 61 28 2739\n", + "9551 Belo Horizonte 120 4 3 2 3 acept not furnished 0 3250 0 44 3294\n", + "9552 São Paulo 22 1 1 0 6 not acept not furnished 470 1800 62 23 2355\n", + "9553 Rio de Janeiro 35 1 1 0 7 not acept not furnished 450 1100 21 15 1586\n", + "9554 São Paulo 102 3 2 1 4 acept furnished 800 3200 80 41 4121\n", + "9555 São Paulo 500 4 5 6 - not acept not furnished 3 7225 1209 109 8546\n", + "9556 São Paulo 20 1 1 0 4 acept furnished 602 1800 130 23 2555\n", + "9557 São Paulo 79 3 2 2 11 acept not furnished 1200 2600 314 33 4147\n", + "9558 São Paulo 23 1 1 0 26 acept not furnished 399 2150 42 28 2619\n", + "9559 São Paulo 360 3 5 3 13 acept not furnished 4300 8500 1500 108 14410\n", + "9560 Campinas 470 4 4 0 - acept furnished 690 3700 723 56 5169\n", + "9561 Rio de Janeiro 70 2 1 1 15 acept not furnished 450 1300 80 17 1847\n", + "9562 São Paulo 450 5 5 6 - acept not furnished 0 9500 1345 143 10990\n", + "9563 São Paulo 73 1 2 2 21 acept furnished 1000 3500 0 45 4545\n", + "9564 São Paulo 204 4 5 3 10 not acept not furnished 1900 8000 417 102 10420\n", + "9565 São Paulo 400 9 4 4 - acept not furnished 100 12000 500 181 12780\n", + "9566 Belo Horizonte 115 2 2 1 2 not acept not furnished 350 1400 118 19 1887\n", + "9567 São Paulo 111 3 4 2 1 not acept not furnished 680 4000 0 51 4731\n", + "9568 Campinas 120 4 3 8 - acept not furnished 0 4500 500 68 5068\n", + "9569 São Paulo 65 2 2 1 1 acept not furnished 643 2300 63 30 3036\n", + "9570 São Paulo 39 1 1 1 1 acept furnished 1144 2500 301 32 3977\n", + "9571 Porto Alegre 70 2 1 0 3 acept not furnished 300 1400 59 21 1780\n", + "9572 São Paulo 35 1 1 0 15 acept not furnished 300 1500 0 20 1820\n", + "9573 São Paulo 60 2 3 2 6 not acept not furnished 730 1100 19 14 1863\n", + "9574 Campinas 50 2 1 1 1 acept not furnished 430 680 50 9 1169\n", + "9575 São Paulo 221 3 5 4 9 acept not furnished 1554 10850 643 138 13190\n", + "9576 São Paulo 130 2 2 1 - acept not furnished 1100 4300 100 55 5555\n", + "9577 São Paulo 310 4 3 3 11 acept not furnished 3500 8000 0 102 11600\n", + "9578 São Paulo 33 1 1 0 16 acept not furnished 350 1500 0 20 1870\n", + "9579 Belo Horizonte 45 1 1 0 - not acept not furnished 75 800 50 14 939\n", + "9580 Campinas 45 1 1 1 4 not acept not furnished 417 850 140 11 1418\n", + "9581 São Paulo 105 2 1 2 10 acept not furnished 870 2360 155 30 3415\n", + "9582 Belo Horizonte 280 4 2 3 3 not acept not furnished 1800 3500 471 47 5818\n", + "9583 São Paulo 50 1 1 1 6 not acept furnished 1450 2500 342 32 4324\n", + "9584 Rio de Janeiro 30 1 1 0 2 acept not furnished 800 1250 0 17 2067\n", + "9585 São Paulo 50 2 1 1 1 acept not furnished 550 1450 0 19 2019\n", + "9586 Porto Alegre 70 2 1 1 8 acept furnished 520 1900 378 28 2826\n", + "9587 Belo Horizonte 30 1 1 0 3 not acept not furnished 0 1500 0 20 1520\n", + "9588 São Paulo 132 4 4 3 8 acept not furnished 2170 2400 442 31 5043\n", + "9589 Rio de Janeiro 250 2 3 2 - acept not furnished 0 3500 349 54 3903\n", + "9590 São Paulo 147 4 2 2 - acept not furnished 0 2100 128 32 2260\n", + "9591 Belo Horizonte 159 3 3 3 7 acept furnished 2000 7100 150 95 9345\n", + "9592 São Paulo 230 3 3 4 12 acept furnished 2300 3200 750 41 6291\n", + "9593 Campinas 75 3 2 2 5 acept not furnished 480 1450 75 19 2024\n", + "9594 Rio de Janeiro 250 7 3 0 - acept not furnished 0 15000 0 229 15230\n", + "9595 São Paulo 620 4 5 5 8 acept not furnished 7963 15000 5160 191 28310\n", + "9596 São Paulo 118 3 2 4 1 acept not furnished 850 2250 334 29 3463\n", + "9597 Porto Alegre 440 3 3 3 8 not acept not furnished 100 10500 84 154 10840\n", + "9598 Porto Alegre 55 2 1 0 3 not acept not furnished 290 1195 210 18 1713\n", + "9599 São Paulo 482 4 4 4 - acept not furnished 0 9180 1250 138 10570\n", + "9600 São Paulo 550 5 6 0 - acept furnished 0 15000 1435 226 16660\n", + "9601 São Paulo 55 2 1 1 6 acept furnished 815 3000 123 39 3977\n", + "9602 Rio de Janeiro 140 4 2 1 11 acept not furnished 2000 3500 167 46 5713\n", + "9603 Rio de Janeiro 28 1 1 0 6 acept furnished 580 1850 59 24 2513\n", + "9604 Porto Alegre 103 3 1 3 - acept furnished 0 2200 670 40 2910\n", + "9605 São Paulo 53 2 1 1 8 acept not furnished 380 1270 31 17 1698\n", + "9606 São Paulo 300 4 7 4 1 acept not furnished 3000 9800 1405 125 14330\n", + "9607 São Paulo 190 4 4 3 23 acept furnished 1100 7110 589 91 8890\n", + "9608 São Paulo 99 2 1 1 - acept not furnished 0 3650 230 55 3935\n", + "9609 São Paulo 84 3 2 2 10 acept not furnished 950 1600 258 21 2829\n", + "9610 São Paulo 161 4 3 3 - acept not furnished 0 3600 300 46 3946\n", + "9611 São Paulo 53 2 1 1 5 acept not furnished 690 950 12 13 1665\n", + "9612 Rio de Janeiro 16 1 1 0 9 acept furnished 480 1390 0 18 1888\n", + "9613 São Paulo 36 1 1 1 1 acept not furnished 465 3000 84 39 3588\n", + "9614 Rio de Janeiro 50 1 1 1 1 acept not furnished 806 2300 132 30 3268\n", + "9615 Porto Alegre 70 3 1 1 9 not acept not furnished 325 1800 0 27 2152\n", + "9616 São Paulo 105 3 2 2 5 acept not furnished 1661 1000 290 13 2964\n", + "9617 São Paulo 30 1 1 0 7 not acept not furnished 545 1350 39 18 1952\n", + "9618 São Paulo 216 4 4 3 3 not acept furnished 3500 8000 1125 102 12730\n", + "9619 Belo Horizonte 50 3 1 1 4 acept not furnished 210 1250 0 17 1477\n", + "9620 São Paulo 250 3 4 2 1 not acept not furnished 2400 7000 42 89 9531\n", + "9621 São Paulo 230 3 3 2 - acept not furnished 0 2460 330 37 2827\n", + "9622 São Paulo 157 3 2 0 7 acept not furnished 1325 4500 347 58 6230\n", + "9623 Porto Alegre 150 3 3 0 2 not acept furnished 1140 4740 290 70 6240\n", + "9624 São Paulo 110 3 2 0 1 acept furnished 478 2200 6 28 2712\n", + "9625 São Paulo 193 4 3 3 10 acept furnished 3000 13100 898 166 17160\n", + "9626 São Paulo 114 2 2 2 15 acept furnished 1200 4998 0 64 6262\n", + "9627 Porto Alegre 92 2 2 1 8 not acept furnished 800 1900 120 28 2848\n", + "9628 São Paulo 75 3 3 0 12 acept not furnished 650 2660 10 34 3354\n", + "9629 São Paulo 270 2 2 3 - acept not furnished 1 1429 0 22 1452\n", + "9630 Campinas 80 2 2 1 8 acept furnished 860 2000 34 26 2920\n", + "9631 Porto Alegre 90 4 2 1 3 not acept not furnished 400 2142 212 32 2786\n", + "9632 Rio de Janeiro 130 3 3 1 2 acept not furnished 900 2500 128 33 3561\n", + "9633 São Paulo 40 1 1 0 - not acept furnished 0 860 59 13 932\n", + "9634 São Paulo 60 2 2 1 6 acept not furnished 650 2127 23 27 2827\n", + "9635 Porto Alegre 64 1 1 1 6 acept not furnished 400 1500 400 22 2322\n", + "9636 Rio de Janeiro 80 2 1 1 3 acept furnished 2500 8000 325 104 10930\n", + "9637 São Paulo 45 1 1 1 - not acept not furnished 405 800 0 11 1216\n", + "9638 São Paulo 60 2 2 1 22 not acept furnished 550 4000 0 51 4601\n", + "9639 São Paulo 277 3 2 1 11 acept not furnished 2332 7800 601 99 10830\n", + "9640 São Paulo 57 1 1 0 6 acept furnished 300 6000 17 77 6394\n", + "9641 São Paulo 23 1 1 1 26 acept not furnished 472 2300 59 30 2861\n", + "9642 São Paulo 73 3 2 2 4 acept not furnished 650 2500 236 32 3418\n", + "9643 São Paulo 36 1 1 0 9 acept not furnished 385 2150 40 28 2603\n", + "9644 Belo Horizonte 88 2 3 2 8 not acept not furnished 300 1450 110 20 1880\n", + "9645 São Paulo 197 4 3 1 3 acept not furnished 2640 2800 514 36 5990\n", + "9646 Belo Horizonte 175 3 2 2 9 acept not furnished 896 2400 350 32 3678\n", + "9647 São Paulo 400 4 4 4 9 acept not furnished 4700 9000 1125 115 14940\n", + "9648 São Paulo 260 3 4 3 - acept not furnished 0 5000 393 47 5440\n", + "9649 Rio de Janeiro 80 2 1 0 3 not acept not furnished 450 1100 0 15 1565\n", + "9650 São Paulo 190 3 3 4 - acept furnished 1 4500 0 68 4569\n", + "9651 Rio de Janeiro 65 1 1 0 1 acept not furnished 350 1800 30 24 2204\n", + "9652 São Paulo 50 1 1 0 - not acept not furnished 0 1250 34 19 1303\n", + "9653 São Paulo 136 3 3 2 8 not acept furnished 1535 8900 482 113 11030\n", + "9654 São Paulo 96 3 3 2 8 acept not furnished 866 1710 90 22 2688\n", + "9655 Belo Horizonte 155 4 1 2 4 acept not furnished 550 3350 249 45 4194\n", + "9656 São Paulo 384 5 5 3 13 acept not furnished 4000 8000 1240 102 13340\n", + "9657 Rio de Janeiro 144 3 2 0 2 acept furnished 1575 5500 530 71 7676\n", + "9658 São Paulo 135 3 3 2 7 not acept not furnished 1500 13800 375 175 15850\n", + "9659 São Paulo 25 1 1 0 - not acept not furnished 0 1000 84 16 1100\n", + "9660 Rio de Janeiro 55 2 1 0 4 acept not furnished 833 2200 99 29 3161\n", + "9661 São Paulo 250 3 3 2 - not acept furnished 0 7000 417 106 7523\n", + "9662 São Paulo 66 2 1 1 5 not acept not furnished 834 2140 0 28 3002\n", + "9663 Belo Horizonte 240 4 4 6 13 not acept not furnished 1700 15000 1085 200 17990\n", + "9664 São Paulo 176 4 5 0 1 acept furnished 1350 9500 792 121 11760\n", + "9665 Rio de Janeiro 88 3 2 1 6 acept not furnished 1586 3500 240 46 5372\n", + "9666 Rio de Janeiro 70 2 1 1 9 acept not furnished 700 2600 30 34 3364\n", + "9667 São Paulo 127 2 2 3 - acept not furnished 0 2600 133 40 2773\n", + "9668 São Paulo 201 3 5 3 2 not acept furnished 2550 10000 795 127 13470\n", + "9669 Campinas 60 2 1 1 8 not acept furnished 500 3250 156 42 3948\n", + "9670 São Paulo 42 1 1 1 7 not acept furnished 743 2800 209 36 3788\n", + "9671 Porto Alegre 65 2 1 1 2 acept not furnished 135 1400 22 21 1578\n", + "9672 Belo Horizonte 20 1 1 1 - acept furnished 0 1100 0 15 1115\n", + "9673 Rio de Janeiro 118 3 2 0 4 not acept not furnished 1650 2550 172 33 4405\n", + "9674 São Paulo 98 3 5 1 10 acept not furnished 750 5510 0 70 6330\n", + "9675 São Paulo 505 3 5 0 12 not acept not furnished 4906 8600 2434 109 16050\n", + "9676 Rio de Janeiro 110 3 1 2 7 acept not furnished 1300 5000 417 65 6782\n", + "9677 Porto Alegre 75 2 2 1 3 acept furnished 583 2100 68 31 2782\n", + "9678 São Paulo 50 1 1 0 - not acept not furnished 0 750 0 12 762\n", + "9679 Porto Alegre 93 2 1 0 4 not acept not furnished 645 800 86 12 1543\n", + "9680 São Paulo 230 4 6 4 12 acept not furnished 2850 3000 2658 39 8547\n", + "9681 Belo Horizonte 300 4 3 3 8 acept not furnished 2059 5000 535 67 7661\n", + "9682 Belo Horizonte 80 3 2 2 8 acept not furnished 230 1450 140 20 1840\n", + "9683 São Paulo 144 4 4 4 3 acept not furnished 1900 4900 667 63 7530\n", + "9684 São Paulo 299 3 3 3 1 acept not furnished 2689 1942 316 25 4972\n", + "9685 São Paulo 168 4 3 3 5 acept not furnished 2128 13000 809 165 16100\n", + "9686 Rio de Janeiro 120 3 2 0 7 acept not furnished 1150 1450 308 19 2927\n", + "9687 São Paulo 135 3 2 1 - acept not furnished 0 2900 180 44 3124\n", + "9688 Rio de Janeiro 39 1 1 0 3 acept not furnished 380 980 20 13 1393\n", + "9689 São Paulo 211 2 2 2 - acept not furnished 1 4500 752 68 5321\n", + "9690 Porto Alegre 160 2 3 2 - acept furnished 800 5200 100 93 6193\n", + "9691 São Paulo 60 2 1 1 5 acept not furnished 662 1150 120 15 1947\n", + "9692 Campinas 45 1 1 1 9 not acept furnished 492 1900 83 25 2500\n", + "9693 São Paulo 120 3 3 2 - acept not furnished 0 2900 375 44 3319\n", + "9694 Campinas 136 4 5 3 6 acept furnished 1253 3579 218 46 5096\n", + "9695 São Paulo 140 2 2 2 8 acept furnished 880 3990 394 51 5315\n", + "9696 São Paulo 380 4 5 4 5 acept furnished 4180 4080 1509 52 9821\n", + "9697 São Paulo 62 2 1 1 13 acept not furnished 543 2200 59 28 2830\n", + "9698 São Paulo 35 1 1 1 5 not acept furnished 444 3290 124 42 3900\n", + "9699 São Paulo 100 4 3 0 4 acept furnished 1060 4280 175 55 5570\n", + "9700 Campinas 60 1 1 1 - acept not furnished 0 1300 30 20 1350\n", + "9701 Rio de Janeiro 95 2 1 0 - acept not furnished 100 2000 55 31 2186\n", + "9702 São Paulo 25 1 1 0 1 not acept not furnished 0 1200 35 16 1251\n", + "9703 Belo Horizonte 255 3 2 4 - not acept not furnished 0 2800 250 46 3096\n", + "9704 Campinas 180 3 3 3 7 acept not furnished 2400 7600 477 97 10570\n", + "9705 São Paulo 59 2 1 1 12 acept not furnished 480 1510 0 20 2010\n", + "9706 São Paulo 420 3 3 4 7 acept not furnished 8043 12000 2936 153 23130\n", + "9707 São Paulo 125 3 3 3 1 acept not furnished 2076 5000 1165 64 8305\n", + "9708 São Paulo 80 2 1 0 1 acept not furnished 0 1800 209 23 2032\n", + "9709 Campinas 37 1 1 0 4 not acept furnished 382 742 0 10 1134\n", + "9710 São Paulo 110 3 3 2 18 acept not furnished 1160 2200 418 28 3806\n", + "9711 São Paulo 150 4 2 2 - acept not furnished 0 3100 267 47 3414\n", + "9712 Rio de Janeiro 31 1 1 0 5 not acept not furnished 630 1750 50 23 2453\n", + "9713 Belo Horizonte 100 3 2 1 5 acept not furnished 730 1500 120 20 2370\n", + "9714 São Paulo 100 2 2 0 1 not acept not furnished 0 1710 175 22 1907\n", + "9715 Rio de Janeiro 56 2 2 0 1 not acept furnished 610 2500 84 33 3227\n", + "9716 Belo Horizonte 75 3 1 1 1 not acept not furnished 160 1100 80 15 1355\n", + "9717 São Paulo 166 2 1 5 - acept furnished 0 2200 200 34 2434\n", + "9718 Porto Alegre 129 3 3 0 2 acept not furnished 1800 3800 225 56 5881\n", + "9719 São Paulo 80 3 1 0 - acept not furnished 0 6000 0 91 6091\n", + "9720 São Paulo 204 3 2 2 2 acept not furnished 3550 7000 764 89 11400\n", + "9721 São Paulo 303 3 3 4 4 acept furnished 4911 10250 2470 130 17760\n", + "9722 São Paulo 221 4 4 4 17 not acept not furnished 3100 12830 920 163 17010\n", + "9723 Porto Alegre 75 3 1 0 3 acept not furnished 400 1080 22 16 1518\n", + "9724 Campinas 44 1 1 0 4 acept not furnished 417 520 23 7 967\n", + "9725 São Paulo 50 2 1 1 8 acept not furnished 580 1100 100 14 1794\n", + "9726 São Paulo 95 3 3 2 16 not acept furnished 900 3150 121 40 4211\n", + "9727 Porto Alegre 75 2 1 0 10 acept furnished 282 1020 150 15 1467\n", + "9728 São Paulo 48 1 1 1 6 acept not furnished 500 2200 35 28 2763\n", + "9729 Belo Horizonte 114 3 2 2 8 not acept not furnished 784 3500 308 47 4639\n", + "9730 Campinas 75 2 2 2 6 acept not furnished 730 2000 148 26 2904\n", + "9731 São Paulo 220 3 3 2 14 not acept furnished 1499 6300 468 80 8347\n", + "9732 São Paulo 100 4 3 2 2 acept not furnished 1027 2500 369 32 3928\n", + "9733 Rio de Janeiro 380 3 4 3 13 not acept furnished 3000 15000 2500 194 20690\n", + "9734 Rio de Janeiro 50 1 1 0 8 not acept furnished 2300 1850 35 24 4209\n", + "9735 Belo Horizonte 50 2 1 0 - not acept not furnished 0 1050 0 18 1068\n", + "9736 Rio de Janeiro 80 2 1 1 5 acept not furnished 1180 2400 129 31 3740\n", + "9737 Belo Horizonte 45 1 1 1 2 not acept furnished 300 3000 0 40 3340\n", + "9738 São Paulo 250 3 3 2 7 acept not furnished 3500 12750 1084 162 17500\n", + "9739 São Paulo 44 1 1 1 6 not acept not furnished 308 3300 149 42 3799\n", + "9740 São Paulo 50 2 1 1 3 acept not furnished 700 4500 125 58 5383\n", + "9741 São Paulo 156 3 4 2 2 acept not furnished 1800 2000 0 26 3826\n", + "9742 São Paulo 42 1 1 1 2 acept not furnished 700 2326 160 9 3195\n", + "9743 Campinas 570 4 6 5 - acept not furnished 0 12000 817 181 13000\n", + "9744 Campinas 67 2 1 0 - acept not furnished 0 880 41 14 935\n", + "9745 São Paulo 264 4 4 6 - acept not furnished 0 6440 574 97 7111\n", + "9746 São Paulo 350 3 4 4 - acept not furnished 0 3100 2900 47 6047\n", + "9747 São Paulo 54 2 2 1 12 acept not furnished 954 2800 192 36 3982\n", + "9748 Rio de Janeiro 400 2 2 1 7 acept not furnished 700 2300 6 30 3036\n", + "9749 Belo Horizonte 420 4 3 8 - acept not furnished 0 6320 0 104 6424\n", + "9750 Belo Horizonte 50 1 1 0 1 acept not furnished 0 750 30 10 790\n", + "9751 São Paulo 93 2 1 1 1 acept not furnished 390 2150 76 28 2644\n", + "9752 São Paulo 350 4 4 2 - acept not furnished 0 10000 500 151 10650\n", + "9753 São Paulo 135 3 3 2 14 acept furnished 946 2690 361 35 4032\n", + "9754 São Paulo 32 1 1 0 1 not acept not furnished 26 1290 33 17 1366\n", + "9755 Rio de Janeiro 52 1 1 1 3 acept furnished 584 2390 117 31 3122\n", + "9756 São Paulo 250 3 4 2 10 acept not furnished 2900 10000 584 127 13610\n", + "9757 São Paulo 60 1 2 2 6 acept not furnished 700 3000 0 39 3739\n", + "9758 Campinas 109 3 1 1 11 acept not furnished 903 1150 146 15 2214\n", + "9759 São Paulo 200 3 3 1 8 acept not furnished 1687 5800 365 74 7926\n", + "9760 São Paulo 38 1 1 1 13 acept furnished 300 2400 0 31 2731\n", + "9761 Porto Alegre 30 1 1 1 1 not acept furnished 0 1330 0 20 1350\n", + "9762 São Paulo 215 3 4 4 10 acept not furnished 3313 12000 1252 153 16720\n", + "9763 São Paulo 340 4 6 4 6 acept not furnished 5500 9600 2167 122 17390\n", + "9764 Rio de Janeiro 30 1 1 0 4 acept furnished 400 2900 100 38 3438\n", + "9765 São Paulo 850 4 4 8 - acept not furnished 0 12000 5834 181 18020\n", + "9766 São Paulo 90 3 2 1 9 acept not furnished 1000 1800 44 23 2867\n", + "9767 São Paulo 180 3 4 4 22 acept not furnished 1545 12000 818 153 14520\n", + "9768 Rio de Janeiro 60 1 1 1 1 acept not furnished 650 2165 110 28 2953\n", + "9769 São Paulo 50 2 1 1 7 acept not furnished 400 1850 167 24 2441\n", + "9770 São Paulo 280 3 3 2 - acept not furnished 0 3500 250 53 3803\n", + "9771 São Paulo 48 1 1 1 3 acept not furnished 660 3300 110 42 4112\n", + "9772 São Paulo 42 1 1 0 6 acept furnished 345 1800 0 23 2168\n", + "9773 Campinas 210 3 3 0 - acept not furnished 0 3050 300 46 3396\n", + "9774 Campinas 70 2 2 1 - acept not furnished 0 1400 44 22 1466\n", + "9775 Belo Horizonte 100 3 2 0 - not acept not furnished 0 12000 236 197 12430\n", + "9776 São Paulo 520 4 6 4 - acept not furnished 0 15000 2250 226 17480\n", + "9777 São Paulo 253 3 3 4 3 acept not furnished 3172 4500 1125 58 8855\n", + "9778 Belo Horizonte 60 1 1 0 8 acept not furnished 340 950 55 13 1358\n", + "9779 São Paulo 210 3 2 3 - acept not furnished 0 2860 0 43 2903\n", + "9780 São Paulo 66 2 1 1 3 acept not furnished 1141 1650 166 21 2978\n", + "9781 São Paulo 190 3 3 4 - acept furnished 1800 12500 780 159 15240\n", + "9782 São Paulo 17 1 1 0 1 not acept furnished 300 2200 50 28 2578\n", + "9783 Rio de Janeiro 157 3 2 1 2 acept not furnished 2499 4500 550 58 7607\n", + "9784 Belo Horizonte 40 1 1 2 11 acept not furnished 488 1600 126 22 2236\n", + "9785 Belo Horizonte 100 3 2 2 11 acept not furnished 978 1500 169 20 2667\n", + "9786 Campinas 238 4 5 4 10 acept furnished 1800 5000 421 64 7285\n", + "9787 Belo Horizonte 102 3 2 2 6 acept not furnished 1150 1100 0 15 2265\n", + "9788 Campinas 188 2 3 8 - acept not furnished 0 2930 584 45 3559\n", + "9789 São Paulo 50 1 1 0 - not acept not furnished 0 750 0 12 762\n", + "9790 São Paulo 250 3 3 2 3 acept not furnished 1900 9500 500 121 12020\n", + "9791 Rio de Janeiro 139 2 2 1 10 acept furnished 1000 1300 234 17 2551\n", + "9792 Porto Alegre 125 3 2 2 3 acept furnished 1000 7700 292 113 9105\n", + "9793 São Paulo 40 1 1 0 - not acept not furnished 0 1200 100 19 1319\n", + "9794 São Paulo 65 2 2 1 15 not acept furnished 1072 7500 165 96 8833\n", + "9795 Campinas 68 3 2 2 9 acept not furnished 568 1500 55 20 2143\n", + "9796 São Paulo 85 2 1 0 1 acept not furnished 720 3100 28 40 3888\n", + "9797 São Paulo 200 2 5 2 2 not acept furnished 2448 15000 937 191 18580\n", + "9798 Rio de Janeiro 94 3 1 1 7 acept furnished 750 2600 122 34 3506\n", + "9799 Porto Alegre 38 1 1 1 9 acept not furnished 350 2500 42 37 2929\n", + "9800 Campinas 105 3 2 2 - acept not furnished 0 2000 121 31 2152\n", + "9801 Porto Alegre 67 1 1 0 2 acept not furnished 220 950 25 14 1209\n", + "9802 São Paulo 104 3 3 2 3 not acept furnished 915 9000 254 115 10280\n", + "9803 São Paulo 50 2 1 1 12 acept not furnished 462 1900 0 25 2387\n", + "9804 Rio de Janeiro 145 3 3 0 5 acept not furnished 1000 4500 285 58 5843\n", + "9805 São Paulo 225 3 2 2 - acept not furnished 0 2300 209 35 2544\n", + "9806 São Paulo 20 1 1 0 6 acept furnished 602 1800 130 23 2555\n", + "9807 São Paulo 170 4 5 3 14 acept furnished 1927 5200 709 66 7902\n", + "9808 São Paulo 30 1 1 1 7 not acept not furnished 1959 1630 227 21 3837\n", + "9809 Belo Horizonte 75 3 1 1 4 acept not furnished 263 1100 61 15 1439\n", + "9810 Campinas 75 2 2 1 11 acept not furnished 500 1189 75 16 1780\n", + "9811 São Paulo 250 4 4 3 6 acept not furnished 2360 6970 1580 89 11000\n", + "9812 São Paulo 120 3 2 0 1 acept not furnished 0 2500 84 38 2622\n", + "9813 Rio de Janeiro 45 1 1 0 6 acept not furnished 560 1901 80 25 2566\n", + "9814 Rio de Janeiro 225 4 4 3 7 not acept not furnished 4799 7500 1095 97 13490\n", + "9815 São Paulo 245 4 5 4 19 acept furnished 2863 7000 750 89 10700\n", + "9816 Porto Alegre 50 1 1 0 10 acept not furnished 250 1350 0 20 1620\n", + "9817 São Paulo 350 3 4 2 - acept furnished 0 7000 507 106 7613\n", + "9818 Rio de Janeiro 117 3 4 1 2 acept not furnished 0 4870 464 63 5397\n", + "9819 Belo Horizonte 80 1 2 0 2 acept not furnished 150 1100 68 15 1333\n", + "9820 São Paulo 340 3 4 5 20 acept not furnished 4500 9800 0 125 14430\n", + "9821 São Paulo 60 2 1 0 3 acept not furnished 400 1000 0 13 1413\n", + "9822 São Paulo 250 3 2 8 - acept not furnished 0 5950 472 90 6512\n", + "9823 São Paulo 45 1 1 0 - not acept not furnished 0 1160 0 18 1178\n", + "9824 São Paulo 57 2 1 1 3 acept not furnished 625 1100 3 14 1742\n", + "9825 São Paulo 30 1 1 1 8 not acept furnished 658 3500 123 45 4326\n", + "9826 Campinas 70 2 2 1 9 acept not furnished 300 1500 95 20 1915\n", + "9827 São Paulo 55 2 2 1 5 acept not furnished 380 1850 0 24 2254\n", + "9828 São Paulo 35 1 1 0 - not acept not furnished 0 1800 101 28 1929\n", + "9829 São Paulo 75 3 2 2 3 acept not furnished 600 2150 150 28 2928\n", + "9830 São Paulo 156 3 3 5 - not acept not furnished 0 4000 0 34 4034\n", + "9831 Belo Horizonte 90 2 1 1 4 acept not furnished 400 1500 0 20 1920\n", + "9832 Rio de Janeiro 90 3 2 2 2 acept furnished 850 2500 250 33 3633\n", + "9833 Rio de Janeiro 200 3 2 2 3 acept not furnished 1650 15000 750 194 17590\n", + "9834 São Paulo 86 2 1 1 1 acept not furnished 960 2372 0 10 3342\n", + "9835 São Paulo 60 1 1 1 19 acept not furnished 590 3500 150 45 4285\n", + "9836 Porto Alegre 50 1 1 0 1 acept not furnished 190 990 10 15 1205\n", + "9837 São Paulo 108 3 2 2 6 acept not furnished 1200 5600 275 71 7146\n", + "9838 São Paulo 48 1 1 1 3 acept not furnished 433 2630 0 34 3097\n", + "9839 São Paulo 100 3 2 1 9 acept furnished 890 6502 0 83 7475\n", + "9840 Campinas 48 1 1 0 4 not acept not furnished 400 800 80 11 1291\n", + "9841 Porto Alegre 67 2 1 1 8 acept not furnished 500 1550 77 23 2150\n", + "9842 Rio de Janeiro 120 3 3 0 6 not acept furnished 1200 9240 209 120 10770\n", + "9843 São Paulo 250 4 4 3 - acept not furnished 0 3824 0 58 3882\n", + "9844 São Paulo 49 1 1 1 5 acept not furnished 430 1760 21 23 2234\n", + "9845 São Paulo 140 1 2 2 1 not acept furnished 1400 4500 334 58 6292\n", + "9846 São Paulo 105 2 1 2 5 acept furnished 1300 3120 0 40 4460\n", + "9847 Porto Alegre 60 2 1 1 3 acept not furnished 435 920 30 14 1399\n", + "9848 São Paulo 300 4 2 4 27 acept not furnished 2960 10040 875 128 14000\n", + "9849 São Paulo 93 2 2 1 2 acept not furnished 400 2500 84 32 3016\n", + "9850 São Paulo 72 2 2 1 1 acept not furnished 742 2330 0 30 3102\n", + "9851 Campinas 60 2 1 1 3 acept not furnished 345 820 16 11 1192\n", + "9852 São Paulo 250 3 4 4 - acept furnished 0 4200 0 64 4264\n", + "9853 Rio de Janeiro 160 4 3 1 4 acept furnished 1900 6300 667 82 8949\n", + "9854 São Paulo 104 2 2 1 6 not acept furnished 1100 4000 10 51 5161\n", + "9855 Porto Alegre 66 2 1 1 1 acept not furnished 270 1000 38 15 1323\n", + "9856 Belo Horizonte 148 2 3 3 12 acept not furnished 870 15000 685 200 16760\n", + "9857 São Paulo 1000 4 2 8 - acept not furnished 0 15000 2334 226 17560\n", + "9858 Campinas 120 4 2 1 - acept not furnished 0 1500 0 23 1523\n", + "9859 Porto Alegre 100 3 3 1 5 not acept not furnished 700 3500 84 52 4336\n", + "9860 Rio de Janeiro 114 2 2 1 7 not acept not furnished 1450 3600 350 47 5447\n", + "9861 São Paulo 153 3 4 3 17 acept furnished 2000 6300 534 80 8914\n", + "9862 São Paulo 164 3 4 2 13 acept not furnished 2900 12500 915 159 16470\n", + "9863 São Paulo 65 2 2 1 - acept not furnished 0 2040 0 31 2071\n", + "9864 Campinas 270 4 5 0 - not acept not furnished 0 5500 357 83 5940\n", + "9865 São Paulo 225 4 6 4 4 acept not furnished 2800 4500 742 58 8100\n", + "9866 Rio de Janeiro 124 4 2 1 2 acept not furnished 1812 5900 395 77 8184\n", + "9867 São Paulo 68 3 1 2 4 acept not furnished 990 882 20 12 1904\n", + "9868 São Paulo 96 3 3 2 1 acept not furnished 948 5100 296 65 6409\n", + "9869 São Paulo 210 4 4 3 - acept furnished 0 4700 375 71 5146\n", + "9870 São Paulo 750 4 5 6 - acept not furnished 0 13000 1500 196 14700\n", + "9871 São Paulo 70 2 2 2 11 not acept furnished 2847 2954 590 38 6429\n", + "9872 Rio de Janeiro 15 1 1 0 - acept not furnished 0 700 0 10 710\n", + "9873 São Paulo 33 1 1 1 13 not acept furnished 540 3300 0 42 3882\n", + "9874 Belo Horizonte 311 4 3 3 20 not acept not furnished 2252 9000 583 120 11960\n", + "9875 São Paulo 160 3 2 1 5 acept not furnished 1715 7700 470 98 9983\n", + "9876 São Paulo 158 3 3 2 8 acept furnished 1450 3000 175 39 4664\n", + "9877 Campinas 62 2 1 1 3 acept not furnished 485 980 48 13 1526\n", + "9878 Belo Horizonte 105 3 2 1 3 not acept not furnished 500 1200 135 16 1851\n", + "9879 São Paulo 250 3 4 2 5 acept furnished 2600 8000 500 102 11200\n", + "9880 Porto Alegre 47 1 1 1 1 not acept furnished 400 2200 0 33 2633\n", + "9881 São Paulo 90 3 2 0 9 acept not furnished 930 2300 84 30 3344\n", + "9882 São Paulo 295 4 4 4 21 acept not furnished 3700 9500 1417 121 14740\n", + "9883 São Paulo 133 4 3 0 1 acept not furnished 550 3550 309 45 4454\n", + "9884 São Paulo 220 5 5 4 22 acept not furnished 1900 8880 875 113 11770\n", + "9885 São Paulo 70 2 1 1 14 acept not furnished 576 2400 162 31 3169\n", + "9886 Belo Horizonte 101 3 2 2 2 acept not furnished 958 2400 20 32 3410\n", + "9887 Belo Horizonte 320 3 2 5 1 acept not furnished 420 2900 200 39 3559\n", + "9888 Belo Horizonte 802 6 6 8 - acept furnished 0 15000 1003 246 16250\n", + "9889 Rio de Janeiro 28 1 1 0 11 not acept furnished 350 2300 55 30 2735\n", + "9890 Porto Alegre 35 1 1 0 2 acept not furnished 120 1170 92 18 1400\n", + "9891 São Paulo 115 3 1 2 5 acept not furnished 945 4300 300 55 5600\n", + "9892 Rio de Janeiro 70 2 2 1 10 acept furnished 1800 4200 250 55 6305\n", + "9893 Rio de Janeiro 157 3 3 2 10 acept not furnished 1620 3800 382 49 5851\n", + "9894 São Paulo 40 1 1 0 - not acept not furnished 0 750 0 12 762\n", + "9895 Rio de Janeiro 205 2 2 0 12 acept furnished 1560 7000 132 91 8783\n", + "9896 Belo Horizonte 75 3 2 1 2 acept not furnished 225 1600 119 22 1966\n", + "9897 São Paulo 126 3 2 2 5 acept not furnished 900 3650 150 16 4716\n", + "9898 São Paulo 19 1 1 0 - not acept not furnished 0 1200 41 16 1257\n", + "9899 São Paulo 130 3 2 2 1 acept furnished 1100 3500 584 45 5229\n", + "9900 São Paulo 360 5 4 0 7 not acept not furnished 4800 3000 2084 39 9923\n", + "9901 São Paulo 102 2 1 0 1 acept not furnished 200 1700 17 22 1939\n", + "9902 São Paulo 290 3 3 1 5 acept not furnished 2500 2500 340 32 5372\n", + "9903 São Paulo 47 2 1 1 1 not acept not furnished 500 1150 38 15 1703\n", + "9904 São Paulo 130 2 1 1 1 acept not furnished 0 2200 180 28 2408\n", + "9905 Porto Alegre 75 3 2 1 2 acept not furnished 240 1500 63 22 1825\n", + "9906 Rio de Janeiro 84 2 1 0 2 acept not furnished 420 1700 85 22 2227\n", + "9907 São Paulo 25 1 1 1 16 not acept furnished 344 2200 45 28 2617\n", + "9908 São Paulo 36 1 1 0 3 acept furnished 450 2500 30 32 3012\n", + "9909 Belo Horizonte 260 4 3 3 4 acept furnished 2650 3300 555 44 6549\n", + "9910 Rio de Janeiro 140 4 3 1 8 acept not furnished 2173 7500 466 97 10240\n", + "9911 São Paulo 400 4 3 2 - acept not furnished 0 5650 338 85 6073\n", + "9912 São Paulo 47 1 1 0 2 acept not furnished 198 1490 66 19 1773\n", + "9913 Rio de Janeiro 240 4 4 2 2 acept furnished 3690 12500 938 162 17290\n", + "9914 São Paulo 800 4 2 6 - acept furnished 0 15000 1667 226 16890\n", + "9915 São Paulo 160 3 4 2 3 acept not furnished 2462 8500 60 108 11130\n", + "9916 Rio de Janeiro 103 3 1 0 2 acept not furnished 1300 3500 0 46 4846\n", + "9917 São Paulo 55 2 2 1 17 not acept not furnished 700 1680 0 22 2402\n", + "9918 São Paulo 300 4 4 5 11 acept not furnished 3150 11000 1225 140 15520\n", + "9919 São Paulo 67 1 1 1 1 acept not furnished 759 3120 350 40 4269\n", + "9920 São Paulo 175 3 5 3 15 acept not furnished 2312 7650 1308 97 11370\n", + "9921 Rio de Janeiro 100 2 3 1 7 acept furnished 700 3170 84 41 3995\n", + "9922 Campinas 80 3 1 0 6 acept not furnished 500 1000 30 13 1543\n", + "9923 Rio de Janeiro 60 2 1 1 4 acept not furnished 750 1300 0 17 2067\n", + "9924 Rio de Janeiro 154 3 2 0 2 acept furnished 1200 12000 200 155 13560\n", + "9925 São Paulo 120 3 3 3 11 acept not furnished 1800 2500 321 32 4653\n", + "9926 Campinas 160 2 1 2 - acept not furnished 0 3950 125 60 4135\n", + "9927 Belo Horizonte 105 3 2 2 3 acept not furnished 1174 3700 350 50 5274\n", + "9928 São Paulo 110 2 2 0 - not acept furnished 0 3500 34 53 3587\n", + "9929 Rio de Janeiro 58 1 1 1 11 acept not furnished 650 1050 56 14 1770\n", + "9930 São Paulo 60 3 1 0 3 acept not furnished 550 1700 80 22 2352\n", + "9931 Rio de Janeiro 80 2 1 0 2 not acept not furnished 30 2900 34 38 3002\n", + "9932 Porto Alegre 35 1 1 0 1 acept not furnished 120 1170 92 18 1400\n", + "9933 São Paulo 22 1 1 0 1 not acept furnished 300 900 40 12 1252\n", + "9934 Porto Alegre 93 3 1 0 1 not acept not furnished 644 2400 143 36 3223\n", + "9935 Belo Horizonte 263 3 4 4 15 acept not furnished 2565 13000 1437 174 17180\n", + "9936 São Paulo 150 3 1 2 - acept not furnished 0 3600 334 55 3989\n", + "9937 São Paulo 20 1 1 0 5 acept furnished 602 1800 130 23 2555\n", + "9938 São Paulo 250 4 2 1 - acept furnished 0 3500 42 53 3595\n", + "9939 São Paulo 510 4 6 4 9 acept furnished 5300 5000 3167 64 13530\n", + "9940 São Paulo 57 2 2 2 10 acept not furnished 900 1950 2 25 2877\n", + "9941 Campinas 58 2 1 1 1 acept furnished 400 2400 60 31 2891\n", + "9942 Belo Horizonte 200 3 3 1 2 acept not furnished 0 2100 94 35 2229\n", + "9943 São Paulo 387 4 6 4 1 acept not furnished 5200 6400 2792 82 14470\n", + "9944 Rio de Janeiro 200 4 2 2 - acept not furnished 0 4500 157 69 4726\n", + "9945 Porto Alegre 52 2 1 1 4 not acept not furnished 450 900 0 14 1364\n", + "9946 São Paulo 275 3 3 1 11 acept furnished 886 8850 0 113 9849\n", + "9947 Rio de Janeiro 76 2 2 2 8 acept not furnished 780 2740 180 36 3736\n", + "9948 São Paulo 70 1 2 6 - acept not furnished 0 3290 417 50 3757\n", + "9949 Porto Alegre 68 3 2 1 4 acept furnished 586 2200 56 33 2875\n", + "9950 São Paulo 108 2 2 1 9 acept not furnished 1726 5500 380 70 7676\n", + "9951 Porto Alegre 114 3 1 0 3 acept not furnished 210 1700 75 25 2010\n", + "9952 Porto Alegre 90 2 2 1 2 acept not furnished 300 1900 84 28 2312\n", + "9953 Rio de Janeiro 20 1 1 0 5 acept not furnished 450 500 63 7 1020\n", + "9954 Belo Horizonte 51 3 1 1 2 acept not furnished 170 1000 27 14 1211\n", + "9955 Belo Horizonte 550 5 5 3 - acept not furnished 0 14000 364 230 14590\n", + "9956 Porto Alegre 36 1 1 1 4 acept not furnished 350 650 9 10 1019\n", + "9957 São Paulo 230 3 4 4 6 not acept not furnished 3350 11500 1250 146 16250\n", + "9958 São Paulo 35 1 1 1 - acept not furnished 0 1500 101 23 1624\n", + "9959 Porto Alegre 700 8 8 4 - acept not furnished 0 12000 0 214 12210\n", + "9960 São Paulo 140 3 2 1 1 acept furnished 700 6000 109 77 6886\n", + "9961 Porto Alegre 77 2 2 2 4 acept not furnished 450 2000 0 30 2480\n", + "9962 São Paulo 75 2 1 1 2 acept not furnished 532 1500 100 20 2152\n", + "9963 Porto Alegre 110 4 1 1 3 acept not furnished 600 2200 2500 33 5333\n", + "9964 Rio de Janeiro 29 1 1 0 2 acept furnished 566 1341 50 18 1975\n", + "9965 Rio de Janeiro 84 3 1 1 3 acept not furnished 300 1500 0 20 1820\n", + "9966 São Paulo 132 3 5 2 13 not acept furnished 1630 10990 291 140 13050\n", + "9967 Rio de Janeiro 170 2 2 1 7 acept not furnished 1300 4900 255 64 6519\n", + "9968 Porto Alegre 26 1 1 0 1 acept not furnished 250 800 12 12 1074\n", + "9969 Campinas 73 3 1 1 4 acept not furnished 308 850 46 11 1215\n", + "9970 Belo Horizonte 114 2 2 1 3 acept not furnished 850 1600 1500 22 3972\n", + "9971 Rio de Janeiro 68 2 2 1 16 acept not furnished 554 2000 211 26 2791\n", + "9972 Campinas 82 1 1 1 - acept not furnished 290 1200 82 16 1588\n", + "9973 Belo Horizonte 30 1 1 0 1 not acept not furnished 0 1200 65 16 1281\n", + "9974 Porto Alegre 69 2 2 1 9 acept not furnished 380 2100 75 31 2586\n", + "9975 São Paulo 33 1 1 1 19 not acept furnished 400 3413 0 12 3825\n", + "9976 São Paulo 84 2 2 1 14 acept not furnished 782 5300 145 68 6295\n", + "9977 Campinas 620 5 6 4 17 acept not furnished 7400 4860 1200 62 13520\n", + "9978 São Paulo 90 3 2 1 10 acept not furnished 1686 3090 125 40 4941\n", + "9979 São Paulo 284 4 5 5 - acept not furnished 0 5500 200 83 5783\n", + "9980 Campinas 268 3 4 4 - acept not furnished 790 3500 509 53 4852\n", + "9981 São Paulo 100 3 4 4 - acept not furnished 0 3600 160 55 3815\n", + "9982 Rio de Janeiro 24 1 1 1 11 acept not furnished 480 1420 359 19 2278\n", + "9983 São Paulo 64 2 1 1 24 not acept not furnished 592 1817 84 24 2517\n", + "9984 São Paulo 34 1 1 1 14 acept not furnished 497 2800 81 36 3414\n", + "9985 Rio de Janeiro 86 2 1 0 3 acept furnished 1000 2400 205 31 3636\n", + "9986 São Paulo 54 1 1 1 18 acept not furnished 800 7500 192 96 8588\n", + "9987 Belo Horizonte 128 3 2 2 2 acept not furnished 580 1400 161 19 2160\n", + "9988 Belo Horizonte 250 2 3 2 - acept not furnished 0 3500 0 58 3558\n", + "9989 Campinas 295 7 6 4 - not acept furnished 0 6200 334 94 6628\n", + "9990 Rio de Janeiro 80 3 2 1 8 acept not furnished 840 2500 115 33 3488\n", + "9991 São Paulo 500 3 3 5 - acept furnished 0 15000 1125 226 16350\n", + "9992 São Paulo 120 1 2 0 - acept not furnished 0 761 129 10 900\n", + "9993 Campinas 136 3 2 1 6 acept not furnished 545 1274 87 17 1923\n", + "9994 Rio de Janeiro 170 3 2 2 13 acept furnished 1027 2500 291 33 3851\n", + "9995 Belo Horizonte 386 3 4 8 - acept not furnished 0 6500 730 107 7337\n", + "9996 São Paulo 19 1 1 0 - not acept not furnished 0 1200 41 16 1257\n", + "9997 São Paulo 550 4 6 4 1 acept furnished 3200 14000 1917 178 19300\n", + "9998 São Paulo 384 3 5 3 - acept not furnished 0 10000 1050 151 11200\n", + "9999 Porto Alegre 48 1 1 0 4 acept not furnished 250 750 21 11 1032\n", + "10000 São Paulo 98 2 1 1 4 acept not furnished 1028 3080 129 40 4277\n", + "10001 Belo Horizonte 50 2 1 1 1 acept not furnished 300 1100 68 15 1483\n", + "10002 São Paulo 53 2 2 1 9 not acept not furnished 722 2100 0 27 2849\n", + "10003 São Paulo 32 1 1 0 1 acept not furnished 400 1990 0 26 2416\n", + "10004 São Paulo 47 1 2 1 11 acept not furnished 740 3200 150 41 4131\n", + "10005 São Paulo 65 2 1 1 3 acept not furnished 340 1440 0 19 1799\n", + "10006 São Paulo 56 1 1 2 7 not acept furnished 1300 3958 242 51 5551\n", + "10007 Rio de Janeiro 140 2 2 1 5 not acept not furnished 1600 3950 500 51 6101\n", + "10008 São Paulo 45 1 1 0 1 not acept not furnished 0 1100 0 17 1117\n", + "10009 Rio de Janeiro 21 1 1 0 11 acept not furnished 519 1200 0 16 1735\n", + "10010 São Paulo 70 2 2 0 2 acept furnished 1439 5500 315 70 7324\n", + "10011 São Paulo 120 2 3 2 5 acept furnished 1800 11500 250 146 13700\n", + "10012 Rio de Janeiro 90 2 2 0 5 acept not furnished 1700 3700 350 48 5798\n", + "10013 Porto Alegre 25 1 1 0 3 acept not furnished 143 2000 26 30 2199\n", + "10014 São Paulo 198 4 2 0 - acept not furnished 0 4000 500 61 4561\n", + "10015 Rio de Janeiro 80 2 2 1 4 not acept furnished 700 5000 84 65 5849\n", + "10016 São Paulo 40 1 1 1 5 not acept not furnished 440 2800 100 36 3376\n", + "10017 Belo Horizonte 53 2 1 1 2 acept not furnished 200 1000 74 14 1288\n", + "10018 Rio de Janeiro 75 2 2 1 8 acept not furnished 682 2300 223 30 3235\n", + "10019 Rio de Janeiro 60 2 1 0 2 acept not furnished 500 1300 100 17 1917\n", + "10020 São Paulo 142 3 2 2 6 acept furnished 2100 5440 584 69 8193\n", + "10021 Rio de Janeiro 160 3 2 2 3 acept not furnished 2311 7609 689 99 10710\n", + "10022 Rio de Janeiro 26 1 1 0 9 acept not furnished 976 1600 61 21 2658\n", + "10023 São Paulo 81 1 1 1 8 acept not furnished 600 1150 67 16 1833\n", + "10024 Rio de Janeiro 50 1 1 0 2 acept furnished 564 1900 100 25 2589\n", + "10025 Belo Horizonte 62 2 1 1 3 acept not furnished 100 1050 84 14 1248\n", + "10026 Belo Horizonte 55 1 1 0 - not acept not furnished 0 1020 21 17 1058\n", + "10027 São Paulo 298 4 6 5 - acept furnished 0 8450 750 128 9328\n", + "10028 Campinas 55 2 1 1 1 acept not furnished 390 720 0 10 1120\n", + "10029 Rio de Janeiro 82 2 1 1 2 acept not furnished 800 1500 40 20 2360\n", + "10030 São Paulo 40 1 1 1 10 not acept furnished 2100 2200 223 28 4551\n", + "10031 Belo Horizonte 106 3 2 2 8 acept not furnished 1400 2400 255 32 4087\n", + "10032 São Paulo 335 4 5 5 7 acept not furnished 5000 4913 1667 63 11640\n", + "10033 São Paulo 60 2 2 1 10 acept not furnished 750 3400 100 44 4294\n", + "10034 São Paulo 128 3 2 1 5 acept not furnished 1000 3297 950 42 5289\n", + "10035 São Paulo 250 3 2 4 - acept not furnished 0 6000 875 91 6966\n", + "10036 São Paulo 500 4 4 5 - acept furnished 0 9240 934 139 10310\n", + "10037 São Paulo 120 3 3 2 - acept not furnished 0 2750 125 42 2917\n", + "10038 São Paulo 300 4 4 4 3 acept not furnished 3000 6500 1420 83 11000\n", + "10039 Rio de Janeiro 33 1 1 0 2 not acept furnished 0 2110 0 28 2138\n", + "10040 São Paulo 177 3 3 4 - acept not furnished 0 4000 330 61 4391\n", + "10041 Rio de Janeiro 126 3 2 1 6 acept not furnished 1105 2350 133 31 3619\n", + "10042 São Paulo 287 4 5 4 5 acept not furnished 3311 3800 1744 49 8904\n", + "10043 São Paulo 250 3 4 4 - acept not furnished 0 8000 242 121 8363\n", + "10044 Belo Horizonte 200 3 3 3 - acept furnished 200 4700 110 78 5088\n", + "10045 Belo Horizonte 235 4 2 4 - acept not furnished 0 4700 480 78 5258\n", + "10046 São Paulo 247 3 4 5 - acept furnished 750 3400 234 44 4428\n", + "10047 São Paulo 100 2 1 0 - acept not furnished 0 1800 275 28 2103\n", + "10048 Rio de Janeiro 230 3 2 1 - acept not furnished 0 3260 84 50 3394\n", + "10049 São Paulo 350 4 5 4 - acept furnished 4300 11000 1042 166 16510\n", + "10050 São Paulo 600 4 6 5 13 acept not furnished 7200 6000 1167 77 14440\n", + "10051 São Paulo 187 3 2 3 - not acept furnished 1700 8400 584 127 10810\n", + "10052 Rio de Janeiro 32 1 1 0 4 acept not furnished 700 3000 65 39 3804\n", + "10053 São Paulo 40 1 1 0 - acept not furnished 0 920 0 14 934\n", + "10054 São Paulo 20 1 1 0 1 not acept not furnished 0 1000 10 13 1023\n", + "10055 São Paulo 250 5 4 3 - acept not furnished 0 3520 666 53 4239\n", + "10056 São Paulo 210 4 4 4 8 not acept not furnished 3000 5000 1250 64 9314\n", + "10057 Campinas 46 1 1 1 5 acept furnished 1300 1950 0 25 3275\n", + "10058 São Paulo 104 3 3 2 8 not acept not furnished 1400 4000 350 51 5801\n", + "10059 São Paulo 32 1 1 0 6 acept not furnished 350 1600 0 21 1971\n", + "10060 Porto Alegre 115 3 2 2 4 acept not furnished 1264 4500 166 66 5996\n", + "10061 São Paulo 64 2 1 1 8 acept furnished 800 2500 67 32 3399\n", + "10062 São Paulo 280 4 6 5 28 acept not furnished 1800 11500 1417 146 14860\n", + "10063 São Paulo 80 2 1 1 6 acept not furnished 400 1500 0 20 1920\n", + "10064 São Paulo 98 2 2 0 8 acept not furnished 600 4500 0 58 5158\n", + "10065 São Paulo 70 2 2 1 2 acept not furnished 410 1800 71 23 2304\n", + "10066 Campinas 40 1 1 1 1 acept not furnished 790 1300 236 17 2343\n", + "10067 Campinas 200 3 2 3 - acept not furnished 0 2000 153 31 2184\n", + "10068 Campinas 600 4 6 3 - acept not furnished 1123 5500 819 83 7525\n", + "10069 São Paulo 65 2 2 1 20 acept furnished 1800 4900 177 63 6940\n", + "10070 São Paulo 320 4 5 3 - acept not furnished 0 5000 409 76 5485\n", + "10071 São Paulo 50 2 1 1 2 not acept not furnished 600 1150 50 15 1815\n", + "10072 Porto Alegre 42 1 1 1 1 acept furnished 650 2400 81 36 3167\n", + "10073 Porto Alegre 71 2 1 0 - acept not furnished 280 1600 34 24 1938\n", + "10074 São Paulo 50 1 1 0 2 not acept not furnished 150 720 0 10 880\n", + "10075 Belo Horizonte 160 3 3 2 2 acept not furnished 150 1700 0 23 1873\n", + "10076 Porto Alegre 70 2 1 0 3 acept not furnished 350 1500 49 20 1919\n", + "10077 São Paulo 187 3 4 3 14 acept not furnished 1700 14000 1209 178 17090\n", + "10078 São Paulo 186 4 5 4 11 acept not furnished 1550 4100 1480 52 7182\n", + "10079 Campinas 76 2 1 0 2 acept not furnished 300 700 100 9 1109\n", + "10080 São Paulo 50 2 1 1 2 not acept furnished 399 1650 0 21 2070\n", + "10081 São Paulo 260 4 5 4 9 acept furnished 2014 3300 1000 42 6356\n", + "10082 Belo Horizonte 200 4 3 2 - acept not furnished 0 15000 456 246 15700\n", + "10083 São Paulo 35 1 1 0 18 acept not furnished 250 1850 0 24 2124\n", + "10084 São Paulo 130 2 2 2 3 acept not furnished 1752 6200 634 79 8665\n", + "10085 São Paulo 20 1 1 0 - acept furnished 602 1800 130 23 2555\n", + "10086 Porto Alegre 78 2 1 0 2 acept not furnished 280 1380 32 21 1713\n", + "10087 Porto Alegre 50 2 1 0 - not acept not furnished 0 750 0 11 761\n", + "10088 Belo Horizonte 476 3 2 2 - not acept not furnished 0 6100 202 101 6403\n", + "10089 São Paulo 68 2 2 1 18 acept not furnished 640 3400 95 44 4179\n", + "10090 Rio de Janeiro 110 2 2 1 14 acept not furnished 910 1400 216 19 2545\n", + "10091 São Paulo 52 2 2 1 5 not acept furnished 903 4000 300 51 5254\n", + "10092 São Paulo 360 3 5 3 14 not acept not furnished 3000 12500 125 159 15780\n", + "10093 Campinas 70 3 2 1 3 acept furnished 650 1300 55 17 2022\n", + "10094 Belo Horizonte 500 4 4 6 - acept not furnished 0 15000 1021 246 16270\n", + "10095 Porto Alegre 96 3 1 0 2 acept not furnished 300 1000 42 15 1357\n", + "10096 São Paulo 54 2 2 1 11 acept not furnished 954 2800 190 36 3980\n", + "10097 São Paulo 41 1 1 1 16 acept furnished 788 2387 17 31 3223\n", + "10098 Rio de Janeiro 130 3 2 1 5 acept not furnished 1300 2820 300 37 4457\n", + "10099 São Paulo 87 2 2 1 4 acept not furnished 969 6675 167 85 7896\n", + "10100 São Paulo 340 3 5 5 - acept not furnished 0 6000 2000 91 8091\n", + "10101 Rio de Janeiro 120 3 1 1 2 acept not furnished 800 2200 84 29 3113\n", + "10102 São Paulo 90 2 1 2 - acept not furnished 0 1480 225 23 1728\n", + "10103 São Paulo 55 1 1 1 14 not acept furnished 1000 4950 225 63 6238\n", + "10104 Belo Horizonte 160 3 2 2 4 not acept not furnished 718 3100 183 42 4043\n", + "10105 Belo Horizonte 30 1 1 1 1 not acept not furnished 50 900 19 12 981\n", + "10106 Belo Horizonte 103 3 2 1 3 not acept not furnished 489 1400 101 19 2009\n", + "10107 Belo Horizonte 45 1 1 1 7 not acept not furnished 440 1500 91 20 2051\n", + "10108 São Paulo 300 4 3 8 - acept not furnished 0 4500 667 68 5235\n", + "10109 São Paulo 72 2 2 2 7 acept not furnished 150 3700 184 47 4081\n", + "10110 Porto Alegre 70 3 2 0 2 acept furnished 300 2240 59 33 2632\n", + "10111 Rio de Janeiro 133 1 2 1 6 acept furnished 1200 7000 367 91 8658\n", + "10112 São Paulo 50 2 1 0 3 acept furnished 372 1449 0 19 1840\n", + "10113 Porto Alegre 69 3 1 1 5 acept not furnished 450 1100 75 17 1642\n", + "10114 Porto Alegre 42 1 2 1 6 acept not furnished 500 2000 0 30 2530\n", + "10115 Belo Horizonte 55 2 2 1 5 acept not furnished 278 1300 111 18 1707\n", + "10116 São Paulo 117 3 2 2 10 acept furnished 870 2400 124 31 3425\n", + "10117 São Paulo 56 2 1 1 13 acept not furnished 580 2540 25 33 3178\n", + "10118 Rio de Janeiro 50 1 1 1 5 acept not furnished 700 1000 0 13 1713\n", + "10119 São Paulo 450 4 6 4 - acept not furnished 0 10000 750 127 10880\n", + "10120 São Paulo 62 3 1 1 8 acept not furnished 750 1260 59 16 2085\n", + "10121 São Paulo 300 5 3 1 - acept not furnished 0 10000 0 151 10150\n", + "10122 São Paulo 141 3 3 1 1 acept furnished 1798 3800 372 49 6019\n", + "10123 Porto Alegre 44 1 1 0 1 not acept not furnished 210 950 33 14 1207\n", + "10124 Rio de Janeiro 40 1 1 0 3 acept not furnished 350 2400 56 31 2837\n", + "10125 São Paulo 230 2 1 8 - acept not furnished 0 4500 720 68 5288\n", + "10126 São Paulo 278 4 3 3 3 acept not furnished 3790 10000 1514 127 15430\n", + "10127 São Paulo 35 1 1 0 - acept not furnished 0 1100 30 14 1144\n", + "10128 São Paulo 130 3 2 2 - acept not furnished 0 3400 299 52 3751\n", + "10129 São Paulo 264 4 4 4 9 acept not furnished 3200 14450 1792 184 19630\n", + "10130 Belo Horizonte 93 3 2 0 17 acept not furnished 620 1750 99 24 2493\n", + "10131 São Paulo 69 3 2 2 6 not acept not furnished 798 2200 84 28 3110\n", + "10132 Rio de Janeiro 72 2 1 1 7 acept not furnished 765 1800 97 24 2686\n", + "10133 São Paulo 66 2 1 1 5 not acept not furnished 550 2000 30 26 2606\n", + "10134 São Paulo 44 1 1 1 1 acept not furnished 700 1400 142 18 2260\n", + "10135 Belo Horizonte 227 3 4 1 12 not acept not furnished 1400 2550 208 34 4192\n", + "10136 Porto Alegre 100 2 1 1 3 acept furnished 490 3400 172 50 4112\n", + "10137 São Paulo 90 2 2 0 2 not acept not furnished 180 1800 375 23 2378\n", + "10138 São Paulo 20 1 1 0 - acept furnished 602 1800 130 23 2555\n", + "10139 São Paulo 70 1 1 1 2 not acept furnished 1000 2600 125 33 3758\n", + "10140 São Paulo 135 2 3 3 8 acept furnished 1600 4200 459 54 6313\n", + "10141 São Paulo 450 4 4 6 - acept not furnished 0 9000 1917 136 11050\n", + "10142 São Paulo 217 3 1 1 - acept furnished 0 3000 200 46 3246\n", + "10143 São Paulo 300 4 5 4 7 not acept not furnished 1660 3200 1875 41 6776\n", + "10144 São Paulo 84 2 2 0 12 not acept not furnished 1500 6300 454 80 8334\n", + "10145 Porto Alegre 272 3 4 3 - not acept not furnished 0 3990 187 71 4248\n", + "10146 São Paulo 43 2 1 1 16 acept not furnished 294 1050 36 14 1394\n", + "10147 São Paulo 400 4 4 0 - acept not furnished 2100 4500 1520 68 8188\n", + "10148 Porto Alegre 48 1 1 0 2 acept not furnished 220 900 22 14 1156\n", + "10149 Porto Alegre 71 2 2 1 2 acept not furnished 341 892 59 14 1306\n", + "10150 São Paulo 100 6 7 5 - acept not furnished 0 10660 2167 161 12990\n", + "10151 São Paulo 225 4 2 2 11 acept not furnished 2150 6500 642 83 9375\n", + "10152 São Paulo 280 3 2 0 7 acept not furnished 2300 3000 417 39 5756\n", + "10153 Belo Horizonte 62 2 1 1 2 acept not furnished 0 1300 75 18 1393\n", + "10154 São Paulo 330 5 3 6 - acept not furnished 0 10500 1667 158 12330\n", + "10155 São Paulo 90 3 2 1 2 acept not furnished 945 2000 5 26 2976\n", + "10156 São Paulo 60 2 1 1 7 acept not furnished 460 1230 100 16 1806\n", + "10157 Rio de Janeiro 67 3 2 0 1 not acept not furnished 1102 2810 179 37 4128\n", + "10158 São Paulo 287 4 5 3 - acept not furnished 0 10000 955 151 11110\n", + "10159 São Paulo 156 3 2 1 - acept not furnished 0 6400 59 97 6556\n", + "10160 São Paulo 273 4 4 2 4 not acept not furnished 2306 9000 417 115 11840\n", + "10161 São Paulo 320 3 3 4 - acept not furnished 0 9000 1000 136 10140\n", + "10162 Porto Alegre 330 3 4 2 - acept furnished 630 9000 375 160 10170\n", + "10163 São Paulo 50 1 1 1 - acept not furnished 0 900 59 14 973\n", + "10164 Rio de Janeiro 15 1 1 0 4 not acept not furnished 0 908 0 12 920\n", + "10165 Porto Alegre 100 3 1 1 3 acept not furnished 580 1240 69 19 1908\n", + "10166 São Paulo 50 1 2 0 - not acept not furnished 0 1510 0 23 1533\n", + "10167 Campinas 60 2 1 1 3 acept not furnished 314 1000 0 13 1327\n", + "10168 Rio de Janeiro 40 1 1 0 2 acept not furnished 928 1950 61 26 2965\n", + "10169 São Paulo 312 3 6 3 - acept furnished 0 6300 1063 95 7458\n", + "10170 São Paulo 86 2 1 1 12 acept not furnished 1000 3007 84 39 4130\n", + "10171 Rio de Janeiro 280 4 4 2 3 acept not furnished 2489 9850 1255 127 13720\n", + "10172 Belo Horizonte 260 4 4 6 10 acept furnished 3200 11900 12500 159 27760\n", + "10173 Porto Alegre 68 2 1 1 5 acept not furnished 600 800 500 12 1912\n", + "10174 Rio de Janeiro 58 2 2 1 11 acept not furnished 688 800 0 11 1499\n", + "10175 Campinas 68 2 1 0 - acept not furnished 0 1650 14 25 1689\n", + "10176 São Paulo 60 2 2 1 14 not acept furnished 2435 2600 184 33 5252\n", + "10177 Campinas 47 1 1 0 8 acept not furnished 423 520 13 7 963\n", + "10178 Campinas 87 3 2 1 4 acept not furnished 740 1173 90 15 2018\n", + "10179 São Paulo 51 1 1 0 32 not acept not furnished 429 3250 37 42 3758\n", + "10180 São Paulo 120 2 2 1 4 not acept not furnished 1400 1450 21 19 2890\n", + "10181 Campinas 52 2 1 1 8 acept furnished 1200 2280 0 29 3509\n", + "10182 Rio de Janeiro 56 2 1 1 4 acept not furnished 825 960 17 13 1815\n", + "10183 Campinas 50 1 1 1 2 not acept not furnished 393 647 15 9 1064\n", + "10184 São Paulo 1000 4 5 7 5 acept not furnished 8362 6800 4170 87 19420\n", + "10185 São Paulo 36 1 1 1 11 not acept furnished 450 3800 55 49 4354\n", + "10186 São Paulo 260 2 4 4 14 acept not furnished 3495 3455 1350 44 8344\n", + "10187 São Paulo 55 2 1 1 11 acept furnished 408 1700 35 22 2165\n", + "10188 São Paulo 150 2 3 1 - acept not furnished 0 1650 0 25 1675\n", + "10189 São Paulo 146 3 3 3 11 not acept not furnished 1655 7000 442 89 9186\n", + "10190 São Paulo 320 3 4 3 - acept not furnished 0 12000 2250 181 14430\n", + "10191 Rio de Janeiro 70 2 1 1 2 acept not furnished 750 2200 93 29 3072\n", + "10192 Campinas 69 3 2 2 11 acept not furnished 582 2000 142 26 2750\n", + "10193 Campinas 100 4 2 1 - acept not furnished 0 1600 125 25 1750\n", + "10194 São Paulo 50 1 1 0 3 acept not furnished 350 2800 0 36 3186\n", + "10195 São Paulo 33 1 1 0 12 acept not furnished 300 1650 0 21 1971\n", + "10196 São Paulo 230 3 4 4 - not acept furnished 0 5500 200 83 5783\n", + "10197 São Paulo 120 3 4 3 13 acept not furnished 1350 5600 560 71 7581\n", + "10198 São Paulo 55 1 2 0 17 not acept not furnished 508 1800 58 23 2389\n", + "10199 São Paulo 20 1 1 0 3 acept furnished 402 2800 68 36 3306\n", + "10200 Campinas 55 1 1 1 8 not acept not furnished 360 1100 22 14 1496\n", + "10201 Porto Alegre 46 1 1 1 3 acept not furnished 100 1100 100 17 1317\n", + "10202 São Paulo 48 2 1 1 3 acept not furnished 328 1550 54 20 1952\n", + "10203 Rio de Janeiro 95 2 1 0 6 acept not furnished 775 1670 200 22 2667\n", + "10204 São Paulo 330 4 4 5 - acept furnished 0 10000 750 151 10900\n", + "10205 São Paulo 50 2 1 1 15 acept not furnished 650 1300 34 17 2001\n", + "10206 Campinas 79 2 2 2 1 acept not furnished 955 1000 78 13 2046\n", + "10207 Campinas 60 2 1 1 - not acept not furnished 0 830 0 13 843\n", + "10208 Campinas 35 1 1 1 - not acept furnished 0 1000 0 16 1016\n", + "10209 São Paulo 550 4 5 6 21 acept not furnished 7100 10500 3942 134 21680\n", + "10210 São Paulo 380 4 4 3 1 acept not furnished 2300 8000 2180 102 12580\n", + "10211 São Paulo 85 2 1 0 4 acept furnished 620 2190 0 28 2838\n", + "10212 São Paulo 50 2 1 0 6 acept not furnished 405 1900 0 25 2330\n", + "10213 São Paulo 167 3 4 3 6 not acept not furnished 1800 9000 613 115 11530\n", + "10214 Porto Alegre 60 2 1 1 4 acept not furnished 150 1000 63 15 1228\n", + "10215 São Paulo 147 3 4 2 2 acept furnished 1078 11000 334 140 12550\n", + "10216 São Paulo 113 3 2 1 4 acept not furnished 1000 3000 50 39 4089\n", + "10217 São Paulo 136 3 4 3 13 acept not furnished 1505 6100 433 78 8116\n", + "10218 Belo Horizonte 25 1 1 1 1 not acept not furnished 0 500 38 7 545\n", + "10219 São Paulo 50 2 1 1 10 acept not furnished 482 1300 0 17 1799\n", + "10220 São Paulo 173 3 4 3 2 acept not furnished 3000 1950 796 25 5771\n", + "10221 São Paulo 272 3 5 4 8 acept not furnished 3900 7000 0 89 10990\n", + "10222 São Paulo 70 3 1 0 - acept not furnished 0 1300 0 20 1320\n", + "10223 São Paulo 57 1 2 0 17 acept not furnished 670 1400 0 18 2088\n", + "10224 Belo Horizonte 350 5 5 2 5 acept furnished 730 4000 298 54 5082\n", + "10225 Rio de Janeiro 311 4 3 1 8 acept furnished 2000 15000 500 194 17690\n", + "10226 São Paulo 71 2 2 2 14 not acept not furnished 511 3000 203 39 3753\n", + "10227 São Paulo 90 2 1 1 2 acept not furnished 1000 3000 50 39 4089\n", + "10228 Belo Horizonte 500 3 1 2 - acept not furnished 0 1280 109 21 1410\n", + "10229 São Paulo 250 3 3 2 7 not acept furnished 1400 5380 234 69 7083\n", + "10230 São Paulo 369 4 4 5 12 acept furnished 4074 15000 2917 191 22180\n", + "10231 São Paulo 100 2 4 1 - acept not furnished 380 3500 167 53 4100\n", + "10232 São Paulo 240 4 4 4 8 acept furnished 3033 2890 1398 37 7358\n", + "10233 Belo Horizonte 230 4 5 4 3 acept not furnished 2300 9240 1262 124 12930\n", + "10234 São Paulo 125 3 2 2 - acept furnished 0 3000 150 46 3196\n", + "10235 Rio de Janeiro 70 2 1 1 15 not acept not furnished 660 1500 100 20 2280\n", + "10236 Rio de Janeiro 40 2 2 0 2 acept not furnished 716 1000 55 13 1784\n", + "10237 São Paulo 300 3 3 4 - acept not furnished 0 7900 862 119 8881\n", + "10238 São Paulo 79 2 2 1 2 not acept not furnished 702 1600 0 21 2323\n", + "10239 São Paulo 46 1 1 1 7 acept not furnished 450 2400 0 31 2881\n", + "10240 Rio de Janeiro 40 2 1 0 4 acept not furnished 270 1490 0 20 1780\n", + "10241 Rio de Janeiro 50 1 1 0 5 acept not furnished 985 2308 138 30 3461\n", + "10242 Campinas 235 4 4 3 13 acept not furnished 3450 5500 541 70 9561\n", + "10243 São Paulo 480 4 4 4 12 acept furnished 6500 15000 2084 191 23780\n", + "10244 São Paulo 123 3 2 2 7 not acept not furnished 1000 2450 250 32 3732\n", + "10245 São Paulo 100 4 5 4 1 acept not furnished 3800 2750 1417 35 8002\n", + "10246 Belo Horizonte 400 6 5 5 - acept not furnished 0 7500 417 123 8040\n", + "10247 Rio de Janeiro 75 2 1 0 10 not acept not furnished 600 1850 123 24 2597\n", + "10248 São Paulo 45 1 1 0 12 not acept not furnished 413 3400 81 44 3938\n", + "10249 Rio de Janeiro 50 2 1 1 11 acept not furnished 420 1600 13 21 2054\n", + "10250 Belo Horizonte 137 3 2 0 2 not acept not furnished 0 2000 0 27 2027\n", + "10251 Porto Alegre 45 1 1 1 6 acept not furnished 195 1800 0 27 2022\n", + "10252 São Paulo 60 2 1 1 7 acept not furnished 800 1800 0 23 2623\n", + "10253 São Paulo 68 2 1 0 2 acept not furnished 800 1500 10 20 2330\n", + "10254 São Paulo 66 2 2 1 1 not acept not furnished 1141 1275 166 17 2599\n", + "10255 São Paulo 52 2 1 1 6 not acept furnished 540 2800 0 36 3376\n", + "10256 Belo Horizonte 460 5 8 5 - not acept not furnished 0 7320 0 121 7441\n", + "10257 São Paulo 100 2 2 5 - acept not furnished 0 6800 667 103 7570\n", + "10258 Rio de Janeiro 52 1 1 0 1 acept not furnished 150 1200 65 16 1431\n", + "10259 Campinas 42 1 1 0 5 not acept not furnished 587 950 34 13 1584\n", + "10260 São Paulo 127 3 2 2 9 acept not furnished 1500 4000 505 51 6056\n", + "10261 Porto Alegre 72 3 1 1 2 acept furnished 531 1599 128 24 2282\n", + "10262 São Paulo 82 3 2 2 6 acept furnished 1490 2230 145 29 3894\n", + "10263 São Paulo 250 4 4 4 4 acept not furnished 2850 8500 1167 108 12630\n", + "10264 Porto Alegre 30 1 1 0 11 acept not furnished 260 1300 34 19 1613\n", + "10265 São Paulo 600 4 5 3 - acept not furnished 6500 15000 334 226 22060\n", + "10266 Porto Alegre 67 2 2 1 8 acept not furnished 300 1700 0 25 2025\n", + "10267 São Paulo 67 1 2 2 17 acept not furnished 965 2230 271 29 3495\n", + "10268 Porto Alegre 41 1 1 0 13 acept not furnished 500 2300 42 34 2876\n", + "10269 São Paulo 300 4 3 1 9 not acept furnished 2300 8000 768 102 11170\n", + "10270 São Paulo 50 2 2 0 - not acept not furnished 0 1100 80 17 1197\n", + "10271 São Paulo 75 3 2 1 8 not acept not furnished 705 1900 70 25 2700\n", + "10272 São Paulo 50 1 1 0 - not acept not furnished 0 1000 0 16 1016\n", + "10273 Campinas 65 2 1 2 2 acept not furnished 785 800 136 11 1732\n", + "10274 São Paulo 129 3 4 2 3 acept not furnished 1217 5155 562 66 7000\n", + "10275 São Paulo 100 1 2 2 11 acept not furnished 1884 5850 472 75 8281\n", + "10276 Porto Alegre 116 4 3 1 3 acept furnished 450 2700 64 40 3254\n", + "10277 São Paulo 300 3 3 4 - acept not furnished 0 9000 650 136 9786\n", + "10278 Porto Alegre 45 1 1 1 9 not acept furnished 1080 3300 117 49 4546\n", + "10279 São Paulo 43 1 1 0 11 acept not furnished 440 2000 9 26 2475\n", + "10280 São Paulo 25 1 1 0 7 acept not furnished 430 1610 0 21 2061\n", + "10281 Rio de Janeiro 410 4 5 2 - acept furnished 0 4000 584 61 4645\n", + "10282 São Paulo 126 4 2 2 4 acept not furnished 870 3000 290 39 4199\n", + "10283 São Paulo 350 5 4 3 16 acept not furnished 3000 15000 1265 191 19460\n", + "10284 São Paulo 25 1 1 0 - not acept furnished 0 1750 0 23 1773\n", + "10285 São Paulo 48 2 1 1 15 not acept not furnished 400 1260 42 16 1718\n", + "10286 São Paulo 300 3 2 2 - acept furnished 0 8820 163 133 9116\n", + "10287 Rio de Janeiro 80 2 1 0 6 acept not furnished 800 2800 92 37 3729\n", + "10288 Rio de Janeiro 163 3 3 0 2 acept not furnished 1600 6400 400 83 8483\n", + "10289 São Paulo 93 3 1 2 8 acept not furnished 350 1550 100 20 2020\n", + "10290 Belo Horizonte 65 1 1 1 10 acept not furnished 791 3600 170 48 4609\n", + "10291 Rio de Janeiro 47 1 1 0 7 acept furnished 730 2000 102 26 2858\n", + "10292 São Paulo 260 4 6 5 - acept not furnished 0 6000 667 91 6758\n", + "10293 Rio de Janeiro 80 3 1 0 2 acept not furnished 360 1510 15 20 1905\n", + "10294 Porto Alegre 37 1 1 0 6 acept furnished 430 2220 84 33 2767\n", + "10295 São Paulo 126 3 2 2 13 acept not furnished 1280 2400 334 31 4045\n", + "10296 Belo Horizonte 220 4 4 3 - not acept not furnished 0 2602 234 43 2879\n", + "10297 São Paulo 160 3 5 2 - acept not furnished 0 12000 334 181 12520\n", + "10298 Campinas 100 3 2 1 1 acept not furnished 400 1700 0 22 2122\n", + "10299 São Paulo 29 1 1 0 7 not acept furnished 355 2900 50 37 3342\n", + "10300 São Paulo 192 4 5 4 11 not acept furnished 2800 15000 90 191 18080\n", + "10301 São Paulo 60 2 1 0 3 not acept not furnished 400 1300 0 17 1717\n", + "10302 Belo Horizonte 40 2 1 0 11 not acept not furnished 330 1100 0 15 1445\n", + "10303 São Paulo 339 4 5 4 13 acept furnished 2800 15000 1440 191 19430\n", + "10304 Porto Alegre 115 3 3 1 6 acept not furnished 450 3250 200 48 3948\n", + "10305 Rio de Janeiro 27 1 1 0 5 not acept furnished 600 3000 61 39 3700\n", + "10306 Porto Alegre 47 1 1 1 1 not acept furnished 400 2200 0 33 2633\n", + "10307 São Paulo 197 3 4 3 16 acept furnished 2400 6502 1167 83 10150\n", + "10308 São Paulo 44 1 1 1 3 acept not furnished 560 3450 0 13 4023\n", + "10309 São Paulo 226 4 5 6 14 acept not furnished 2860 12000 917 153 15930\n", + "10310 São Paulo 100 2 1 1 10 not acept furnished 1095 2900 234 37 4266\n", + "10311 Belo Horizonte 300 4 3 4 - acept not furnished 0 7500 942 123 8565\n", + "10312 Porto Alegre 75 3 2 2 8 acept not furnished 500 1700 75 25 2300\n", + "10313 São Paulo 160 2 1 3 - acept not furnished 0 4000 0 61 4061\n", + "10314 Campinas 53 1 1 0 6 acept not furnished 403 500 15 7 925\n", + "10315 Rio de Janeiro 80 3 2 0 10 not acept furnished 600 1105 47 15 1767\n", + "10316 Porto Alegre 43 1 1 1 12 not acept furnished 350 2200 42 33 2625\n", + "10317 São Paulo 330 4 5 5 22 not acept not furnished 4711 4500 0 58 9269\n", + "10318 São Paulo 353 5 7 5 12 acept not furnished 4800 10000 1917 127 16840\n", + "10319 São Paulo 52 2 1 0 3 acept not furnished 0 1340 0 17 1357\n", + "10320 São Paulo 185 3 3 2 5 acept not furnished 1900 3280 100 42 5322\n", + "10321 Rio de Janeiro 90 2 1 0 9 acept not furnished 650 960 90 13 1713\n", + "10322 Campinas 48 1 1 0 13 acept not furnished 250 950 42 13 1255\n", + "10323 Belo Horizonte 82 2 2 2 11 not acept not furnished 567 3800 303 51 4721\n", + "10324 São Paulo 90 3 2 1 2 acept furnished 1016 1631 100 21 2768\n", + "10325 Porto Alegre 42 1 1 1 2 not acept not furnished 280 800 280 12 1372\n", + "10326 Campinas 290 4 3 1 5 acept not furnished 1350 2600 192 33 4175\n", + "10327 São Paulo 350 4 5 2 - acept not furnished 0 5000 325 76 5401\n", + "10328 Campinas 110 3 3 2 - acept not furnished 560 3200 1056 49 4865\n", + "10329 Campinas 50 1 1 1 1 acept not furnished 480 1200 52 16 1748\n", + "10330 São Paulo 45 1 1 1 1 not acept furnished 3000 5520 0 70 8590\n", + "10331 Belo Horizonte 70 3 2 1 3 acept not furnished 240 1400 103 19 1762\n", + "10332 São Paulo 50 2 1 1 12 acept not furnished 340 1490 0 19 1849\n", + "10333 São Paulo 45 1 1 1 8 not acept not furnished 589 2349 0 8 2946\n", + "10334 São Paulo 180 2 2 0 2 not acept not furnished 0 2760 0 35 2795\n", + "10335 Belo Horizonte 65 2 1 1 2 not acept not furnished 200 908 69 13 1190\n", + "10336 São Paulo 50 1 1 1 3 not acept furnished 679 3900 105 50 4734\n", + "10337 São Paulo 250 3 3 2 3 acept not furnished 1900 9500 500 121 12020\n", + "10338 São Paulo 90 2 1 0 1 acept not furnished 0 2000 280 26 2306\n", + "10339 São Paulo 39 2 1 0 1 acept not furnished 120 1430 43 19 1612\n", + "10340 São Paulo 180 3 2 1 2 acept not furnished 1000 10000 180 127 11310\n", + "10341 Rio de Janeiro 72 2 2 1 5 acept not furnished 500 1200 5 16 1721\n", + "10342 Belo Horizonte 300 4 4 4 17 acept furnished 1200 7500 436 100 9236\n", + "10343 São Paulo 45 1 1 1 12 not acept not furnished 1088 3200 0 41 4329\n", + "10344 São Paulo 84 1 2 0 1 acept furnished 850 6000 250 77 7177\n", + "10345 São Paulo 228 3 4 3 12 not acept furnished 1137 4800 513 61 6511\n", + "10346 Rio de Janeiro 126 3 2 1 11 acept not furnished 1658 3200 591 42 5491\n", + "10347 São Paulo 260 3 3 3 8 acept furnished 2210 5000 842 64 8116\n", + "10348 Campinas 230 3 3 3 6 acept not furnished 3200 4500 534 58 8292\n", + "10349 São Paulo 160 4 2 2 - acept not furnished 0 2580 0 39 2619\n", + "10350 Rio de Janeiro 90 2 2 1 1 acept furnished 1424 2600 426 34 4484\n", + "10351 São Paulo 136 1 2 2 16 not acept not furnished 1767 3000 417 39 5223\n", + "10352 Campinas 109 4 3 2 6 not acept not furnished 890 2300 261 30 3481\n", + "10353 Campinas 437 3 6 6 - acept furnished 1200 13500 711 203 15610\n", + "10354 São Paulo 400 4 4 3 - acept not furnished 0 10000 2707 151 12860\n", + "10355 Rio de Janeiro 90 3 3 1 3 acept not furnished 800 1950 167 26 2943\n", + "10356 Belo Horizonte 120 4 3 2 5 acept not furnished 500 2800 242 38 3580\n", + "10357 Porto Alegre 23 1 1 1 5 not acept not furnished 170 1100 34 17 1321\n", + "10358 Porto Alegre 45 2 1 0 1 acept not furnished 0 1000 0 15 1015\n", + "10359 São Paulo 51 1 1 1 3 acept furnished 580 3500 200 45 4325\n", + "10360 São Paulo 150 3 3 2 - acept not furnished 0 2050 250 31 2331\n", + "10361 Rio de Janeiro 200 4 3 4 10 acept not furnished 2131 6800 849 88 9868\n", + "10362 São Paulo 25 1 1 0 - not acept furnished 53 1184 53 18 1308\n", + "10363 São Paulo 47 2 1 1 11 acept not furnished 300 2460 0 15 2775\n", + "10364 São Paulo 340 3 4 4 2 not acept not furnished 7000 12500 3084 159 22740\n", + "10365 Campinas 252 3 3 4 - acept not furnished 0 3300 259 50 3609\n", + "10366 São Paulo 72 2 1 1 3 acept not furnished 862 1200 114 16 2192\n", + "10367 São Paulo 159 3 2 1 7 not acept not furnished 1963 3500 582 45 6090\n", + "10368 São Paulo 270 3 4 3 - acept not furnished 0 6800 417 103 7320\n", + "10369 Rio de Janeiro 80 2 2 1 12 acept not furnished 1000 1360 276 18 2654\n", + "10370 São Paulo 700 6 6 6 - acept not furnished 0 8500 1542 128 10170\n", + "10371 São Paulo 96 2 2 2 4 acept furnished 1100 6500 250 83 7933\n", + "10372 São Paulo 134 3 3 3 11 not acept not furnished 1655 8000 380 102 10140\n", + "10373 Belo Horizonte 60 2 1 1 11 acept not furnished 240 1550 103 21 1914\n", + "10374 São Paulo 87 2 2 1 3 acept furnished 2100 3337 0 9 5446\n", + "10375 São Paulo 45 1 1 0 - not acept not furnished 0 1200 0 19 1219\n", + "10376 São Paulo 350 4 2 8 - acept not furnished 0 7000 450 106 7556\n", + "10377 Porto Alegre 40 2 1 1 4 not acept not furnished 270 702 0 11 983\n", + "10378 Rio de Janeiro 110 2 3 1 1 not acept not furnished 900 4600 92 60 5652\n", + "10379 São Paulo 180 3 3 2 6 acept not furnished 1699 2800 250 36 4785\n", + "10380 Campinas 800 4 7 4 - acept not furnished 2100 15000 1898 226 19220\n", + "10381 São Paulo 61 2 2 1 13 acept not furnished 764 4000 134 51 4949\n", + "10382 Rio de Janeiro 60 2 1 0 6 acept not furnished 1329 2350 135 31 3845\n", + "10383 Rio de Janeiro 25 1 1 0 4 acept not furnished 50 550 0 8 608\n", + "10384 São Paulo 84 3 1 1 17 acept not furnished 710 2300 3000 30 6040\n", + "10385 São Paulo 84 3 3 2 7 acept not furnished 950 1600 258 21 2829\n", + "10386 São Paulo 220 3 5 4 10 acept not furnished 2250 6800 84 87 9221\n", + "10387 São Paulo 300 5 5 3 - acept not furnished 0 4700 334 71 5105\n", + "10388 São Paulo 269 4 4 5 21 acept furnished 2980 14000 1834 178 18990\n", + "10389 Rio de Janeiro 98 3 2 0 5 acept not furnished 854 3500 182 46 4582\n", + "10390 São Paulo 65 1 2 2 3 not acept furnished 950 3400 215 44 4609\n", + "10391 São Paulo 139 3 2 0 7 acept not furnished 1250 8000 103 102 9455\n", + "10392 Porto Alegre 480 5 4 7 - acept not furnished 0 3600 38 64 3702\n", + "10393 São Paulo 60 1 1 1 - not acept not furnished 0 1400 0 22 1422\n", + "10394 São Paulo 50 2 1 1 6 acept not furnished 430 1305 49 17 1801\n", + "10395 Belo Horizonte 70 2 1 1 - acept furnished 0 1400 0 23 1423\n", + "10396 Porto Alegre 80 3 2 0 7 acept furnished 910 2000 123 30 3063\n", + "10397 São Paulo 100 1 4 1 - acept not furnished 0 11000 250 166 11420\n", + "10398 Campinas 194 3 2 3 - acept not furnished 0 3500 75 53 3628\n", + "10399 São Paulo 250 5 5 4 3 acept not furnished 2596 2000 1249 26 5871\n", + "10400 Rio de Janeiro 120 3 2 1 2 acept furnished 1400 4113 317 53 5883\n", + "10401 São Paulo 80 2 1 2 - acept not furnished 0 2000 18 31 2049\n", + "10402 São Paulo 73 2 1 1 12 acept not furnished 450 1480 83 19 2032\n", + "10403 São Paulo 122 2 1 2 - acept not furnished 0 2360 67 36 2463\n", + "10404 Belo Horizonte 24 1 1 0 1 not acept not furnished 50 680 0 10 740\n", + "10405 Campinas 37 1 1 0 4 not acept furnished 335 761 0 10 1106\n", + "10406 São Paulo 60 1 2 0 - not acept not furnished 0 1600 23 25 1648\n", + "10407 São Paulo 55 2 1 1 - acept not furnished 550 1250 0 16 1816\n", + "10408 Rio de Janeiro 300 4 2 2 6 acept not furnished 2200 9000 834 116 12150\n", + "10409 São Paulo 140 4 3 2 - not acept not furnished 0 2600 117 40 2757\n", + "10410 São Paulo 500 4 4 8 12 acept furnished 5000 15000 5200 191 25390\n", + "10411 São Paulo 100 2 1 0 - not acept not furnished 0 1100 25 17 1142\n", + "10412 São Paulo 60 1 1 0 - not acept not furnished 0 980 0 15 995\n", + "10413 São Paulo 40 1 1 1 16 acept furnished 620 3500 92 45 4257\n", + "10414 São Paulo 70 2 1 1 16 not acept not furnished 960 2600 0 33 3593\n", + "10415 Belo Horizonte 60 3 1 1 4 acept not furnished 180 1300 87 18 1585\n", + "10416 Porto Alegre 350 3 3 3 - acept not furnished 0 15000 667 267 15930\n", + "10417 São Paulo 258 4 5 3 4 acept furnished 3700 5000 1084 64 9848\n", + "10418 Belo Horizonte 220 4 4 0 13 not acept not furnished 2000 8000 1067 107 11170\n", + "10419 São Paulo 120 3 3 2 7 acept not furnished 2990 9000 450 115 12560\n", + "10420 São Paulo 223 3 4 3 - acept not furnished 2142 5500 880 83 8605\n", + "10421 Porto Alegre 43 1 1 1 14 acept not furnished 1100 1800 67 27 2994\n", + "10422 São Paulo 215 3 3 4 - acept not furnished 0 4800 275 73 5148\n", + "10423 São Paulo 39 2 1 0 3 acept not furnished 120 1450 43 19 1632\n", + "10424 São Paulo 35 1 1 0 1 acept not furnished 260 1400 0 18 1678\n", + "10425 Belo Horizonte 15 1 1 0 3 not acept furnished 0 1100 0 15 1115\n", + "10426 São Paulo 600 4 3 3 1 acept not furnished 6000 3750 1667 48 11470\n", + "10427 São Paulo 600 4 4 4 - acept not furnished 0 6800 1000 103 7903\n", + "10428 São Paulo 52 2 1 1 7 acept not furnished 490 1658 37 22 2207\n", + "10429 Campinas 200 3 3 5 - acept not furnished 0 2650 220 40 2910\n", + "10430 São Paulo 200 3 2 3 - acept not furnished 0 2900 334 44 3278\n", + "10431 Porto Alegre 47 1 1 1 1 not acept furnished 400 2200 0 33 2633\n", + "10432 São Paulo 60 1 1 1 7 not acept not furnished 1037 2023 0 26 3086\n", + "10433 São Paulo 57 2 2 1 8 acept not furnished 500 4150 140 53 4843\n", + "10434 São Paulo 57 2 2 1 22 not acept furnished 480 4500 140 58 5178\n", + "10435 São Paulo 76 3 2 0 4 acept not furnished 780 1600 54 21 2455\n", + "10436 Belo Horizonte 130 3 2 0 - acept not furnished 0 2149 0 36 2185\n", + "10437 São Paulo 96 3 3 1 11 acept not furnished 900 2290 125 30 3345\n", + "10438 São Paulo 70 2 2 1 1 acept not furnished 280 1000 138 13 1431\n", + "10439 São Paulo 90 3 3 2 1 acept not furnished 1171 1997 280 26 3474\n", + "10440 São Paulo 85 2 1 1 16 acept not furnished 820 1515 0 20 2355\n", + "10441 São Paulo 25 1 1 0 3 acept not furnished 450 1650 30 21 2151\n", + "10442 Rio de Janeiro 40 2 1 1 4 acept not furnished 450 1000 65 13 1528\n", + "10443 São Paulo 71 2 2 2 19 acept not furnished 550 3000 84 39 3673\n", + "10444 Belo Horizonte 120 3 2 2 3 not acept not furnished 335 1300 166 18 1819\n", + "10445 Rio de Janeiro 62 2 1 1 4 not acept furnished 600 1600 50 21 2271\n", + "10446 São Paulo 215 3 1 3 - acept not furnished 0 7000 417 106 7523\n", + "10447 São Paulo 190 3 3 3 6 acept furnished 2800 4500 834 58 8192\n", + "10448 Porto Alegre 190 4 3 1 - acept furnished 0 6450 117 85 6652\n", + "10449 Rio de Janeiro 220 4 2 1 7 acept furnished 2000 5000 362 65 7427\n", + "10450 Rio de Janeiro 373 3 2 2 5 acept furnished 2650 8500 678 110 11940\n", + "10451 São Paulo 900 5 5 5 - not acept not furnished 0 15000 3334 226 18560\n", + "10452 Belo Horizonte 100 3 2 2 2 acept not furnished 340 1600 183 22 2145\n", + "10453 Rio de Janeiro 180 4 2 1 8 acept not furnished 1600 3000 507 39 5146\n", + "10454 São Paulo 100 1 2 2 3 not acept not furnished 1690 5000 309 64 7063\n", + "10455 São Paulo 58 2 2 2 10 acept not furnished 756 2100 135 27 3018\n", + "10456 São Paulo 110 3 3 3 7 acept not furnished 1748 5000 0 64 6812\n", + "10457 São Paulo 100 2 3 2 27 acept furnished 860 6028 353 77 7318\n", + "10458 São Paulo 75 2 1 1 - acept not furnished 0 2450 0 37 2487\n", + "10459 São Paulo 78 3 2 1 2 not acept not furnished 951 1900 205 25 3081\n", + "10460 São Paulo 152 3 3 1 5 not acept furnished 1178 5200 213 66 6657\n", + "10461 Campinas 42 1 1 1 16 not acept furnished 1022 1200 134 16 2372\n", + "10462 São Paulo 50 1 1 0 - acept not furnished 0 1200 0 19 1219\n", + "10463 São Paulo 150 2 2 2 - acept not furnished 0 2640 0 40 2680\n", + "10464 Rio de Janeiro 56 2 2 1 2 acept not furnished 1107 2800 150 37 4094\n", + "10465 São Paulo 250 3 3 0 - acept not furnished 0 3200 50 49 3299\n", + "10466 Campinas 197 3 4 4 8 acept not furnished 1700 9000 500 115 11320\n", + "10467 São Paulo 348 4 4 1 15 acept furnished 2178 7511 215 96 10000\n", + "10468 São Paulo 300 4 2 6 - acept not furnished 0 5000 250 76 5326\n", + "10469 São Paulo 300 4 5 4 6 acept not furnished 3150 5500 959 70 9679\n", + "10470 Campinas 60 3 1 1 5 not acept not furnished 600 1800 50 23 2473\n", + "10471 São Paulo 200 3 4 2 10 acept not furnished 1300 7000 459 89 8848\n", + "10472 Campinas 900 3 6 8 - acept not furnished 2000 15000 1834 226 19060\n", + "10473 São Paulo 50 2 1 1 - not acept not furnished 0 1400 84 22 1506\n", + "10474 Belo Horizonte 63 2 1 1 4 not acept not furnished 130 900 0 12 1042\n", + "10475 Porto Alegre 80 1 1 0 - acept not furnished 0 800 40 15 855\n", + "10476 Porto Alegre 600 5 7 5 - acept not furnished 0 7000 834 125 7959\n", + "10477 Belo Horizonte 456 4 2 0 - acept not furnished 0 3080 520 51 3651\n", + "10478 São Paulo 44 1 1 0 4 acept not furnished 350 3200 0 41 3591\n", + "10479 São Paulo 35 1 1 1 17 acept furnished 1280 4000 200 51 5531\n", + "10480 São Paulo 399 3 5 4 21 acept not furnished 7000 12000 0 153 19150\n", + "10481 Rio de Janeiro 100 3 1 0 13 acept not furnished 1100 3700 396 48 5244\n", + "10482 São Paulo 40 1 1 1 1 acept not furnished 402 1500 75 20 1997\n", + "10483 Campinas 100 2 1 3 - acept not furnished 0 1250 100 19 1369\n", + "10484 Campinas 90 3 1 1 1 acept not furnished 1000 960 83 13 2056\n", + "10485 São Paulo 150 2 3 3 - acept not furnished 0 3100 213 47 3360\n", + "10486 Campinas 55 1 1 1 9 acept furnished 660 2600 73 33 3366\n", + "10487 Porto Alegre 135 4 4 1 6 acept furnished 1300 3200 300 47 4847\n", + "10488 Belo Horizonte 350 3 2 6 - acept not furnished 0 3800 173 63 4036\n", + "10489 São Paulo 88 3 2 1 1 not acept not furnished 1025 1700 0 22 2747\n", + "10490 Rio de Janeiro 75 2 2 1 9 acept not furnished 950 2800 138 37 3925\n", + "10491 São Paulo 128 3 3 0 3 acept furnished 2500 12000 500 153 15150\n", + "10492 São Paulo 30 1 1 0 2 not acept not furnished 507 2000 0 26 2533\n", + "10493 Campinas 132 4 2 2 5 acept not furnished 1096 3300 164 42 4602\n", + "10494 São Paulo 100 2 3 1 - not acept not furnished 0 1500 117 23 1640\n", + "10495 São Paulo 50 2 3 0 - not acept not furnished 0 1740 84 27 1851\n", + "10496 Porto Alegre 121 3 2 2 2 acept not furnished 720 2650 135 39 3544\n", + "10497 São Paulo 279 5 5 6 3 acept furnished 900 4420 834 57 6211\n", + "10498 Rio de Janeiro 37 1 1 0 10 not acept furnished 1600 4700 0 61 6361\n", + "10499 São Paulo 240 3 3 2 - acept not furnished 0 2500 25 38 2563\n", + "10500 São Paulo 164 3 3 1 1 not acept not furnished 2389 6300 117 80 8886\n", + "10501 São Paulo 65 2 2 2 4 acept not furnished 1000 5000 110 64 6174\n", + "10502 Belo Horizonte 127 2 2 0 14 acept furnished 704 2000 158 27 2889\n", + "10503 São Paulo 78 3 1 2 7 acept not furnished 1300 3200 100 41 4641\n", + "10504 Belo Horizonte 65 2 1 1 5 acept not furnished 320 900 27 12 1259\n", + "10505 Belo Horizonte 66 2 1 1 3 acept not furnished 200 1000 25 14 1239\n", + "10506 São Paulo 185 3 3 2 9 acept not furnished 0 12000 0 153 12150\n", + "10507 Belo Horizonte 420 4 4 5 - acept not furnished 0 9000 0 148 9148\n", + "10508 São Paulo 70 2 1 0 - acept not furnished 0 3000 0 46 3046\n", + "10509 São Paulo 37 1 1 0 10 acept not furnished 370 1500 0 20 1890\n", + "10510 Rio de Janeiro 30 1 1 0 3 acept not furnished 300 750 13 10 1073\n", + "10511 São Paulo 300 2 3 2 - acept furnished 0 3200 0 49 3249\n", + "10512 São Paulo 72 2 2 1 11 acept not furnished 920 3990 0 51 4961\n", + "10513 São Paulo 230 4 3 1 2 not acept not furnished 2400 3600 464 46 6510\n", + "10514 Belo Horizonte 52 2 2 1 4 acept not furnished 285 900 59 12 1256\n", + "10515 Campinas 26 1 1 0 2 acept not furnished 410 500 13 7 930\n", + "10516 São Paulo 113 2 1 1 5 acept not furnished 1000 3000 50 39 4089\n", + "10517 Belo Horizonte 178 3 2 2 2 acept not furnished 350 1660 154 23 2187\n", + "10518 Rio de Janeiro 60 1 1 1 7 not acept furnished 1503 1700 459 22 3684\n", + "10519 São Paulo 189 3 3 0 5 acept not furnished 1950 4100 375 52 6477\n", + "10520 Campinas 250 4 4 0 - acept not furnished 750 3825 369 58 5002\n", + "10521 São Paulo 120 3 2 2 14 acept not furnished 1110 5500 322 70 7002\n", + "10522 São Paulo 237 4 3 4 4 not acept not furnished 3100 5000 1042 64 9206\n", + "10523 Rio de Janeiro 168 3 2 3 9 acept not furnished 3349 13200 637 171 17360\n", + "10524 São Paulo 20 1 1 0 2 acept furnished 602 1800 130 23 2555\n", + "10525 Campinas 55 1 1 1 2 acept not furnished 363 700 45 9 1117\n", + "10526 Rio de Janeiro 90 3 2 1 1 not acept furnished 2153 2550 364 33 5100\n", + "10527 Campinas 190 2 2 0 8 not acept not furnished 1100 1300 200 17 2617\n", + "10528 Porto Alegre 44 1 1 0 3 acept not furnished 160 940 13 14 1127\n", + "10529 São Paulo 210 3 2 0 11 acept furnished 2200 4000 442 51 6693\n", + "10530 Belo Horizonte 230 3 4 4 17 acept furnished 1410 15000 130 200 16740\n", + "10531 São Paulo 300 3 3 4 12 acept not furnished 3800 6500 1417 83 11800\n", + "10532 Belo Horizonte 400 6 4 0 - acept not furnished 0 15000 375 246 15620\n", + "10533 São Paulo 273 3 3 1 5 acept not furnished 1880 4250 778 54 6962\n", + "10534 São Paulo 200 4 4 3 9 acept furnished 2800 5000 1211 64 9075\n", + "10535 São Paulo 121 3 3 2 - acept not furnished 0 3750 255 57 4062\n", + "10536 Rio de Janeiro 40 1 1 0 5 acept not furnished 445 2200 68 29 2742\n", + "10537 São Paulo 55 1 1 0 3 not acept furnished 420 1824 0 24 2268\n", + "10538 São Paulo 120 1 1 2 7 acept not furnished 1000 2190 300 28 3518\n", + "10539 Campinas 144 3 2 3 - acept not furnished 890 4000 138 61 5089\n", + "10540 Campinas 60 2 1 1 2 acept not furnished 314 1000 0 13 1327\n", + "10541 São Paulo 60 1 1 2 9 not acept not furnished 550 1500 50 20 2120\n", + "10542 Rio de Janeiro 49 1 1 0 2 acept not furnished 630 1235 0 16 1881\n", + "10543 Porto Alegre 107 3 3 2 6 acept not furnished 1200 4270 250 63 5783\n", + "10544 Campinas 202 3 2 4 - acept not furnished 0 3500 608 53 4161\n", + "10545 São Paulo 60 1 1 1 11 not acept furnished 2357 5440 277 69 8143\n", + "10546 São Paulo 156 3 4 2 7 acept not furnished 1800 2000 0 26 3826\n", + "10547 Rio de Janeiro 100 3 1 0 1 acept not furnished 1146 2200 199 29 3574\n", + "10548 São Paulo 70 2 2 0 14 not acept not furnished 600 3200 0 41 3841\n", + "10549 São Paulo 45 1 1 0 3 not acept furnished 620 3850 0 49 4519\n", + "10550 Rio de Janeiro 100 3 1 1 2 acept not furnished 800 1400 42 19 2261\n", + "10551 Campinas 52 1 1 1 3 acept furnished 730 3000 59 39 3828\n", + "10552 São Paulo 120 3 2 2 - acept not furnished 0 5000 250 76 5326\n", + "10553 Porto Alegre 80 3 2 2 2 acept not furnished 650 2350 100 35 3135\n", + "10554 São Paulo 320 4 2 2 - acept furnished 0 8000 642 121 8763\n", + "10555 São Paulo 90 2 2 1 3 acept not furnished 1000 3000 50 39 4089\n", + "10556 Belo Horizonte 139 4 1 2 3 not acept not furnished 1600 4200 390 56 6246\n", + "10557 São Paulo 400 3 3 4 - acept not furnished 0 3650 0 55 3705\n", + "10558 São Paulo 320 3 5 8 - not acept not furnished 0 9000 567 136 9703\n", + "10559 São Paulo 63 3 2 1 4 not acept not furnished 532 2273 0 29 2834\n", + "10560 Porto Alegre 40 1 1 1 9 not acept furnished 1300 1200 68 18 2586\n", + "10561 Rio de Janeiro 135 3 2 2 4 not acept not furnished 935 2600 141 34 3710\n", + "10562 Rio de Janeiro 100 3 2 1 5 acept not furnished 884 1870 75 25 2854\n", + "10563 Belo Horizonte 274 4 5 5 10 not acept not furnished 2450 13000 179 174 15800\n", + "10564 Rio de Janeiro 70 1 1 0 11 not acept furnished 500 5000 0 65 5565\n", + "10565 São Paulo 240 3 1 2 8 acept not furnished 2088 4000 1449 51 7588\n", + "10566 Campinas 97 1 1 0 12 acept not furnished 468 720 61 10 1259\n", + "10567 Campinas 270 3 3 5 - acept not furnished 0 7500 459 113 8072\n", + "10568 Rio de Janeiro 160 3 2 0 8 not acept furnished 1127 6500 258 84 7969\n", + "10569 Belo Horizonte 20 1 1 1 - acept furnished 0 1100 0 15 1115\n", + "10570 Campinas 55 1 1 0 1 acept not furnished 260 716 12 10 998\n", + "10571 Porto Alegre 45 1 1 1 3 acept not furnished 367 1020 21 15 1423\n", + "10572 Campinas 85 2 1 0 - acept not furnished 590 680 0 9 1279\n", + "10573 São Paulo 130 3 4 2 8 acept furnished 1300 5500 0 70 6870\n", + "10574 São Paulo 95 3 2 0 - acept not furnished 0 2300 125 35 2460\n", + "10575 São Paulo 70 3 2 1 9 acept not furnished 400 1600 84 21 2105\n", + "10576 São Paulo 65 2 2 2 7 acept not furnished 1500 6000 500 77 8077\n", + "10577 Rio de Janeiro 150 3 2 0 5 acept not furnished 1290 1930 298 25 3543\n", + "10578 Belo Horizonte 93 3 3 2 1 not acept not furnished 300 1500 76 20 1896\n", + "10579 São Paulo 30 1 1 0 - not acept not furnished 0 1000 0 16 1016\n", + "10580 São Paulo 200 4 4 2 - not acept not furnished 0 8000 850 121 8971\n", + "10581 São Paulo 350 4 5 4 2 acept furnished 5000 15000 0 191 20190\n", + "10582 Porto Alegre 140 3 2 2 - acept not furnished 0 4000 142 72 4214\n", + "10583 São Paulo 431 3 3 2 8 not acept furnished 6200 15000 1370 191 22760\n", + "10584 Campinas 50 1 1 1 16 acept not furnished 432 991 36 13 1472\n", + "10585 São Paulo 70 3 1 1 1 acept not furnished 542 1340 117 17 2016\n", + "10586 São Paulo 260 2 5 5 - acept not furnished 0 8000 1417 121 9538\n", + "10587 Belo Horizonte 500 8 5 8 - acept not furnished 0 5000 150 82 5232\n", + "10588 São Paulo 114 2 2 1 4 acept not furnished 1405 2000 0 26 3431\n", + "10589 Belo Horizonte 90 3 2 1 9 acept not furnished 250 1000 84 14 1348\n", + "10590 Belo Horizonte 350 5 2 7 - acept furnished 0 9000 602 148 9750\n", + "10591 São Paulo 190 4 4 2 4 acept not furnished 2000 3200 134 41 5375\n", + "10592 São Paulo 90 3 3 2 - acept not furnished 0 2000 50 31 2081\n", + "10593 São Paulo 340 5 6 5 7 not acept furnished 4800 8000 2100 102 15000\n", + "10594 São Paulo 160 3 4 4 - not acept not furnished 0 2500 292 38 2830\n", + "10595 São Paulo 45 2 1 0 1 not acept not furnished 100 1190 0 16 1306\n", + "10596 Rio de Janeiro 60 2 1 0 2 acept furnished 175 1840 0 24 2039\n", + "10597 São Paulo 66 2 1 1 10 not acept furnished 700 3800 84 27 4611\n", + "10598 Porto Alegre 60 1 1 0 6 acept furnished 300 1390 34 21 1745\n", + "10599 Belo Horizonte 180 6 4 6 - acept not furnished 0 5500 209 91 5800\n", + "10600 São Paulo 200 4 4 4 1 acept not furnished 2300 4900 1167 63 8430\n", + "10601 Belo Horizonte 160 3 2 2 - acept not furnished 0 4320 100 71 4491\n", + "10602 Rio de Janeiro 55 1 1 0 9 acept furnished 600 2600 50 34 3284\n", + "10603 São Paulo 290 3 4 3 7 acept furnished 3900 8770 1834 112 14620\n", + "10604 Rio de Janeiro 33 1 1 0 6 not acept furnished 500 2500 0 33 3033\n", + "10605 São Paulo 100 3 2 1 - acept not furnished 0 1700 30 26 1756\n", + "10606 São Paulo 340 4 3 0 - acept not furnished 0 5200 667 79 5946\n", + "10607 São Paulo 70 1 2 1 16 acept not furnished 1344 3800 125 49 5318\n", + "10608 São Paulo 80 1 1 4 - acept not furnished 0 1000 75 16 1091\n", + "10609 Campinas 53 1 1 1 8 not acept not furnished 550 650 36 9 1245\n", + "10610 Rio de Janeiro 70 2 2 1 11 acept not furnished 942 1710 44 23 2719\n", + "10611 Campinas 411 4 5 4 - acept not furnished 0 5500 667 83 6250\n", + "10612 São Paulo 240 3 4 3 - acept not furnished 2140 5500 750 83 8473\n", + "10613 São Paulo 300 6 7 5 - not acept not furnished 0 8000 0 121 8121\n", + "10614 Campinas 67 2 2 2 12 acept not furnished 800 1030 84 14 1928\n", + "10615 São Paulo 120 3 3 2 - acept not furnished 0 3500 122 53 3675\n", + "10616 Rio de Janeiro 40 1 1 0 2 acept not furnished 480 1810 0 24 2314\n", + "10617 Belo Horizonte 169 3 2 4 - acept not furnished 0 3200 109 53 3362\n", + "10618 São Paulo 200 4 4 3 7 not acept not furnished 2800 6141 997 78 10020\n", + "10619 Belo Horizonte 360 1 1 8 - acept not furnished 0 2190 167 36 2393\n", + "10620 Rio de Janeiro 400 4 4 2 - acept not furnished 2000 15000 917 229 18150\n", + "10621 Rio de Janeiro 60 2 1 0 10 acept not furnished 700 1600 59 21 2380\n", + "10622 São Paulo 250 3 3 3 - acept not furnished 0 4600 0 70 4670\n", + "10623 Porto Alegre 47 1 1 1 1 not acept furnished 400 2200 0 33 2633\n", + "10624 São Paulo 48 2 1 0 2 acept not furnished 0 1200 0 16 1216\n", + "10625 Campinas 92 3 3 2 11 acept not furnished 780 1700 167 22 2669\n", + "10626 São Paulo 140 2 2 1 3 not acept not furnished 1882 3000 190 39 5111\n", + "10627 Belo Horizonte 22 1 1 0 - acept not furnished 30 450 13 6 499\n", + "10628 Porto Alegre 140 2 3 2 7 acept furnished 1000 3000 113 44 4157\n", + "10629 Campinas 83 2 2 2 1 acept furnished 800 3700 234 47 4781\n", + "10630 São Paulo 380 3 5 4 - acept not furnished 0 5500 1200 83 6783\n", + "10631 Rio de Janeiro 200 4 2 1 8 not acept furnished 1500 3800 321 49 5670\n", + "10632 Porto Alegre 18 1 1 0 3 not acept furnished 370 1090 0 16 1476\n", + "10633 Rio de Janeiro 290 4 4 0 - acept not furnished 0 15000 750 229 15980\n", + "10634 São Paulo 115 3 2 2 8 acept not furnished 1900 2900 400 37 5237\n", + "10635 Porto Alegre 100 3 2 2 2 acept furnished 900 2455 125 36 3516\n", + "10636 São Paulo 250 4 3 3 2 acept not furnished 3600 2430 1167 31 7228\n", + "10637 São Paulo 84 3 3 2 15 acept furnished 1300 8700 375 111 10490\n", + "10638 São Paulo 120 2 2 2 11 acept not furnished 2200 4000 500 51 6751\n", + "10639 Rio de Janeiro 95 3 2 1 6 acept furnished 1162 2600 443 34 4239\n", + "10640 São Paulo 27 1 1 0 5 not acept not furnished 1405 3500 1 45 4951\n", + "10641 Belo Horizonte 58 2 2 1 5 acept not furnished 400 999 99 14 1512\n", + "10642 Porto Alegre 40 1 1 0 2 acept not furnished 230 700 9 11 950\n", + "10643 São Paulo 90 2 1 0 - not acept not furnished 0 1450 50 22 1522\n", + "10644 Belo Horizonte 65 2 1 1 1 acept not furnished 200 1100 70 15 1385\n", + "10645 Porto Alegre 400 4 2 2 15 acept furnished 2250 6300 500 92 9142\n", + "10646 Rio de Janeiro 300 3 4 1 10 acept furnished 1983 9100 700 118 11900\n", + "10647 São Paulo 249 3 3 1 9 acept furnished 2250 7000 420 89 9759\n", + "10648 Belo Horizonte 80 2 1 1 3 not acept not furnished 240 1200 67 16 1523\n", + "10649 São Paulo 60 2 1 1 11 acept not furnished 550 1343 0 18 1911\n", + "10650 São Paulo 190 3 2 1 6 acept furnished 3040 8000 556 102 11700\n", + "10651 Belo Horizonte 95 3 2 2 7 acept not furnished 525 3100 219 42 3886\n", + "10652 São Paulo 125 2 1 1 - acept not furnished 0 1490 74 23 1587\n", + "10653 São Paulo 107 2 4 2 2 not acept not furnished 1800 11000 417 140 13360\n", + "10654 Rio de Janeiro 40 1 1 0 2 acept furnished 742 2090 86 27 2945\n", + "10655 Rio de Janeiro 170 2 3 1 2 acept furnished 1559 5000 225 65 6849\n", + "10656 Campinas 140 1 2 2 15 acept not furnished 1462 5200 284 66 7012\n", + "10657 Rio de Janeiro 20 1 1 0 3 acept not furnished 395 850 5 11 1261\n", + "10658 São Paulo 39 1 1 1 5 acept furnished 550 1700 95 22 2367\n", + "10659 Campinas 150 3 2 4 - acept furnished 0 3500 186 53 3739\n", + "10660 São Paulo 52 2 1 1 1 acept not furnished 390 950 23 13 1376\n", + "10661 Campinas 250 1 2 2 - acept not furnished 0 2200 602 34 2836\n", + "10662 São Paulo 238 4 3 1 7 acept not furnished 2515 4500 575 58 7648\n", + "10663 São Paulo 90 3 1 0 13 acept not furnished 785 1600 0 21 2406\n", + "10664 Rio de Janeiro 310 3 2 0 5 not acept not furnished 2500 6000 595 78 9173\n", + "10665 Belo Horizonte 55 2 1 1 2 not acept furnished 200 1600 75 22 1897\n", + "10666 Rio de Janeiro 60 2 2 0 13 acept not furnished 600 2700 154 35 3489\n", + "10667 Belo Horizonte 75 2 1 1 3 not acept not furnished 180 1250 0 17 1447\n", + "10668 São Paulo 24 1 1 0 - acept not furnished 0 870 0 14 884\n", + "10669 São Paulo 340 4 5 3 15 not acept furnished 3519 12000 1287 153 16960\n", + "10670 São Paulo 165 3 3 2 2 acept furnished 1150 2710 84 35 3979\n", + "10671 São Paulo 84 2 2 1 16 not acept furnished 768 2900 63 37 3768\n", + "10672 São Paulo 126 2 1 0 13 acept not furnished 570 2580 0 33 3183\n", + "10673 Porto Alegre 220 3 2 2 15 acept not furnished 842 2400 117 36 3395\n", + "10674 Rio de Janeiro 135 4 2 1 - acept not furnished 0 3300 115 51 3466\n", + "10675 Rio de Janeiro 250 3 2 1 11 acept not furnished 2000 2700 500 35 5235\n", + "10676 Porto Alegre 40 1 1 0 1 acept not furnished 330 1200 159 18 1707\n", + "10677 São Paulo 38 1 1 0 19 not acept not furnished 583 1000 46 13 1642\n", + "10678 São Paulo 141 3 5 0 4 acept not furnished 909 10140 772 129 11950\n", + "10679 São Paulo 61 1 2 1 13 acept not furnished 680 4000 140 51 4871\n", + "10680 São Paulo 156 4 4 3 1 acept furnished 2000 2200 750 28 4978\n", + "10681 São Paulo 230 3 5 3 3 not acept not furnished 3800 11000 1100 140 16040\n", + "10682 Porto Alegre 160 3 2 3 4 acept furnished 850 3300 220 49 4419\n", + "10683 São Paulo 280 4 4 2 5 acept not furnished 4200 4000 1042 51 9293\n", + "10684 Rio de Janeiro 98 2 1 0 1 acept not furnished 560 3900 184 51 4695\n", + "10685 São Paulo 83 3 2 2 11 acept not furnished 888 7521 221 96 8726\n", + "10686 São Paulo 150 3 3 2 8 not acept furnished 0 13500 0 172 13670\n", + "10687 Porto Alegre 63 2 1 1 5 not acept furnished 402 1478 24 22 1926\n", + "10688 São Paulo 285 4 4 4 17 acept not furnished 3100 15000 973 191 19260\n", + "10689 Rio de Janeiro 70 3 3 0 8 not acept furnished 980 6000 332 78 7390\n", + "10690 Rio de Janeiro 120 2 2 2 8 acept furnished 1585 12000 279 155 14020\n", + "10691 São Paulo 80 2 1 0 - acept not furnished 0 1400 165 22 1587\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "import numpy as np\n", + "cities = []\n", + "ind = []\n", + "tot = []\n", + "room = []\n", + "par = []\n", + "floor = []\n", + "area = [] #One method of finding the Average or mean\n", + "\n", + "for i, row in df.iterrows():\n", + " if i != 0 and row[\"city\"] in cities:\n", + " j = cities.index(row[\"city\"])\n", + " ind[j] = ind[j] + 1\n", + " tot[j] = tot[j] + row[\"total (R$)\"]\n", + " room[j] = room[j] + row[\"rooms\"]\n", + " par[j] = par[j] + row[\"parking spaces\"]\n", + " if row[\"floor\"] != \"-\":\n", + " floor[j] = floor[j] + int(row[\"floor\"])\n", + " area[j] = area[j] + row[\"area\"]\n", + " else:\n", + " cities.append(row[\"city\"])\n", + " ind.append(1)\n", + " tot.append(row[\"total (R$)\"])\n", + " room.append(row[\"rooms\"])\n", + " par.append(row[\"parking spaces\"])\n", + " floor.append(int(row[\"floor\"]))\n", + " area.append(row[\"area\"])\n", + "print(floor)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Ey_0pNIIX_R0", + "outputId": "6d422e54-824c-4490-9de7-100f41f9daa6" + }, + "execution_count": 6, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[33123, 4675, 7881, 3651, 4857]\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "tot_m = []\n", + "room_m = []\n", + "par_m = []\n", + "floor_m = []\n", + "area_m = []\n", + "\n", + "for z, val in enumerate(cities):\n", + " tot_m.append(tot[z] / ind[z])\n", + " room_m.append(room[z] / ind[z])\n", + " par_m.append(par[z] / ind[z])\n", + " floor_m.append(floor[z] / ind[z])\n", + " area_m.append(area[z] / ind[z])\n", + "\n", + "properties = {\n", + " \"mean total price\" : tot_m,\n", + " \"mean rooms\" : room_m,\n", + " \"mean parking space\" : par_m,\n", + " \"mean floor\" : floor_m,\n", + " \"mean area\" : area_m\n", + "}\n", + "df2 = pd.DataFrame(properties, index = cities)\n", + "print(df2.to_string())" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "L7lf1bTU-Pkr", + "outputId": "4efd831b-950f-4610-93f6-77ecb3cc0b89" + }, + "execution_count": 7, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + " mean total price mean rooms mean parking space mean floor mean area\n", + "São Paulo 6380.831833 2.558859 1.877527 5.626465 158.899439\n", + "Porto Alegre 2989.782900 2.140821 1.044426 3.918692 103.609388\n", + "Rio de Janeiro 4611.684877 2.243837 0.744171 5.250500 105.347768\n", + "Campinas 3173.276671 2.355217 1.558030 4.280188 137.561547\n", + "Belo Horizonte 6315.242448 3.020668 1.955485 3.860890 207.411765\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "df2.plot()\n", + "plt.show()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 265 + }, + "id": "LtlzZyzISY6C", + "outputId": "e9b2932d-1f4d-49fe-af02-9d652ee7f2b3" + }, + "execution_count": 8, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAD4CAYAAADGmmByAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3xUZdbA8d+ZSSchoYTQDSWAtCQQQEVBQMG24K4gsKiwvrssFrCuYltZy4rlXQFd8bViQQFRBMvaUBYBRUrovRNKCiGB9GTmef+YmzBAQiZMkknC+X4+85k7zy3PuXfu3DO3PVeMMSillFLny+brAJRSStVumkiUUkp5RROJUkopr2giUUop5RVNJEoppbzi5+sAzqVx48YmOjra12EopVStsmbNmjRjTGR11VejE0l0dDSrV6/2dRhKKVWriMj+6qxPD20ppZTyiiYSpZRSXtFEopRSyiuaSJRSSnlFE4lSSimvaCJRSinlFU0kSimlvFInE0lmbiFTFm0mM7fQ16EopVSdVycTyd60bD74dT+PLdiIPm9FKaWqVp1MJHGtIrj/6g58ueEIn6xJ8nU4SilVIR//doBV+9J9HYbH6mQiAZjQvx2Xtm3ElEWb2Z2a5etwlFLKIyv3HOPxzzcxa/k+X4fisTqbSOw24eWRcQT62Zj0cSL5RQ5fh6SUUueUfCKPuz5K5KKGITx3Uzdfh+OxOptIAJqGB/HC8Fg2Hz7Bi99s93U4SilVpoIiJ3fOXkt2fhGv39qT+kH+vg7JY3U6kQBc3TmK2y69iLeW7WXJ9hRfh6OUUqX659dbWbP/OM8P706HqDBfh1MhdT6RADx63cV0ahrGg5+sJ+Vknq/DUUqp0yxcd4hZK/Zxe982DI1t7utwKuyCSCRB/nZeGR3PybwiHpi3HqdTLwlWStUMW4+c4OFPN9ArugGPXNfJ1+GclwsikQDERIXxxA2d+XlnGm8v2+vrcJRSiszcQu74cA1hQf78+4898LfXzk2yR1GLSISIzBeRbSKyVUQuFZGGIvK9iOy03htYw4qIzBCRXSKyQUR6uE1nrDX8ThEZW1UzVZYxfVozpEsUL3y7jY1JmdVdvVJKlXA6DQ/MW0fS8VxeG9ODJvWDfB3SefM0/U0HvjHGdAJiga3AZGCxMSYGWGx9BrgWiLFe44GZACLSEHgS6AP0Bp4sTj7VRUR4/qbuNA4NZNKcRLLzi6qzeqWUKjHzv7v5YWsKj11/Mb2iG/o6HK+Um0hEJBzoB7wNYIwpMMZkAMOA96zB3gNutLqHAe8bl1+BCBFpBgwBvjfGpBtjjgPfA9dU6tx4ICIkgJdHxrH/WDZPLtpc3dUrpRRLd6Ty0nfbGRrbnHGXRfs6HK95skfSBkgF3hWRRBF5S0TqAVHGmCPWMEeBKKu7BXDQbfwkq6ys8tOIyHgRWS0iq1NTUys2Nx66pG0j7h7Qnvlrkli47lCV1KGUUqVJOp7DPXMS6dAkjKk3dUNEfB2S1zxJJH5AD2CmMSYeyObUYSwAjKtlxEq5FMoY84YxJsEYkxAZGVkZkyzVpEEx9LyoAY8v2MTB9Jwqq0cppYrlFTq4c/ZaihyGmbf0ICTAz9chVQpPEkkSkGSMWWl9no8rsSRbh6yw3ovv9jsEtHIbv6VVVla5T/jZbUwbGQcCk+YkUuhw+ioUpdQF4h9fbGZDUib/e3MsbSNDfR1OpSk3kRhjjgIHRaSjVTQI2AIsAoqvvBoLLLS6FwG3WVdvXQJkWofAvgUGi0gD6yT7YKvMZ1o1DOG5P3Qj8UAG037Y4ctQlFJ13NxVB/j4t4PceWU7Bndp6utwKpWn+1UTgdkiEgDsAf6EKwnNE5H/AfYDN1vDfg1cB+wCcqxhMcaki8jTwCpruKeMMT5vJ/mG7s35eUcary3ZTd/2jbmsXWNfh6SUqmM2JGXwxMLNXN6+MQ8M7lj+CLWM1OQHPyUkJJjVq1dXeT05BUXc8MoysvOL+M89/WhYL6DK61RKXRjSswv43SvLMMbwxcTLaRQaWOV1isgaY0xClVdkqZ23UVaykAA/ZoyK53h2IQ/N36BPVVRKVQqH03DPnERST+Yz85ae1ZJEfEETiaVri3AevrYTP2xN5sNf9/s6HKVUHTDthx38vDONfwzrQmyrCF+HU2U0kbi5vW80V3aM5OmvtrLt6Alfh6OUqsV+2JLMKz/u4uaElozq1ar8EWoxTSRuRISXRsRSP8ifSR8nklugT1VUSlXcvrRs7pu3jq4t6vPUsK514qbDc9FEcobGoYH86+ZYdiRn8cxXW3wdjlKqlsktcDDhwzXYbcLMMT0J8rf7OqQqp4mkFP06RDK+X1tmrzzAN5uO+jocpVQtYYzh0QUb2Z58kmkj42jVMMTXIVULTSRleHBwR7q1COfhTzdwOCPX1+EopWqBD37dz4LEQ9x3VQeu7NjE1+FUG00kZQjwszFjdDyFDif3zV2HQ5+qqJQ6hzX703nqiy0M7NSEuwe093U41UoTyTm0aVyPp4d1ZeXedF77aZevw1FK1VApJ/O4c/ZamkcE8/LNcdhsdfvk+pk0kZTjDz1aMCyuOdMW72TNfp+36KKUqmEKHU7u/iiRzNxCXr+lJ+Eh/r4OqdppIimHiPDMjV1pHhHEpI/XkZlb6OuQlFI1yAvfbOO3vek894dudG5e39fh+IQmEg+EBfkzY1Q8ySfyeGzBRm1CRSkFwFcbjvDmz3u57dKL+H18S1+H4zOaSDwU37oB913dgS83HOGT1Um+Dkcp5WO7Uk7yt/nriW8dwePXd/Z1OD6liaQCJvRvx2XtGvHkos3sTs3ydThKKR85mVfI+A/WEBJg57UxPQjwu7A3pRf23FeQ3Sa8PDKOIH8bEz9KJL9Im1BR6kJjjOGh+RvYfyyHV0b3oFl4sK9D8jlNJBUUVT+IF4fHsuXICV74Zruvw1FKVbM3f97DfzYd5eFrOnJpu0a+DqdG0ERyHq7qHMXYSy/i7WV7+Wl7SvkjKKXqhBW705j6n21c27Upf7mira/DqTE0kZynR667mE5Nw3hw3npSTub5OhylVBU7kpnLxI8SadO4Hi+OiK3zLfpWhCaS8xTkb+eV0fFkFxTxwLz1OLUJFaXqrPwiB3fOXkteoYP/u7UnoYF+vg6pRtFE4oWYqDCeuKEzP+9M461le3wdjlKqijzz5VYSD2Tw4ohY2jcJ83U4NY4mEi/9sXdrrunSlBe/3c7GpExfh6OUqmSfrknig1/3M75fW67r1szX4dRImki8JCJMvakbjUMDmfjxWrLyi3wdklKqkmw+nMmjCzZySduGPDSko6/DqbE8SiQisk9ENorIOhFZbZU1FJHvRWSn9d7AKhcRmSEiu0Rkg4j0cJvOWGv4nSIytmpmqfpFhAQwbWQcB9JzeHLhZl+Ho5SqBJk5hdzx4VoiQvx5ZXQP/Oz6v7ssFVkyA4wxccaYBOvzZGCxMSYGWGx9BrgWiLFe44GZ4Eo8wJNAH6A38GRx8qkL+rRtxN0DY/h0bRIL1x3ydThKKS84nYb75q3jSGYur43pSWRYoK9DqtG8SbHDgPes7veAG93K3zcuvwIRItIMGAJ8b4xJN8YcB74HrvGi/hpn0sD2JFzUgMcWbOLAsRxfh6OUOk+v/rSLH7el8MQNnel5UZ35v1tlPE0kBvhORNaIyHirLMoYc8TqPgpEWd0tgINu4yZZZWWVn0ZExovIahFZnZqa6mF4NYOf3ca0UXGIwKQ5iRQ6nL4OSSlVQUu2p/DyDzv4fXwLbr3kIl+HUyt4mkguN8b0wHXY6i4R6efe07jaVa+UGymMMW8YYxKMMQmRkZGVMclq1bJBCFP/0J11BzOY9sMOX4ejlKqAg+k53DNnHR2jwvjn77vpTYce8iiRGGMOWe8pwAJc5ziSrUNWWO/FbYUcAlq5jd7SKiurvM65vnszRia04rUlu1mxK83X4SilPJBX6OCO2WtwGsPrt/QkOMDu65BqjXITiYjUE5Gw4m5gMLAJWAQUX3k1FlhodS8CbrOu3roEyLQOgX0LDBaRBtZJ9sFWWZ305NDOtGlcj/vmrSM9u8DX4SilzsEYwxOfb2LToRNMGxlHdON6vg6pVvFkjyQKWCYi64HfgK+MMd8AU4GrRWQncJX1GeBrYA+wC3gTuBPAGJMOPA2ssl5PWWV1UkiAH6+Mjud4diEPzV+vT1VUqgb7+LeDfLImiUkD2zPo4qjyR1CnkZq8gUtISDCrV6/2dRheeWfZXp76cgtPDevCbZdG+zocpdQZ1h3M4ObXf+GSdo14d1wv7Lbaf15ERNa43apR5fQOmyr2p77RDOgYyTNfbWXb0RO+Dkcp5eZYVj53friGyLBApo+MqxNJxBc0kVQxEeHFEbHUD/Jn4keJ5BboUxWVqgkcTsOkOYmkZRfw+i09aVAvwNch1VqaSKpB49BAXh4Zy86ULJ75aouvw1FKAf/73XaW7zrGM8O60q1luK/DqdU0kVSTK2Ii+Wu/tsxeeYBvNh0pfwSlVJX5dvNRXluym9G9W3Fzr1blj6DOSRNJNXpgcEe6twzn4U83cjgj19fhKHVB2pOaxYPz1tO9ZThP/q6Lr8OpEzSRVKMAPxszRsVT5HBy79x1OPSpirXS0cw8HluwkQWJSXpZdy2TU1DEhA/X4GcXXhvTgyB/vemwMmgiqWbRjevx1LCu/LY3nX//tMvX4agKMMYwb/VBrn75v8xeeYD75q5n+Ou/6APNagljDJM/3ciulCxmjI6nZYMQX4dUZ2gi8YE/9GjBjXHNmb54J6v31dl7MuuUwxm5jHt3FQ/N38DFTeuz+IH+vDC8O/uPZTP038t45LMNHMvK93WY6hxmrdjHovWHeWBwR66IqX3t+NVkekOij5zMK+T6GctwOA1f33MF4cH+vg5JlcIYw5xVB3n2q604nIaHr+nIbZdGY7PuNziRV8iMH3Yya8U+ggPs3HdVB2699CL89SFINcqqfemMfuNXBnRqwv/d0rPk+6urqvuGRE0kPpR44DgjXv+FIV2b8uroeG1ptIY5mJ7DI59tZNmuNC5t24jnb+pO60alHw7ZlXKSf3yxhZ93phHTJJQpQ7vQt33jao5YlSblRB7Xv7KMegF2Fk28nPpBdf9Pm97ZfgGJb92A+wd34KsNR/hkdZKvw1EWp9Pw/i/7GDJtKYkHjvPMjV2Z/ec+ZSYRgPZNwnj/9t68cWtP8oocjHlrJRM+WMPBdH3AmS8VOpzc9dFasvKKeP3WnhdEEvEF3SPxMafTcMvbK0k8kMEXEy+nfZNQX4dUqsLCQpKSksjLy/N1KFWqyOHkeE4h+UVOgvxtRIT442er2P8tYwxZ+UWczCvCAGGBfoQF+dX5Pc6goCBatmyJv3/N2Vg/9cUW3lm+l+mj4hgWd9Zz9Oqs6t4j8auuilTpbDbh5ZFxXDNtKZM+TmTBXZcR6FfzLklMSkoiLCyM6OjoOrlBNMZwLKuAoyfyaNQAmkUE0SAkwKt5LShycjQzj4zcAsRuo1l4EOHB/nV3+R07RlJSEm3atPF1OAAsWn+Yd5bvZdxl0RdUEvEFPbRVA0TVD+LF4bFsOXKC5/+z3dfhlCovL49GjRrVyY1gfqGDPanZHM7MpV6gHzFRYTSsF+j1vAb42WjdKIS2kaHYbcKB9Bz2pGWTW1j32lsTERo1alRj9lh3JJ/k4fkbSLioAY9ed7Gvw6nzNJHUEFd1jmLcZdG8s3wvP21LKX8EH6hrScQYQ+rJPHamZJFX5KBVgxCiG4UQ4Fe5P4vQQD9imoTSIiKYvEIHu5JPcigjlyKHs1Lr8bWasn6cyCtkwgdrqBfox7/H9Kj071OdTZdwDTL52k50ahrGg5+sJ+VEzfhnV1flFTrYnZrNkcw8QgP96BAVRoN63h3KOhcRoVFoIB2jwmgYGkh6Vj47kk9yLCtf746vRMYYHpy3nv3pOfz7j/FE1Q/ydUgXBE0kNUiQv51XRseTXVDEA5+sx6lNqFQ6YwwpJ1x7IflFDlo3DOGiRiHl3vcxa9YsDh8+XO70p02bRk5O2Vdq+dlttIgI5q4xw9ixeT2HMnLZlZJFdn5RheZj0aJFTJ06tfwBLzCv/3cP321J5tHrLqZP20a+DueCoYmkhomJCuPvN3Th551pvLVsj6/DqVNyCx3sSsni6Ik86ge59kIiPDyhXlmJpJhNhBYRwbRuGEKR07A7NYsD6TkUFpV/uKuoqIihQ4cyefLkcoe9kCzflcaL327jhu7NuL1vtK/DuaBoIqmBRvduxTVdmvLCN9vZkJTh63BqhH379tGpUyfGjRtHhw4dGDNmDD/88AN9+/YlJiaG3377DYDs7Gxuv/12evfuTXx8PAsXLsRpDKs2bqfv5Vcw7KrLufWGARzavh5/u40lS5Zw5ZVXMnz4cDp16sSYMWPOOtQ0f/58Vq9ezZgxY4iLiyM3N5fFixcTHx9Pt27duP3228nPz2fGjBkcPnyYAQMGMGDAAADuuOMOEhIS6NKlC08++eRp0xURIkIC6BAVRpOwIDJzC4luE83d99xPt27d6N27N7t2udpjGzduHBMmTKBPnz489NBDzJo1i7vvvhuA5ORkfv/73xMbG0tsbCwrVqwA4MMPP6R3797ExcXx17/+FYej7p3kL3YoI5eJHyfSLjKU52/qXmPO11wo9PLfGkhEmHpTN66bnsGkjxP5ctIVhAbWnK/qH19sZsvhyn1scOfm9ctt0nvXrl188sknvPPOO/Tq1YuPPvqIZcuWsWjRIv75z3/y+eef8+yzzzJw4EDeeecdMjIy6NWrNxd164MzKIw5n31J26YR7N2zm9GjR1N8j1JiYiKbN2+mefPm9O3bl+XLl3P55ZeX1Dt8+HBeffVVXnrpJRISEsjLy2PcuHEsXryYDh06cNtttzFz5kzuvfde/vWvf/HTTz/RuLHrrvZnn32Whg0b4nA4GDRoEBs2bKB79+6nzZfdJjQND6JhPdelwRIYwiffL+e/X87n3nvv5csvvwRcl2CvWLECu93OrFmzSsafNGkS/fv3Z8GCBTgcDrKysti6dStz585l+fLl+Pv7c+eddzJ79mxuu+22yvi6apT8Igd3friGgiInr9/ak3o16LdyodA9khoqIiSAaaPiOZCew98XbvJ1ODVCmzZt6NatGzabjS5dujBo0CBEhG7durFv3z4AvvvuO6ZOnUpcXByXX9GfrJxcDh48SLOwAJ6efA/xcbGMGDGCLVtOPamyd+/etGzZEpvNRlxcXMm0yrJ9+3batGlDhw4dABg7dixLly4tddh58+bRo0cP4uPj2bx582n1ninAz46fTfjLn25FEBIG/Y7lK34hz7pceMSIEdjtZ99j9OOPP3LHHXcAYLfbCQ8PZ/HixaxZs4ZevXoRFxfH4sWL2bOnbh4q/ccXW1iflMlLI2JpF1kzb+it6zR112C92zTk7oExzFi8k/4dImvMTVW+ehhQYGBgSbfNZiv5bLPZKCpynaw2xvDhx3MJadKavEIHDUICaBYexDNPP0VUVBTr16/H6XQSFBRU6nTtdnvJtLy1d+9eXnrpJVatWkWDBg0YN26cR/dZhAUFcFFUKMnHXYdndiZnkVvgIDg42OO6jTGMHTuW55577rzjrw3mrT7IRysPMKF/O67p2tTX4VywPN4jERG7iCSKyJfW5zYislJEdonIXBEJsMoDrc+7rP7RbtN4xCrfLiJDKntm6qJJA9uTcFEDHluwiQPHtN2mc3E6DX2vHMjz/zudIoeT6Eb1SNu/HT+7jczMTJo1a4bNZuODDz6o8PmCsLAwTp48CUDHjh3Zt29fyfmLDz74gP79+5813IkTJ6hXrx7h4eEkJyfzn//8x6O65s6di02ExV9/zmWXXUqDev7kFTo4lJFHenbBWedwBg0axMyZMwFwOBxkZmYyaNAg5s+fT0qK656k9PR09u/fX6F5ruk2Hcrk8c83cVm7Rjw4uIOvw7mgVeTQ1j3AVrfPzwMvG2PaA8eB/7HK/wc4bpW/bA2HiHQGRgFdgGuA10Sk5rUFUsP42W1MGxWHCEyck0hhHbuJrbI4DexMyeKWCfdjx8HNQy7n0oQ4nnjiCQDuvPNO3nvvPWJjY9m2bRv16tWr0PSLT3bHxcVhjOHdd99lxIgRJYfaJkyYAMD48eO55pprGDBgALGxscTHx9OpUyf++Mc/0rdvX4/qOn78ON27d2f69OlMnzaNlg1CCAv2w89uI+l4DrtTs8kvOpUIp0+fzk8//US3bt3o2bMnW7ZsoXPnzjzzzDMMHjyY7t27c/XVV3PkyJEKzXNNlpFTwIQP19CoXgAzRsfjp832+5RHjTaKSEvgPeBZ4H7gd0Aq0NQYUyQilwJTjDFDRORbq/sXEfEDjgKRwGQAY8xz1jRLhiur3guh0UZPfbXhCHd9tJY7r2zHQ9d0qvb6t27dysUX17ymJpxOQ/KJPNKy8vGz22jZIJiwWtzCa3R0NKtXry45We/OGENGTiFHTuRR5HDSICSApuFBNerZJ9Wxnjidhj/NWsUvu48x96+XEN+6QZXWVxvV1GbkpwEPAcV/hxsBGcaY4oPJSUDxAfwWwEEAq3+mNXxJeSnjlBCR8SKyWkRWp6amVmBW6rbruzdjVK9WzPzvblbsSvN1ODVCdn4RO1OySM3Kp0G9ADpEhdbqJFIeEaFBvQA6RoURGRZIRm4hO46eJPVkPs4L6O746Yt38t8dqTw5tLMmkRqi3EQiIjcAKcaYNdUQD8aYN4wxCcaYhMhIfRymu7//rjNtG9fj3rnrSM8u8HU4PuNwGg5n5LI7NQtjDG0b16NlgxDsFWzuvSbat29fqXsj7uw2oVl4MB2ahBIS6MeRzFx2JmdxMq+wmqL0nR+3JTN98U6G92zJH3u39nU4yuLJL68vMFRE9gFzgIHAdCDCOnQF0BI4ZHUfAloBWP3DgWPu5aWMozwQEuDHjNHxZOQU8tD89RdkG01ZeUXsTDlJWlY+jUIDiYkKI7QO74WcS6C/nTaN6xHdqB5g2JuWzb6008+f1CUHjuVw75x1dG5Wn2du7Ko3HdYg5SYSY8wjxpiWxphoXCfLfzTGjAF+AoZbg40FFlrdi6zPWP1/NK4t3iJglHVVVxsgBvit0ubkAtGleTiTr+3ED1tTeP+XunUVzrk4nIZDx3PYk5YFQNtIV2u69jr+7G1P1A/2JyYqjKbhQWTlF7EjOYujmXk46lBbbbkFDv764RpEhNdv6UmQv16nU5N4cx/Jw8AcEXkGSATetsrfBj4QkV1AOq7kgzFms4jMA7YARcBdxpi6+depiv2pbzTLdqXx7Ndb6d2mIRc3q+/rkKrUybxCDh3PpcDhpHFoIE3rB2HTBHIamwhNwlwP4zqamUfKyTyO5xTUiYdpGWN4bMFGth09wTvjep3zkcfKNyp0UNkYs8QYc4PVvccY09sY094YM8IYk2+V51mf21v997iN/6wxpp0xpqMxxrOL6tVZRIQXh3cnPNifiR8nkltQN/Oxw+kk6XgOe9OyERHaRYbSPCJYk8g5+NtttGoYQrvIUPyKH6aVmk1uQeXcZOkLH648wGeJh7hnUAwDOjbxdTiqFLX/7OQFqlFoIP+6OZZdKVk8/VXZzW7UVifyCtmRnMXx7AIiwwKJaRKqbShVQL1AP9o3CaVlg2Dyi5zsSsni0PGcWvcwrbUHjvPUF5sZ0DGSSQNjfB2OKoMmklrsiphI/tq/LR+tPMA3m+rGzWZFDicH03PYl5aN3doLaRZes/ZCKqsJlaomIjSsF0iHqFAahQaSnl3I9mTXhQq14UKNtKx87vxwLU3Dg3h5ZFyNWgfU6TSR1HIPXN2R7i3DefjTjRzOyPV1OF45kVvIzpQsMnIKaRIWSPso1+Wt4F0z8sXjX3HFFfTo0YMePXqUNLXuSTPyAFdeeSX33nsvCQkJTJ8+vdRm5IEyy6Ojo3nkkUeIi4sjISGBtWvXMmTIENq1a8frr78OwJEjR+jXrx9xcXF07dqVn3/+uVKWq5/dRvOIYGKiQgn2t3M4I5edKVlk5dXchFjkcDLxo0SO5xQwc0xPIkICfB2SOgc9VlDLBfjZmDEqnutn/My9c9bx8fhLqv5Kpv9MhqMbK21yBsPJBhezL+EJgvztXNQohJCAs1fN82lGvnfv3lx11VU0adKE77//nqCgIHbu3FmhZuSLFRQUsHr1avLy8oiJiTmrGfkJEyaU2bw8QOvWrVm3bh333Xcf48aNY/ny5eTl5dG1a1cmTJjARx99xJAhQ3jsscdwOBwePSCrIoKsy4VP5BVyJCOPPWlZhAf70yw8uMY91/zF77bzy55jvDQilq4twn0djipHzVp71HmJblyPp2/sym/70nn1x12+DqdCipxOcgocFBQ6iaofRPsmoaUmEah4M/JXXnkleXl5HDhwgMLCQv7yl7/QrVu3825GfuTIkUDZzciX17z80KFDAejWrRt9+vQhLCyMyMhIAgMDrWen9OLdd99lypQpbNy4kbCwMK+WbWlEhPBg18O0ouoHcTKviB3JJ0k+kVdjHu38n41H+L//7uGWS1ozvGdLX4ejPKB7JHXEH3q0ZOmOVKYv3kHf9o1IiG5YdZVd6/2zwoscTg5l5JKZW0iwv52WDYIJLiOBFPO0GflPP/2Ujh07njbulClTvG5GvqINPZYVv3vs7vH369ePpUuX8tVXXzFu3Djuv//+KnsQlc0mRNUPokGIP0cy80g+kcfx7AKaRQRTP8jPZ5cL70rJ4m/zNxDXKoInbujskxhUxekeSR3y9I1dadkghHvmrCMzt2Y2l+FqeLCAHclZnMgromn9INo1CS03iXhqyJAhvPLKKyXnORITEwG8bkbeXVnNyJ+reXlP7N+/n6ioKP7yl7/w5z//mbVr1553jJ4K8LNzUaN6tG1cD5tN2H8sm71p2SUP06pO2flFTPhwDYF+Nmbe0oNAP73psLbQRFKHhAX5M2N0PMkn8nj0s4017sqcQoeTA+k5HEjPwd9PiGkSSpP6Qdgq8d/vE088QWFhId27d6dLly6V1oy8u6CgoFKbkS+r3FNLliwpaXp+7ty53HPPPeN3WikAACAASURBVOcdY0WFBvkT08R1n05uoYOdyVkczsilyFk9lwsbY3ho/gb2pGbxyuh4moV7/hAv5XseNSPvK9qM/PmZuWQ3z3+zjedv6sbIXpXTsJ03zYMbY8jILeRwRi5OA1H1A4kMDazVd1vXZUUOJ0dPuB6i5Wez0TQ8kAYhAR59X+e7nrz18x6e+Work6/txIT+7c4nbOWmpjYjr2qRv/ZrS9/2jZiyaAu7UrJ8Gkuhw8n+YzkcTM8h0M/u2gsJC9IkUoO5nusSQkyTUAL9bCQdz2VXShbZ+VVzufCve47x3H+2MaRLFH/t17ZK6lBVSxNJHWSzCf+6OY7gADuTPk70SWuwxhjSswvYkXySrPwimoUH0y6ynja2V4sEB/jRNrIerRuGUOQ07E7N4mB6TqU+pfNoZh53f7SWixqG8NKIWP2DUUtpIqmjouoH8eLw7mw5coLn/7O9WusuKHKy71gOScdzCLL2QiLD9FBWbSQiRIS4LhduYj1Ma/vRk6SczPP6YVoFRU7u+mgtOQUOXr+1Z51+KFldp4mkDht0cRTjLovmneV7+WlbSpXXZ4zhWHY+O5NPkp1fRPOIYNpG1iNQ90JqPbtNaBoeTIeoUEID/TiamcfO5CxOeHF14D+/3sqa/cd5YXh3OkRV/j0zqvpoIqnjJl/biU5Nw3jwk/WknMirsnoKihzsTcvm0PFcggPsxESF0lhPqNc5gX52ohvXo01j11Vv+45ZD9Oq4OXCnyceYtaKffz58jbc0L15VYSqqpEmkjouyN/Oq3+MJ7ugiPvnra/0u5eNMRzLymdHchY5BQ5aRATTpnE9vQegjgsL8icmytWgZnZ+ETtSsjiSmevR4a6tR04w+bMN9G7TkIev7VQN0aqqponkAtC+SRhP/q4Ly3al8ebPe8ofwUP5RQ72pGVzKCOXkAB7SSuzuhdytiVLlnDDDTecVb5o0SKmTvW+pQBfsIkQGRZIh6ZhRAT7k3oyn+QT+SxITCrzHqbM3ELu+HAN9YP8efWP8fjbdRNUF+i3eIEY1asV13Ztyovfbmf9wQyvpmWMIe1kPjuTs8grcNCygWsvJED3Qkp1rmbnhw4dyuTJk6sxmspX/DCt9pGh2G1w39z13DRzBRuTMk8bzuk0PDBvHUnHc3ltTA+ahAWVMUVV22giuUCICFP/0J0mYYFMmpNI1nneE5Bf6GBPajaHM3OpF+hHTFQYDetV/V5ITWhG/p577ilp4r24vt9++41LL72U+Ph4LrvsMrZvd10hN2vWLIYOHcrAgQMZNGjQadNatWoV8fHx7N69m1mzZnH33XcDMG7cOCZNmsRll11G27ZtmT9/PgBOp5M777yTTp06cfXVV3PdddeV9HM3Y8YMOnfuTPfu3Rk1ahTgamPs1ltv5dJLLyUmJoY333wTgKysLAYNGkSPHj3o1q1byXICeP/99+nevTuxsbHceuutAKSmpnLTTTfRq1cvevXqxfLly8+qPyTQj8jQIF4Y3p0D6TkM/fcyJn+6gbQsV1P6ry3ZxQ9bU3j8+ourti04Ve200cYLSHiIP9NGxTPqjV/4+8JN/OvmOI/HNQZST+aRfCKf93dM50jOHvzslZc8OjXsxMO9Hz7nML5uRj4nJ4d169axdOlSbr/9djZt2kSnTp34+eef8fPz44cffuDRRx/l008/BWDt2rVs2LCBhg0bsmTJEgBWrFjBxIkTWbhwIa1btz7rmSNHjhxh2bJlbNu2jaFDhzJ8+HA+++wz9u3bx5YtW0hJSeHiiy/m9ttvPyu+qVOnsnfv3pLWhItt2LCBX3/9lezsbOLj47n++utp0qQJCxYsoH79+qSlpXHJJZcwdOhQtmzZwjPPPMOKFSto3Lgx6enpANxzzz3cd999XH755Rw4cIAhQ4awdevWs2IQgZsTWnFN16bM+GEns1bs46uNRxjesyWzVuxjWFxzxl4Wfc7vWdU+mkguML3bNGTiwBimL95Jv5hIboxvUe44u1JOkpqVT1FmHvWD/IkICSA1v/rPgxQ3Iw+csxn5RYsW8dJLLwGUNCPfvHlz7r77btatW4fdbmfHjh0l0y1uRh4oaUa+tEQyevRoAPr168eJEyfIyMjg5MmTjB07lp07dyIiFBaeuhz26quvpmHDU/+8t27dyvjx4/nuu+9o3rz0K5VuvPFGbDYbnTt3Jjk5GYBly5YxYsQIbDYbTZs2ZcCAAaWO2717d8aMGcONN97IjTfeWFI+bNgwgoODCQ4OZsCAAfz2229cf/31PProoyxduhSbzcahQ4dITk7mxx9/ZMSIETRu3BigJP4ffvjhtKb3T5w4QVZWFqGhoaXGUj/In8dv6Myo3q35xxebeXf5PjpGhfHcH7rpObQ6SBPJBWjiwPas2J3G459vokfrBrRuFFLqcEUOJ2/8vIdpP+zk9eujaN0whPBgfx5t7Jtj+r5uRv7MDaCI8MQTTzBgwAAWLFjAvn37uPLKK0v6n9kwZLNmzcjLyyMxMbHMROIeS0Xbwfvqq69YunQpX3zxBc8++ywbN24sM+7Zs2eTmprKmjVr8Pf3Jzo6mry8si8Pdzqd/Prrr6ctN0+0bxLK+7f35re96bSNLPtZM6p203MkFyA/u41po+KxCUyck1hqkxfbjp7g96+t4IVvtjOoUxOa1A8iwsOG+3ypKpuRnzt3LuDaQwgPDyc8PJzMzExatHDt1c2aNeuc40dERPDVV1/xyCOPlBzq8kTfvn359NNPcTqdJCcnlzqu0+nk4MGDDBgwgOeff57MzEyyslztrC1cuJC8vDyOHTvGkiVL6NWrF5mZmTRp0gR/f39++ukn9u/fD8DAgQP55JNPOHbsGEDJoa3BgwfzyiuvlNS3bt06j+MXEfq0bURkWGD5A6taqdxEIiJBIvKbiKwXkc0i8g+rvI2IrBSRXSIyV0QCrPJA6/Muq3+027Qescq3i8iQqpopVb4WEcFMvak76w9m8K/vTx3mKXQ4mbF4J797ZRmHM3L59x97MPOWnlX/+N5KUpXNyAcFBREfH8+ECRN4++23AXjooYd45JFHiI+PP+fVWcWioqL48ssvueuuu1i5cqVH9d500020bNmSzp07c8stt9CjRw/Cw09//KzD4eCWW26hW7duxMfHM2nSJCIiIgDXIa8BAwZwySWX8MQTT9C8eXPGjBnD6tWr6datG++//z6dOrnu5+jSpQuPPfYY/fv3JzY2lvvvvx9wnchfvXo13bt3p3PnziXPmVcKcO0+n+sFCBBqdfsDK4FLgHnAKKv8deAOq/tO4HWrexQw1+ruDKwHAoE2wG7Afq66e/bsaVTVmvzpehM9+UuzbGeq2XQow1w7bam56OEvzd0frTVpJ/NKhtuyZYsPo/S9/v37m1WrVvms/pMnTxpjjElLSzNt27Y1R44c8Wi8J5980rz44otVGdppLvT1pKYAVptytu2V+Sr3gKUVVHFb5P7WywADgT9a5e8BU4CZwDCrG2A+8Kq4jocMA+YYY/KBvSKyC+gN/OJ52lOV7YkbOvPb3nTu+HANOQUOIkIC+L9bezKkS1Nfh6bc3HDDDWRkZFBQUMATTzxB06b6/aiaw6MzXyJiB9YA7YF/49qbyDDGFO/LJwHFl/+0AA4CGGOKRCQTaGSV/+o2Wfdx3OsaD4wHaN26ch7KpMoWEuDHK6N7MPKNXxga25y//64zESEBvg6rxqnIOY2aVP+UKVMqNQ6lSuNRIjHGOIA4EYkAFgBV1kCOMeYN4A1wPSGxqupRp3RuXp/1fx+MrZacB1FK1SwVumrLGJMB/ARcCkSISHEiagkcsroPAa0ArP7hwDH38lLGUT6mSUQpdb48uWor0toTQUSCgauBrbgSynBrsLFAcRsLi6zPWP1/tM6zLAJGWVd1tQFigN8qa0aUUkr5hieHtpoB71nnSWzAPGPMlyKyBZgjIs8AicDb1vBvAx9YJ9PTcV25hTFms4jMA7YARcBd1iEzpZRStZgnV21tAOJLKd+D66qrM8vzgBFlTOtZ4NmKh6mUb23bto1Ro0YhIsyfP5/Y2NiSG/6UutDpne1KeeDzzz9n+PDhJCYm0q5du0qZpic3MCpVG2giUbWCL5uR//rrr5k2bRozZ848q8FEYwx/+9vf6Nq1K926dStpRqWs8iVLlnDFFVcwdOhQOnfuXKXLTKnqoi2oqQo7+s9/kr91W6VOM/DiTjR99NFzDuOrZuSvu+46JkyYQGhoKA8++OBpMX322WesW7eO9evXk5aWRq9evejXrx8rVqwotRxczctv2rSJNm3aVOoyVMpXNJGoWsPXzciXZtmyZYwePRq73U5UVBT9+/dn1apVZZbXr1+f3r17axJRdYomElVh5e05VBVfNyNfWc6nwUilajI9R6LqlKpsRr40V1xxBXPnzsXhcJCamsrSpUvp3bt3meVK1UWaSFSdUpXNyJfm97//fcnzzQcOHMgLL7xA06ZNyyxXqi6SM69QqUkSEhJM8QlR5Vtbt27l4osv9nUYqobT9aRmEJE1xpiE6qpP90iUUkp5RROJUkopr2giUUop5RVNJEoppbyiiUQppZRXNJEopZTyiiYSpZRSXtFEolQl0Wbh1YVKE4mqFXzZjDzAm2++Sa9evYiNjeWmm24iJycHgHHjxjFhwgT69OnDQw89xO7du7nmmmvo2bMnV1xxBdu2uVpJ/uKLL+jTpw/x8fFcddVVJCcnV8diU6pa6J3tyiPudyz/PG8HaQcr9+mAjVuFcsXNHcrsv2/fPtq3b09iYiJdunQp2ai//fbbLFq0iHfffZfPP/+cRx99lM6dO3PLLbeUNCOfmJiIiGCz2c5qRn7JkiUMGzbstGbkX3zxxbNa/z127BiNGjUC4PHHHycqKoqJEycybtw40tLSWLhwIXa7nUGDBvH6668TExPDypUreeSRR/jxxx85fvw4ERERiAhvvfUWW7du5X//938rdRnWBHpne81Q3Xe2a+u/qtbwZTPymzZt4vHHHycjI4OsrCyGDBlS0m/EiBHY7XaysrJYsWIFI0acetJ0fn4+AElJSYwcOZIjR45QUFCgzcirOkUTiaqwc+05VCVfNiM/btw4Pv/8c2JjY5k1axZLliwp6VfcAKTT6SQiIoJ169adNf7EiRO5//77GTp0KEuWLGHKlCkVXwBK1VB6jkTVKVXVjPzJkydp1qwZhYWFzJ49u9Rh6tevT5s2bfjkk08AV1Jbv359Sf0tWrQA4L333juveVOqptJEouqUqmpG/umnn6ZPnz707duXTp06lTnc7Nmzefvtt4mNjaVLly4lJ/unTJnCiBEj6NmzJ40bNz7/GVSqBir3ZLuItALeB6IAA7xhjJkuIg2BuUA0sA+42RhzXEQEmA5cB+QA44wxa61pjQUetyb9jDHmnH/N9GR7zaEnUZUndD2pGWpiM/JFwAPGmM7AJcBdItIZmAwsNsbEAIutzwDXAjHWazwwE8BKPE8CfYDewJMi0qAS50UppZQPlJtIjDFHivcojDEnga1AC2AYULxH8R5wo9U9DHjfuPwKRIhIM2AI8L0xJt0Ycxz4HrimUudGKaVUtavQORIRiQbigZVAlDHmiNXrKK5DX+BKMgfdRkuyysoqP7OO8SKyWkRWp6amViQ8VcVq8j1Hyvd0/bhweZxIRCQU+BS41xhzwr2fca1BlbIWGWPeMMYkGGMSIiMjK2OSqhIEBQVx7Ngx3VioUhljOHbs2GmXVasLh0f3kYiIP64kMtsY85lVnCwizYwxR6xDVylW+SGgldvoLa2yQ8CVZ5QvOf/QVXVq2bIlSUlJ6F6iKktQUFDJjZ3qwlJuIrGuwnob2GqM+Zdbr0XAWGCq9b7QrfxuEZmD68R6ppVsvgX+6XaCfTDwSOXMhqpq/v7+eje2UqpUnuyR9AVuBTaKSPEtu4/iSiDzROR/gP3AzVa/r3Fd+rsL1+W/fwIwxqSLyNPAKmu4p4wx6ZUyF0oppXxGG21USqk6pibeR6KUUkqVSROJUkopr2giUUop5RVNJEoppbyiiUQppZRXNJEopZTyiiYSpZRSXtFEopRSyiuaSJRSSnlFE4lSSimvaCJRSinlFU0kSimlvKKJRCmllFc0kSillPKKJhKllFJe0USilFLKK5pIlFJKeUUTiVJKKa9oIlFKKeUVTSRKKaW8oolEKaWUVzSRKKWU8kq5iURE3hGRFBHZ5FbWUES+F5Gd1nsDq1xEZIaI7BKRDSLSw22csdbwO0VkbNXMjlJKqermyR7JLOCaM8omA4uNMTHAYuszwLVAjPUaD8wEV+IBngT6AL2BJ4uTj1JKqdqt3ERijFkKpJ9RPAx4z+p+D7jRrfx94/IrECEizYAhwPfGmHRjzHHge85OTkoppWqh8z1HEmWMOWJ1HwWirO4WwEG34ZKssrLKzyIi40VktYisTk1NPc/wlFJKVRevT7YbYwxgKiGW4um9YYxJMMYkREZGVtZklVJKVZHzTSTJ1iErrPcUq/wQ0MptuJZWWVnlSimlarnzTSSLgOIrr8YCC93Kb7Ou3roEyLQOgX0LDBaRBtZJ9sFWmVJKqVrOr7wBRORj4EqgsYgk4br6aiowT0T+B9gP3GwN/jVwHbALyAH+BGCMSReRp4FV1nBPGWPOPIGvlFKqFhLXKY6aKSEhwaxevdrXYSilVK0iImuMMQnVVZ/e2a6UUsormkiUUkp5RROJUkopr2giUUop5RVNJEoppbyiiUQppZRXNJEopZTyiiYSpZRSXtFEopRSyiuaSJRSSnlFE4lSSimvaCJRSinlFU0kSimlvKKJRCmllFc0kSillPKKJhKllFJe0USilFLKK+U+alcppVTlMsbgKHLiKDI4Cp2u7uJ3qzuwnj8Nm9Xzdage0USilLogGKcp2VAXWRttZ5E57fPZG3RT6kb+VBJwuN5LG7fIuNVzeh3OovIfcd4+oQlD/ty1GpaM9+pkIjl+NJv/frwDu59gs9tOvdsFm9+pd5tdsJ/x7j58af1PTbN4+OJ+xeOdqkNsgoj4enEoVa2M0+A0BuMwOJ0GY8A4DA6HBxtpa4PrLNkQn2NDXVhWufv7qWGcjvI33p4QAbu/axtQ8u7n/lnwC7ATWM+Gn5/NtT3wd3W7hnFtI/xKHdc1vt3fRr3wwEqJtzrUyURinOAsclKY58TpNDiKjGvFdLhWJmeRa6Uufqdy1q+zCa5EY7dh87Pez0hmdvfk5fa5ZPjSkmBJtzVccZJzL7eL2zTOTIKlJEq7DUrLeaUsG1N6YalKLS5rWFOBL8LTEMqYZkWqKmsZGKe10XSaUt5P71de/9OHO9d0XeN6Ot3S+nvSr7RhThvXGJyO0uutCjabYCvZGEupG/KAYL9TG+IzN/LuG2lrI25z24iXbNT9Bbuf3XovLVm4fjvqdHUykTRsXo8//K2nx8M7ncWJxuB0nNrddTrc3t0SjysZuf7tOB1nDGe9Ox2n+rvei6dx6rP7ME6HoSC3qJxpuGKoqh+rqn1sNmvP1y7YBMTm+qMh4ip39cetu/T+NpsgfqeGOW34M8Y/vRu34c7sf/p49jOTQBkbavfPxRt8m0337Guyak8kInINMB2wA28ZY6ZWdwxnstkEW4C91mRV43RLTOUkr5I9sTOT4Gnv1p5ZGTw9Olehw3hlDCql9Shr2OqMq7SwpJQNrrWRPnPjWrLBdt+Ie7jBt1mJQoSSbps1nlI1QbVuO0XEDvwbuBpIAlaJyCJjzJbqjKO2E5tgt7n+uSmllK9V95/w3sAuY8weABGZAwwDKjWRbPtqJkUPzii9Zxl/4so8WFSDhq/qOs/pHEfTypuceHEkrtxQvYirvHNjlfV/36PZ97Cy6p6Wx1+dB3VW2wHZatpRq+r5SekcyrUfr6riWipHdSeSFsBBt89JQB/3AURkPDAeoHXr1udVSXDzi1jZN6yUPhU5I1y24g2jp6OJ25ld93HKXN+9PBF8zmmfaxmU8wP06ocj5z++KXfDcI659XKjUub4Hiwv8CyJehxiKdM639nzJrmfVX9lzmMlqJa6TBmHYStRSEx0lU6/MtW40wLGmDeANwASEhLOa3W/KP46LnrrukqNSymlVOmq+yD7IaCV2+eWVplSSqlaqroTySogRkTaiEgAMApYVM0xKKWUqkTVemjLGFMkIncD3+K6/PcdY8zm6oxBKaVU5ar2cyTGmK+Br6u7XqWUUlVDb0RQSinlFU0kSimlvKKJRCmllFc0kSillPKKVKjp7momIqnAfi8m0RhIq6RwKpPGVTEaV8VoXBVTF+O6yBgTWZnBnEuNTiTeEpHVxpgEX8dxJo2rYjSuitG4Kkbj8p4e2lJKKeUVTSRKKaW8UtcTyRu+DqAMGlfFaFwVo3FVjMblpTp9jkQppVTVq+t7JEoppaqYJhKllFJe8WkiEZHHRGSziGwQkXUi0scq7yIiP4vIFyIyqYLTnCIih6zpbRKRoecZ2xQRefB8xvWWiDjc4v9EREIqMG6ciJzXU71EZJq17GxuZeNE5NXzmV5VOWP5fCEiEVZ5cxGZ78V0Z4nI8AoMXyXriIisqOxpVqDupiIyR0R2i8gaEflaRDpUUV1efV+VzW29Wi8ia0XkMg/GyapgHVlnfK7w70tEhorI5IqMU870IkTkTm+m4bNEIiKXAjcAPYwx3YGrsB7Da4zZbIy5whjzO2NMGQ9fP6eXjTFxwAjgHfcNYy2Ra4yJM8Z0BQqACZ6MJCJ+QBxQ4URiLaPf4/oO+ld0fA+mL5X4Pbgvn3TgLgBjzGFjjMeJoKYyxpy1AbO+2yolIgIsAJYYY9oZY3oCjwBRVVFfDfy+iterWFzz/ZyvAzqTiPgZYxYZY6ZW4mQjgNqZSIBmQJoxJh/AGJNmjDkMICJ/F5FV1j/ON6wVvPjf9q/WHswCEWlwrgqMMVuBIqCxiHxu/cPabD0XHmuaWW7dw0Vk1pnTqWi9lexnoL2INLTmYYMVS3crtiki8oGILAc+AJ4CRlr/rEaWNV4prgQ2AzOB0aUNICKRIvKp9d2sEpG+buXfW8v2LRHZLyKNRSRaRLaLyPvAJqCViPzNGneDiPyjEpbPL0ALK45oEdlkdQeJyLsislFEEkVkQCnzIyLyqhXjD0ATt349ReS/1jrzrYg0O1cQIvIXa77WW8soxCqfJSIzRGSFiOxx3+Mpa1kUr5MicqW49swXAVs8mScvDQAKjTGvFxcYY9YDiSKy2PqXvlFEhlnxRYvINmsed4jIbBG5SkSWi8hOEeltDVe8jv5ilf/Fbfzi72uciHwmIt9Yw7zgtjxmishqa/1yX05TRWSLtfxequRlUR847lbXOddba116UVzbrI0iMrKiFVrL40erjsUi0toqnyUir4vISuAFcduLsX7nxa9cEelf1m/e+h7eEZEl1rpYfLRnKtDOmsaLnszvWYwxPnkBocA6YAfwGtDfrV9Dt+4PgN9Z3RuKh8O1wZxWynSnAA9a3X2Aw4AUTxMIxrVRa2R9znIbdzgwq5TplFtvJS+bLOvdD1gI3AG8AjxplQ8E1rnFuQYItj6PA151m1ap45VS55vArbh+QIcA/zOnB3wEXG51twa2Wt2vAo9Y3dcABlfzDtGAE7jE6jcY1yWNgutPzJdAPy+Wjx34BLjG+hwNbLK6H8D14DSATsABIOiM6fwB+N6aTnMgw1oH/IEVQKQ13MjiaZ1jXWvkVv4MMNHqnmXFaAM6A7vKWxZu83clkA208XSevFzvJuHamz+z3A+ob3U3BnZZcUfj+qPWzZqHNcA7Vr9hwOduy2k9rt9eY1x7vc3P+L7GAXuAcCAIV9NIrdy3B9b3tAToDjQCtnPqytOISph/B65t0jYgE+hZge/qJrd1Kcr6bpqdo47i1wFO/b6+AMZa3be7Lb9ZVp320n7jVtnvcP3p9Ofc24oVQKD1PRyzhi/5Hs73d+qzPRJjTBbQExgPpAJzRWSc1XuAiKwUkY24FkQXEQnHtbL81xrmPaBfGZO/T0TWAS8BI41r6UwSkfXAr7ieGx/jSZwVrLeyBFvxr8a1or0NXI4rqWKM+RFoJCL1reEXGWNyy5jWucYDQFyPPb4O14p7AlgJDCllWlcBr1qxLQLqi0ioVcccq45vcPsnB+w3xvxqdQ+2XonAWlwbQ4++hzMUL5+juH6035cyzOXAh1ZM23BtmM481t8P+NgY4zCuveEfrfKOQFfge6uex4GW5cTU1dp72AiMAbq49fvcGOM0xmzh1GEiT5fFb8aYvRWYp6ogwD9FZAPwA649wOL52GuM2WiMceLao11s/d424tpAFVtojMk1xqQBPwG9S6lnsTEm0xiTB2wBLrLKbxaRtbiWVRdcCTkTyAPeFpE/ADmVMJ/Fh7Y64fpD9L6ICJ59V5dzal1KBv4L9DpHHXHGdfj97279LsX1Zw1cv9nL3fp9YoxxlBa0iMQALwI3G2MKOfdv/itjTL71PaRQ+mHLCv9Oq/0Jie6sBbMEWGL9AMeKyBxceygJxpiDIjIF1z+UinjZGFOyqysiV+LaCF5qjMkRkSVu03S/kaai9VSVXGslK+Fan8uU7WV9Q3AdJ91o1RMC5OL6J+LOhmvvIu88YxPgOWPM/3kZb64xJs46fPQtrnMk53MurSwCbDbGXFqBcWYBNxpj1lt/iK5065d/xrSL3z1ZFt5+txWxGdce2ZnGAJG4/qEXisg+Tv1W3OfN6fbZyenblzNvWCvtBjb3aTkAPxFpAzwI9DLGHBfXoecg43psd29gkBXz3bj+dFYKY8wvItIY13xX1nrrjVLXA+uP3DzgL8aYIx5M56xlXNpkqeD8+vJke0crkxaLw/UPq3gFTbMW0nAAY0wmcFxErrD634or63siHDhuJZFOwCVu/ZJF5GI5dbL5NF7WW5l+xvWDLk6Madbew5lOAmEVHG808GdjTLQxur9rHQAAAtxJREFUJhpoA1wtZ18t9h0wsfiDiBQnu+XAzVbZYKCsc0jfArdb3ysi0kJEmpQxbLmMMTm4Dsc8IGefjHaf7w64DsVtP2OYpbjOJ9nFdQ6k+JzDdiBSXBeEICL+ItKFcwsDjoiIf3G95TifZeHJPHnjRyBQTj+H2B3XnkGKlUQGcGpPoSKGiescTyNcSXaVh+PVx7URzRSRKOBaK65QINy4Ht19HxB7HjGVydpO2HEd/vHku/qZU+tSJK693d8qWO0KYJTVPcaaZnneAd41xrgP6+m2otiZ24wKr5u+3CMJBV4R16WbRbiOu443xmSIyJu4zmMc5fQVbizwurWB2wP8ycO6vgEmiMhWXD+8X936Tcb1zzsV16Gk0FLGP996K9MUXFegbcC1Gz+2jOF+AiZbh2SeK288a56uwe3KMGNMtogsw3Xc1d0k4N/WtPxwbYgnAP8APhaRW3Gd/D6Ka+U8bVkaY74TkYuBX6y9mCzgFly72OfFGJNoxTOa0394rwEzrT3dImCcsS7scLMA17/YLbgOIf5iTfP/27ljlYahMIrj/wMFXdyc1cl38DF8AkF0dBGqk5MvULo4OLi7lE6+hCAVJydBEEHcnAryOXxXLAVLmiDVeH5LIEPuTXrJ/XJuk7FyUbxfos0O0CMr9kkdviq8EzISfCnbFWaoeS2qnFNtERGStoGepGMyOnogx1C/tHtNriHM65Ycm6vAaUQ8Sdqo0KeRpJvS5iNZtEBe36GkZbKCPqzRp2mfkSnlmDslNanyWw3IaGpEPm0dRcTznO0fABeSuuQ4mnmfkbROFtqbknbL7j2q3ysAiIhX5R8k7oCriOjOOzb9iRRrTNIS8F7ihi3gbDqaayNJA+C8VMX2jRJPv03GzdYuC10jsdZYAy5LPDgG9hfcnx9XqvN7Mu4z+9f8RGJmZo38tTe+zczsl/FEYmZmjXgiMTOzRjyRmJlZI55IzMyskQ+5wmWB28X/NwAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ] + }, + { + "cell_type": "code", + "source": [ + "df2.plot(x = \"mean area\", y = \"mean total price\")\n", + "plt.show()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 280 + }, + "id": "AZt5qDiletvo", + "outputId": "b8adeafe-a113-4728-9528-d411d3983d1e" + }, + "execution_count": 9, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEHCAYAAABCwJb2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3hUVfrA8e+bBAg1tFADho7UEEKAYEMUsaJSpEiVblnXta4/V9e1retaEA3NSG8CCro2RFxdegKhhRZ6KEloIYWEZOb8/pgLRiQmgUmmvZ/nmYc7Z+7MvIdJ3tw599zzijEGpZRSvsHP1QEopZQqPZr0lVLKh2jSV0opH6JJXymlfIgmfaWU8iGa9JVSyocEFGUnEakKTAfaAAYYCdwBjAZSrd3+aoz52tr/BeARwAY8YYz5zmrvBXwA+APTjTFv/dH71qxZ04SGhhazS0op5dvi4uJOGmOCr/RYkZI+jkT9rTGmr4iUBSrgSPrvGWPeyb+jiLQCBgCtgXrADyLS3Hr4I+B2IAnYKCLLjTEJBb1paGgosbGxRQxRKaUUgIgcKuixQpO+iAQBNwHDAYwxF4ALIlLQU3oDC4wxOcABEUkEIq3HEo0x+63XXWDtW2DSV0op5VxFGdNvhGMI51MR2Swi00WkovXYYyKyVURiRKSa1VYfOJLv+UlWW0HtvyEiY0QkVkRiU1NTL39YKaXUNShK0g8AwoFoY0wHIBN4HogGmgBhwHHg384IyBgz1RgTYYyJCA6+4pCUUkqpq1SUMf0kIMkYs966vxh43hiTfHEHEZkGfGXdPQo0yPf8EKuNP2gvstzcXJKSksjOzi7uU5UbCwwMJCQkhDJlyrg6FKW8WqFJ3xhzQkSOiEgLY8xuoAeQICJ1jTHHrd0eALZb28uBeSLyLo4Tuc2ADYAAzUSkEY5kPwAYVNyAk5KSqFy5MqGhofzBeQXlQYwxnDp1iqSkJBo1auTqcJTyakWdvfM4MNeaubMfGAFMFJEwHFM4DwJjAYwxO0RkEY4TtHnAo8YYG4CIPAZ8h2PKZowxZkdxA87OztaE72VEhBo1aqDncJQqeUVK+saYeCDisuYhf7D/68DrV2j/Gvi6OAFeiSZ876OfqVKlQ6/IVaoETVy5lx3H0lwdhlKXaNL3MDNmzODYsWOF7vf++++TlZVV6H633HLLNV0At3z5ct566w8vrPZZ89Yf5t0Ve/hyy/HCd1aqlGjS9zDOTvrXIi8vj/vuu4/nn3++RN/HE63ff4q/LdvOzc2DeeaOFq4OR6lLNOkX08GDB2nZsiXDhw+nefPmDB48mB9++IFu3brRrFkzNmzYAEBmZiYjR44kMjKSDh06sGzZskvPv/HGGwkPDyc8PJw1a9YA8NNPP3HLLbfQt29fWrZsyeDBg7m8lOXixYuJjY1l8ODBhIWFcf78eVauXEmHDh1o27YtI0eOJCcnh4kTJ3Ls2DG6d+9O9+7dARg/fjwRERG0bt2al19+udB+hoaG8uyzz9K2bVsiIyNJTEwEYPjw4YwbN47OnTvz7LPPMmPGDB577DEAkpOTeeCBB2jfvj3t27e/1Lc5c+YQGRlJWFgYY8eOxWazOeGTcF9JZ7IYP3cTDatXYOLADvj76fkK5T6KOnvHLf39yx0kHDvn1NdsVa8KL9/b+g/3SUxM5LPPPiMmJoZOnToxb948/ve//7F8+XLeeOMNvvjiC15//XVuvfVWYmJiOHv2LJGRkdx2223UqlWLFStWEBgYyN69exk4cOCl4ZXNmzezY8cO6tWrR7du3Vi9ejU33HDDpfft27cvkyZN4p133iEiIoLs7GyGDx/OypUrad68OUOHDiU6Oponn3ySd999l1WrVlGzZk0AXn/9dapXr47NZqNHjx5s3bqVdu3a/WE/g4KC2LZtG7NmzeLJJ5/kq68cl2IkJSWxZs0a/P39mTFjxqX9n3jiCW6++WY+//xzbDYbGRkZ7Ny5k4ULF7J69WrKlCnDhAkTmDt3LkOHDr2aj8ftZebkMWpmLLk2O9OGRRBUXq87UMVjjCH6v/tIz87juV4tnf76eqR/FRo1akTbtm3x8/OjdevW9OjRAxGhbdu2HDx4EIDvv/+et956i7CwMG655Rays7M5fPgwubm5jB49mrZt29KvXz8SEn5deigyMpKQkBD8/PwICwu79FoF2b17N40aNaJ5c8d6dsOGDePnn3++4r6LFi0iPDycDh06sGPHjt+8b0EGDhx46d+1a9deau/Xrx/+/v6/2//HH39k/PjxAPj7+xMUFMTKlSuJi4ujU6dOhIWFsXLlSvbv31/oe3siu93w9Gdb2JOczqRB4TQJruTqkJSHsdkNLy/fwdvf7ubomfPY7KbwJxWTRx/pF3ZEXlLKlSt3advPz+/SfT8/P/Ly8gDHX+slS5bQosVvx3NfeeUVateuzZYtW7Db7QQGBl7xdf39/S+91rU6cOAA77zzDhs3bqRatWoMHz68SFc0559GmX+7YsWKV9r9iowxDBs2jDfffLN4QXugiT/u5ZvtJ/i/u6/n5ua6hIgqnuxcG39eGM83208w+sZGvHDn9fiVwNCgHumXkDvuuIMPP/zw0rj85s2bAUhLS6Nu3br4+fkxe/bsYo9vV65cmfT0dABatGjBwYMHL423z549m5tvvvl3+507d46KFSsSFBREcnIy33zzTZHea+HChZf+7dq1a6H79+jRg+joaABsNhtpaWn06NGDxYsXk5KSAsDp06c5dKjAVV891jfbjvP+D3vpEx7CIzfoVcWqeNKychkas+HSQcOLd7cqkYQPmvRLzEsvvURubi7t2rWjdevWvPTSSwBMmDCBmTNn0r59e3bt2lWso2b49URqWFgYxhg+/fRT+vXrd2m4ady4cQCMGTOGXr160b17d9q3b0+HDh1o2bIlgwYNolu3bkV6rzNnztCuXTs++OAD3nvvvUL3/+CDD1i1ahVt27alY8eOJCQk0KpVK1577TV69uxJu3btuP322zl+3LumMCYcO8dTi7bQoWFVXn+gjV5oporl2Nnz9JuyhvjDZ/lwYAdG3di4RN9PLp8h4k4iIiLM5XPId+7cyfXXX++iiHzHxQI2F08ElwZP/GxPZuTQe9JqbHbD8se6UatKYOFPUsqy+0Q6w2I2kJmTx5ShHYlq4pzfNxGJM8ZcvooC4OFj+kq50oU8OxPmbOJkRg6fjeuqCV8Vy/r9pxg9K5bAMv4sHNuVVvWqlMr7atJXV1TYzCFfZ4zh5eXb2XDwNB8MCKNdSFVXh6Q8yDfbjvOnhfE0qFaemSMjCalWodTe2yOTvjFGx029jDsPM17J7HWHmL/hCONvaULvsN8VgFOqQDPXHOSVL3cQ3rAa04dGUK1i2VJ9f49L+oGBgZw6dYoaNWpo4vcSF9fTzz991Z2tSTzJ379MoEfLWjzdU5dYUEVjjOHt73YT/dM+bm9Vmw8HdiCwzO+vdylpHpf0Q0JCSEpK0rXXvczFylnu7vCpLCbM20SjmhV5f0CYLrGgiiTXZue5JVtZuukogzo35NX7WhPg75rJkx6X9MuUKaPVlZRLZOTkMWrWRoyB6UMjqByoSyyowmXk5DFh7iZ+3pPKU7c35/Fbm7p0lMLjkr5SrmC3G55cEM++1ExmjYwktGbxrq9Qvik1PYeRMzaScPwc/+zTloc6NXR1SJr0lSqKd1fs4Yedybxybyu6NS29axeU5zp4MpOhMRtISc9m2tCO3NqytqtDAjTpK1WoL7ccY9KqRAZ0asCwqFBXh6M8wJYjZxk5YyN2Y5g/ugsdGlZzdUiXaNJX6g9sS0rjmcVb6BRajVd76xILqnCrdqcwYc4malYuy8wRkTR2s9VWi3T6WESqishiEdklIjtFpKuIVBeRFSKy1/q3mrWviMhEEUkUka0iEp7vdYZZ++8VkWEl1SmlnCElPZsxs2OpXqEs0Q93pGyALlWl/thnsUcYNTOWxsEVWTI+yu0SPhR9wbUPgG+NMS2B9sBO4HlgpTGmGbDSug9wJ9DMuo0BogFEpDrwMtAZiARevviHQil3k5NnY9zsOM5m5TJtWAQ1K5Ur/EnKZxljmPTjXp5ZvJWoJjVYOLYrtSq753UnhSZ9EQkCbgI+ATDGXDDGnAV6AzOt3WYC91vbvYFZxmEdUFVE6gJ3ACuMMaeNMWeAFUAvp/ZGKScwxvDi59vZdPgs7/RrT+t6Qa4OSbkxm93wt2U7eOf7PTzQoT6fDOtEpXLuO3JelMgaAanApyLSHogD/gTUNsZcXCP3BHDx1HR94Ei+5ydZbQW1/4aIjMHxDYGGDV0/vUn5npjVB1kcl8QTPZpxd7u6rg5HubHsXBt/WrCZ73YkM/bmxjx3R8sSWwffWYoyvBMAhAPRxpgOQCa/DuUAYBwLpzhl8RRjzFRjTIQxJiI4WKsPqdL1855UXv9PAne0rs2TPZq5Ohzlxs5mXeDh6ev5PiGZl+9tVWKVrpytKEk/CUgyxqy37i/G8Ucg2Rq2wfo3xXr8KNAg3/NDrLaC2pVyC/tTM3hs3iaa167Mu/3DPOIXWLnG0bPn6Tt5LVuT0vhwYAdGdPOcVQIKTfrGmBPAERG5uLJUDyABWA5cnIEzDFhmbS8HhlqzeLoAadYw0HdATxGpZp3A7Wm1KeVy57JzGTUrlgB/P6YNjaCiG4/JKtfadeIcfT5eQ/K5bGaOjOSedvVcHVKxFPUn+3FgroiUBfYDI3D8wVgkIo8Ah4D+1r5fA3cBiUCWtS/GmNMi8g9go7Xfq8aY007phVLXwGY3PDF/M4dPZTFnVGcaVC+9tc2VZ1m77xRjZsVSoZw/n43rSss6pVP4xJmKlPSNMfHAlUpv9bjCvgZ4tIDXiQFiihOgUiXt7W938dPuVF5/oA1dGtdwdTjKTf1n63H+vDCehjUqMHNkJPWrlnd1SFdFv8Mqn7Z0UxJTft7PkC7XMbjzda4OR7mpT1cf4NWvEujYsBrTh0VQtULpFj5xJk36ymdtPnyG55duo0vj6vzt3lauDke5Ibvd8M/vdjHlv/u5o3VtPhjgmsInzqRJX/mkE2nZjJ0dR+0q5fh4cEfKuKighXJfF/LsPLt4C1/EH2NIl+t45b7WXlE0R5O+8jnZuTbGzo4lMyeP2Y90o3op1yhV7i8jJ4/xc+L4Ze9Jnu7ZnEe7u7bwiTNp0lc+xRjD80u2siUpjalDOtKiTmVXh6TcTEp6NiNnbGTn8XT+1bcd/SIaFP4kD6JJX/mUKT/v54v4Yzzdszk9W9dxdTjKzexPzWDYpxs4mX6B6cMi6N6ilqtDcjpN+spn/LgrmX9+u4u729Xl0e5NXR2OcjObD5/hkZmxCLBgTBfaN6jq6pBKhCZ95RMSU9J5Yn48repW4V9923nN+Kxyjh93JfPo3M0EVy7n9TWQNekrr5eWlcuombEElvFj6tAIKpTVH3v1q4UbD/PXz7fTqm4VYoZ3Iriyd9dO0J9+5dXybHYem7+Jo2fPM390F4+9ilI5nzGGD39M5N0Ve7ipeTDRg8N9Ys0l7++h8mlvfL2LX/ae5O0+7YgIre7qcJSbsNkNLy3bzrz1h3kwvD7/7NPOZ67V0KSvvNaijUeIWX2AEd1C6d/Ju6bdqauXnWvj8fmbWZGQzPhbmvDsHS186hyPJn3llWIPnubFL7ZxQ9OavHjX9a4OR7mJM5kXGDUrlk2Hz/D3+1ozLCrU1SGVOk36yuscPXuecXPiqF+1PJMGdSDAR762qz+WdCaLYTEbOHLmPB8NCueutr5ZClOTvvIq5y/YGDMrluxcOwvGePZqiMp5Eo6dY/inGzifa2P2yEg6+/AS2pr0ldcwxvD04i0kHD/HJ8MiaFpLl1hQsGbfScbOiqNiuQAWj4vy+aU3NOkrr/HRqkT+s/U4z9/Zkltb1nZ1OMoNfLnlGH9ZtIXQmhWYMSKSejplV5O+8g7f7zjBO9/v4f6weoy9qbGrw1FuYPov+3ntPzuJDK3OtKERBFUo4+qQ3IImfeXxdp04x58XxtM+JIi3+ugSC77Obje8+c1Opv1ygDvb1OG9h8I8vvCJM2nSVx7tdOYFRs+KpWK5AKYMidBfbh93Ic/OM4u3sCz+GEO7XsfL93pH4RNnKtJcNhE5KCLbRCReRGKttldE5KjVFi8id+Xb/wURSRSR3SJyR772XlZboog87/zuKF+Sa7MzYW4cyedymDKkI3WCAl0dknKh9OxcRszYwLL4YzzbqwV/95JKV85WnCP97saYk5e1vWeMeSd/g4i0AgYArYF6wA8i0tx6+CPgdiAJ2Cgiy40xCVcXuvJ1r36ZwLr9p3m3f3s6NKzm6nCUC6Wcy2b4pxvZk5zOv/u1p0/HEFeH5LZKYninN7DAGJMDHBCRRCDSeizRGLMfQEQWWPtq0lfFNmfdIWavO8TYmxrzYLj+gvuyfakZDIvZwOlMR+GTW7yw8IkzFfVSRQN8LyJxIjImX/tjIrJVRGJE5OKhVn3gSL59kqy2gtqVKpZ1+0/xyvId3NIimGd7tXR1OMqFNh0+Q9/oNWTn2lgwposm/CIoatK/wRgTDtwJPCoiNwHRQBMgDDgO/NsZAYnIGBGJFZHY1NRUZ7yk8iJHTmcxfk4cDWtUYOLADjpm68N+SEhm0LR1VClfhiXjo2gX4p2VrpytSEnfGHPU+jcF+ByINMYkG2Nsxhg7MI1fh3COAvmXNAyx2gpqv/y9phpjIowxEcHBwcXtj/JimTl5jJ4Vi81umD40giqBOu/aVy3YcJgxs2NpXrsyS8ZHcV0N76105WyFJn0RqSgilS9uAz2B7SKSf7WiB4Dt1vZyYICIlBORRkAzYAOwEWgmIo1EpCyOk73LndcV5c3sdsNTi+LZk5zOpEHhNA6u5OqQlAsYY3j/hz08v3QbNzYLZv7oLtSs5N2VrpytKCdyawOfWxe8BADzjDHfishsEQnDMd5/EBgLYIzZISKLcJygzQMeNcbYAETkMeA7wB+IMcbscHJ/lJd6f+VevtuRzEv3tOKm5voN0Bfl2ey8tGw78zccoW/HEN58sK3PFD5xJjHGuDqGAkVERJjY2FhXh6Fc7D9bj/PovE306xjC21rU3Cedv2Dj8fmb+GFnCo91b8pfejbXn4M/ICJxxpiIKz2mV+Qqt7b9aBp/+Sye8IZVee2BNvqL7oNOZ17gkZkbiT9yln/0bs2QrqGuDsmjadJXbutkRg5jZsVSrUJZJg/pSLkAXWLB1xw5ncWwTzeQdOY80YM70qtNHVeH5PE06Su3dCHPzvg5cZzKvMDicVHUqqxLLPiaHcfSGP7pRnJybcwd1ZlOWtjeKTTpK7djjOFvy7az8eAZJg7sQNuQIFeHpErZ6sSTjJ0dR5XAAOaNj6JZbd8ufOJMmvSV25m19hALNh7h0e5NuK99PVeHo0rZsvijPP3ZFhrXrMSMkZ2oG6SFT5xJk75yK6sTT/LqVwncdn0t/nJ7C1eHo0rZtJ/38/rXO+ncqDpTh0YQVF4vwHM2TfrKbRw6lcmEuZtoElyR9x4Kw0+XWPAZdrvh9a938sn/DnB327r8u397rY1QQjTpK7eQnp3LqJmxiMC0oRFU1iUWfEZOno2nP9vKl1uOMTwqlL/d00r/4JcgTfrK5Wx2w5ML4tl/MpPZIyN1HRUfci47l7Gz4li7/xTP39mSsTc11msxSpgmfeVy//5+Nyt3pfBq79ZENa3p6nBUKUk+l82wmA0kpmTwbv/2WhehlGjSVy61LP4oH/+0j4GRDRnS5TpXh6NKSWJKOsNiNnI26wIxwzvpekqlSJO+cpmtSWd5dvFWIkOr8/f7WuvXeh8Rd+g0j8yMJcBPWDi2K23q63UYpUmTvnKJlHPZjJkVR81K5Yh+OJyyAbpaoi9YkZDMY/M2UTcokFkjO9OwRgVXh+RzNOmrUpeda2PM7DjSzueyZHwUNXQ9dJ8wd/0hXvpiO21DqhIzLEI/dxfRpK9KlTGGFz/fTvyRs0QPDqdVvSquDkmVMGMM763Yw8QfE+neIpiPBodToaymHlfR/3lVqj753wGWbEriyduacWfbuoU/QXm0PJudFz/fzsLYI/SPCOGNB9oSoIVPXEqTvio1P+1O4Y2vd3Jnmzo8cWszV4ejSljWhTwem7eZH3el8MStTfnz7Vr4xB1o0lelYl9qBo/P30yLOlX4d//2esWllzuVkcPImbFsSzrL6w+0YXBnnY7rLjTpqxKXdj6X0TNjKevvx7ShHXU818sdOZ3F0JgNHDt7nuiHO3JHay184k70t0+VKJvd8Pj8zRw+ncW80V0IqaZT9LzZ9qOOwie5NjtzR3UmQgufuB1N+qpEvfXNTn7ek8qbD7YlspEmAG/2y95Uxs2Oo2qFsiwY05mmtbTwiTsq0ml0ETkoIttEJF5EYq226iKyQkT2Wv9Ws9pFRCaKSKKIbBWR8HyvM8zaf6+IDCuZLil3sTguiWm/HGBY1+sYGNnQ1eGoEvT55iRGfLqRBtUrsHRClCZ8N1acuVPdjTFhxpgI6/7zwEpjTDNgpXUf4E6gmXUbA0SD448E8DLQGYgEXr74h0J5n02Hz/DXpduIalKD/7unlavDUSXEGMOU/+7jzwu3EBFajUXjulK7itYzdmfXMmG2NzDT2p4J3J+vfZZxWAdUFZG6wB3ACmPMaWPMGWAF0Osa3l+5qRNp2YydHUedoEA+GhROGZ2X7ZXsdsOrXyXw5je7uLtdXWaOjKSK1kFwe0X9bTTA9yISJyJjrLbaxpjj1vYJoLa1XR84ku+5SVZbQe2/ISJjRCRWRGJTU1OLGJ5yF44lFmLJyslj+rAIqlUs6+qQVAnIzrXx+ILNfLr6ICO7NeLDAR0oF6CVrjxBUU/k3mCMOSoitYAVIrIr/4PGGCMixhkBGWOmAlMBIiIinPKaqnQYY3huyVa2HU1j6pAImtfWcV1vlHY+lzGzYll/4DQv3nU9o29q7OqQVDEU6UjfGHPU+jcF+BzHmHyyNWyD9W+KtftRoEG+p4dYbQW1Ky8x+b/7WRZ/jKd7tuD2VrULf4LyOCfSsnloylo2HT7D+w+FacL3QIUmfRGpKCKVL24DPYHtwHLg4gycYcAya3s5MNSaxdMFSLOGgb4DeopINesEbk+rTXmBlTuTefu7XdzTri4Tbmni6nBUCdibnM6DH68m6cx5Ph0eyf0dfjc6qzxAUYZ3agOfW2tmBADzjDHfishGYJGIPAIcAvpb+38N3AUkAlnACABjzGkR+Qew0drvVWPMaaf1RLnM3uR0/rQgntb1qvCvvu11fRUvtPHgaUbNjKVsgB8Lx3ahdT0tfOKpxBj3HTaPiIgwsbGxrg5D/YGzWRfo/dFqMnNsLH+sG/Wqlnd1SMrJvt1+gj8t2Ez9quWZOTKSBtX1qmp3JyJx+abX/4ZekauuWp7NzqPzNnH8bDbzx3TRhO+FZq87xMvLttMupCoxwztRXWdjeTxN+uqqvfafnaxOPMXbfdvR8Tq9zs6bGGP49/d7mLQqkR4tazFpUDjly+qUTG+gSV9dlQUbDjNjzUEeuaER/SMaFP4E5TFybXb+unQbn8UlMaBTA167v40WPvEimvRVsW08eJqXlm3nxmY1eeHOlq4ORzlR1oU8JszdxE+7U/lTj2Y8eVszPTHvZTTpq2I5evY842bHEVKtApMGhusRoBc5lZHDyBkb2XY0jTceaMugzrpInjfSpK+KLOtCHqNnxnIhz860oREEVdB1VrzFoVOZDIvZwIlz2UwZEqEX13kxTfqqSIwxPP3ZFnaeOEfM8E40rVXJ1SEpJ9mWlMaIGRvIsxvmjuqiJ+W9nCZ9VSQf/pjI19tO8Ne7WtK9RS1Xh6Oc5L97Uhk/J45qFcqyYGSk/jH3AZr0VaG+3X6Cd1fs4cEO9Rl9o6614i2WxCXx3JKtNKtdmRkjOuk6+D5Ck776QzuPn+OpRfG0b1CVNx5sqzM5vIAxhuj/7uPtb3cT1aQGk4d01HXwfYgmfVWgUxk5jJoZS+XAAKYO6UhgGb04x9PZ7IZXv9zBzLWHuK99Pd7p156yAToDy5do0ldXdCHPzvi5m0jNyOGzsVoCzxtk59p4alE8X287wegbG/HCndfj56ff3HyNJn11RX//cgcbDpzm/YfCaN+gqqvDUdcoLSuX0bNj2XDgNP939/WM0nMzPkuTvvqd2esOMXf9Ycbd3ETXTPcCx9POMyxmAwdOZjJxYAfua1/P1SEpF9Kkr35jzb6T/H35Dm5tWYtn7mjh6nDUNdqTnM6wmA2kZ+cxc0QkUU1rujok5WI+dQYn9uBpTmbkuDoMt3X4VBaPzt1EaM2KfDAgDH8d7/VoGw6cpm/0Gmx2w6KxXTXhK8CHkr7dbhg0fT29J60mMSXd1eG4nYycPEbPisVuYPrQCCrrFD6P9s224zz8yXpqVi7HkvFRtKpXxdUhKTfhM0k/K9fGhTw7R8+ep0/0WjYe1EqNF9nthqcWxrM3JZ1JgzoQWrOiq0NS12DmmoNMmLeJNvWqsGRclFa6Ur/hM0k/IzsPgAm3NKFGpbIMnr6eb7Ydd3FU7uH9H/bwfUIy/3d3K25sFuzqcNRVMsbw9re7eHn5Dnq0rM3cUV2oppWu1GV8J+nnOJJ+y7qOo5829aowYd4mZqw+4OLIXOurrceY+GMi/SNCGNEt1NXhqKuUa7Pzl8+28PFP+xgY2ZDJD2ulK3VlRU76IuIvIptF5Cvr/gwROSAi8dYtzGoXEZkoIokislVEwvO9xjAR2Wvdhjm/OwW7mPQrlfOnWsWyzBvdhduvr80rXybw5tc7sdvdt0B8Sdl+NI2nP9tCx+uq8Y/72+gSCx4qMyePR2bGsnTTUZ66vTlvPKCVrlTBijNl80/ATiD/GaFnjDGLL9vvTqCZdesMRAOdRaQ68DIQARggTkSWG2POXG3wxXFxeKdSOccJysAy/kQ/3JFXlu9gys/7OZ6Wzb/6taNcgG8cHaWm5zBmVizVKpRl8sMdfabf3iY13VH4JOH4Od56sC0DIrXwifpjRTocEJEQ4G5gehF27w3MMg7rgKoiUhe4A1hhjDltJfoVQK+rjLvYMnJyAahU7te/c/5+wkgLzNkAACAASURBVKu9W/Ncr5Ys33KMEZ9u5Fx2bmmF5DI5eTbGzYnjdNYFpg2NILhyOVeHpK7CwZOZ9J28hr0p6Uwd0lETviqSon4HfB94FrBf1v66NYTznohczBz1gSP59kmy2gpq/w0RGSMisSISm5qaWsTwCpduHelXDvztlxsRYfwtTXjvofZsOHCa/pPXciIt22nv626MMbz0xXbiDp3hnX7taVM/yNUhqauw5chZ+kSv4dz5XOaP7kKP67XSlSqaQpO+iNwDpBhj4i576AWgJdAJqA4854yAjDFTjTERxpiI4GDnzSTJvDSmf+URrQc6hPDpiE4knTnPgx+vZk+yd87ln7HmIItik3j81qbc004vx/dEq3anMGDqOsqX9WfJ+Cg6NNRKV6roinKk3w24T0QOAguAW0VkjjHmuDWEkwN8CkRa+x8FGuR7fojVVlB7qbh4IrdiAUkf4MZmwSwc24U8u6Fv9BrW7T9VWuGVil/2pvKPrxK4vVVt/nxbc1eHo67CZ7FHGDUzlsbBFVk6IYrGwVrpShVPoUnfGPOCMSbEGBMKDAB+NMY8bI3TI44pH/cD262nLAeGWrN4ugBpxpjjwHdATxGpJiLVgJ5WW6lIz8mjbIBfoWuHt64XxNIJUQRXLsfQTzbw1dZjpRRhyTpwMpPH5m2mWa3KvPdQmC6p62GMMXy0KpFnFm+la+MaLBjThVqVdblrVXzXsuDaXBEJBgSIB8ZZ7V8DdwGJQBYwAsAYc1pE/gFstPZ71RhTapfFZmTnUfkPjvLzC6lWgSXjoxg1M5bH528m+VwOj9zQqIQjLDnnsnMZPSsWP4HpwyIKHOJS7slmN7yyfAez1x3i/rB6vN1XC5+oq1es335jzE/AT9b2rQXsY4BHC3gsBogpVoROkpGTR6XAone3aoWyzBnVmScXxPOPrxI4fvY8f73L84pO2OyGJxfEc/BkJrMf6ayX5HuY7FwbTy6I59sdJxh7U2Oe69XS434GlXvxmcOFzJy8Yh/hBpbx56PB4QyPCmX6/w7wxILN5OTZSijCkvGv73bz464UXr6vNV2b1HB1OKoY0rJyGfLJer5LOMHf7mnFCx540KHcj898z0/PzvvDk7gF8fcTXr63FXWDAnnzm12kpucwdWgEQeXdfxXKLzYfZfJ/9zG4c0OGdLnO1eGoYjh69jzDYzZw6FQWHw7soDOtlNP4zJF+Rk7Rx/QvJyKMvbkJHwwIY9PhM/SbvIZjZ887OULn2nLkLM8u2UrnRtV5+d7Wrg5HFcOuE+fo8/EaTqRlM2NkJ034yql8KukXZ0z/SnqH1WfmiEiOn83mwY/XsOvEOSdF51zJ57IZMzuWWpXL8fHgcD3p50HW7T9Fv8lrMRgWjetKVBMtfKKcy2eyQUZ28cf0rySqaU0WjeuKwdBv8lrW7DvphOicJzvXxpjZcaRn5zFtaAQ1KukSC57iP1uPM/STDdSuEsjSCd24vq4WPlHO5ztJ3wlH+hddX7cKSyd0o06VQIbHbGT5FveYy2+M4a9Lt7HlyFne7R+mScODzFh9gMfmb6JtSBCLx3WlftXyrg5JeSmfSPoX8uzk5NmpVNZ5563rVy3P4nFRhDWsyhPzNzPt5/04Zqu6zrRf9rN0s2N53V5t6rg0FlU0drvhzW928sqXCdx+fW3mjupM1Qpa+ESVHJ9I+pfW3XHSkf5FQRXKMGtkJHe3rcvrX+/k1a8SXLYu/6pdKbz5zS7ubluXx29t6pIYVPFcyHMUPpny3/083KUh0Q93JLCMLnGtSpZPTNnMKGSxtWsRWMafDwd2oHaVQGJWHyDlXA7/7t++VH95E1MyeGL+Zq6vU4V/9WunxVA8QEZOHuPnxPHL3pM83bM5j3Zvqp+bKhU+kfQLWlbZWfz8hL/d24p6VQN57T87Sc3IYdqQCIIqlPxc/rQsxxILZQP8mDYsggpOHMJSJSMlPZuRMzay83g6b/dtR/+IBoU/SSkn8Y3hnQu/rZpVUkbd2JiJAzsQf/gsfSev4WgJz+XPs9l5fMFmks5kMXlIRz355wEOnMykT/Qa9qVkMn1ohCZ8Vep8IulfLJVYsVzJD7nc174eM0dGcuJcNg9+vJqEYyU3l/+tb3bx855U/tG7DZ1Cq5fY+yjniLcKn2Tm2Jg/pgvdW9ZydUjKB/lE0k/PKdnhnct1bVKDz8Z1RRD6T1nL6kTnz+X/LPYI0/93gOFRoVomzwP8uCuZgVPXUbGco/BJWIOqrg5J+SifSPqXF0UvDS3rVOHzR6OoX7U8wz/dwLJ459WLiTt0hhc/3063pjX4v7uvd9rrqpKxaOMRRs+Ko0mtiiwd341GNSu6OiTlw3wj6V8sil5KR/oX1Q0qz6JxXel4XTX+tCCeyf/dd81z+Y+nnWfs7DjqVg1k0sBwAvx94iP0SMYYPly5l2eXbCWqSQ0WjOmqReiVy/lExsjIsSECFVwwBzqofBlmjozknnZ1eeubXfz9ywRsVzmX//wFG2NmxZGda2Pa0AiqVdSLeNyVzW74vy+28+8Ve3iwQ30+GdZJi9cot+ATP4UZ2XlULBvgsrXIywX4M3FAB+oGBTLtlwOcSMvm/QFhxZrLb4zh2SVb2X4sjWlDImheu3IJRqyuRXaujSfmb+b7hGTG3dyE53q10Dn4ym34yJF+rsuPsvz8hBfvbsVL97Tiu4QTPDx9PWezLhT5+R//tI8vtxzjmTtacFur2iUYqboWZ7MuMHj6elbsTOaVe1vx/J0tNeErt+IjSd95i61dq0duaMSkgeFsTUqjT/Qaks5kFfqcFQnJvPP9bu5rX4/xNzcphSjV1Ug6k0Wf6DVsS0rjo0HhDO/muXWVlffyiaSf7qRllZ3l7nZ1mf1IJKnpOTzw8Rp2HEsrcN89yek8uWAzbeoF8XZfXWLBXe08fo4+0WtISc9h1iOR3NW2rqtDUuqKipz0RcRfRDaLyFfW/UYisl5EEkVkoYiUtdrLWfcTrcdD873GC1b7bhG5w9mdKUhmTl6pzdEvqs6Na7B4fBRl/ISHpqzjl72pv9vnTOYFRs2MpUK5AKYO1cW43NWafSfpP3ktgrB4XBRdGmstYuW+inOk/ydgZ777/wTeM8Y0Bc4Aj1jtjwBnrPb3rP0QkVbAAKA10Av4WERKJYtl5DhO5Lqb5rUrs3RCN0KqlWfEpxtZuinp0mO5NjsT5m7iRFo2U4Z0pG6QLrHgjr7ccozhMRupExTI0glRtKijJ9iVeytS0heREOBuYLp1X4BbgcXWLjOB+63t3tZ9rMd7WPv3BhYYY3KMMQeARCDSGZ0oTEa2+4zpX65OUCCLxnUlslF1nlq0hY9/SsQYw2tfJbB2/yneeLAt4Q2ruTpMdQWf/O8Aj8/fTFiDqiweF0U9XftIeYCiZsL3gWeBi4cxNYCzxpg8634SUN/arg8cATDG5IlImrV/fWBdvtfM/5xLRGQMMAagYUPnLC+QnuNeY/qXqxJYhhkjInlm8Rbe/nY3763YQ67NMPrGRvTtGOLq8NRl7HbDW9/uYurP++nVuk6xp98q5UqFHumLyD1AijEmrhTiwRgz1RgTYYyJCA4OdsbrueWY/uXKBvjxXv8wOjSsSq7NcfHWk7c1d3FU6nIX8uw8tSieqT/vZ2jX6/hocLgmfOVRijK80w24T0QOAgtwDOt8AFQVkYuZNAS4uLjMUaABgPV4EHAqf/sVnlNizufasJuSKaDibMfSznPo1K9TOId8sp4zmUWfy69KVnp2LiNnbOSLeMf1En+/rzX+LrrgT6mrVWjSN8a8YIwJMcaE4jgR+6MxZjCwCuhr7TYMWGZtL7fuYz3+o3EsOLMcGGDN7mkENAM2OK0nBfh1WWX3TvqZOXmMmhlLrs3Oyr/cTPTgcLYfO0efyWs4crrwufyqZKWkZ/PQlHWs3X+Kd/q110pXymNdyzz954CnRCQRx5j9J1b7J0ANq/0p4HkAY8wOYBGQAHwLPGqMsV3D+xdJaS+rfDXsdsPTn21hT3I6kwaF0yS4Ene2rcvcUZ05lXGBBz5ew/ajBc/lVyVrX2oGD368hoOnMvlkWISeZ1EerVhJ3xjzkzHmHmt7vzEm0hjT1BjTzxiTY7VnW/ebWo/vz/f8140xTYwxLYwx3zi3K1f267LK7pv0J/64l2+2n+Cvd13Pzc1/PY/RKbQ6S8Z3pVyAHw9NWct/9/x+Lr8qWZsOn6Fv9BrOX7Axf3QXbmmhhU+UZ/P6K3JLsii6M3yz7Tjv/7CXPuEhPHLD7y/bb1qrMksnRNGwRkUembGRz2KPuCBK37RyZzKDpq2jSvkyLBkfRXstfKK8gO8kfTcc3kk4do6nFm2hQ8OqvP5AmwLHiGtXCWTR2C50aVyDZxZvZdKPe695XX71xxZsOMzoWbE0r12ZJeOjCNXCJ8pLeH/St4Z3Kpdi1ayiOJmRw+hZsQSVL8OUhwtfYqFyYBlihnfigQ71eef7Pbz4xXbybPZSitZ3GGP44Ie9PL90Gzc0C2b+6C7UrKSFT5T3cL/DXye7eKRfGkXRi+pCnp0JczZxMiOHz8Z1pVaVwCI9r2yAH+/2b0+doECif9pHyrlsPhwYTvmy7tM3T5Zns/PSsu3M33CEPuEhvNWnLWW0MpnyMl7/E+1uwzvGGF5evoMNB0/zdt92tAsp3jixiPBcr5b8o3drVu5KYeC0dZzKyCmhaH3H+Qs2xs3ZxPwNR3i0exPe6ddOE77ySl7/U52enUdZfz/KBbjH0fCcdYeYv+EwE25pQu+w361CUWRDuoYSPbgjO4+fo+/ktRw6lenEKH3LmcwLDJ6+jpW7knm1d2ueuUMLnyjv5fVJP9ONCqisSTzJK18m0KNlLZ7u2eKaX69XmzrMG92ZM1kX6BO9hq1JZ50QpW85cjqLPpPXsP3YOaIHhzO0a6irQ1KqRHl90s9wk8XWDp/KYsK8TTSqWZH3B4Q5rV5vx+uqs2R8FIFl/BkwdR2rdqc45XV9wY5jaTwYvYaT6TnMeaQzvdpo4RPl/bw+6adn57l8CYaMnDxGzdqIMTB9aASVA507k6hJcCWWToiiUc2KjJoZy6KNOpe/MGsST/LQlHUE+AmLx0cR2ai6q0NSqlR4fdLPyMmlsguTvt1ueHJBPPtSM/l4cHiJzfeuVTmQhWO7EtWkBs8u2coHP+hc/oIsiz/KsE83UL9qeZZOiKJ5bS18onyHDyR9147pv7tiDz/sTOalu6+nW9OaJfpelcoFEDO8Ew+G1+e9H/bw18+36Vz+y0z7eT9/WhBPh4bVWDSuq1YkUz7H9YPdJSwzx0almq7p5pdbjjFpVSIDOjVgWFRoqbxnGX8//t2vPfWCyjNpVSLJ53KYNKgDFdywXGRpstsNb3y9k+n/O8Bdbevwbn8tfKJ8k9cf6ae7qFTitqQ0nlm8hU6h1Xi1d8FLLJQEEeHpO1rw+gNt+Gl3CgOnruOkD8/lz8mz8eTCeKb/7wDDo0L5cKAWPlG+y+uTfkZObqnP3klJz2bM7FiqVyhL9MMdKRvgmv/mwZ2vY8qQCHYnp9Mneg0HT/reXP5z2bmM+HQjy7cc47leLXn53lZa+ET5NK9O+rk2O9m59lJN+jl5NsbNjuNsVi7ThkW4fN2W21vVZt7oLpw7n0uf6DXEH/GdufzJ57LpP3ktGw6c5t3+7Rl/SxO96Er5PK9O+pmlvKyyMYYXP9/OpsNneadfe1rXCyqV9y1MeMNqLBkfRYVy/gycuo6VO5NdHVKJS0xxFD45fDrLOrmthU+UAi9P+unZpbvuTszqgyyOS+KJHs24u517XejTOLgSS8d3o2mtSoyeFcv8DYddHVKJiTt0hr6T15CTZ2PhmK7clK8wjVK+zquTfuaFi8sql3zS/3lPKq//J4E7WtfmyR7NSvz9rkZw5XIsGNOFm5oH88LSbby7Yo/XzeVfkeAofFK1fBmWju9G2xD3+LallLvw6qRfWkXR96dm8Ni8TTSvXZl3+ztviYWSULFcANOGRtCvYwgTV+7luSVbyfWSufzz1h9m7OxYWtZxFD5pWKOCq0NSyu149eTt9FJYVvlcdi6jZsUS4O/HtKERLl/yoSjK+Pvxdt921K1anokr95KSnsNHg8I9IvYrMcbw3g97mbhyL91bBPPR4HCfvy5BqYIUeqQvIoEiskFEtojIDhH5u9U+Q0QOiEi8dQuz2kVEJopIoohsFZHwfK81TET2WrdhJdcth1+rZpVMArDZDU/M38zhU1l8PDicBtU958hSRHjq9ua8+WBbft6TyoCp60hN97y5/Hk2O88v2cbElXvp1zGEqUMjNOEr9QeK8tuRA9xqjMkQkTLA/0TkG+uxZ4wxiy/b/06gmXXrDEQDnUWkOvAyEAEYIE5ElhtjzjijI1dS0gVU3v52Fz/tTuX1B9rQpXGNEnmPkjYwsiG1KpfjsXmbeTB6NTNHRNI4uJKrwyqSrAt5PDZvMz/uSuHxW5vy1O3NdUqmUoUo9EjfOGRYd8tYtz86+9cbmGU9bx1QVUTqAncAK4wxp61EvwLodW3h/7GSnLK5dFMSU37ez5Au1zG483VOf/3S1OP62swf04XMHBt9otew6XCJ/R12mtOZFxg0bT0/7U7htfvb8JeeLTThK1UERTqRKyL+IhIPpOBI3Outh163hnDeE5GLVyHVB/Kv7ZtktRXUfvl7jRGRWBGJTU1NLWZ3fuvilM2KTv66v/nwGZ5fuo0ujavzt3tbOfW1XSWsQVWWjo+iSvkyDJq2jhUJ7juX/8jpLPpGr2Hn8XNEP9yRh7t49h9dpUpTkZK+McZmjAkDQoBIEWkDvAC0BDoB1YHnnBGQMWaqMSbCGBMRHHxt86szcvKoWNbfqbNpTqRlM3Z2HLWrlOPjwR29qo5qaM2KLBkfRYvalRk7O5a56w+5OqTf2X7UUfjkVOYF5o7qzB2t67g6JKU8SrEyljHmLLAK6GWMOW4N4eQAnwKR1m5HgQb5nhZitRXUXmIynLzYWnaujbGzY8nMyWP60E5Ur1jWaa/tLmpWKsf8MV24uXkwL36+nXe+2+02c/l/2ZvKQ1PWUsZPWDyuKxGhWvhEqeIqyuydYBGpam2XB24Hdlnj9IhjIPV+YLv1lOXAUGsWTxcgzRhzHPgO6Cki1USkGtDTaisxziyVaIzh+SVb2ZKUxnsPhdGijvcW3qhQ1jGXf0CnBkxalcjTn7l+Lv8Xm48y4tONNKhegaUTutFMC58odVWKkhHrAjNFxB/HH4lFxpivRORHEQkGBIgHxln7fw3cBSQCWcAIAGPMaRH5B7DR2u9VY8xp53Xl9xwFVJxTmnDqz/v5Iv4YT/dsTk8fGFII8PfjzQfbUicokPd/2EtqRg4fDw4v9RVLjTFM+2U/b3y9iy6NqzNlSARB5Z1bblIpX1Lob7AxZivQ4QrttxawvwEeLeCxGCCmmDFeNceR/rWvm75qVwpvfbuLe9rV5dHuTZ0QmWcQEZ68rTl1gwL56+fbGTB1LTHDO1GrcmCpvL/dbnjtPzuJWX2Au9vV5d3+7SkXoOvgK3UtvOcs5BVkZF/78E5iSjpPzN9Mq7pV+Fff9j45LfChTg2ZPjSCfSmZPPjxGvalZhT+pGuUk2fj8QWbiVl9gBHdQvlwQAdN+Eo5gXcn/Zw8KpW7+qGAtKxcRs2MpVwZP6YOjaB8Wd9NOt1b1mLh2C5k5zrm8scdKrmRuXPZuQyL2cB/th7nr3e15G/3tHLr9YyU8iRenfTTs3OpfJWzd/Jsdh6bv4mjZ88z+eGO1K+qBbTbhVRlyfgoqpYvw6Bp6/luxwmnv8eJNEfhk9iDZ3j/oTDG3KSFT5RyJq9N+sYYMi/Yrnp4542vd/HL3pO8fn9bnRqYz3U1HHP5r69bhfFz4pi99qDTXjsxJZ0HP17NkdNZfDqiE/d3+N21e0qpa+S1ST87147Nbq5q5chFG49cGkvu36lB4U/wMTUqlWP+6C7c2rIWLy3bwT+/3XXNc/ljD56mT/RaLtgMC8d25cZmWvhEqZLgtUk/PScXKP5ia7EHT/PiF9u4oWlNXrzr+pIIzSuUL+vP5Ic7MqhzQ6J/2sdfFm3hQt7VzeX/bscJBk9fT/WKZfl8QhRt6mvhE6VKiteuQXs1yyofPXuecXPiqF+1PJMGdSDAi5ZYKAkB/n68fn8b6gUF8s73e0hJzyH64XAqF+PaiDnrDvG3ZdtpF1KVmOHeeZWzUu7Ea7NaRjFX2Dx/wcaYWbFk59qZPiyCqhU0+RSFiPDYrc34V992rN1/iv5T1pF8LrvQ5xljeOe73fzfF9vp3qIW80Z31oSvVCnw/qRfhOEdYwxPL95CwvFzTBwYRtNaeol/cfWLaEDM8E4cOuWYy5+Ykl7gvrk2O88t2cqkVYk8FNGAKUM6auETpUqJ9yb97KIf6X+0KpH/bD3Oc71acmvL2iUdmte6uXkwC8d0JSfPTp/otWw8+Pu5/FkX8hgzK5ZFsUk80aMZb/Vpq8NoSpUir/1tK+rwzvc7TvDO93u4P6weY29qXBqhebW2IUF8PiGKGhXLMnj6er7dfvzSY6cychg4dR3/3eOoNqaVrpQqfd6f9P9geGfXiXP8eWE87UOCeKtPO01ATtKgegUWj4+iTb0qjJ+7iRmrD3D4VBZ9otew60Q6kx/u6PHVxpTyVF6b9NMLGd45nXmB0bNiqVgugClDIggs47tLLJSE6hXLMndUF267vjavfJnAnR/8zNnzucwb3dknVilVyl15bdLPzMmjjL9QLuD3Xcy12ZkwN47kczlMGdKROkGls2qkr7k4l394VCgh1SqweFwUHa/Tq5uVciWvnTKRkZNHxXIBVxyyefXLBNbtP827/dvToWE1F0TnO/z9hFfua+3qMJRSFq890i9oWeU56w4xe90hxt7UmAfDQ1wQmVJKuY7XJv30K5RKXLf/FK8s38EtLYJ5tldLF0WmlFKu47VJPyM77zfLKh85ncX4OXE0rFGBiQM74K/rsyulfJDXJv3MC78e6Wfm5DF6Viw2u2H60AiqOKlurlJKeRqvTfoZ2Y4TuXa74alF8exJTmfSoHAaB1dydWhKKeUyhSZ9EQkUkQ0iskVEdojI3632RiKyXkQSRWShiJS12stZ9xOtx0PzvdYLVvtuEbmjpDoFjjH9yoEBfLByL9/tSObFu1txU3Ndo10p5duKcqSfA9xqjGkPhAG9RKQL8E/gPWNMU+AM8Ii1/yPAGav9PWs/RKQVMABoDfQCPhaRErsiKiM7j9iDZ/hg5V76dQxhZLfQknorpZTyGIUmfeOQYd0tY90McCuw2GqfCdxvbfe27mM93kMck+V7AwuMMTnGmANAIhDplF5cJs9m53yujb0pGYQ3rMprD7TRJRaUUooijumLiL+IxAMpwApgH3DWGJNn7ZIEXCxoWh84AmA9ngbUyN9+hefkf68xIhIrIrGpqanF7xGQlWsDoG5QIJOHdKRcgC6xoJRSUMSkb4yxGWPCgBAcR+clNsndGDPVGBNhjIkIDr66MfjK5QIYf0sTYoZ3olZlXWJBKaUuKtYyDMaYsyKyCugKVBWRAOtoPgQ4au12FGgAJIlIABAEnMrXflH+5ziViPCcXnyllFK/U5TZO8EiUtXaLg/cDuwEVgF9rd2GAcus7eXWfazHfzTGGKt9gDW7pxHQDNjgrI4opZQqXFGO9OsCM62ZNn7AImPMVyKSACwQkdeAzcAn1v6fALNFJBE4jWPGDsaYHSKyCEgA8oBHjTE253ZHKaXUHxHHQbh7ioiIMLGxsa4OQymlPIqIxBljIq70mNdekauUUur3NOkrpZQP0aSvlFI+RJO+Ukr5EE36SinlQ9x69o6IpAKHLmuuCZx0QTiu4Ct99ZV+gvbVG7ljP68zxlxxSQO3TvpXIiKxBU1F8ja+0ldf6SdoX72Rp/VTh3eUUsqHaNJXSikf4olJf6qrAyhFvtJXX+knaF+9kUf10+PG9JVSSl09TzzSV0opdZU06SullA9xu6QvIjEikiIi2/O1VReRFSKy1/q3mtUuIjJRRBJFZKuIhLsu8uIpoJ//EpFdVl8+v1jHwHrsBaufu0XkDtdEfXWu1Nd8j/1FRIyI1LTue+xnCgX3VUQetz7bHSLydr52j/xcC/j5DRORdSISb5U8jbTaPf0zbSAiq0Qkwfr8/mS1e2ZeMsa41Q24CQgHtudrext43tp+HvintX0X8A0gQBdgvavjv8Z+9gQCrO1/5utnK2ALUA5ohKNGsb+r+3AtfbXaGwDf4bgAr6anf6Z/8Ll2B34Ayln3a3n651pAP78H7sz3Of7kJZ9pXSDc2q4M7LE+O4/MS253pG+M+RlH8ZX8egMzre2ZwP352mcZh3U4SjjWLZ1Ir82V+mmM+d78Wmx+HY6SkuDo5wJjTI4x5gCQiKNWsUco4DMFeA94Fsg/m8BjP1MosK/jgbeMMTnWPilWu8d+rgX00wBVrO0g4Ji17emf6XFjzCZrOx1H5cD6eGhecrukX4Daxpjj1vYJoLa1XR84km+/JKvNG4zEcbQAXthPEekNHDXGbLnsIa/rK9AcuFFE1ovIf0Wkk9XubX19EviXiBwB3gFesNq9pp8iEgp0ANbjoXnJU5L+Jcbx/cmr55mKyIs4SkrOdXUsJUFEKgB/Bf7m6lhKSQBQHcdX/WeARSIirg2pRIwH/myMaQD8mV9LqHoFEakELAGeNMacy/+YJ+UlT0n6yRe/Hln/Xvx6fBTHuPBFIVabxxKR4cA9wGDrBwm8r59NcIxhbxGRgzj6s0lE6uB9fQXHkd5S6+v+BsCOY5Eub+vrMGCptf0Zvw5VeXw/RaQMjoQ/1xhzsY8emZc8Jekvx/EDhfXvsnztQ62z5V2AtHxftzyOiPTCMcZ9nzEmK99Dy4EBIlJORBoBzYANrojRGYwx24wxtYwxocaYUBxJMdwYc7D0egAAA1lJREFUcwIv+0wtX+A4mYuINAfK4liV0as+Vxxj+Ddb27cCe61tj/5MrW9lnwA7jTHv5nvIM/OSq88kX34D5gPHgVwcyeARoAawEscP0Q9AdWtfAT7CMethGxDh6vivsZ+JOMYC463b5Hz7v2j1czfWDAlPuV2pr5c9fpBfZ+947Gf6B59rWWAOsB3YBNzq6Z9rAf28AYjDMSNpPdDRSz7TG3AM3WzN97t5l6fmJV2GQSmlfIinDO8opZRyAk36SinlQzTpK6WUD9Gkr5RSPkSTvlJK+RBN+kop5UM06StVykQkwNUxKN+lSV95FREJtdatnyEie0RkrojcJiKrrXXPL67xXtFaE36DiGy2FoC7+PxfRGSTdYuy2m8RkZ9EZLH1+nOvtH6OiIwWkY0iskVElljrDGHFM1lE1gNvi0gTEflWROKs92tp7XevtTDbZhH5QURqX/4eSl0TV18dpje9OfMGhOJYrK4tjoOaOCAGx1WSvYEvrP3eAB62tqviWCO9IlABCLTamwGx1vYtwP+3d/+uUQRhGMe/T4I/igQR22AnWAiXVIKkyF8ggqQKkiK26WwDgVybNAnWaeU6SWOhlSIIgjEEtLomEOy0EExx91rMe9wiq2gUhJvnA8vO7u3OwHL37uws984XSh6VKeA1sNjS/rVGuQusZ3kfOCDz5VP+yXkjy7eBF1m+ynju6ofA9v++pl4ma/Fjpk2ifkQcAUg6Bp5HREg6otwUoExYc1fSo9y+DFyn5I/ZkzQPDChpkUfeRMRJ1vsu63r5Q9u3JHUpN5IZyiQxI72IGGS2xjtAr/GwcCnXc8CTTOB1Eeif7xKYtXPQt0l01igPG9tDxt95Afcj4mPzREmbwCegQ+nRf/tJvQPafz/7wL2IOMyMqUuNz77megr4HBHzLefvAjsR8VTSErDZcozZuXlM32r1DFgfjctLWsj9V4DTiBgCD4DpP6x3FjjNVLwrbQdEycXel7ScbUtSp9H+KA3vatv5Zn/DQd9qtQVcAN7nENBW7n8MrEo6BG4y7p3/rg1KhslXwIdfHLcCrGU7x5T3DVB69j1Jbynpl83+KWfZNDOriHv6ZmYVcdA3M6uIg76ZWUUc9M3MKuKgb2ZWEQd9M7OKOOibmVXkO3TdJkHQNZ2xAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ] + }, + { + "cell_type": "code", + "source": [ + "#for A single city, say, Sao Paolo or City indexed 0 in cities:(price vs area)\n", + "\n", + "city1_a = []\n", + "city1_p = []\n", + "for i, row in df.iterrows():\n", + " if row[\"city\"] == cities[0]:\n", + " city1_a.append(row[\"area\"])\n", + " city1_p.append(row[\"total (R$)\"])\n", + "di3 = {\n", + " \"AREA\" : city1_a,\n", + " \"TOTAL PRICE\" : city1_p\n", + "}\n", + "\n", + "df3 = pd.DataFrame(di3)\n", + "\n", + "df3.plot(kind = \"scatter\", x = \"AREA\", y = \"TOTAL PRICE\")\n", + "plt.show()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 279 + }, + "id": "mLto0zlehkcy", + "outputId": "a5a5ef8e-e4ca-44d1-beeb-fd5aa18236c9" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ0AAAEGCAYAAAC+fkgiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAdN0lEQVR4nO3df3BV533n8fdHQghicJCBsARBoIFuhkyJYt9x6DrJpnGLsZsap7BenN2aSTyh09i7yTZZm7SZdRJntglp7F1PE3fx2mPIpCGOcQptnRDqeJt2Z40tHCwbO44V/xhEiY1BxqYBWaDv/nEfOQdZ9yLp6p4jpM9r5sw993ue85zn0RV8dZ7z3HMUEZiZmeWhoegGmJnZxOGkY2ZmuXHSMTOz3DjpmJlZbpx0zMwsN5OKbsBYMWvWrFi4cGHRzTAzO6vs2bPnpYiYPdTyTjrJwoULaW9vL7oZZmZnFUnPD6e8h9fMzCw3TjpmZpYbJx0zM8uNk46ZmeXGScfMzHLjpDMKDh/r4dH9L3P4WE/RTTEzG9M8ZbpG2/ce4IZtHTQ1NNDb18fG1cu4vG1e0c0yMxuTfKZTg8PHerhhWwcnevt4teckJ3r7uH5bh894zMwqcNKpQVf3cZoaTv8RNjU00NV9vKAWmZmNbU46NWhtmUpvX99psd6+PlpbphbUIjOzsc1JpwYzpzWzcfUypjQ1ML15ElOaGti4ehkzpzUX3TQzszHJEwlqdHnbPC5aPIuu7uO0tkx1wjEzq8JJZxTMnNbsZGNmNgQeXjMzs9w46ZiZWW6cdMzMLDd1SzqSpkh6SNKjkvZJ+kKKL5K0W1KnpO9Impzizel9Z9q+MFPXZ1P8KUmXZOIrU6xT0oZMfNBjmJlZsep5ptMDfDAi3gW0ASslLQe+AtwSEYuBbuCaVP4aoDvFb0nlkLQUWAu8E1gJfENSo6RG4OvApcBS4KpUlirHMDOzAtUt6UTZsfS2KS0BfBC4J8U3A1ek9VXpPWn7xZKU4lsjoicingU6gQvT0hkRz0TEa8BWYFXap9IxzMysQHW9ppPOSPYCLwK7gJ8DL0fEyVSkC+i/O+Y8YD9A2n4UmJmND9inUnxmlWMMbN96Se2S2g8dOlRLV83MbAjqmnQi4lREtAGtlM9M3lHP4w1XRGyKiFJElGbPnl10c8zMxr1cZq9FxMvAA8BvAjMk9X8ptRU4kNYPAPMB0vY3A4ez8QH7VIofrnIMMzMrUD1nr82WNCOtTwV+B3iScvJZk4qtA7an9R3pPWn7jyIiUnxtmt22CFgCPAQ8DCxJM9UmU55ssCPtU+kYZmZWoHreBmcusDnNMmsA7o6Iv5X0BLBV0peAnwB3pPJ3AN+U1AkcoZxEiIh9ku4GngBOAtdGxCkASdcBO4FG4M6I2JfquqHCMczMrEAqnxhYqVSK9vb2opthZnZWkbQnIkpDLe87EpiZWW6cdMzMLDdOOmZmlhsnHTMzy42TjpmZ5cZJx8zMcuOkY2ZmuXHSMTOz3DjpmJlZbpx0zMwsN046ZmaWGycdMzPLjZOOmZnlxknHzMxy46RjZma5cdIxM7PcOOmYmVlunHTMzCw3TjpmZpYbJx0zM8uNk46ZmeXGScfMzHJTt6Qjab6kByQ9IWmfpE+m+OclHZC0Ny2XZfb5rKROSU9JuiQTX5linZI2ZOKLJO1O8e9Impzizel9Z9q+sF79NDOzoavnmc5J4NMRsRRYDlwraWnadktEtKXlPoC0bS3wTmAl8A1JjZIaga8DlwJLgasy9Xwl1bUY6AauSfFrgO4UvyWVMzOzgtUt6UTEwYh4JK2/CjwJzKuyyypga0T0RMSzQCdwYVo6I+KZiHgN2AqskiTgg8A9af/NwBWZujan9XuAi1N5MzMrUC7XdNLw1ruB3Sl0naQOSXdKakmxecD+zG5dKVYpPhN4OSJODoifVlfafjSVH9iu9ZLaJbUfOnSopj6amdmZ1T3pSJoGbAM+FRGvALcBbwfagIPA1+rdhkoiYlNElCKiNHv27KKaYWY2YdQ16UhqopxwvhUR9wJExAsRcSoi+oDbKQ+fARwA5md2b02xSvHDwAxJkwbET6srbX9zKm9mZgWq5+w1AXcAT0bEzZn43EyxDwOPp/UdwNo082wRsAR4CHgYWJJmqk2mPNlgR0QE8ACwJu2/DtieqWtdWl8D/CiVNzOzAk06c5ERuwj4A+AxSXtT7E8ozz5rAwJ4DvhDgIjYJ+lu4AnKM9+ujYhTAJKuA3YCjcCdEbEv1XcDsFXSl4CfUE5ypNdvSuoEjlBOVGZmVjD5BKCsVCpFe3t70c0wMzurSNoTEaWhlvcdCczMLDdOOmZmlhsnnVF2+FgPj+5/mcPHeopuipnZmFPPiQQTzva9B7hhWwdNDQ309vWxcfUyLm+rdhMGM7OJxWc6o+TwsR5u2NbBid4+Xu05yYnePq7f1uEzHjOzDCedUdLVfZymhtN/nE0NDXR1Hy+oRWZmY4+TzihpbZlKb1/fabHevj5aW6YW1CIzs7HHSWeUzJzWzMbVy5jS1MD05klMaWpg4+plzJzWXHTTzMzGDE8kGEWXt81j6dxz2bv/Zdrmz2DxnOlFN8nMbExx0hlFnr1mZladh9dGiWevmZmdmZPOKPHsNTOzM3PSGSWevWZmdmZOOqPEs9fMzM7MEwlG0eVt87ho8Sy6uo/T2jLVCcfMbAAnnVE2c1qzk42ZWQUeXjMzs9w46ZiZWW6cdMzMLDdOOmZmlhsnHTMzy42TjpmZ5aZi0pH0PzLrnxyw7a4zVSxpvqQHJD0haV9/HZLOk7RL0tPptSXFJelWSZ2SOiSdn6lrXSr/tKR1mfgFkh5L+9wqSdWOYWZmxap2pvP+zPq6AduWDaHuk8CnI2IpsBy4VtJSYANwf0QsAe5P7wEuBZakZT1wG5QTCHAj8B7gQuDGTBK5Dfh4Zr+VKV7pGGZmVqBqSUcV1ockIg5GxCNp/VXgSWAesArYnIptBq5I66uALVH2IDBD0lzgEmBXRByJiG5gF7AybTs3Ih6MiAC2DKhrsGOYmVmBqt2RoCGdUTRk1vuTT+NwDiJpIfBuYDcwJyIOpk2/AOak9XnA/sxuXSlWLd41SJwqxxjYrvWUz6pYsGDBcLpkZmYjUC3pvBnYw68SzSOZbTHUA0iaBmwDPhURr6TLLuVKIkLSkOsaiWrHiIhNwCaAUqlU13aYmVmVpBMRC2utXFIT5YTzrYi4N4VfkDQ3Ig6mIbIXU/wAMD+ze2uKHQA+MCD+f1K8dZDy1Y5hZmYFqjZ77RJJawaJr5b0O2eqOM0kuwN4MiJuzmzawa8mJqwDtmfiV6dZbMuBo2mIbCewQlJLGuJbAexM216RtDwd6+oBdQ12DDMzK1C14bX/xuAX4P8B+BvKF/SruQj4A+AxSXtT7E+ALwN3S7oGeB64Mm27D7gM6AR+CXwUICKOSLoJeDiV+2JEHEnrnwDuAqYC308LVY5hZmYFUnni1yAbpPaIKFXY1hERQ5k2fdYolUrR3t5edDPMzM4qkvZUyhWDqTZl+lxJbzgTStdp/AxmMzMbtmpJ517gdknn9AfSTLS/TNvMzMyGpVrS+RzwAvC8pD2SHgGeBQ6lbWZmZsNSbcr0SWCDpC8Ai1O4MyKO59IyMzMbdyomHUm/P0h4Sf+XOzPfuzEzMxuSalOmf6/KtsDXdczMbJiqDa99NM+GmJnZ+Ff1IW6SGiXNyryfLGm9pCfr3zQzMxtvqt0GZy1wBOiQ9A+SVgDPUH7uzX/IqX1mZjaOVLum8znggojoTE/x/H/Amoj4m3yaZmZm40214bXXIqITID2M7WknHDMzq0W1M523SPrjzPsZ2fcD7hxtZmZ2RtWSzu3A9CrvzczMhqXalOkvAEiaFREv5dckMzMbr6rNXvuQpEOUZ691Sfo3ObbLzMzGoWoTCf478L6IeCuwGvizfJpkZmbjVbWkczIifgoQEbvx9RwzM6vRcGavvcWz18zMrBaevWZmZrk54+w1MzOz0VL1hp9mZmajyUnHzMxyM6KkI2n1EMrcKelFSY9nYp+XdEDS3rRcltn2WUmdkp6SdEkmvjLFOiVtyMQXSdqd4t+RNDnFm9P7zrR94Uj6aGZmo2+kZzq3DKHMXcDKwfaNiLa03AcgaSmwFnhn2ucb6Vk+jcDXKT9OYSlwVSoL8JVU12KgG7gmxa8BulP8llTOzMzGgJEmHZ2pQET8mPLzeIZiFbA1Inoi4lmgE7gwLZ0R8UxEvAZsBVZJEvBB4J60/2bgikxdm9P6PcDFqbyZmRVspEknajjmdZI60vBbS4rNA/ZnynSlWKX4TODliDg5IH5aXWn70VTezMwKVnHKtKTHGDy5CJgzwuPdBtyU6r0J+BrwsRHWVTNJ64H1AAsWLCiqGWZmE0a1L4d+aLQPFhEv9K9Luh342/T2ADA/U7Q1xagQP0z5+T6T0tlMtnx/XV2SJgFvTuUHa88mYBNAqVSq5ezNzMyGoOLwWkQ8P9hC+T/060dyMElzM28/DPTPbNsBrE0zzxYBS4CHgIeBJWmm2mTKkw12REQADwBr0v7rgO2Zutal9TXAj1J5MzMrWLUznddJejfwEeDfAc8C9w5hn28DHwBmSeoCbgQ+IKmN8vDac8AfAkTEPkl3A08AJ4FrI+JUquc6YCfQCNwZEfvSIW4Atkr6EvAT4I4UvwP4pqROyhMZ1g6lj2ZmVn+qdBIg6deBq9LyEvAd4DMR8bb8mpefUqkU7e3tRTfDzOysImlPRJSGWr7amc5PgX8EPhQRnany/1Jj+8zMbAKrNmX694GDwAOSbpd0MUP4fo6ZmVkl1SYS/HVErAXeQfmi/acoP1PnNkkr8mqgmZmNHxWTjqS7ACLiXyLiryLi9yhPTf4J5Yv4ZmZmw1JteG3ZwEBEdEfEpoi4uI5tMjOzcaraRII3panSg17HiYhH6tMkMzMbr6olnXmUb1MzWNIJyjfcNDMzG7JqSaczIpxYzMxs1PjJoWZmlptqZzo3AEiaAixOsc6IOFH3VpmZ2bhU7UznAUkbKT+rZjOwBdgvaaOkplxaZ2Zm40q1pLMROA9YFBEXRMT5wNuBGcCf59E4MzMbX6olnQ8BH4+IV/sDEfEK8EfAZfVumJmZjT/Vkk4M9hya9MgBP5/GzMyGrVrSeULS1QODkv4j5TtQm5mZDUu12Wv/CbhH0seAPSlWAqZSfuqnmZnZsFRLOtsj4vz0SIOlKXZfRNyfQ7vMzGwcqpZ0BJCSjBONmZnVrFrSmS3pjyttjIib69AeMzMbx6olnUZgGn5aqJmZjZJqSedgRHwxt5aYmdm4V23KtM9wzMxsVFVLOn46qJmZjaqKSScijtRSsaQ7Jb0o6fFM7DxJuyQ9nV5bUlySbpXUKalD0vmZfdal8k9LWpeJXyDpsbTPrZJU7RhmZla8ej5P5y5g5YDYBuD+iFhCeRr2hhS/FFiSlvXAbVBOIMCNwHuAC4EbM0nkNuDjmf1WnuEYZmZWsLolnYj4MTDwbGkV5cckkF6vyMS3RNmDwAxJc4FLgF0RcSQiuoFdwMq07dyIeDDdH27LgLoGO4aZmRUs7yeHzomIg2n9F8CctD4P2J8p15Vi1eJdg8SrHeMNJK2X1C6p/dChQyPojpmZDUdhj6tOZyh1vVv1mY4REZsiohQRpdmzZ9ezKWZmRv5J54U0NEZ6fTHFDwDzM+VaU6xavHWQeLVjmJlZwfJOOjuA/hlo64DtmfjVaRbbcuBoGiLbCayQ1JImEKwAdqZtr0hanmatXT2grsGOYWZmBat2R4KaSPo28AFglqQuyrPQvgzcLeka4HngylT8PspPI+0Efgl8FMrTtiXdBDycyn0xM5X7E5RnyE0Fvp8WqhzDzMwKpkEeDjohlUqlaG9vL7oZZmZnFUl7IqI01PKFTSQwM7OJx0nHzMxy46RjZma5cdIxM7PcOOmYmVlunHTMzCw3TjpmZpYbJx0zM8uNk46ZmeXGScfMzHLjpGNmZrlx0jEzs9w46ZiZWW6cdMzMLDdOOmZmlhsnHTMzy42TjpmZ5cZJx8zMcuOkY2ZmuXHSycHhYz08uv9lDh/rKbopZmaFmlR0A8a77XsPcMO2DpoaGujt62Pj6mVc3jav6GaZmRXCZzp1dPhYDzds6+BEbx+v9pzkRG8f12/r8BmPmU1YhSQdSc9JekzSXkntKXaepF2Snk6vLSkuSbdK6pTUIen8TD3rUvmnJa3LxC9I9XemfZV/L6Gr+zhNDaf/iJsaGujqPl5Ec8zMClfkmc5vRURbRJTS+w3A/RGxBLg/vQe4FFiSlvXAbVBOUsCNwHuAC4Eb+xNVKvPxzH4r69+dN2ptmUpvX99psd6+PlpbphbRHDOzwo2l4bVVwOa0vhm4IhPfEmUPAjMkzQUuAXZFxJGI6AZ2ASvTtnMj4sGICGBLpq5czZzWzMbVy5jS1MD05klMaWpg4+plzJzWXERzzMwKV9REggB+KCmA/xURm4A5EXEwbf8FMCetzwP2Z/btSrFq8a5B4m8gaT3lsycWLFhQS38qurxtHhctnkVX93FaW6Y64ZjZhFZU0nlvRByQ9BZgl6SfZjdGRKSEVFcp2W0CKJVKdTvezGnNTjZmZhQ0vBYRB9Lri8D3KF+TeSENjZFeX0zFDwDzM7u3pli1eOsgcTMzK1juSUfSOZKm968DK4DHgR1A/wy0dcD2tL4DuDrNYlsOHE3DcDuBFZJa0gSCFcDOtO0VScvTrLWrM3WZmVmBihhemwN8L81ingT8VUT8QNLDwN2SrgGeB65M5e8DLgM6gV8CHwWIiCOSbgIeTuW+GBFH0vongLuAqcD302JmZgVTeYKXlUqlaG9vL7oZZmZnFUl7Ml99OaOxNGXazMzGOScdMzPLjZNODnyXaTOzMt9lepQdPtZDV/dxzpncyL+8dorHDxzlpr97gqaGBl471cd1v7WYj7xngb+3Y2YTkicSJKMxkaD/MQYAJ3r7aGoQvX1v/Pk2TxJfXfMuP+LAzM56nkhQkOxjDE70lm/yOVjCAeg5GX7EgZlNSE46o2SwxxhU09cXfsSBmU04Tjqj4PCxHo4e7+XEyVND3ue1U8HuZw/XsVVmZmOPJxLUqP86zqQG0XtqeNfH/nznU6w+v9WTCsxswvCZTg2y13GO9Qz9LKffpAZ5iM3MJhQnnRoM9zrOQD0n+zhncuMotsjMbGxz0qlBa8tUXjs1/DOcfqcCPvQX/8SOvX7ygpkVI+8vr/uaTg1mTmumbf4Mdj/bPeI6TvT2cf22Di5aPMvXdswsV/3XpJsaGujt62Pj6mV1//6gz3RqcPhYT00Jp19TQ4Ov7ZhZrrLXpF/tOfn6H8D1PuNx0qnBD/f9YlTq6e3ro7Vl6qjUZWY2FINdk87jD2AnnRrc+8j+mutoahQbVy97fWjNNwc1szy0tkylt6/vtFgefwD7mk4NfvbCqzXt3yj4/n9+H4vnTAfK46vX39NBY4M41Rd8dU39x1fNbGKaOa2ZjauXcf2Aazr1vrbspFODoyf6zlyoilv+fdvrCefwsR4+891HT/uC6ae/+6gnGJhZ3VzeNo+LFs+iq/s4rS1Tc/m/xsNrI1Tr8JeAixbPev39vn8++oY7GvSeCvb989GajmNmVs3Mac28a/6M3P64ddIZoVovtjU3DrwbgSqUrBQ3Mzv7OOmM0Euvnqhp/xCnXbB751vPZdKAT2NSQzluZjZeOOmM0Pote0a8bwPw1TXvOu10dua0Zm6+so3mSeJNTY00TxI3X9nm6zlmNq6M24kEklYC/xNoBP53RHx5NOsf+c1vYMNl7xh0VloRF/XMzPI0Ls90JDUCXwcuBZYCV0laWmyrfuXmXT+rOBEh74t6ZmZ5GpdJB7gQ6IyIZyLiNWArsKrgNr3Ot70xs4lqvCadeUD2dgFdKXYaSesltUtqP3ToUG6N821vzGyiGq9JZ0giYlNElCKiNHv27Loco6lRXP2bC5jS1MD05klMaWrI5Vu/ZmZj0XidSHAAmJ9535pio+a5L/8uCzf83aDb3nLOJD7+bxfzr//VdN751jczc1ozn7z41z1BwMwmvPGadB4GlkhaRDnZrAU+MtoHGSzx7Pncbw+aVGZOa3ayMbMJb1wmnYg4Kek6YCflKdN3RsS+ehzruS//bj2qNTMbl8Zl0gGIiPuA+4puh5mZ/cqEnkhgZmb5ctIxM7PcOOmYmVlunHTMzCw3iogzl5oAJB0Cnh/h7rOAl0axOWcL93ticb8njuH0+W0RMeRv1zvpjAJJ7RFRKrodeXO/Jxb3e+KoZ589vGZmZrlx0jEzs9w46YyOTUU3oCDu98Tifk8cdeuzr+mYmVlufKZjZma5cdIxM7PcOOnUSNJKSU9J6pS0oej21ErSc5Iek7RXUnuKnSdpl6Sn02tLikvSranvHZLOz9SzLpV/WtK6ovpTiaQ7Jb0o6fFMbNT6KemC9HPsTPsq3x4OrkK/Py/pQPrM90q6LLPts6kPT0m6JBMf9Pde0iJJu1P8O5Im59e7yiTNl/SApCck7ZP0yRQft595lT4X+3lHhJcRLpQfm/Bz4NeAycCjwNKi21Vjn54DZg2IbQQ2pPUNwFfS+mXA9wEBy4HdKX4e8Ex6bUnrLUX3bUCf3g+cDzxej34CD6WySvteWnSfq/T788BnBim7NP1ONwOL0u96Y7Xfe+BuYG1a/0vgj4ruc2rLXOD8tD4d+Fnq37j9zKv0udDP22c6tbkQ6IyIZyLiNWArsKrgNtXDKmBzWt8MXJGJb4myB4EZkuYClwC7IuJIRHQDu4CVeTe6moj4MXBkQHhU+pm2nRsRD0b5X+OWTF2FqtDvSlYBWyOiJyKeBTop/84P+nuf/rL/IHBP2j/7MyxURByMiEfS+qvAk8A8xvFnXqXPleTyeTvp1GYesD/zvovqH+rZIIAfStojaX2KzYmIg2n9F8CctF6p/2frz2W0+jkvrQ+Mj2XXpWGkO/uHmBh+v2cCL0fEyQHxMUXSQuDdwG4myGc+oM9Q4OftpGMDvTcizgcuBa6V9P7sxvRX3LifZz9R+pncBrwdaAMOAl8rtjn1I2kasA34VES8kt02Xj/zQfpc6OftpFObA8D8zPvWFDtrRcSB9Poi8D3Kp9YvpOED0uuLqXil/p+tP5fR6ueBtD4wPiZFxAsRcSoi+oDbKX/mMPx+H6Y8DDVpQHxMkNRE+T/fb0XEvSk8rj/zwfpc9OftpFObh4ElaQbHZGAtsKPgNo2YpHMkTe9fB1YAj1PuU/8snXXA9rS+A7g6zfRZDhxNQxU7gRWSWtKp+4oUG+tGpZ9p2yuSlqdx76szdY05/f/pJh+m/JlDud9rJTVLWgQsoXyxfNDf+3Sm8ACwJu2f/RkWKn0OdwBPRsTNmU3j9jOv1OfCP+8iZ1eMh4XyLJefUZ7d8adFt6fGvvwa5ZkpjwL7+vtDeez2fuBp4O+B81JcwNdT3x8DSpm6Pkb5QmQn8NGi+zZIX79NeWihl/JY9DWj2U+glP4x/xz4C9LdP4peKvT7m6lfHek/nrmZ8n+a+vAUmdlYlX7v0+/QQ+nn8V2gueg+p3a9l/LQWQewNy2XjefPvEqfC/28fRscMzPLjYfXzMwsN046ZmaWGycdMzPLjZOOmZnlxknHzMxy46RjVgBJV0gKSe9I7xdKOp7u+vuEpC3pi31I+oCko5m7Au+V9NuV6jIby5x0zIpxFfBP6bXfzyOiDfgNyt/uvjKz7R8joi2z/P0Z6jIbk5x0zHKW7oX1XspfzFw7cHtEnKL8hbsz3jzxTHWZjTVOOmb5WwX8ICJ+BhyWdEF2o6QpwHuAH2TC7xswvPb2odRlNtY46Zjl7yrKzyQhvfYPi71d0l7gBeBgRHRk9hk4vPbzM9RlNiZNOnMRMxstks6j/OCr35AUlJ/KGKT7fEVEm6RZwP+VdHlEVLyBbKW6JP3X8P2tbIzymY5ZvtYA34yIt0XEwoiYDzxL5tbxEfES5Ucnf3aEdb2vTm03q5mTjlm+rqL8nKKsbbwxwfw18CZJ/Qlk4DWdNVXq8hCbjVm+y7SZmeXGZzpmZpYbJx0zM8uNk46ZmeXGScfMzHLjpGNmZrlx0jEzs9w46ZiZWW7+P3SQzYv65rhQAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ] + }, + { + "cell_type": "code", + "source": [ + "df.groupby('city').mean()#mean using groupby() method" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 237 + }, + "id": "hpP_1DqYCSqr", + "outputId": "ed3b0a1c-7280-4661-8458-b7ba529103e8" + }, + "execution_count": 10, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " area rooms bathroom parking spaces hoa (R$) \\\n", + "city \n", + "Belo Horizonte 207.411765 3.020668 2.402226 1.955485 2324.197138 \n", + "Campinas 137.561547 2.355217 1.960141 1.558030 628.922626 \n", + "Porto Alegre 103.609388 2.140821 1.725901 1.044426 491.618609 \n", + "Rio de Janeiro 105.347768 2.243837 1.756163 0.744171 1079.432378 \n", + "São Paulo 158.899439 2.558859 2.467641 1.877527 1169.627994 \n", + "\n", + " rent amount (R$) property tax (R$) fire insurance (R$) \\\n", + "city \n", + "Belo Horizonte 3664.127981 272.782194 53.675676 \n", + "Campinas 2364.290739 147.657679 32.388042 \n", + "Porto Alegre 2337.699916 124.021794 36.425817 \n", + "Rio de Janeiro 3232.904064 256.853431 42.483011 \n", + "São Paulo 4652.793783 495.701716 62.428911 \n", + "\n", + " total (R$) \n", + "city \n", + "Belo Horizonte 6315.242448 \n", + "Campinas 3173.276671 \n", + "Porto Alegre 2989.782900 \n", + "Rio de Janeiro 4611.684877 \n", + "São Paulo 6380.831833 " + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
arearoomsbathroomparking spaceshoa (R$)rent amount (R$)property tax (R$)fire insurance (R$)total (R$)
city
Belo Horizonte207.4117653.0206682.4022261.9554852324.1971383664.127981272.78219453.6756766315.242448
Campinas137.5615472.3552171.9601411.558030628.9226262364.290739147.65767932.3880423173.276671
Porto Alegre103.6093882.1408211.7259011.044426491.6186092337.699916124.02179436.4258172989.782900
Rio de Janeiro105.3477682.2438371.7561630.7441711079.4323783232.904064256.85343142.4830114611.684877
São Paulo158.8994392.5588592.4676411.8775271169.6279944652.793783495.70171662.4289116380.831833
\n", + "
\n", + " \n", + " \n", + " \n", + "\n", + " \n", + "
\n", + "
\n", + " " + ] + }, + "metadata": {}, + "execution_count": 10 + } + ] + }, + { + "cell_type": "code", + "source": [ + "df.groupby('rooms').mean()#Using groupby to find the mean with respect to the no. of room" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 425 + }, + "id": "976aQKXg66r0", + "outputId": "565c1b4e-9f98-4e24-d23e-e697b77fa6cc" + }, + "execution_count": 11, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " area bathroom parking spaces hoa (R$) rent amount (R$) \\\n", + "rooms \n", + "1 45.112062 1.086797 0.489405 1449.411573 2027.854931 \n", + "2 82.173109 1.562353 0.989916 624.528403 2462.187227 \n", + "3 166.724992 2.595289 1.948914 1097.208626 4482.279596 \n", + "4 314.054224 3.893443 3.184111 1875.482346 7155.170240 \n", + "5 501.274306 4.631944 4.041667 1880.079861 8227.239583 \n", + "6 425.573529 4.808824 3.926471 483.205882 7466.397059 \n", + "7 464.277778 5.388889 3.861111 45.861111 8865.277778 \n", + "8 468.545455 5.363636 3.454545 40.909091 9872.727273 \n", + "9 400.000000 4.000000 4.000000 100.000000 12000.000000 \n", + "10 380.333333 6.666667 7.666667 0.000000 8243.333333 \n", + "13 439.000000 4.000000 3.000000 0.000000 15000.000000 \n", + "\n", + " property tax (R$) fire insurance (R$) total (R$) \n", + "rooms \n", + "1 203.370416 26.719641 3707.640994 \n", + "2 134.546218 32.880672 3254.217815 \n", + "3 369.907617 60.977057 6010.659223 \n", + "4 888.208701 98.583859 10017.626103 \n", + "5 1024.631944 122.767361 11255.065972 \n", + "6 928.926471 117.382353 8996.088235 \n", + "7 917.305556 137.777778 9966.638889 \n", + "8 786.636364 156.818182 10857.272727 \n", + "9 500.000000 181.000000 12780.000000 \n", + "10 808.666667 127.000000 9178.666667 \n", + "13 667.000000 229.000000 15900.000000 " + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
areabathroomparking spaceshoa (R$)rent amount (R$)property tax (R$)fire insurance (R$)total (R$)
rooms
145.1120621.0867970.4894051449.4115732027.854931203.37041626.7196413707.640994
282.1731091.5623530.989916624.5284032462.187227134.54621832.8806723254.217815
3166.7249922.5952891.9489141097.2086264482.279596369.90761760.9770576010.659223
4314.0542243.8934433.1841111875.4823467155.170240888.20870198.58385910017.626103
5501.2743064.6319444.0416671880.0798618227.2395831024.631944122.76736111255.065972
6425.5735294.8088243.926471483.2058827466.397059928.926471117.3823538996.088235
7464.2777785.3888893.86111145.8611118865.277778917.305556137.7777789966.638889
8468.5454555.3636363.45454540.9090919872.727273786.636364156.81818210857.272727
9400.0000004.0000004.000000100.00000012000.000000500.000000181.00000012780.000000
10380.3333336.6666677.6666670.0000008243.333333808.666667127.0000009178.666667
13439.0000004.0000003.0000000.00000015000.000000667.000000229.00000015900.000000
\n", + "
\n", + " \n", + " \n", + " \n", + "\n", + " \n", + "
\n", + "
\n", + " " + ] + }, + "metadata": {}, + "execution_count": 11 + } + ] + }, + { + "cell_type": "code", + "source": [ + "df.groupby('rooms').mean().plot(y = 'hoa (R$)')#Variation for number of rooms with the house assocation tax with number of rooms\n", + "plt.show()" + ], + "metadata": { + "id": "O0lh6xYXk0ar", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 279 + }, + "outputId": "d09c5885-64ab-492a-d0de-bbd0521db27e" + }, + "execution_count": 12, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEGCAYAAACJnEVTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3de3xU9Z3/8ddnJvdkICFMJpgA4ZJMQEUUVKw3QEVtXbVuu9Xdqn3U1brVbatd29pfV+12u9t2t7X14bZdrVSr1rZba7W7VkkV7yKCIkIghKuES65ACCHX+fz+mBMcISGXmcyZzHyej0cemfnOOXM+h8s7J9/5nu9XVBVjjDGpweN2AcYYY+LHQt8YY1KIhb4xxqQQC31jjEkhFvrGGJNC0twuYDATJ07UsrIyt8swxpgxY/Xq1U2q6u/vtYQP/bKyMlatWuV2GcYYM2aIyI6BXrPuHWOMSSEW+sYYk0Is9I0xJoUkfJ++MSY1dHd3U1dXR0dHh9uljBlZWVmUlpaSnp4+5H0s9I0xCaGurg6fz0dZWRki4nY5CU9VaW5upq6ujmnTpg15P+veMcYkhI6ODgoLCy3wh0hEKCwsHPZvRhb6xpiEYYE/PCP587LuHQNAKKR09oToDoXo6VV6ekN0h5TeXj3S1t0boifkvNar9PRtG/pw+55eZ9uj9ukNhR9PLczhk6eWun26xqQsC30DwN/895us2rEvLse6YFaAcVlD/+DJGBM7FvqGbU2HWLVjH5fNmcTcyfmkeYQ0r4d0r5Dm8ZDmFdK9HrweOaYtzeN890p4v6Nei3yflzc1cuOvVlFbf5B5Uye4fdrGfMT27du57LLLWLduXczf+49//CNr167lrrvu4p577uHBBx/E7/fT1dXFP//zP3PNNdd8ZPt77rmHe+6558jzxsZGrr32Wp577rmoa7HQN1RV7wXgG5dWUlqQM2rHqSz2AVCzt81C36SUH/zgBzzzzDNHnt9222380z/9E7W1tcybN49PfepTpKenU11dzT/8wz9QU1PDM888wx133ME111yD3+9n0qRJvP7665x99tlR1WKhb1i2vp7Zk8aNauADlORnk5vhZVP9wVE9jhn7vv2n9VTvbo3pe84+YRx3/9WJx92mt7eXG2+8kTfeeIOSkhKefvppsrOzWbNmDTfffDPt7e3MmDGDpUuXUlBQwIMPPsgDDzxAV1cXM2fO5NFHHyUn56P/jzZt2kRmZiYTJ0485njl5eXk5OSwb98+ioqKuOeee/j85z/Ptm3b+PrXv86uXbuObHvllVfy+OOPRx36NnonxTW1dbL6g31cNDsw6sfyeITygI+avRb6JjHV1tZyyy23sH79evLz83nyyScBuO666/j+97/P2rVrOfnkk/n2t78NwFVXXcXbb7/Ne++9x6xZs3jooYeOec/XX3+d0047rd/jvfPOO5SXl1NUVARARkYGTU1NhEIhsrOzmTlz5pFt58+fz6uvvhr1OdqVfop7cUMDqsQl9AGCAR9VG+pRVRueZwY02BX5aJk2bRpz584FYN68eWzfvp0DBw6wf/9+zj//fACuv/56Pv3pTwOwbt06vvWtb7F//37a2tq4+OKLj3nPPXv24Pd/dJbje++9l1/+8pds2rSJP/3pT0fav//973PHHXfw3HPP8e677/Kv//qvnHLKKQAUFRWxe/fuqM/RrvRT3LLqvZTkZ3PiCePicryKYh8th7poauuKy/GMGY7MzMwjj71eLz09Pcfd/nOf+xz3338/77//PnfffXe/N0plZ2cf037bbbexfv16nnzySW644YYjr5eUlPDrX/+aW2+9lZtuuomrrrrqyD4dHR1kZ2dHc3qAhX5Ka+/q4dXaJi6aHYjbVXffh7nWr2/GivHjx1NQUHCka+XRRx89ctV/8OBBJk2aRHd3N48//ni/+8+aNYvNmzf3+9rll1/O/PnzeeSRRwBYv349AB6Ph3nz5nHo0KEj227atImTTjop6vOx0E9hr9Y20dkTilvXDkBFoG8Ej4W+GTseeeQR7rjjDubMmcOaNWu46667APjOd77DmWeeydlnn01lZWW/+5533nm8++67qGq/r99111386Ec/IhQK8dRTT3HWWWexdOlSlixZwn333Xdku+XLl/OJT3wi+pNR1YT+mjdvnprRcftv1+jJdz+nXT29cTtmKBTSU/9lmX799+/F7ZhmbKiurna7hFHzpS99Sauqqoa8/d13331M27nnnqstLS3HtPf35was0gEy1a70U1RPb4gXN9azuLKIdG/8/hmICBWBPDbalb5JId/85jdpb28f8vYLFy78yPPGxkZuv/12CgoKoq5l0P/tIrJURBpEZF1E229FZI3ztV1E1jjtZSJyOOK1n0fsM09E3heRzSJyn9jQDVet3rGPfe3dXDS7OO7HDgZ81NYfJBTq/9ddk7p0gC6QsS4QCHD55ZcPefujQ9/v93PllVces91I/ryGcon3MHDJUQf6jKrOVdW5wJPAHyJe3tL3mqreHNH+M+BGoNz5+sh7mvhaVl1PhtfD+UH/4BvHWLB4HIe6etm1/3Dcj20SV1ZWFs3NzUkb/LGmznz6WVlZw9pv0HH6qvqKiJT195pztf43wOLjvYeITALGqeoK5/mvgCuBPw+rWhMTqkpVdT0fm1lIXmb8b9UIFucB4RE8kyeM7l3AZuwoLS2lrq6OxsZGt0sZM/pWzhqOaP/HnwvUq2ptRNs0EXkXaAW+paqvAiVAXcQ2dU5bv0TkJuAmgClTpkRZojnapvo2Pmhp5wvnT3fl+OV9I3jqD3LBrPiNHDKJLT09fVgrQJmRifYTvGuAJyKe7wGmqOqpwO3Ar0Vk2Hf9qOoDqjpfVecffSebid6y9eEJ1i5yKXDHZaVzwvgsG7ZpjAtGfKUvImnAVcC8vjZV7QQ6ncerRWQLUAHsAiJ/Byl12owLqjbUM3dyPkXjhtcXGEsVxTYHjzFuiOZK/0Jgo6oe6bYREb+IeJ3H0wl/YLtVVfcArSKywPkc4Drg6SiObUZoz4HDrK07wJIT3e1WCRb72Np4iO7ekKt1GJNqhjJk8wngTSAoInUicoPz0tV8tGsH4DxgrTOE8/fAzara4rz2ReAXwGZgC/Yhriv+Ul0PwJI43oXbn2DAR1dviB3Nhwbf2BgTM0MZvXPNAO2f66ftScJDOPvbfhUQ/cQRJirLquuZNjGXGf48V+v4cDqGNmYW+VytxZhUYnfkppDWjm5WbG1mSRwnWBvIzKI8PAI1e2O7UIYx5vgs9FPISzWNdPdqXCdYG0hWupeyibnU2GybxsSVhX4KqaqupzA3g1OnRD9/RywEAz421be5XYYxKcVCP0V09YR4aWMDF84K4PUkxrRHFQEf25sP0dHd63YpxqQMC/0UsWJrMwc7exKia6dPsNiHKmxusKt9Y+LFQj9FVFXXk53u5ZzyiW6XckTfCB6bZtmY+LHQTwF9E6ydVzGRrHSv2+UcUVaYQ0aax5ZONCaOLPRTwPu7DrC3tcOVufOPJ83rYaY/z6ZjMCaOLPRTQFV1PR6BxZVFbpdyjGCxz670jYkjC/0UsGx9PaeXTWBCbobbpRyjIuBjz4EODrR3u12KMSnBQj/JfdDcTk39wYQatRPpyIIqDXa1b0w8WOgnuWXV4bnzlyRYf36fYHF4uQXr1zcmPiz0k9yy6noqi31MKUzMZQlPGJ9FXmaa9esbEycW+kms5VAXq7a3JGzXDoCIUBGwETzGxIuFfhJ7cWMDISWhQx/CI3hq6g+iqm6XYkzSs9BPYsvW76V4XBYnl4x3u5Tjqgj42N/eTePBTrdLMSbpWegnqY7uXl6tbeKiBJg7fzDBYmdBFevXN2bUDWW5xKUi0iAi6yLa7hGRXSKyxvn6eMRrd4rIZhGpEZGLI9ovcdo2i8g3Yn8qJtJrtU0c7u5N+K4dCE+xDDaCx5h4GMqV/sPAJf2036uqc52vZwFEZDbhtXNPdPb5qYh4ncXS/wu4FJgNXONsa0bJsuq9+DLTWDC90O1SBlWYl8nEvAwbwWNMHAxljdxXRKRsiO93BfAbVe0EtonIZuAM57XNqroVQER+42xbPeyKzaB6Q8oLGxpYWFlERtrY6MGrCPjsSt+YOIgmEW4VkbVO90/fUkwlwM6IbeqctoHa+yUiN4nIKhFZ1djYGEWJqendD/bRfKiLJWOga6dPeA6eNkIhG8FjzGgaaej/DJgBzAX2AD+MWUWAqj6gqvNVdb7f74/lW6eEZdX1pHuFhcGx82cXDPg43N1L3b7DbpdiTFIbUeirar2q9qpqCHiQD7twdgGTIzYtddoGajcx1jd3/oLphfiy0t0uZ8gqbASPMXExotAXkUkRTz8J9I3seQa4WkQyRWQaUA6sBN4GykVkmohkEP6w95mRl20GsqWxjW1Nh1hyYmLOtTOQ8iJn4jULfWNG1aAf5IrIE8BCYKKI1AF3AwtFZC6gwHbgCwCqul5Efkf4A9oe4BZV7XXe51bgecALLFXV9TE/G4eqUlN/kOx0L1MLc0frMAnp+fX1AFw0a+z05wP4stIpyc+2pRONGWVDGb1zTT/NDx1n++8C3+2n/Vng2WFVN0KdPSGuuP91rjljCvdcfmI8DpkwqqrrmVM6nuLxWW6XMmyVxT42WegbM6rGxni+YcpK9/KxGYUsr2lIqflcGlo7WLNz/5gatROpotjHlsY2unpCbpdiTNJKytCH8NKAO5rb2dp0yO1S4qZqg9O1k6Bz5w8mGPDRE1K2N6fO35kx8Za0ob/IWQ92+cYGlyuJn6rqeqZMyKEikOd2KSNSYdMxGDPqkjb0SwvC4be8JjVCv62zhzc2N7NkDEywNpAZRbl4PWKhb8woStrQh/DV/sptLbR19rhdyqh7uaaRrt7QmJhgbSCZaV6mTcy1sfrGjKKkDv3FwSK6e5XXapN/Koeq6r0U5KQzb2rB4BsnsGDAZ2P1jRlFSR36p00twJeVxotJ3q/f3RvixY0NXDArQJp3bP+VVgR8fNDSTntX8v92ZowbxnZCDCLd6+G8Cj/LaxqTeiKvldtaaO3oGdNdO32CxXmowuaGNrdLMSYpJXXoQ7iLp/FgJ+t3t7pdyqipqq4nM83DueUT3S4lan0jeOzOXGNGR9KH/sKgHxGStounb4K1c8v95GQMeoN1wptamEtmmsfuzDVmlCR96BfmZXJKaX7SDt1cv7uVXfsPj9m7cI/m9QjlgTwbwWPMKEn60Ifw3bnv1e2nua3T7VJirqq6HhFYPKvI7VJipsJG8BgzalIm9FXhpZrkG7q5rLqe+VMLmJiX6XYpMRMM+Khv7WR/e5fbpRiTdFIi9GdPGoffl8mLSdbFs7OlnQ17WpNi1E6kIwuqWL++MTGXEqHv8QiLgn5e2dRId2/yzOD4lzE+wdpAKp3Qty4eY2IvJUIfwl08Bzt6WL1jn9ulxMyy9fWUF+UxbWJyLRRTPC4LX1aafZhrzChImdA/p9xPuleSZtbN/e1drNzeknRdOwAiEp6OYa/doGVMrA0a+iKyVEQaRGRdRNt/iMhGEVkrIk+JSL7TXiYih0VkjfP184h95onI+yKyWUTukzhPBZmXmcYZ0yYkzXj95TUN9IZ0zK2FO1QVxT427m1NqUVwjImHoVzpPwxcclRbFXCSqs4BNgF3Rry2RVXnOl83R7T/DLiR8GLp5f2856hbFCyitqGNnS3t8T50zC1bX0+RL5M5JePdLmVUVBb7aO3oob41+YbZGuOmQUNfVV8BWo5qW6aqfTNirQBKj/ceIjIJGKeqKzR86fYr4MqRlTxyi52FVV4a46N4Orp7eXlTIxfODuDxjM258wdzZEEV69c3JqZi0af/eeDPEc+nici7IvKyiJzrtJUAdRHb1Dlt/RKRm0RklYisamyM3dj66f48ygpzxnwXz5tbmmnv6k2au3D70xf6Nh2DMbEVVeiLyP8DeoDHnaY9wBRVPRW4Hfi1iIwb7vuq6gOqOl9V5/v9/mhKPMbCYBFvbGnmcFdvTN83npZV7yUvM42zZhS6XcqomZCbgd+XaVf6xsTYiENfRD4HXAb8ndNlg6p2qmqz83g1sAWoAHbx0S6gUqct7hZXFtHZE+LNrU1uHD5qoZDylw0NnF/hJzPN63Y5oyoY8NkNWsbE2IhCX0QuAb4GXK6q7RHtfhHxOo+nE/7Adquq7gFaRWSBM2rnOuDpqKsfgTOnTyAnwztmu3jW1O2n8WAnS05M3q6dPsFiH7UNB+lN4rUQjIm3oQzZfAJ4EwiKSJ2I3ADcD/iAqqOGZp4HrBWRNcDvgZtVte9D4C8CvwA2E/4NIPJzgLjJTPNy9syJLN/YOCaHAy5bX0+aR1gYTJ4J1gYSDPjo6A4lxWgrYxLFoBOwq+o1/TQ/NMC2TwJPDvDaKuCkYVU3ShZXFlFVXc+m+jaCzi3/Y0VV9V7OnD6B8dnpbpcy6o7MwVN/kLIku+vYGLekzB25kRY5V8ljbY79LY1tbGk8xJIkm2tnIOVFeYCN4DEmllIy9IvHZzF70rgx169fVR2eYO3CJB6qGSk3M43JE7LZaCN4jImZlAx9gEWVflbv2MeB9m63Sxmyqup6TjxhHCX52W6XEjfBwDi70jcmhlI29BdXFtEbUl6pHRsLqzQe7OSdD/alTNdOn2BxHtuaDtHZM3bvqzAmkaRs6M+dXEBBTvqYmXXzhQ31qJKUs2oeT0XAR09I2dZ0yO1SjEkKKRv6Xo9wfoWflzY1jolx4FXV9ZTkZzNr0tgabRStoK2iZUxMpWzoAyyqLKLlUBfv1e13u5TjOtTZw6ubm1hyYoA4z0jtuukT80jziIW+MTGS0qF/foUfj5DwXTyv1jbS1RNKua4dgIw0D9P9ubZ0ojExktKhn5+TwbypBQk/Xn9ZdT3js9M5o2yC26W4oiLgs4nXjImRlA59CHfxrNvVSkNrh9ul9KunN8SLGxu4oLKING9q/nUFAz52thzmUGfP4BsbY44rNVMkQqLfnftSTSP727tTYoK1gfRNx1DbYGvmGhOtlA/9ymIfk8ZnJeTduarKj1/YxJQJOVwwK3VDv/LICJ5WlysxZuxL+dAXERZVFvFabVPC3QD0/Pp61u1q5csXlJOeol07AJMLcshK91Cz1670jYlW6iZJhMXBIg519fL2tn1ul3JEKKT8+C+bmO7P5Yq5J7hdjqs8HqEi4LMRPMbEgIU+8LGZhWSkeRKqi+fZdXvYuPcgX76gPGU/wI1kI3iMiQ1LEyAnI42zphcmzIe5vSHlx3+ppSKQx1/NSe2r/D7BgI/Gg520HOpyuxRjxjQLfcfiyiK2NR1KiDle/vTebjY3tHHbhRV4PKl1B+5AbDoGY2LDQt9xZOimy108Pb0hfvJCLbMmjePiE1NrRs3j6Qt969c3JjpDCn0RWSoiDSKyLqJtgohUiUit873AaRcRuU9ENovIWhE5LWKf653ta0Xk+tifzshNKcxhhj/X9S6eP7y7i21Nh7j9IrvKj1Tky2R8drr16xsTpaFe6T8MXHJU2zeAF1S1HHjBeQ5wKVDufN0E/AzCPySAu4EzgTOAu/t+UCSKxZVFvLW1xbU7P7t7Q9z3Qi1zSsdz4azkX/h8OESEYMBnC6oYE6Uhhb6qvgK0HNV8BfCI8/gR4MqI9l9p2AogX0QmARcDVaraoqr7gCqO/UHiqkWVRXT1hnhtc5Mrx/+fVXXU7TvMbRdVpNxsmkNRUZxHTf1BVBN/KmxjElU0ffoBVd3jPN4L9N0yWgLsjNiuzmkbqP0YInKTiKwSkVWNjfFb2er0sgn4MtNc6dfv7Onl/hdrOW1KPgsr/HE//lgQLB7HwY4e9hxIzHmSjBkLYvJBroYvvWJ2+aWqD6jqfFWd7/fHLwDTvR7OrZjI8pqGuF9N/vbtnew+0MHtFwXtKn8AwYAzgsf69Y0ZsWhCv97ptsH53nd5vAuYHLFdqdM2UHtCWRQsor61k/W74zfPS0d3L/e/uJkzpk3g7JmFcTvuWFMRyAOwfn1johBN6D8D9I3AuR54OqL9OmcUzwLggNMN9DywREQKnA9wlzhtCWWhM3TzpTiO4nlsxQ4aDnZyu/XlH1d+TgaBcZl2pW9MFIY6ZPMJ4E0gKCJ1InID8D3gIhGpBS50ngM8C2wFNgMPAl8EUNUW4DvA287XvzhtCcXvy2RO6fi4TcnQ3tXDz1/ewtkzC1kw3a7yB1MR8NkNWsZEIW0oG6nqNQO8dEE/2ypwywDvsxRYOuTqXLIoWMR9L9bScqiLCbkZo3qsX725g6a2Lv77ouCoHidZVBb7eOTNHfSGFK/dx2DMsNkduf1YXFmEKry8aXSv9ts6e/jvl7ewMOhn3tSEumUhYVUEfHT1hNjR7P50GcaMRRb6/Ti5ZDwT8zJ5cePoDhd9+PVt7Gvv5rYLK0b1OMnEpmMwJjoW+v3weISFQT8v1zTQ0xsalWMcONzNA69s5cJZAU6ZnD8qx0hG5UU+RLAFVYwZIQv9ASyuLKK1o4d3Ptg/Ku//0GvbaO3o4baLykfl/ZNVdoaXqRNyqKm3pRONGQkL/QGcUz6RNI+Myiie/e1dLH1tG5eeVMyJJ4yP+fsnOxvBY8zIWegPYFxWOvPLCkZlvP4Dr2zlUFcPX7G+/BEJFvvY3txOR3dirWlszFhgoX8ciyuL2Lj3ILv2H47Zeza3dfLwG9u5bM4JRz6UNMNTEfDRG1K2NtoIHmOGy0L/OBZXxn5hlf9+ZSsd3b185ULryx8pG8FjzMhZ6B/HDH8ekydkxyz0Gw528Ks3t3PlqSXM8OfF5D1T0bSJuaR7hY3Wr2/MsFnoH4eIsDhYxOtbmmLSf/zT5Vvo7lW+tNiu8qOR7vUww59nV/rGjICF/iAWVRbR0R3iza3NUb3PngOH+fXKD/jUaaWUTcyNUXWpy0bwGDMyFvqDWDC9kOx0b9RdPP+1fDOqyq2LZ8aostQWLPaxa/9hDnZ0u12KMWOKhf4gstK9nD2zkBc3jnxhlbp97fz27Z38zfzJTJ6QE+MKU1OFs6BKbYPdmWvMcFjoD8HCYBF1+w6zpXFkAXP/i5sREbvKj6FKZwSPdfEYMzwW+kOwyBm6OZK7c3c0H+J/Vtfxt2dMYdL47FiXlrJK8rPJyfBa6BszTBb6Q1CSn01lsW9Eof+TF2pJ8whfXDhjFCpLXR6PUB7w2QgeY4bJQn+IFlUWsWr7PlqH8cHhlsY2/vjuLq47aypF47JGsbrUFAzYsE1jhmvEoS8iQRFZE/HVKiJfEZF7RGRXRPvHI/a5U0Q2i0iNiFwcm1OIj8WVRfSElFc3NQ15n5/8pZasdC83n29X+aOhIuCjqa2LprZOt0sxZswYceirao2qzlXVucA8oB14ynn53r7XVPVZABGZDVwNnAhcAvxURLzRlR8/p07OZ3x2+pC7eDbVH+RPa3dz/cfKKMzLHOXqUlNl8TgANlm/vjFDFqvunQuALaq64zjbXAH8RlU7VXUb4YXTz4jR8UddmtfD+RV+Xt7UQCg0+NDNH/9lE7kZadx07vQ4VJeaKorDU1nUWBePMUMWq9C/Gngi4vmtIrJWRJaKSN/iryXAzoht6py2Y4jITSKySkRWNTaO7pKFw7Go0k9TWxfv7zpw3O3W7z7As+/v5fPnTKNglBdWT2X+vEwKctKtX9+YYYg69EUkA7gc+B+n6WfADGAusAf44XDfU1UfUNX5qjrf7/dHW2LMnF9RhMjgQzd//JdaxmWlccM50+JUWWoSEZuOwZhhisWV/qXAO6paD6Cq9araq6oh4EE+7MLZBUyO2K/UaRszJuRmcOrkfJYfZ2GVtXX7qaqu58ZzpzM+Oz2O1aWmymIfm+rbRny3tDGpJhahfw0RXTsiMinitU8C65zHzwBXi0imiEwDyoGVMTh+XC2uLGJt3QEaDnb0+/qPqjaRn5PO584ui29hKaqi2EdbZ09MF7oxJplFFfoikgtcBPwhovkHIvK+iKwFFgG3AajqeuB3QDXwHHCLqo659e767s59qebYzxpW79jHSzWNfOG8Gfiy7Co/HoIBW1DFmOGIKvRV9ZCqFqrqgYi2a1X1ZFWdo6qXq+qeiNe+q6ozVDWoqn+O5thumT1pHMXjsvqddfPeqk0U5mZw/cemulBZaioP9M3BYxOvGTMUdkfuMIkIiyr9vFrbRFdP6Ej7W1ubeW1zE/+wcAY5GWkuVphaxmenM2l8ll3pGzNEFvojsChYRFtnD6u2twCgqvywahNFvkw+u8Cu8uMtWOyzpRONGSIL/RE4e+ZEMryeI6N43tjSzMptLdyyaCZZ6WPmJuOkEQz42NLQRk9vaPCNjUlxFvojkJuZxpnTJxxZWOWHy2qYND6Lz5w+efCdTcxVBHx09YbY3tzudinGJDwL/RFaFCxiS+MhHluxg3c+2M+ti+0q3y3BYhvBY8xQWeiP0GJn6Oa3/1RNaUE2n55nV/lumVmUh0dsFS1jhsJCf4TKJuYyfWIuPSHlS4vLyUizP0q3ZKV7KSvMtdA3ZggsqaLwqfmlnDI5n6tO63feOBNHFbaKljFDYqEfhS8unMnTt5xNmtf+GN1WUexje/MhOrrH3E3exsSVpZVJCsGAj5DC5ga7M9eY47HQN0kh6CyoYl08xhyfhb5JCmWFuWR4PfZhrjGDsNA3SSHN62FGUZ4tnWjMICz0TdIIBvJskXRjBmGhb5JGRbGP3Qc6aO3odrsUYxKWhb5JGn0LqtRaF48xA7LQN0mjbw4em2bZmIFFHfoist1ZHnGNiKxy2iaISJWI1DrfC5x2EZH7RGSziKwVkdOiPb4xfUrys8nN8Fq/vjHHEasr/UWqOldV5zvPvwG8oKrlwAvOc4BLCS+IXg7cBPwsRsc3BhGhothnI3iMOY7R6t65AnjEefwIcGVE+680bAWQLyKTRqkGk4KCAR81ew+iqm6XYkxCikXoK7BMRFaLyE1OWyBiQfS9QMB5XALsjNi3zmn7CBG5SURWiciqxsbGGJRoUkWw2Me+9m4a2zrdLsWYhBSL0D9HVU8j3HVzi4icF/mihi+5hnXZpaoPqOp8VZ3v9/tjUKJJFX0jeDbusS4eY2anjzcAAA5qSURBVPoTdeir6i7newPwFHAGUN/XbeN8b3A23wVErjZS6rQZExMnlY4nN8PL42/tcLsUYxJSVKEvIrki4ut7DCwB1gHPANc7m10PPO08fga4zhnFswA4ENENZEzUxmWlc/P5M3h+fT0rt7W4XY4xCSfaK/0A8JqIvAesBP5PVZ8DvgdcJCK1wIXOc4Bnga3AZuBB4ItRHt+YY/z9udMJjMvk357dYB/oGnOUtGh2VtWtwCn9tDcDF/TTrsAt0RzTmMFkZ3j56pIgX/v9Wv7v/T1cNucEt0syJmHYHbkmKf31aaVUFvv4wXM1dPbYalrG9LHQN0nJ6xHu/PgsPmhp57EVH7hdjjEJw0LfJK3zK/ycWz6R+16o5UC7zbxpDFjomyR356WzaO3o5r9e2ux2KcYkBAt9k9RmnzCOvz6tlIdf387Olna3yzHGdRb6Jul9dUkFHg/857Iat0sxxnUW+ibpTRqfzQ3nTOPpNbtZW7ff7XKMcZWFvkkJN58/g8LcDL77f3bDlkltFvomJfiy0vnyheW8ta2FFzY0DL6DMUnKQt+kjGvOmML0ibn8+5830NMbcrscY1xhoW9SRrrXw9cvrWRL4yF+u2rn4DsYk4Qs9E1KWTI7wOllBdxbVUtbZ4/b5RgTdxb6JqWICN/8+Cya2jp54OUtbpdjTNxZ6JuUc+qUAj4xZxIPvrqN+tYOt8sxJq4s9E1K+vrFlfSEQvxo2Sa3SzEmriz0TUqaUpjDdWeV8T+rd1Kz19bTNanDQt+krH9cPJO8zDT+/c8b3C7FmLgZceiLyGQRWS4i1SKyXkS+7LTfIyK7RGSN8/XxiH3uFJHNIlIjIhfH4gSMGan8nAxuXTyTl2oaea22ye1yjImLaK70e4CvqupsYAFwi4jMdl67V1XnOl/PAjivXQ2cCFwC/FREvFEc35ioXXdWGSX52fzbsxsIhWx6BpP8Rhz6qrpHVd9xHh8ENgAlx9nlCuA3qtqpqtsIL45+xkiPb0wsZKV7+dolQar3tPLUu7vcLseYUReTPn0RKQNOBd5ymm4VkbUislRECpy2EiDyNsg6jv9Dwpi4+Ks5JzCndDw/XFZDR7etp2uSW9ShLyJ5wJPAV1S1FfgZMAOYC+wBfjiC97xJRFaJyKrGxsZoSzTmuDye8A1buw90sPT1bW6XY8yoiir0RSSdcOA/rqp/AFDVelXtVdUQ8CAfduHsAiZH7F7qtB1DVR9Q1fmqOt/v90dTojFDsmB6IRfOKuKny7fQ3NbpdjnGjJpoRu8I8BCwQVV/FNE+KWKzTwLrnMfPAFeLSKaITAPKgZUjPb4xsfaNSys53N3LfS/Uul2KMaMmLYp9zwauBd4XkTVO2zeBa0RkLqDAduALAKq6XkR+B1QTHvlzi6paB6pJGDOLfFx9+mQef+sDrv9YGdP9eW6XZEzMSaKvIjR//nxdtWqV22WYFNF4sJOF/7Gcc8v9/PzaeW6XY8yIiMhqVZ3f32t2R64xEfy+TL5w/gyeW7+XVdtb3C7HmJiz0DfmKH9/7jSKfJl891lbT9ckHwt9Y46Sk5HGV5dU8O4H+3n2/b1ul2NMTFnoG9OPT82bTDDg4wfPb6Srx9bTNcnDQt+Yfng9wp0fr2RHczuPrdjhdjnGxIyFvjEDOL/CzzkzJ3Lfi7UcONztdjnGxISFvjEDEAlf7R843M1Pl292uxxjYsJC35jjOPGE8Xzy1BJ++cZ26va1u12OMVGz0DdmEP+0JIgA//l8jdulGBM1C31jBnFCfjY3nDONP67Zzft1B9wuJ6aa2zpZXtNAQ2uH26WYOIlm7h1jUsbNC2fwm7d38t1nq3nixgWE5xscexpaO1ixrYWV25p5a2sLtQ1tAKR5hItPLOazC6ayYPqEMXt+ZnAW+sYMwbisdL58QTl3P7OeFzc2cMGsgNslDcmu/Yd5a2s44Fdub2Fb0yEA8jLTmF9WwFWnlXJyyXheqW3kd6t28n/v72FmUR7XLpjKVaeV4MtKd/kMTKzZhGvGDFF3b4gl976C1yM89+VzSfMmVu+oqrKjuZ2V21pY4VzJ79p/GIDx2emcXjaBBdMncMa0CcyeNO6Y+ju6e/nftXt4dMUO3tu5n5wML588tYTPLpjKrEnj3DglM0LHm3DNQt+YYXhu3V5ufmw1//bJk/nbM6e4WouqsqWxjRVbW1i5rYW3tjVT3xpeAKYwN4Mzpk3gzGkTOHN6IcGAD49n6F02a+v28+ibO3jmvd109oQ4vayAzy6YyqUnTSIjLbF+2JljWegbEyOqyqd//ibbm9t5+Y6F5GbGr4c0FFJq6g/y1tZmVm4PB31TWxcARb5MzpxeyJnTwlfzM/x5MemX39/exe9X1/HYih1sb25nYl4Gnzl9Mn975lRK8rOjfn8zOiz0jYmhdz7Yx1U/fYMzyiYweUIO6V4hzSukeTxkpHlI8whpXg/pHiHdeZ7u9ZDmDX9Pd7ZN9/a1h7dNc7bJcL6neTwc6uzh7e0trNjawtvbW47cGVySn+1cxU/gzGmFTC3MGdUPX0Mh5bXNTTy6YgcvbKgHYHFlgOvOmso5MycO67cIM/os9I2JsR8uq+FP7+2mu1fpCYXo6VW6esPfe0Ihuntj+/+qrDDH6a4p5MzpEygtyInp+w9H3b52nlj5Ab9ZuZPmQ12UFebw2QVT+dS8UvJzMlyry3zIQt+YOFNVekJKT6/S7fxQ6O4N0R3xg6Gr58MfED294e992/b0hujqDZHh9XDqlAKKx2e5fUrH6Ozp5bl1e3lsxQ7e3r6PzDQPl59yAteeNZU5pflul5fSEir0ReQS4CeAF/iFqn7veNtb6BuT+DbsaeWxFTt46t1dtHf1ckrpeD67YCp/dcoJZKV73S4v5SRM6IuIF9gEXATUAW8D16hq9UD7WOgbM3a0dnTz1Du7eHTFDjY3tJGfk87fzJ/M3505hamFuW6XlzISKfTPAu5R1Yud53cCqOq/D7SPhb4xY4+qsmJrC4+t2MHz6/fSE1Km+3Px2p2+Q1aQk8Hvbj5rRPseL/TjfUduCbAz4nkdcObRG4nITcBNAFOmuDsW2hgzfCLCWTMKOWtGIfWtHfz27Z1s3NvqdlljyrhRuhs6IadhUNUHgAcgfKXvcjnGmCgExmXxpQvK3S7DOOJ9a90uYHLE81KnzRhjTBzEO/TfBspFZJqIZABXA8/EuQZjjElZce3eUdUeEbkVeJ7wkM2lqro+njUYY0wqi3ufvqo+Czwb7+MaY4yxlbOMMSalWOgbY0wKsdA3xpgUYqFvjDEpJOFn2RSRRmCH23Ucx0Sgye0iYsTOJfEky3mAnUs8TVVVf38vJHzoJzoRWTXQHBdjjZ1L4kmW8wA7l0Rh3TvGGJNCLPSNMSaFWOhH7wG3C4ghO5fEkyznAXYuCcH69I0xJoXYlb4xxqQQC31jjEkhFvojJCKTRWS5iFSLyHoR+bLbNUVDRLwi8q6I/K/btURDRPJF5PcislFENjhLdI5JInKb829rnYg8ISJZbtc0VCKyVEQaRGRdRNsEEakSkVrne4GbNQ7VAOfyH86/sbUi8pSI5LtZ43BY6I9cD/BVVZ0NLABuEZHZLtcUjS8DG9wuIgZ+AjynqpXAKYzRcxKREuBLwHxVPYnwVORXu1vVsDwMXHJU2zeAF1S1HHjBeT4WPMyx51IFnKSqc4BNwJ3xLmqkLPRHSFX3qOo7zuODhMOlxN2qRkZESoFPAL9wu5ZoiMh44DzgIQBV7VLV/e5WFZU0IFtE0oAcYLfL9QyZqr4CtBzVfAXwiPP4EeDKuBY1Qv2di6ouU9Ue5+kKwqsAjgkW+jEgImXAqcBb7lYyYj8GvgaE3C4kStOARuCXTlfVL0Qk1+2iRkJVdwH/CXwA7AEOqOoyd6uKWkBV9ziP9wIBN4uJoc8Df3a7iKGy0I+SiOQBTwJfUdVWt+sZLhG5DGhQ1dVu1xIDacBpwM9U9VTgEGOnC+EjnP7uKwj/IDsByBWRz7pbVexoeKz4mB8vLiL/j3BX7+Nu1zJUFvpREJF0woH/uKr+we16Ruhs4HIR2Q78BlgsIo+5W9KI1QF1qtr3G9fvCf8QGIsuBLapaqOqdgN/AD7mck3RqheRSQDO9waX64mKiHwOuAz4Ox1DNzxZ6I+QiAjhvuMNqvojt+sZKVW9U1VLVbWM8AeFL6rqmLyiVNW9wE4RCTpNFwDVLpYUjQ+ABSKS4/xbu4Ax+qF0hGeA653H1wNPu1hLVETkEsJdoperarvb9QyHhf7InQ1cS/jKeI3z9XG3izL8I/C4iKwF5gL/5nI9I+L8tvJ74B3gfcL/V8fMrf8i8gTwJhAUkToRuQH4HnCRiNQS/k3me27WOFQDnMv9gA+ocv7v/9zVIofBpmEwxpgUYlf6xhiTQiz0jTEmhVjoG2NMCrHQN8aYFGKhb4wxKcRC3xhjUoiFvjEOCbP/Eyap2T9wk9JEpExEakTkV8A64CFn/vr3ReQzzjbizJ9+dPtCEXlZRJ4Wka0i8j0R+TsRWelsN8PZ7tPOvu+JyCvuna0x4QmqjEl15YSnBSgBbiY8D/9E4G0npD9G+O7eo9tx2mYRnnp3K/ALVT3DWVTnH4GvAHcBF6vqrrG02IZJTnalbwzsUNUVwDnAE6raq6r1wMvA6cdpB3jbWVuhE9gC9E1//D5Q5jx+HXhYRG4kvBiKMa6x0DcmPAXzSHVGPA5FPA/h/CatqjcD3wImA6tFpDCK4xkTFQt9Yz70KvAZZ71gP+FVuFYep31IRGSGqr6lqncRXuRl8ijUbsyQWJ++MR96CjgLeI/wAh9fU9W9IjJQe+UQ3/c/RKQcEMJrw74X+9KNGRqbZdMYY1KIde8YY0wKsdA3xpgUYqFvjDEpxELfGGNSiIW+McakEAt9Y4xJIRb6xhiTQv4/94yyJMihWKEAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ] + }, + { + "cell_type": "code", + "source": [ + "df.groupby('rooms').mean().plot( y = 'property tax (R$)')#With increase in the rooms the property tax also increases but also decreases \n", + "plt.show()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 279 + }, + "id": "TuMaL8tV5iOh", + "outputId": "6e30f584-66f8-4863-bc4b-2f005bbeb6f6" + }, + "execution_count": 13, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEGCAYAAACJnEVTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3ddXhUV/rA8e+JewJJgCgEKx4huJRCjbYU6gXaQp26bF22sr/dUtu6FyhtKRWs1AVpizdk0OA2ERICxCCE2Pn9MRcWj0ySO/J+nicP99658g5J3jk5qrTWCCGEcA8eZgcghBCi6UjSF0IINyJJXwgh3IgkfSGEcCOS9IUQwo14mR3AmUREROg2bdqYHYYQQjiVlStX7tVaR57qNYdO+m3atCEtLc3sMIQQwqkopXad7jWp3hFCCDciSV8IIdyIJH0hhHAjDl2nL4SwT0VFBVlZWZSVlZkdimgEfn5+xMbG4u3tXetrJOkL4cKysrIIDg6mTZs2KKXMDkc0IK01+/btIysri4SEhFpfJ9U7QriwsrIywsPDJeG7IKUU4eHhdf4rTpK+EC5OEr7rqs/3VpK+aDJLt+1j8da9ZochhFuTpC+aRNrO/YybvIKxHy/n7flbkHUcRFNZuHAhS5YsqdM1c+bMISMjo8FieP311/n0008BGD9+PAkJCSQlJZGYmMi8efNOOv/ZZ589bn/t2rWMHz++QWKRpC8aXeb+Um7/bCXRYX6MSIzmlV8388BXqyirqDI7NOEgqqoa52ehsrLS9KRfWVnJ5MmTGTNmzNFjL7/8MqtWreL1119nwoQJR48vWrSIPn368P7779OrV6+jHwjdu3cnKysLq9VqdzyS9EWjKimr4JapaVRUVTNpfC/evDaJh87vyJxVOYz5aBn5JYfNDlE0op07d9KpUyfGjh1L586dufLKKyktLQVs06w8+uijpKSk8M033zB9+nS6d+9Ot27dePTRR4/eIygoiAceeICuXbsybNgw8vPzAdi2bRsXXnghPXv2ZNCgQWzcuBGwlaQnTJhAnz59uPrqq3n//fd57bXXSEpK4q+//iIhIYGKigoAiouLj9sHWLJkCXPnzuXhhx8mKSmJbdu28dFHH9GrVy8SExO54oorjr6HkSNHHi3Bf/DBB4wdO/ak/4P58+eTkpKCl9fJnSX79etHdnb20f0HH3yQl156iQkTJvD777/ToUOHo6+NGDGCL7/8sn7fiGPU2GVTKTUZuATYo7XuZhxrDnwFtAF2AldrrQuUrVXhDeAioBQYr7VON64ZBzxl3Pb/tNZT7Y5eOLSqas19X65ia/4Bpt7Ym3aRQQDcPbQDbSODePDrVYx6ZzEfj0ulc1SIydG6vue+W09GTnGD3rNLdAjPjOh6xnM2bdrEpEmTGDBgADfddBPvvvsuDz30EADh4eGkp6eTk5ND3759WblyJc2aNeP8889nzpw5jBo1ioMHD5Kamsprr73G888/z3PPPcfbb7/Nbbfdxvvvv0+HDh1Yvnw5d955J/PnzwdsXVWXLFmCp6cnzz77LEFBQUefOWTIEH744QdGjRrFl19+yeWXX35cP/f+/ftz6aWXcskll3DllVcCEBYWxq233grAU089xaRJk7jnnnv48MMPGTBgAAkJCbz66qssW7bspPe/ePFievbsecr/m59//plRo0Yd3ffx8Tn6oRYaGkpoaOjR11JTU5k4cSKPPPLImb8pNahNSf8T4MITjj0GzNNadwDmGfsAw4EOxtdtwHtw9EPiGaAP0Bt4RinVzK7IhcOb+NMG5m/cw7OXdmVgh4jjXruoexRf396PyupqrnxvCb9n5JkUpWhscXFxDBgwAIDrrruORYsWHX3tmmuuAeDvv/9myJAhREZG4uXlxdixY/nzzz8B8PDwOHrekesPHDjAkiVLuOqqq0hKSuL2229n9+7dR+971VVX4enpecp4brnlFqZMmQLAlClTuPHGG2t8D+vWrWPQoEF0796dadOmsX79egBatmzJ888/zznnnMOrr75K8+bNT7p29+7dREYeP+Hlww8/TMeOHRkzZsxxf9V8+OGHTJ06lTfffJPRo0ezc+fOo6+1aNGCnJycGmOtSY0lfa31n0qpNiccHgkMMbanAguBR43jn2pbK90ypVSYUirKOPc3rfV+AKXUb9g+SKbb/Q6EQ/rqbysf/bWDcf1ac33f1qc8p0dsGN/eNZBbP03j1s/SeHx4J24d1Fa6GDaSmkrkjeXE7+ex+4GBgfW6X3V1NWFhYaxateqU55zpvgMGDGDnzp0sXLiQqqoqunXrVuMzx48fz5w5c0hMTOSTTz5h4cKFR19bu3Yt4eHhp03I/v7+J/Wlf/nll7nyyit56623uOmmm1i5ciUAXbp04bvvvuPJJ58kJiaGm2+++Wi9fllZGf7+/jXGWpP61um31Fof+VjNBVoa2zFA5jHnZRnHTnf8JEqp25RSaUqptCN/5gjnsmz7Pp6cvY5BHSJ4+pIuZzy3VagfX9/ej+HdWvGfHzfy6Mw1lFdWN1GkoilYrVaWLl0KwBdffMHAgQNPOqd379788ccf7N27l6qqKqZPn87ZZ58NQHV1NTNmzDju+pCQEBISEvjmm28A2+jU1atXn/L5wcHBlJSUHHfshhtuYMyYMact5Z94TUlJCVFRUVRUVDBt2rSjx1esWMFPP/2ExWLhlVdeYceOHSfdq3PnzmzduvWUz7n77ruprq7ml19+AWx/UQB4e3uTkpJyXAybN2+u1QdUTexuyDVK9Q3W/05r/aHWOlVrnXrin0TC8e3ad5AJn6+kdXgAb49Jwcuz5h8xfx9P3h6dwj1D2/N1WhbXTVrO/oPlTRCtaApnnXUW77zzDp07d6agoIA77rjjpHOioqKYOHEi55xzDomJifTs2ZORI0cCtlL7ihUr6NatG/Pnz+ef//wnANOmTWPSpEkkJibStWtXvv3221M+f8SIEcyePftoQy7A2LFjKSgoYPTo0ae85tprr+Xll18mOTmZbdu28a9//Ys+ffowYMAAOnXqBMDhw4e59dZbmTx5MtHR0bz66qvcdNNNJ3VHHj58+NGqqhMppXjqqad46aWXAHj33Xfp378/kyZNYsKECUePAyxYsICLL774tP/Ptaa1rvELW4PtumP2NwFRxnYUsMnY/gAYfeJ5wGjgg2OOH3fe6b569uyphfMoOlSuh76yQCc+94vekX+gXveYY8nSHZ78UQ96cb7enFvcwBG6n4yMDFOfv2PHDt21a1e77hEYGNhA0fzPN998o6+77roGv+/pjBo1Sm/evLnW5z/zzDPH7ZeVlek+ffroioqKk8491fcYSNOnyav1LenPBcYZ2+OAb485foOy6QsUaVs10C/A+UqpZkYD7vnGMeEiKququWtaOrv2lfLe2J60iah7XS3AyKQYpt/al9LySi5/dwl/bJYqPtGw7rnnHh577DGefvrpJnvmxIkTj2torsmQIUOO27darUycOPGU3T7rSukaRkYqpaZja4iNAPKw9cKZA3wNxAO7sHXZ3G902XwbWyNtKXCj1jrNuM9NwBPGbf+ttZ5SU3Cpqalalkt0Ds/OXc8nS3by4hXduaZXvN33yyoo5ZapaWzOK+Gfl3RhXH+ZJbI+NmzYQOfOnc0OQzSiU32PlVIrtdappzq/Nr13Tl3pBcNOca4G7jrNfSYDk2t6nnA+ny3bxSdLdnLLwIQGSfgAsc0CmHFHf+7/0sKz32WwNf8Az4zoinct2gjE8bTW8oHpomoqtJ+K/AYJuyzaspdn567nnLMiefyihi1RBvl68cH1qdw+uC2fL7Ny45S/KSqtqPlCcZSfnx/79u2TuY5ckDbm0/fz86vTdTVW75hJqncc27b8A1z2zmKiQv2ZcUc/gv1qv3pPXX39dyZPzllLXLMAJo3vRUI92wzcjayc5dpOt3LWmap3JOmLeiksLeeyd5dQfKiCOXcNIK55QKM/c/n2fUz4fCXVGt67LoX+7SJqvkgIN3SmpC/VO6LOKqqquXNaOtkFh3j/+p5NkvAB+rQNZ85dA4gM9uWGSSv4Yrn9Mw4K4W4k6Ys60Vrzz2/Xs2TbPl64vDu92pw810hjah0eyKw7+9O/fQRPzF7L899lUFXtuH+tCuFoJOmLOvlkyU6mr7Byx5B2XNEz1pQYQvy8mTwulfH92zB58Q5unvo3JWXSwCtEbUjSF7W2YNMe/vV9Bud3acnD559laixenh48e2lX/m9UN/7aspcr3ltC5v5SU2MSwhlI0he1sjmvhHu+sHBWqxBeuyYJDw/H6Pd9Xd/WTL2xN7lFZYx8ZzF/79xvdkhCODRJ+qJG+w+Wc/PUv/Hz9uTjcakE+to/FLwhDewQwey7BhDq783Yj5bz2bJd7Nh7kNLySrNDE8LhONZvr3A45ZXVTPhsJXnFh/nqtr7EhNk/n3djaBcZxOw7+3PH5+k8PWfd0ePBvl60CPGlZYgfrUL8aBHiR0tjv2WILy2C/WgR4ouv16kX3BDC1UjSF6eltebJ2WtZsXM/b1ybRHK8Yy92Fhbgw2c392bFjv3sLiojr6SMPcWHySsuI6+4jOU79rOnpIyKqpN7+zQL8KblkQ+F4GM+FEL8jm5HBPnKNBDC6UnSF6f10V/b+WZlFvcObc/IpFOueeNwvDw96N/+9IO2qqs1BaXl5BUfNj4Uymzbxr97SsrYlFtMfslhTuwJqhREBPnSMsSXViH+3HlOO1Ic/INQiBNJ0hen9HtGHi/8tJGLu0dx/7kdzQ6nwXh4KMKDfAkP8qULp1+Mvapas+/A4f99IJQYHwrGXw2rMgsZP3kFs+7sT/sWwU34DoSwjyR9cZINu4u570sL3aJDeeWqRIfpqdOUPD0ULYzqnu6EnvR65v5SLnt3CeOn/M2sO/vTIrhuk14JYRapoBTHyS85zC1T0wjy8+KjG1Lx95EGzlOJax7A5PGp7DtQzs2fpElPIeE0JOmLo8oqqrj9szT2HTzMxzf0olWolF7PpEdsGG+NTmZ9ThH3fGGhskoWdBeOT5K+AGw9dR6buYZ0ayH/vTqJ7rEnV2mIk53bpSXPXdqVeRv38Ox362XeeuHwpE5fAPDuwm3MWZXDP87ryEXdo8wOx6lc368NWYWH+OCP7cQ1C+D2s9uZHZIQpyVJX5BdeIhXft3EiMRo7h7a3uxwnNKjF3Qiu+AQL/y0kegwf0YkRpsdkhCnJElfkLZzP1rD7YPbylqq9eThoXjlqkTyisv4x9eraRniR++Epp12WojakDp9gcVaiL+3J51aSX9ze/h5e/LRDanENvfn1k/T2JZ/wOyQhDiJJH2BxVpAj9hQvGSKAbuFBfjwyfjeeHsqxk9ZQX7JYbNDEuI48lvu5soqqlifU+zw8+o4k/jwACaN62WMefhb+vALhyJJ382tyy6islqTEh9mdiguJTEujLdGp7A2u4h7p6+SJR2Fw5Ck7+Ys1kIAKek3gvO6tOTZS7vy+4Y8npM+/MJBSO8dN2fJLCCuuT+Rwb5mh+KSbujXhsz9pXz01w7imgVw6+C2Zock3JwkfTeXvqtQuhY2sseHdya78BD//nED0WH+XNxDBr8J80j1jhvbXXSI3OIykqU+v1F5eCj+e3USqa2b8cDXq0iTdXyFiSTpu7H0Xbb6fFkIpPEd6cMfE+bPLZ+msV368AuTSNJ3YxZrAb5eHnSOOv1iIqLhNAv04ZMbe+GpFOOn/M3eA9KHXzQ9SfpuzJJZSPeYUHy85MegqbQOD+TjcansKSnj5qlpHCqvMjsk4Wbkt91NlVdWsza7SOrzTZAc34w3rk1mTVYh931pkT78oklJ0ndTGbuLKa+slv75JrmgayueuaQLv2bk8a/vM6QPv2gy0mXTTaXvKgCkEddM4wckkFlwiEmLdhDbzJ9bBkkfftH4JOm7KUtmIVGhfrIkosmevKgzOUYf/pgwf4bLAjaikdlVvaOUekAptV4ptU4pNV0p5aeUSlBKLVdKbVVKfaWU8jHO9TX2txqvt2mINyDqx2ItkFK+A/DwULx2TRLJcWHc/9UqVu5yzT78c1fn8NPa3VTIOsKmq3fSV0rFAPcCqVrrboAncC3wIvCa1ro9UADcbFxyM1BgHH/NOE+YYE9JGVkFh6QR10H4eXvy8bheRIX6ccvUNHbsPWh2SA0qt6iM+760cMe0dAa+OJ/XfttMblGZ2WG5LXsbcr0Af6WUFxAA7AaGAjOM16cCo4ztkcY+xuvDlCzTZIr/TbImSd9RNA/04ZMbe6OUbR7+fS7Uh3+2JRut4YXLu9M5KoQ3529hwIvzuePzlSzZulcasZtYvZO+1jobeAWwYkv2RcBKoFBrfWQC8SwgxtiOATKNayuN88NPvK9S6jalVJpSKi0/P7++4YkzSLcW4O2p6BodanYo4hhtIgL56IZUcovKuOXTNMoqnL8Pv9aamelZpLZuxuje8XxyY28WPjSEWwYmsHT7PsZ8vJxz//sHUxbvoOhQhdnhugV7qneaYSu9JwDRQCBwob0Baa0/1Fqnaq1TIyMj7b2dOAWLtZAu0aH4eXuaHYo4Qc/WzXjj2iRWZbpGH/41WUVs3XOAy1Nijx5rHR7I4xd1Ztnjw/jv1YmE+Hvz3HcZ9P3PPB6ftYZ12UUmRuz67KneORfYobXO11pXALOAAUCYUd0DEAtkG9vZQByA8XoosM+O54t6qKiqZk1WoSya4sAu7BbF0xd34Zf1ebz080azw7HLrPQsfLw8TjmzqJ+3J5enxDL7zgF8f89ARiZFM9uSzSVvLeKydxczKz3LJf7acTT2JH0r0FcpFWDUzQ8DMoAFwJXGOeOAb43tucY+xuvztVTmNblNuSWUVcigLEd308AEruwZy+TFO5y2fr+8spq5q3M4v0tLQv29z3hut5hQJl7Rg+VPnMs/L+lCUWkFD369mn4vzOOFnzZg3VfaRFG7Pnvq9Jdja5BNB9Ya9/oQeBR4UCm1FVud/STjkklAuHH8QeAxO+IW9WSxHhmUJSV9R3fb4LZUVNnqxJ3R/I17KCit4IqesTWfbAj19+amgQnM+8fZTLulD33bhvPxXzs4+5UFjJ+ygnkb8py+ystsdg3O0lo/AzxzwuHtQO9TnFsGXGXP84T90q2FRAb7EhPmb3YoogYdWwaT2roZ01dkcuugtjhbZ7dZ6VlEBvsyqH1Ena9VSjGgfQQD2keQW1TG9BVWpq+wcvPUNGLC/BnbN56rU+OICJIV3+pK5t5xMxZrAclxYU6XQNzV6N7x7Nh7kGXbnWvQ1v6D5SzYtIdRSdF4edqXZlqF+vHAeR1Z/NhQ3h2bQnzzAF76eRP9X5jP/V9aWLlrv3T7rANJ+m5k34HD7NxXSkprqc93Fhf3iCLEz4vpK6xmh1Inc1dlU1Gl61S1UxNvTw8u6h7F9Nv68vuDgxnTJ555G/ZwxXtLGf7GX0xbvouDhytrvpGbk6TvRlZlGoOy4qQ+31kc6eHy87pc9h8sNzucWpuZnk2XqBA6tWqcBXratwjm2Uu7suyJYbxweXeUUjw5ex19/jOPZ75dx5a8kkZ5riuQpO9GLNZCPD0UPWIl6TuTa3vHUV5VzSwnadDdnFfC2uyiBi3ln06grxeje8fz470DmXlHf87r0pLpKzI577U/ufbDpfywRub7OZEkfTeSbi2gc1Qw/j4yKMuZdGoVQkp8GF+ssDpF3fXM9Cy8PBQjk6Kb7JlKKXq2bsZr1ySx9PGhPHphJ7IKDnHXF+n0nzif//66id1Fh5osHkcmSd9NVFVrVmcWkhwn9fnOaHTveLbnH2TFDsdu0K2q1syxZDPkrEjTetaEB/lyx5B2/PHwOUwZ34vuMaG8tWArA19cwO2fpbFoy16q3bjbp8yn7yY255VwsLyKlNZSteOMLukRzfPfZzB9hZU+bU+assphLNq6l7ziwzwzovGrdmri6aE4p1MLzunUgsz9pUxbbuXrtEx+WZ9H24hAxvSJ56qecYQGnHngmKuRkr6bODqzppT0nZK/jyeXJcfw47pcChy4QXdWehah/t4M69zC7FCOE9c8gMeGd2Lp40N5/ZokmgX68H8/bKDPC7/zyIzVrM1yn/l+JOm7CYu1gOaBPrQODzA7FFFP1/aKp7yymlmW7JpPNkFJWQW/rM9lRGIUvl6O2W7k6+XJqOQYZt7Rnx/uHchlybF8t3o3I95exMh3FjNjpevP9yNJ302ky6Asp9clOoSkuDCmO2iD7o9rd1NWUc0VKeZX7dRG1+hQXri8O8ufHMazI7pwoKyCh75ZTd8X5vHvHzLY6WKL2RwhSd8NFJVWsC3/oCya4gLG9I5n654DpBkL2zuSmenZtI0IJMnJxoGE+HkzfkACvz94NtNv7cuAdhFMWbyTIa8s5IbJK/gtw7Xm+5Gk7wYsmUcmWZP6fGd3SWIUQb5eTF/uWCN0M/eXsmLHfq7oGeu0f00qpejXLpx3xqaw+LGhPHBuRzblFnPrp2kMfmkB7yzYSn6Jc854eixJ+m7AYi3EQ0EPJyuBiZMF+HgxKjma79fuprDUcRp0Z6ZnoRSMSo6p+WQn0DLEj/vO7cCiR4fy/nUptIkI4OVfNtF/4jzunW5hxQ7nne9Humy6AUtmIR1bBhPkK99uVzC6dzyfL7My25LNjQMSzA4HrTWz0rPp1zbc5WZv9fb04MJuUVzYLYpt+QeYtszKNyszmbs6h7NaBnNdv9ZclhzjVL9bUtJ3cdXV2jazplTtuIyu0aEkxoY6TINu2q4CrPtLnaYBt77aRQbxzxFdWP7EMF68ojtenoqn56yjz79/5+k569iU6xzz/UjSd3Hb9x6gpKxSFk1xMaN7x7M57wDpVvMbdGeuzCLAx5MLu7UyO5QmEeDjxTW94vn+noHMvrM/F3RrxVdpmVzw+p9c/f5S5q7OobzScef7kaTv4tJ3GYOypKTvUkYkRhPo48kXyzNNjaOsooof1uxmeLcoAp2oiqMhKKVIjm/Gf69OYtnjw3h8eCdyi8u4d7qF/hPn8covm8gudLz5fiTpuzhLZgEhfl60jQg0OxTRgAJ9vRiZHMP3a3IoKq0wLY5f1udScriSK1JcowG3vpoH+nD72e1Y+NAQPrmxF0lxYbyzcCuDXpzPrZ+m8efmfIeZ78e9PprdkMVaSHJ8Mzw8nLMbnTi9Mb3j+WK5lTmrshnXv40pMcxKzyYmzJ++DjwfUFPy8FAMOasFQ86yzfczfYWVr/7O5LeMPFqHB3Bdn9ZclRpLWICPeTGa9mTR6ErKKtiUVyKDslxUt5hQuseY16CbV1zGX1vyuSw5RgoVpxDXPIBHLuzEkseH8sa1SbQI9uXfP26gz3/m8dA3q1ltLGrU1KSk78LWZBWhtQzKcmWje8fzxOy1WDILm/z7PMeSTbWGy9y8aqcmvl6ejEyKYWRSDBt2F/P5sl3MtmQzY2UWPWJDua5va0b0iG6ydS6kpO/C0o2h+okyKMtlXZoUTYCPZ5OP0NVaMzM9i+T4MNpFBjXps51Z56gQ/n1Zd5Y/MYznR3blUHkVj8xYQ98X5vGv7zPYnn+g0WOQpO/CLJmFtG8RRKi/e80X7k6CfL0YmRTNd2tyKC5rugbd9TnFbM474PJ98xtLsJ83N/Rrw68PDOar2/oyqEMEU5fsZOirf3D9pOX8sj6XykZa5lGSvovS2jYoS/rnu77RveMpq6jm2yaccnnGyix8PD0Y0aPplkR0RUop+rQN5+0xKSx5fCj/OK8jW/cc4PbPVjLh8/RGeabU6buonftKKSitkP75bqB7TChdo0OYttzKdX1bN/qEZ+WV1cxdncO5XVq43apTjalFsB/3DOvAHUPaMW/jHgIaqY5fSvouymKVmTXdhVKK0b3j2ZhbwuomWAHqj8357D9YLlU7jcTL04MLurZiUIfIRrm/JH0XlW4tIMjXi/YtpJHNHYxMisbfu2kadGeuzCIiyIfBHRsnKYnGJUnfRVmshSTGheIp/afdQrCfN5cmRjN3dQ4ljdigW3CwnHkb8xiZFIO3p6QPZyTfNRdUWl7JxtwSqdpxM6P7xHOooopvV+U02jO+W5NDRZXmcumb77Qk6bugNVlFVFVrGYnrZhJjQ+kcFcIXyxtvhO7M9Gw6tQqma3Roo9xfND5J+i7IYjVm1oyTkr47UUoxpnccGbuLWZvd8A26W/ccYHVmIVf2lAZcZyZJ3wWlWwtIiAikWaB5kzoJc4xMjsHP24PpKxq+QXdmehaeHopLk6RvvjOTpO9ibIOyCkmWqRfcUoifNyN6RPPtqhwOHK5ssPtWVWvmWLIZ3CGCFsF+DXZf0fQk6buYrIJD7D1wmOTWUrXjrkb3iae0vIq5Ddigu3TbPnYXlXGFVO04PUn6LubI8nlS0ndfyXFhdGoV3KBVPDPTswj28+Lczi0b7J7CHHYlfaVUmFJqhlJqo1Jqg1Kqn1KquVLqN6XUFuPfZsa5Sin1plJqq1JqjVIqpWHegjiWxVqIv7cnnVoFmx2KMMmREbprs4tY2wAjdA8cruTndblc0iMaP++mmf5XNB57S/pvAD9rrTsBicAG4DFgnta6AzDP2AcYDnQwvm4D3rPz2eIULNYCesSG4iUDZ9zaqOQYfL08mP63/aX9n9bu5lBFFVf2lL75rqDemUEpFQoMBiYBaK3LtdaFwEhgqnHaVGCUsT0S+FTbLAPClFJR9Y5cnKSsoor1OcWkSH2+2wv19+aSHtF8a8nmoJ0NujPTs2gTHiCD/VyEPcXBBCAfmKKUsiilPlZKBQIttda7jXNygSOVgDFA5jHXZxnHRANZl11EZbWW+nwBwJg+cRwsr+K71fVv0M3cX8qy7fu5PCW20WfvFE3DnqTvBaQA72mtk4GD/K8qBwBtGxZYp6GBSqnblFJpSqm0/Px8O8JzP0cHZUmJTGCbYbVjyyC7GnRnG3P0X5Ys5TNXYU/SzwKytNbLjf0Z2D4E8o5U2xj/7jFezwbijrk+1jh2HK31h1rrVK11amSkzOJXF5bMAuKa+xMZ7Gt2KMIBHGnQXZ1VxLp6jNDVWjMrPYu+bZsT1zygESIUZqh30tda5wKZSqmzjEPDgAxgLjDOOBtqP54AABLnSURBVDYO+NbYngvcYPTi6QsUHVMNJBpA+q5CmXpBHOcyo0H3y3o06KZbC9i5r1TmzXcx9q6cdQ8wTSnlA2wHbsT2QfK1UupmYBdwtXHuj8BFwFag1DhXNJDdRYfILS6T5RHFccICfLi4exRzLDk8cVFnAnxq/ys/Y2U2/t6eDO8u/S1ciV1JX2u9Ckg9xUvDTnGuBu6y53ni9NJ3SX2+OLXRfeKZZcnm+9W7ubpXXM0XYOsJ9v2aHC7s1oogX1lV1ZVIZ24XYbEW4OvlQeeoELNDEQ4mtXUz2rcI4os6NOj+viGPkrJKqdpxQZL0XYQls5DuMaH4eMm3VBzvSIPuqsxCMnKKa3XNzJVZtArxo1+78EaOTjQ1yRAuoLyymrXZRbJoijity5Nj8Kllg+6ekjL+3LKXy1JiZLlNFyRJ3wVk7C6mvLJaRkyK02oW6MNF3VoxOz2bQ+VVZzx37qocqqq1VO24KEn6LiB9lzGzpiR9cQaje8dTcriS79eceYTujJVZJMaF0b5FUBNFJpqSJH0XYMksJCrUj1ahsriFOL3eCc1pGxl4xhG663OK2JhbwhWy8LnLkqTvAtJ3FUjVjqiRbQ3deNKthWzMPXWD7syV2Xh7Kkb0kCURXZUkfSe3p7iM7MJD0ograuXylFh8PD34ckXmSa9VVFUzd3U2wzq1lPWVXZgkfSdnyZRBWaL2mgf6cGG3VsxKzzqpQffPzfnsPVAuSyK6OEn6Ti7dWoC3p6JrtAzKErUzunc8xWWV/Lj2+KmvZqZn0TzQh7M7ykSHrkySvpOzWAvpGh0qy9iJWuvbtjkJEcc36BaVVvB7xh4uTYyWAX4uTr67Tqyiqpo1WYVSny/qxDZCN460XQVszisB4Ls1OZRXVXOlVO24PEn6TmxTbgllFdVSny/q7IqUWLw91dHS/sz0LDq2DJJqQjcgSd+JWay2QVkynbKoq/AgXy7o2opZ6dlk5BRjsRZyhSyJ6BYk6TuxdGshkcG+xIT5mx2KcEJjesdTdKiC+7604KFkSUR3IUnfiVmsBaTEh0npTNRL37bhtAkPYMueAwzqEEmLEBnR7Q4k6TupfQcOs3NfqdTni3rz8FBc2zsegMtl2gW3IUviOKlVRwZlxUl9vqi/cf3aEOLnzcWyJKLbkKTvpCzWQjw9FD1iJemL+vP38WRMn3izwxBNSKp3nFS6tYDOUcH4+8igLCFE7UnSd0JV1ZrVmYUys6YQos4k6TuhzXklHCyvkpG4Qog6k6TvhCzWI424UtIXQtSNJH0nZLEW0DzQh9bhAWaHIoRwMpL0nVC6tYDkOBmUJYSoO0n6TqaotIJt+QdJaS1VO0KIupOk72QsmbZJ1mRQlhCiPiTpOxmLtRAPBT0k6Qsh6kGSvpNJtxbQsWUwQb4ymFoIUXeS9J1IdbVmVWahTLImhKg3SfpOZPveA5SUVcqiKUKIepOk70TSdxmDsqSkL4SoJ0n6TsSSWUCovzdtIwLNDkUI4aQk6TuR9F2FJMWF4eEhg7KEEPUjSd9JlJRVsHlPiUyyJoSwiyR9J7EmqwitkemUhRB2sTvpK6U8lVIWpdT3xn6CUmq5UmqrUuorpZSPcdzX2N9qvN7G3me7k/RdtpG4iTIoSwhhh4Yo6d8HbDhm/0XgNa11e6AAuNk4fjNQYBx/zThP1JIls5AOLYII9fc2OxQhhBOzK+krpWKBi4GPjX0FDAVmGKdMBUYZ2yONfYzXhymZJrJWtNZYrAVSny+EsJu9Jf3XgUeAamM/HCjUWlca+1lAjLEdA2QCGK8XGecfRyl1m1IqTSmVlp+fb2d4rmHnvlIKSiukf74Qwm71TvpKqUuAPVrrlQ0YD1rrD7XWqVrr1MjIyIa8tdOyWG31+dKIK4Swlz2zdg0ALlVKXQT4ASHAG0CYUsrLKM3HAtnG+dlAHJCllPICQoF9djzfbaRbCwjy9aJ9iyCzQxFCOLl6l/S11o9rrWO11m2Aa4H5WuuxwALgSuO0ccC3xvZcYx/j9flaa13f57sTi9U2KMtTBmUJIezUGP30HwUeVEptxVZnP8k4PgkIN44/CDzWCM92OaXllWzMlUFZQoiG0SCTsmutFwILje3tQO9TnFMGXNUQz3Mna7KKqKrWkvSFEA1CRuQ6uEVb9gKQFCeNuEII+0nSd2AHDlfy2bJdnNelJc0DfcwORwjhAiTpO7DPlu6i6FAFd5/T3uxQhBAuQpK+gzpUXsXHf21ncMdImW9HCNFgJOk7qOkrrOw7WM69Q6WUL4RoOJL0HdDhyio++HMbfds2J7VNc7PDEUK4EEn6DuibtCzyig9zz9AOZocihHAxkvQdTEVVNe8t3EZyfBj92500H50QQthFkr6DmWPJJrvwEPcMbY/MPC2EaGiS9B1IVbXm3YXb6BodwjlntTA7HCGEC5Kk70C+X5PDjr0HpZQvhGg0kvQdRHW15p0FW+nQIojzu7QyOxwhhIuSpO8gfs3IY3PeAe4e2h4PmUJZCNFIJOk7AK01by/YQkJEIJf0iDY7HCGEC5Ok7wAWbs5nXXYxdwxpJwulCCEalSR9k2mteWveFmLC/LksOabmC4QQwg6S9E22dNs+0q2FTBjSDm9P+XYIIRqXZBmTvTV/Ky2CfbmqZ6zZoQgh3IAkfROl7dzP0u37uP3sdvh5e5odjhDCDUjSN9Fb87cSHujD6N5xZocihHATkvRNsiarkD8253PzoAQCfBpkfXohhKiRJH2TvD1/K6H+3lzft7XZoQgh3IgkfRNszC3m14w8bhzQhmA/b7PDEUK4EUn6Jnh7/laCfL0Y37+N2aEIIdyMJP0mti3/AD+s3c31/VoTFuBjdjhCCDcjSb+JvbtgG75eHtw8MMHsUIQQbkiSfhPK3F/KnFXZjOndmoggX7PDEUK4IUn6Tei9P7bhqRS3n93W7FCEEG5Kkn4T2V10iBlpWVzdK5aWIX5mhyOEcFOS9JvIB39sp1prbh/czuxQhBBuTJJ+E8gvOcz0FVYuS44hrnmA2eEIIdyYJP0m8PGi7VRUVXPnOe3NDkUI4eYk6TeygoPlfLZ0FyMSo0mICDQ7HCGEm5Ok38imLN5BaXkVd0kpXwjhACTpN6LisgqmLNnJhV1b0bFlsNnhCCFE/ZO+UipOKbVAKZWhlFqvlLrPON5cKfWbUmqL8W8z47hSSr2plNqqlFqjlEppqDfhqD5buouSskruHiqlfCGEY7CnpF8J/ENr3QXoC9yllOoCPAbM01p3AOYZ+wDDgQ7G123Ae3Y8u0YZOcWNefsalZZX8vFf2xnaqQXdYkJNjUUIIY6od9LXWu/WWqcb2yXABiAGGAlMNU6bCowytkcCn2qbZUCYUiqq3pGfwfLt+7jozb+44/OV5BQeaoxH1GjaMisFpRVSly+EcCgNUqevlGoDJAPLgZZa693GS7lAS2M7Bsg85rIs49iJ97pNKZWmlErLz8+vVzxJ8WE8dH5HFmzaw7BX/+C9hdsor6yu173qo6yiig//2s6A9uH0bN2syZ4rhBA1sTvpK6WCgJnA/Vrr4+pUtNYa0HW5n9b6Q611qtY6NTIysl4x+Xp5cvfQDvz2wNkM6hDBiz9vZPgbf7J469563a+uvk7LJL/kMHef06FJnieEELVlV9JXSnljS/jTtNazjMN5R6ptjH/3GMezgWNXAI81jjWauOYBfHhDKpPHp1JRpRn78XLu/iKd3KKyRntmeWU17y/cRq82zejbtnmjPUcIIerDnt47CpgEbNBa//eYl+YC44ztccC3xxy/wejF0xcoOqYaqFEN7dSSXx8YzAPnduS3jDyGvbqQj/60jZJtaLPSs8gpKuPuoR2w/RcJIYTjsKekPwC4HhiqlFplfF0ETATOU0ptAc419gF+BLYDW4GPgDvteHad+Xl7ct+5tiqfPm3D+fePG7jojb9Yum1fgz2jsqqadxduo0dsKIM7RDTYfYUQoqF41fdCrfUi4HRF2WGnOF8Dd9X3eQ0lPjyAyeN78XtGHs9+t57RHy1jVFI0T1zUmRZ2Tnn83ZocrPtLeerinlLKF0I4JLcdkXtul5b89sDZ3Du0PT+uzWXoq38wadEOKutZ5VNdrXl7/lY6tQrm3M4ta75ACCFM4LZJH8Dfx5MHzz+LXx8YTM/WzfjX9xlc8tYi/t65v873+mldLtvyD3L30PZ4eEgpXwjhmNw66R/RJiKQT27sxQfX96SkrJKr3l/Kg1+vIr/kcK2u11rz1vwttI0MZHi3RhlvJoQQDUKSvkEpxQVdW/Hbg4O565x2fLc6h6GvLmTqkp01VvnM27CHjbkl3DWkPZ5SyhdCODBJ+icI8PHi4Qs68fP9g0mKC+OZueu59O3FrNxVcMrztda8tWArcc39uTQpuomjFUKIupGkfxrtIoP49KbevDs2hYLScq54bwmPzFjNvgPHV/ks2rqX1ZmF3DmkPd6e8t8phHBskqXOQCnFRd2j+P3Bs5lwdjtmpWdzzisL+WzZLqqqbbNLvDVvK1GhflyectI0QkII4XAk6ddCoK8Xjw3vxM/3D6JrdChPz1nHqHcWM2XxDlbs3M/tg9vi6+VpdphCCFEjSfp10L5FMF/c2oc3RyeTV1zGc99lEBHkw7W9480OTQghaqXeI3LdlVKKSxOjGdqpBZP+2kH32BD8vKWUL4RwDpL06ynI14v7zpWpk4UQzkWqd4QQwo1I0hdCCDciSV8IIdyIJH0hhHAjkvSFEMKNSNIXQgg3IklfCCHciCR9IYRwI8q2dK1jUkrlA7vMjqMGEcBes4NoIK7yXlzlfYC8F0fl6O+ltdY68lQvOHTSdwZKqTStdarZcTQEV3kvrvI+QN6Lo3Lm9yLVO0II4UYk6QshhBuRpG+/D80OoAG5yntxlfcB8l4cldO+F6nTF0IINyIlfSGEcCOS9IUQwo1I0q8HpVScUmqBUipDKbVeKXWf2THZSynlqZSyKKW+NzsWeyilwpRSM5RSG5VSG5RS/cyOqb6UUg8YP1/rlFLTlVJ+ZsdUW0qpyUqpPUqpdccca66U+k0ptcX4t5mZMdbGad7Hy8bP1xql1GylVJiZMdaVJP36qQT+obXuAvQF7lJKdTE5JnvdB2wwO4gG8Abws9a6E5CIk74npVQMcC+QqrXuBngC15obVZ18Alx4wrHHgHla6w7APGPf0X3Cye/jN6Cb1roHsBl4vKmDsock/XrQWu/WWqcb2yXYEkuMuVHVn1IqFrgY+NjsWOyhlAoFBgOTALTW5VrrQnOjsosX4K+U8gICgByT46k1rfWfwP4TDo8EphrbU4FRTRpUPZzqfWitf9VaVxq7y4DYJg/MDpL07aSUagMkA8vNjcQurwOPANVmB2KnBCAfmGJUVX2slAo0O6j60FpnA68AVmA3UKS1/tXcqOzWUmu929jOBVqaGUwDuQn4yewg6kKSvh2UUkHATOB+rXWx2fHUh1LqEmCP1nql2bE0AC8gBXhPa50MHMQ5qhBOYtR3j8T2QRYNBCqlrjM3qoajbX3Fnbq/uFLqSWxVvdPMjqUuJOnXk1LKG1vCn6a1nmV2PHYYAFyqlNoJfAkMVUp9bm5I9ZYFZGmtj/zVNQPbh4AzOhfYobXO11pXALOA/ibHZK88pVQUgPHvHpPjqTel1HjgEmCsdrLBTpL060EppbDVG2/QWv/X7HjsobV+XGsdq7Vug62hcL7W2ilLlFrrXCBTKXWWcWgYkGFiSPawAn2VUgHGz9swnLRR+hhzgXHG9jjgWxNjqTel1IXYqkMv1VqXmh1PXUnSr58BwPXYSsWrjK+LzA5KAHAPME0ptQZIAv5jcjz1Yvy1MgNIB9Zi+111mqH/SqnpwFLgLKVUllLqZmAicJ5Sagu2v2QmmhljbZzmfbwNBAO/Gb/775saZB3JNAxCCOFGpKQvhBBuRJK+EEK4EUn6QgjhRiTpCyGEG5GkL4QQbkSSvhBCuBFJ+kIYlI38TgiXJj/gwq0ppdoopTYppT4F1gGTjPnr1yqlrjHOUcYc6iceH6KU+kMp9a1SartSaqJSaqxSaoVxXjvjvKuMa1crpf40790KYZugSgh31wHbtAAxwARs8/BHAH8bSbo/ttG9Jx7HONYZ2/S724GPtda9jYV17gHuB/4JXKC1zna2BTeE65GSvhCwS2u9DBgITNdaV2mt84A/gF5nOA7wt7G+wmFgG3Bk+uO1QBtjezHwiVLqVmyLoQhhGkn6QtimYK6vw8dsVx+zX43xl7TWegLwFBAHrFRKhdvxPCHsIklfiP/5C7jGWC84EtsqXCvOcLxWlFLttNbLtdb/xLbIS1wjxC5ErUidvhD/MxvoB6zGtsDHI1rrXKXU6Y53quV9X1ZKdQAUtrVhVzd86ELUjsyyKYQQbkSqd4QQwo1I0hdCCDciSV8IIdyIJH0hhHAjkvSFEMKNSNIXQgg3IklfCCHcyP8DPxNc0e669NIAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ] + }, + { + "cell_type": "code", + "source": [ + "df.groupby('rooms').mean().plot( y = 'fire insurance (R$)')#Generally with increase in the rooms the fire insurance also increases\n", + "plt.show()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 279 + }, + "id": "e3JmWrY27KuA", + "outputId": "ea34f885-7d5e-45a8-936f-ad5357991ec0" + }, + "execution_count": 14, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEGCAYAAACevtWaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deXxM9/7H8ddHQkJIbLEGscYuiP1yqba6KF2sVaoLpdrqvul2l96r2tveLkq1lNZSW5Wut6pa1JqFWIIEQQiJIEL25Pv7I8MvJUgyk5yZyef5eOSRme+cc+Y9EZ+c+c73fL9ijEEppZR7KWd1AKWUUo6nxV0ppdyQFnellHJDWtyVUsoNaXFXSik35Gl1AICaNWuawMBAq2MopZRLCQsLO2WM8S/oMaco7oGBgYSGhlodQymlXIqIHL7aY9oto5RSbkiLu1JKuSEt7kop5Yacos+9IFlZWcTFxZGenm51FGUBb29vAgICKF++vNVRlHJJTlvc4+LiqFKlCoGBgYiI1XFUKTLGkJSURFxcHI0bN7Y6jlIuyWm7ZdLT06lRo4YW9jJIRKhRo4a+a1PKDk5b3AEt7GWY/tsrZR+nLu5KKeXO5m2M5Y+YUyVybC3uSillgY0HTvG3b3ezJPRoiRz/usVdRBqIyFoR2SMiu0Vksq39bRHZKyKRIrJCRKra2gNFJE1Ettu+ZpZI8lLwwQcf0KpVK0aNGsWqVauYOnVqsY9l7/7OKD4+noEDBwLw22+/4efnR3BwMC1btuTZZ5+9Yvs33njjirYbb7yRM2fOlHRUpZxKwrl0nli0ncY1fXjzrnYl8yTGmGt+AXWBTrbbVYD9QGvgZsDT1v4W8JbtdiCw63rHzf/VuXNnc7k9e/Zc0VbagoKCzNGjR6+5TVZWVimluTYrcjz77LPmm2++McYYs3btWnP77bcbY4xJTU01QUFBZsOGDcYYY1JSUszQoUNNrVq1TLt27cxzzz136Rhz5841//znPws8vjP8DijlaFnZOWbYzI2m5Ss/mn0nztl1LCDUXKWuXncopDEmHoi33U4RkSigvjHm53ybbQaGOOSvTQH+9u1u9hw/59Bjtq7ny+t3tLnq4xMmTODgwYPceuutPPjgg1SrVo3Q0FA++ugjxo4di7e3NxEREfTq1YtJkyYxadIkEhMTqVSpEp9++iktW7b80/Hmzp37p/19fX0JDQ3lxIkTTJs2jSFDhhAfH8/w4cM5d+4c2dnZzJgxg969e1O5cmXOnz8PwLJly/juu++YO3fuFTlGjBjB5MmTSU9Pp2LFinz++ecEBQUxd+5cVq1aRWpqKgcOHOCuu+5i2rRpAPz000+8/PLL5OTkULNmTdasWcOFCxd4/PHH2bVrF1lZWbzxxhsMHjz4ip/R8uXL+ec//3lFe8WKFQkODubYsWMAfPHFF1SuXJmJEyfy2muvsWfPnkvbDho0iN69ezNlypSi/yMq5YL+s3o/Ww6d5t1hHWhRu0qJPU+RxrmLSCDQEdhy2UMPAovz3W8sIhHAOeAVY8z6Ao41HhgP0LBhw6LEKBUzZ87kp59+Yu3atdSsWZO5c+f+6fG4uDg2btyIh4cH/fv3Z+bMmTRv3pwtW7bw6KOP8uuvv17z+PHx8WzYsIG9e/cyaNAghgwZwsKFCxkwYABTpkwhJyeH1NTU6+bMn+PcuXOsX78eT09PfvnlF15++WWWL18OwPbt24mIiMDLy4ugoCAef/xxvL29GTduHOvWraNx48acPn0agDfffJMbbriBOXPmcPbsWbp27cqNN96Ij4/Ppec9dOgQ1apVw8vL64pMZ86cITo6mj59+gBQoUIFzp07R1paGuXKlaNt27aXtq1WrRoZGRkkJSVRo0aN675epVzZmqiTzPjtACO7NuTuTgEl+lyFLu4iUhlYDjxpjDmXr30KkA0ssDXFAw2NMUki0hn4RkTa5N8HwBgzC5gFEBIScs1Vuq91hm2VoUOH4uHhwfnz59m4cSNDhw699FhGRsZ197/zzjspV64crVu35uTJkwB06dKFBx98kKysLO68806Cg4MLnQMgOTmZ+++/n+joaESErKysS9v1798fPz8/AFq3bs3hw4c5c+YMffr0uXShUPXq1QH4+eefWbVqFe+88w6Qd83BkSNHaNWq1aXjxcfH4+//55lG169fT4cOHYiOjubJJ5+kTp06AIwZM4b9+/czb9481q9fz9NPP82QIf//Rq9WrVocP35ci7tya0dPp/L0kh20qefL63e0LvHnK1RxF5Hy5BX2BcaYr/O1jwUGAv1t/T8YYzKADNvtMBE5ALQA3GpO34tnsbm5uVStWpXt27cXaf/8Z7y2Hx19+vRh3bp1fP/994wdO5ann36aMWPG/GnM9+UX9uQ/m3711Vfp168fK1asIDY2lr59+xb4fB4eHmRnZ181mzGG5cuXExQUdNVtKlaseEWW3r17891333Ho0CG6d+/OsGHDCA4OpkKFCkybNo1KlSoxfPhwBgwYQEhICBfn8L/YjaSUu8rIzmHSwnByjeHjUZ3wLu9R4s9ZmNEyAswGoowx7+ZrvwV4HhhkjEnN1+4vIh62202A5sBBRwd3Fr6+vjRu3JilS5cCeYVxx44dxTrW4cOHqV27NuPGjePhhx8mPDwcgNq1axMVFUVubi4rVqy46v7JycnUr18f4IpupIJ0796ddevWcejQIYBL3TIDBgzgww8/vPRHJyIi4op9W7RoQWxsbIHHbdy4MS+++CJvvfUWANHR0WRmZgLQvHlz/Pz8LnU5GWM4ceIEuliLcmf//C6KyLhk3hnagUY1fK6/gwMUZpx7L2A0cEO+4Y23AR+RN3pm9WVDHvsAkSKyHVgGTDDGnC6J8M5iwYIFzJ49mw4dOtCmTRtWrlxZrOP89ttvdOjQgY4dO7J48WImT54MwNSpUxk4cCA9e/akbt26V93/+eef56WXXqJjx47XPDO/yN/fn1mzZnH33XfToUMHhg8fDuS9A8jKyqJ9+/a0adOGV1999Yp9fXx8aNq0KTExMQUee8KECaxbt47Y2Fj27t1L3759+fzzz+nYsSO33347rVvnvS0NCwuje/fueHo67TRHStll1Y7jfLn5MON6N2ZAmzql9rxy8ezMSiEhIebylZiioqL+1MernM+KFSsICwsrcMRMQd54440rxrpPnjyZQYMG0b9//yu2198B5epiElIY9NEftK7ry6Lx3Snv4djrRkUkzBgTUtBjerqkiu2uu+4iKSmp0Nvn/wzgorZt2xZY2JVydamZ2UycH07F8h58dG8nhxf263Hq6Qec4V2FuraHH3640NsWVNzHjRtX4Lb6b69cmTGGKSt2EZN4nvdHdKSOn3epZ3Da4u7t7U1SUpL+Jy+DjG0+d2/v0v8PoZQjLNp6lBURx3iyfwv+0rymJRmctlsmICCAuLg4EhMTrY6iLHBxJSalXM2uY8m88e1u+rTw5/EbmlmWw2mLe/ny5XUVHqWUS0lOy+LRBeHU8KnAf4cHU66cdesSOG1xV0opV2KM4bmlOzh+No3Fj/Sguk8FS/M4bZ+7Ukq5ks/WH+LnPSd56bZWdG5Uzeo4WtyVUspe22JPM/Wnvdzatg4P9gq0Og6gxV0ppexy6nwGjy0Mp0G1irw1pL3TrP+rxV0ppYopJ9cw+asIzqZm8fGozvh6l7c60iX6gapSShXT+2ui+SMmiWn3tKd1PV+r4/yJnrkrpVQx/L4/kQ9/jWZI5wCGdWlgdZwraHFXSqkiOn42jSe/iiCodhX+Mbjt9XewgBZ3pZQqgszsXB5bGE5WTt7CGxUrlPzCG8Whfe5KKVUEU3/cS/iRs0y/txNN/CtbHeeqCrMSUwMRWSsie0Rkt4hMtrVXF5HVIhJt+17N1i4i8oGIxIhIpIh0KukXoZRSpeHHnfHM+eMQY3sGcnv7qy+c4wwK0y2TDTxjjGkNdAcmiUhr4EVgjTGmObDGdh/gVvKW1msOjAdmODy1UkqVskOnLvDcskiCG1Tl5ducfxGZ6xZ3Y0y8MSbcdjsFiALqA4OBebbN5gF32m4PBr4weTYDVUXEuf/EKaXUNaRn5TBxfhieHsL0UZ2o4On8H1cWKaGIBAIdgS1AbWNMvO2hE0Bt2+36wNF8u8XZ2pRSyiW9vnI3e0+k8N7wYOpXrWh1nEIpdHEXkcrAcuBJY8y5/I+ZvBU1irSqhoiMF5FQEQnVOduVUs5qaehRFoce5bF+zegXVMvqOIVWqOIuIuXJK+wLjDFf25pPXuxusX1PsLUfA/KP6A+wtf2JMWaWMSbEGBPi7+9f3PxKKVViouLP8erKXfRsWoOnbmphdZwiKcxoGQFmA1HGmHfzPbQKuN92+35gZb72MbZRM92B5HzdN0op5RJS0vMW3vD1Ls/7IzriYeHCG8VRmHHuvYDRwE4R2W5rexmYCiwRkYeAw8Aw22M/ALcBMUAq8IBDEyulVAkzxvDi8p0cOZ3Kwoe74V/Fy+pIRXbd4m6M2QBc7U9W/wK2N8AkO3MppZRl5m6M5fud8bx4a0u6NalhdZxicf7xPEopVYoijpzhXz9EcWOr2ozv3cTqOMWmxV0ppWzOXMhk0oJwavt685+hHSxd4NpeOreMUkoBubmGp5Zs59T5TJZP7IlfJedZeKM49MxdKaWAj3+L4bd9ibx2R2vaBfhZHcduWtyVUmXexphTvLt6P4OD6zGqW0Or4ziEFnelVJl28lw6T3wVQRP/yvzrrnZOs8C1vbTPXSlVZmXn5PL4wgguZOSwaFwnfLzcpyS6zytRSqkievvnfWyNPc37I4JpXruK1XEcSrtllFJl0uo9J/nk94OM6taQwcHuN3GtFnelVJlz9HQqzyzZTtv6vrw6sLXVcUqEFnelVJmSnpXDxAVhAMwY1Rnv8s65wLW9tM9dKVWm/OO7Pew6do5Px4TQoHolq+OUGD1zV6oMOH42jelrY0jLzLE6iqW+iTjGgi1HeOSvTbipde3r7+DC9MxdKTd3MPE89322hePJ6ZT3EMb3aWp1JEtEn0zhpa930jWwOs/dHGR1nBKnZ+5KubFdx5IZOnMTGdm5tKnny6frD5GeVfbO3i9kZDNxQTg+Xh58eG9HPD3cv/S5/ytUqozaeug0I2dtxsuzHEsn9GDK7a1ITMlgaejR6+/sRowxTFmxk4OJ5/lgREdq+3pbHalUFGaZvTkikiAiu/K1LRaR7bav2IsrNIlIoIik5XtsZkmGV0oVbO3eBMbM2YK/rxfLJvakiX9lejSpQaeGVZn5+0GycnKtjlhqFmw5wjfbj/PUjS3o2aym1XFKTWHO3OcCt+RvMMYMN8YEG2OCyVs4++t8Dx+4+JgxZoLjoiqlCmPVjuOM+yKUpv6VWfJID+pVrQiAiPDYDc04djaNbyKuWLPeLe2MS+bv3+6hb5A/k/o1szpOqbpucTfGrANOF/SYbfHsYcAiB+dSShXD/M2HmfxVBJ0aVWPR+O7UrPzntT/7BdWidV1fZvx2gJxcY1HK0pGcmsXEBWHUrFyB94YFu/TCG8Vhb597b+CkMSY6X1tjEYkQkd9FpPfVdhSR8SISKiKhiYmJdsZQSn38WwyvfLOLfkG1+OLBrvh6X7nYhIgwqV8zDp66wI+74i1IWTpycw3PLN3OyXPpfDSqE9V8KlgdqdTZW9xH8uez9nigoTGmI/A0sFBEfAva0RgzyxgTYowJ8ff3tzOGUmWXMYZ//xjFtJ/2MTi4Hp+MvvZVl7e0rUMTfx+mrz1A3nr27mfW+oP8EpXAy7e1olPDalbHsUSxi7uIeAJ3A4svthljMowxSbbbYcABoIW9IZVSBcvJNbz09U4++f0go7s34r1hwZS/zjA/j3LCo32bERV/jl/3JpRS0tKz5WASb/9vH7e3q8vYnoFWx7GMPWfuNwJ7jTFxFxtExF9EPGy3mwDNgYP2RVRKFSQjO4cnFkXw1bajPNavGX8f3KbQ/cqDg+sRUK0iH62Ncauz98SUDB5fFEHD6pWYeo/7LLxRHIUZCrkI2AQEiUiciDxke2gEV36Q2geItA2NXAZMMMYU+GGsUqr4UjOzeXheKN/vjGfKba14dkBQkQpZeY9yPPLXpkQcOcumA0klmLT05OQaJn8VQXJaFh+P6kSVAj5zKEuuO/2AMWbkVdrHFtC2nLyhkUqpEpKcmsWD87YRceQM0+5pz7AuDYp1nKGdA/hwTTQf/hrjFuO///vLfjYeSOLtIe1pVbfAj/rKFL1CVSkXkpCSzvBZm9gZl8z0ezsVu7ADeJf3YFzvJmw6mETY4TMOTFn61u5L4MNfYxgWEsDQkOL/TNyJFnelXMTR06kMm7mJw0mpzB4bwq3t6tp9zHu7NaRapfJMXxvjgITWOHY2jacWb6dlnSr8fXBbq+M4DS3uSrmA6JMpDJm5kdMXMpn/cDd6N3fM8GEfL08e7NWYX/cmsPt4skOOWZoys3OZtCCc7BzDjPvcd+GN4tDirpST23H0LMM+2USugSUTetC5kWPHbY/pGUgVL08+XnvAocctDf/6IYrtR8/y9pD2NK7pY3Ucp6LFXSkntvHAKe79dDOVvT1ZNqEHLes4/oNCv4rlGd2jET/siicm4bzDj19Svo+MZ+7GWB7s1dghXVTuRou7Uk7q590nGPv5NupXq8iyCT1pVKPkzkwf+ktjvDzLMeM31zh7P5h4nheWR9KxYVVevLWl1XGckhZ3pZzQ8rA4Ji4Ip1VdXxaP71Hic5DXqOzFyK4N+Wb7MY6eTi3R57JXWmYOjy4Ip7yHMP3eTlTw1DJWEP2pKOVk5v5xiGeW7qBb4+oseLhbqU16Nb5PE8oJfLLOuc/eX125i30nU/jviI6XpjNWV9LirpSTMMbw/i/RvPHtHm5uXZs5Y7tQ2av0ljmu61eRIZ0DWBIaR8K59FJ73qJYsu0oy8LiePyG5vy1hU44eC1a3JVyArm5hr9/t4f3ftnPkM4BfDyqkyXD+ib8tSnZObl8ut75poTac/wcr67cxV+a1WRy/+ZWx3F6WtyVslh2Ti7PLYvk8z/yRn5Mu6e9ZQs4N6rhw6AO9Viw5QhnLmRakqEg59KzeHRBGFUrlee/I4LxKGMLbxSHFnelLHTqfAYPzgtleXgcT9/UglcHtrJ8xaBH+zUjNTOHz/84ZGmOi4wxvLAskqNn0vjo3k5XrC6lCqbFXSmLbIg+xa3vr2fzwST+fXc7nujf3CmmqG1RuwoD2tRm7sZYUtKzrI7DnD9i+XHXCV64JYgugdWtjuMytLgrVcqycnJ5+397GT1nC34Vy7PqsV6M7NrQ6lh/8li/5pxLz+bLzYctzRF2+Az//iGKm1vXZlzvJpZmcTVa3JUqRXFnUhn+ySamrz3AsM4NWPVYrxK56tRe7QL86NPCn9nrD5GWmWNJhtMXMnlsYTj1qlbk7aEdnOJdjSspzGIdc0QkQUR25Wt7Q0SOich229dt+R57SURiRGSfiAwoqeBKuZofd8Zz2/vr2X/yPB+M7MhbQ9pTqULpDXUsqsf6NSPpQiZfbTtS6s99ceGNpAuZfDyqE34Vy/bCG8VRmDP3ucAtBbS/Z4wJtn39ACAirclboamNbZ+PLy67p1RZlZ6Vwyvf7GTignAa1/Th+yf+wqAO9ayOdV1dG1ena2B1Zq07SGZ2bqk+90e/xrA++hRv3NGGtvX9SvW53cV1i7sxZh1Q2KXyBgNf2RbKPgTEAF3tyKeUS4tJSOHO6X8wf/MRxvdpwtISniPG0Sbd0Iz45HS+Do+7/sYOsiH6FP9ds5+7OtZnZFddeKO47Olzf0xEIm3dNhfnIK0PHM23TZyt7QoiMl5EQkUkNDEx0Y4YSjkfYwyLtx1h4IcbSEzJ4PMHuvDyba1cbh6UPs1r0q6+HzN+P0B2TsmfvZ9ITmfyVxE0r1WZN+9qq/3sdijub9oMoCkQDMQD/ynqAYwxs4wxIcaYEH9/vYxYuY9z6Vk88dV2Xli+k04Nq/Hj5N70C6pldaxiEREm9WvG4aRUvt8ZX6LPlZWTy2MLw0nLyuHjUZ2c+vMIV1Csn54x5uTF2yLyKfCd7e4xIP/7qABbm1Jlwo6jZ3l8UQTHzqbx3IAgJvy1qctfTXlz69q0qF2Z6WtjuKN9vRK7yOrt/+0j9PAZPhjZkWa1qpTIc5QlxTpzF5H8M+PfBVwcSbMKGCEiXiLSGGgObLUvolLOLzfXMGvdAe6ZsZGcXMPi8d2Z1K+Zyxd2gHLlhEf7NmP/yfOsjjp5/R2K4X+7TzBr3UFGd2/kEh82u4LrnrmLyCKgL1BTROKA14G+IhIMGCAWeATAGLNbRJYAe4BsYJIxxppBskqVklPnM3hmyQ5+35/IgDa1mXZPB/wqudfQvYHt6/Lu6v1MXxvDza1rO7Qv/EhSKs8u3UH7AD9eGdjKYcct665b3I0xIwtonn2N7d8E3rQnlFKu4o+YUzy5eDvJaVn848623NetoVt+COjpUY6JfZvy0tc7WR99ij4Omm43PSuHiQvCKCd5C294eerIaUdxrY/ulXIS2bYpBO6bvQVfb09WTurF6O6N3LKwX3R3p/rU9fPmo7UxDjvm377dw+7j53h3WAcaVK/ksOMqLe5KFVncmVSGz9rM9LUHGNo5gG8f/wut6jrfFAKO5uXpwfg+Tdh66DTbYgt76cvVfR0ex6KtR5jYtyn9W9V2QEKVnxZ3pYrgp115UwjsO5HC+yOCmTakQ5kasjeiS0Nq+FTgo1/tO3vffzKFKSt20a1xdZ65qYWD0qn8tLgrVQgXpxCYMD+cQNsUAoODC7w+z61VrODBQ70b8/v+RCLjzhbrGOczspkwPwwfL08+HNnRsoVJ3J3+VJW6jvxTCIzr3ZhlLjaFgKON7t4IX29Pphej790Yw0tf7yT21AU+HNmRWr7eJZBQgRZ3pa5pybaj3PHhHyTYphCYcntrl5tCwNGqeJdnbM9A/rf7JPtPphRp3/mbD/PtjuM8c3MQPZrWKKGECrS4K1Wg9KwcXlgWyfPLIwluUNWlpxAoCQ/0akylCh58XISz9x1Hz/KP76LoF+TPxL82LcF0CrS4K3WFuDOpDPtkE4tDj/JYv2bMf7gbtbX74E+q+VRgVLeGrNpxnMNJF667/dnUTB5dEI5/FS/eHRZs+TqxZYEWd6Xy2RB9ijs+3MChxAvMGt2ZZwcEucUUAiVhXO8meHqUY+bvB665XW6u4ZklO0hISWf6qE5U86lQSgnLNi3uSpH3Qd/Hv8UwZs4Walb2YuVjvbi5TR2rYzm1Wr7eDAsJYFlYHPHJaVfdbua6A6zZm8Art7cmuEHVUkxYtmlxV2VeSnoWE+aHMe2nfdzari7fTOpFE//KVsdyCY/0aUqugVnrDhb4+KYDSbzzv30MbF+XMT0alXK6sk2LuyrTYhJSGDz9D36JSuCV21vx0ciO+HiVnYuS7NWgeiXuDK7Poq1HOHU+40+PJaSk8/iiCAJr+jD1nvZuPTWDM9LirsqsH3bGM/ijP0hOzWL+Q914uHcTLUDF8Gi/pmRk5zJnw6FLbdk5uTyxKILzGVnMGNWZyvoHs9RpcVdlTnZOLv/+IYpHF4TTvHYVvnviLzrm2g5N/StzW9u6fLnpMMlpWQC898t+Nh88zZt3tiOoji68YQX9c6rKlKTzGTy+KIKNB5IY1a0hr93RWqeZdYBH+zXl+53xfLExljb1fZm+9gAjujTgns4BVkcrs7S4qzJj+9GzTJwfRtKFTN4e0p6hIQ2uv5MqlDb1/LihZS1m/3EIY6B1XV/eGNTG6lhl2nW7ZURkjogkiMiufG1vi8heEYkUkRUiUtXWHigiaSKy3fY1syTDK1VYi7YeYdjMTZQTYfmEnlrYS8Ckfs04m5pFbq5hxn2d8C6v74isVJgz97nAR8AX+dpWAy8ZY7JF5C3gJeAF22MHjDHBDk2pVDGlZ+Xw+srdLA49Su/mNflgREe9iKaEdG5UjSm3taJdgF+ZnljNWRRmmb11IhJ4WdvP+e5uBoY4NpZS9jt2No2J88OIjEtmUr+mPH2TXm1a0sb1aWJ1BGXjiD73B4HF+e43FpEI4BzwijFmfUE7ich4YDxAw4YNHRBDqf+3IfoUjy8KJyvHMGt0Z73aVJU5dhV3EZkCZAMLbE3xQENjTJKIdAa+EZE2xphzl+9rjJkFzAIICQkx9uRQzsMYwxebDhMVf452AX50CKhKUJ0qlC+lBRmMMcz4/QDv/G8fTf0rM3N0Z5rq1aaqDCp2cReRscBAoL8xxgAYYzKADNvtMBE5ALQAQu2Pqpxdbq7hb9/uZt6mw1Sq4MFX244CUMGzHK3r+tIhwI8ODarSPqAqTWr6OHxmwJT0LJ5bGslPu09we7u6TBvSXq82VWVWsX7zReQW4Hngr8aY1Hzt/sBpY0yOiDQBmgMFTzqh3EpWTi7PL4tkRcQxxvVuzEu3tuLomVR2xCUTefQskXHJLAmNY96mwwBU8fKkbX0/2jfIO7tvH+BH/aoVi32FaExCCo98GUZsUipTbmvFw70b69Wmqky7bnEXkUVAX6CmiMQBr5M3OsYLWG37D7TZGDMB6AP8XUSygFxggjHG/mXSlVNLz8rhsYXh/BKVwHMDgni0b1NEhEY1fGhUw4dBHeoBkJNriEk4z464s+ywFfw5Gw6RlZPXK1fDpwLtbWf3Fwt+jcpe133+H3fG8+zSHXiX92D+Q930alOlALH1qFgqJCTEhIZqz40rSknP4uF5oWyNPc3fB7VhdI/AIu2fkZ1DVHwKkXFn2XE0mci4s8Qknufir2X9qhXp0MCP9rZi366+H1W8ywN50wi8/b99fLLuIB0aVGXmfZ2o61fRwa9QKeclImHGmJCCHtMOSVVsSeczGPv5NqLiz/Hf4cEMDq5f5GN4eXoQ3KBq3jzfPfLazmdks+tY8qWz+x1xZ/lh5wkARKBJTR86BFTl2Nk0thw6zb3dGvK6TiOg1J9ocVfFEp+cxn2fbSHuTBqzxnTmhpa1HXbsyl6edG9Sg+5N/r97Jel8BpHHkom0nd2viz7FhYxspg1pzzC92lSpK2hxV0V26NQF7vtsC+fSsvjiwa50a1Lyfdw1KlnVvlMAABGlSURBVHvRL6jWpUWqjTHk5Bo8S2mIpVKuRou7KpLdx5O5f85Wcg0sGt+dtvX9LMkhInh66GgYpa5GT3tUoW2LPc2IWZup4FGOJY/0sKywK6WuT8/cVaGs3ZfAxPlh1POryJcPd6N+VR2VopQz0+KuruvbHcd5avF2gupUYd6DXalZiLHnSilraXFX17RwyxGmfLOTLo2q89nYEHxtY8yVUs5Ni7u6qhm/HeCtn/bSL8ifj0d1pmIFHUeulKvQ4q6uYIxh6k97+eT3g9zRoR7/GdqBCp762btSrkSLu/qTnFzDK9/sZNHWo4zq1pC/D26rC1wo5YK0uKtLMrNzeWrJdr6PjGdSv6Y8e3OQzqyolIvS4q4ASMvMYcL8MH7fn8jLt7VkfJ+mVkdSStlBi7siOS2Lh+ZuI/zIGd66px3Du+iyh0q5Oi3uZVxiSgZj5mwlJiGFj+7txG3t6lodSSnlAIUaAiEic0QkQUR25WurLiKrRSTa9r2arV1E5AMRiRGRSBHpVFLhlX3izqQydOZGYk9dYPb9XbSwK+VGCju+bS5wy2VtLwJrjDHNgTW2+wC3kre8XnNgPDDD/pjK0WISUhgyYxOnL2Qy/+Fu9Gnhb3UkpZQDFaq4G2PWAZcvlzcYmGe7PQ+4M1/7FybPZqCqiOgpoROJjDvL0JmbyM41LH6kB50bVbM6klLKwey5MqW2MSbedvsEcHG1hvrA0Xzbxdna/kRExotIqIiEJiYm2hFDFcWmA0mMnLUZHy9Plk3oQau6vlZHUkqVAIdcdmjyFmIt0mKsxphZxpgQY0yIv792CZSGqPhzjP18K/WqVmTZhJ4E1vSxOpJSqoTYU9xPXuxusX1PsLUfA/KvexZga1MWysjO4anF26niXZ5F47tTx8/b6khKqRJkT3FfBdxvu30/sDJf+xjbqJnuQHK+7htlkfdWR7P3RApv3dNOp+xVqgwo1Dh3EVkE9AVqikgc8DowFVgiIg8Bh4Fhts1/AG4DYoBU4AEHZ1ZFtC32NJ+sO8CILg3o38pxC1krpZxXoYq7MWbkVR7qX8C2BphkTyjlOOczsnl6yXYCqlXklYGtrY6jlColeoWqm3vz+z3EnUljySM9qOyl/9xKlRU6SbcbWxN1kkVbjzK+TxO6BFa3Oo5SqhRpcXdTSeczeGH5TlrWqcLTN7WwOo5SqpTp+3Q3ZIxhyopdJKdl8uVDXfHy1OXxlCpr9MzdDa2IOMZPu0/w9E1BegWqUmWUFnc3c+xsGq+v3E2XwGqM79PE6jhKKYtocXcjubmG55buIMcY/jM0WNc+VaoM0+LuRuZujGXjgSReHdiahjUqWR1HKWUhLe5uIiYhhbd+2kv/lrUY0aXB9XdQSrk1Le5uICsnl6cW76BSBQ/+fU87RLQ7RqmyTodCuoEPf41h57FkZozqRK0qOtujUkrP3F3e9qNnmb42hrs71udWXQNVKWWjxd2FpWXm8PTi7dSu4sUbg9tYHUcp5US0W8aFTf0xioOnLrDw4W74epe3Oo5SyonombuLWh+dyLxNh3mgVyA9m9W0Oo5SyslocXdByalZPLc0kma1KvPCLS2tjqOUckLF7pYRkSBgcb6mJsBrQFVgHJBoa3/ZGPNDsROqK7y2ahenzmfw6ZgQvMvrpGBKqSsVu7gbY/YBwQAi4kHeItgryFtW7z1jzDsOSaj+5LvI46zcfpynbmxBuwA/q+MopZyUo7pl+gMHjDGHHXQ8VYCT59J55ZtddGhQlUn9mlodRynlxBxV3EcAi/Ldf0xEIkVkjohUK2gHERkvIqEiEpqYmFjQJiofYwwvLI8kPSuHd4d1wNNDPy5RSl2d3RVCRCoAg4CltqYZQFPyumzigf8UtJ8xZpYxJsQYE+Lv729vDLe3YMsRftuXyEu3tqKpf2Wr4yilnJwjTv9uBcKNMScBjDEnjTE5xphc4FOgqwOeo0yLPXWBN7+Ponfzmozu3sjqOEopF+CI4j6SfF0yIpL/Gvi7gF0OeI4yKzsnl6eXbKe8hzBtSHvK6RztSqlCsOsKVRHxAW4CHsnXPE1EggEDxF72mCqiT9YdJPzIWd4fEUxdv4pWx1FKuQi7irsx5gJQ47K20XYlUpfsOpbMe6v3c3v7ugzqUM/qOEopF6JDLpxUelYOTy/ZTnWfCvxzcFudo10pVSQ6cZiT+s/P+9h/8jyfP9CFaj4VrI6jlHIxeubuhDYfTOKzDYcY1a0h/YJqWR1HKeWCtLg7mZT0LJ5ZsoOG1Ssx5fZWVsdRSrko7ZZxMn//dg/xyWksndCTShX0n0cpVTx65u5Eft59gqVhcUzs25TOjQqctUEppQpFi7uTOHU+g5e+3knrur5M7t/C6jhKKRen7/udQGpmNo98GUZKRjYLhwdTwVP/5iql7KNVxGKZ2blMnB9OxJEzfDAimKA6VayOpJRyA3rmbqHcXMMzS3fw+/5Ept7djlva1r3+TkopVQh65m4RYwyvr9rNtzuO88ItLRnRtaHVkZRSbkSLu0Xe+yWaLzcf5pE+TZjYV1dVUko5lhZ3C3z+xyE+WBPNsJAAXry1pdVxlFJuSIt7KVsREcffvt3DgDa1+ddd7XRCMKVUidDiXorWRJ3k2aWR9Gxag/dHdNR1UJVSJcbu0TIiEgukADlAtjEmRESqA4uBQPIW7BhmjDlj73O5sq2HTvPognDa1PNl1pgQvMt7WB1JKeXGHHXq2M8YE2yMCbHdfxFYY4xpDqyx3S+zdh9P5qG526hfrSKfj+1CZS8dgaqUKlkl1S8wGJhnuz0PuLOEnsfpHTp1gfvnbKWKtyfzH+pGjcpeVkdSSpUBjijuBvhZRMJEZLytrbYxJt52+wRQ+/KdRGS8iISKSGhiYqIDYjifE8npjJ69hVwDXzzUjXpVdQ1UpVTpcET/wF+MMcdEpBawWkT25n/QGGNExFy+kzFmFjALICQk5IrHXd3Z1EzGzNnCmQuZLBrfnWa1KlsdSSlVhth95m6MOWb7ngCsALoCJ0WkLoDte4K9z+NKUjOzeWDuNmJPpfLpmBDaB1S1OpJSqoyxq7iLiI+IVLl4G7gZ2AWsAu63bXY/sNKe53Elmdm5PPJlGDuOnuWDkR3p2aym1ZGUUmWQvd0ytYEVtgtxPIGFxpifRGQbsEREHgIOA8PsfB6XkJNreGrJdtZHn2LaPe25pW0dqyMppcoou4q7MeYg0KGA9iSgvz3HdjXGGF5duYvvI+N5+baWDOvSwOpISqkyTC+RdJB3V+9n4ZYjTPhrU8b30YnAlFLW0uLuALM3HOLDX2MY0aUBL9wSZHUcpZTS4m6v5WFx/OO7Pdzatg5v6kRgSiknocXdDqv3nOT55ZH0alaD/44IxqOcFnallHPQ4l5Mmw8mMWlhOG3r+fLJ6BC8PHUiMKWU89DiXgy7jiUzbl4oDatX4vMHuupEYEopp6PFvYgOJp7n/jlb8a1Yni8f6kp1nwpWR1JKqStocS+C+OQ0Rs/eCsCXD3Wlrp9OBKaUck7an1BIZy5kMmb2VpLTslg0rjtN/HUiMKWU89LiXggXMvImAjt8OpV5D3SlXYCf1ZGUUuqatLhfxZkLmWyLPU3o4TP8ujeBg4nnmXlfZ3o0rWF1NKWUui4t7jZxZ1LZFnuabbFn2HboNNEJ5wGo4FGODg38mH5vJ25uoxOBKaVcQ5ks7rm5huiE82yNPU1o7Gm2HTrN8eR0AKp4edI5sBp3dqxP18bVaVffTxezVkq5nDJR3DOzc9l5LDmvm8XW1XI2NQuAWlW86NK4Oo8EVicksBot6/jqlaZKKZfnlsX9fEY24YfP2LpZTrP96FnSs3IBaFLThwGt6xASWI2ujavTsHolnQ9GKeV2il3cRaQB8AV5C3YYYJYx5n0ReQMYB1xc9fplY8wP9ga9lsSUjLzuldi8gr4n/hw5uYZyAm3q+TGya0O6BlYnJLA6/lW8SjKKUko5BXvO3LOBZ4wx4bal9sJEZLXtsfeMMe/YH+/adsYlM/mrCA6eugCAl2c5ghtU5dG+TekSWJ1Ojarp1ABKqTKp2JXPGBMPxNtup4hIFFDfUcEKo46fN41r+jCsSwO6BOZ9+FnBUy+6VUoph5zWikgg0BHYAvQCHhORMUAoeWf3ZxzxPJfzr+LF7LFdSuLQSinl0uw+zRWRysBy4EljzDlgBtAUCCbvzP4/V9lvvIiEikhoYmJiQZsopZQqJruKu4iUJ6+wLzDGfA1gjDlpjMkxxuQCnwJdC9rXGDPLGBNijAnx9/e3J4ZSSqnLFLu4S974wdlAlDHm3XztdfNtdhewq/jxlFJKFYc9fe69gNHAThHZbmt7GRgpIsHkDY+MBR6xK6FSSqkis2e0zAagoKt/SnRMu1JKqevTcYNKKeWGtLgrpZQb0uKulFJuSIwxVmdARBKBw1bnuI6awCmrQziIu7wWd3kdoK/FWTn7a2lkjClwLLlTFHdXICKhxpgQq3M4gru8Fnd5HaCvxVm58mvRbhmllHJDWtyVUsoNaXEvvFlWB3Agd3kt7vI6QF+Ls3LZ16J97kop5Yb0zF0ppdyQFnellHJDWtyvQUQaiMhaEdkjIrtFZLLVmewlIh4iEiEi31mdxR4iUlVElonIXhGJEpEeVmcqLhF5yvb7tUtEFomIt9WZCktE5ohIgojsytdWXURWi0i07Xs1KzMWxlVex9u2369IEVkhIlWtzFhUWtyv7eI6sa2B7sAkEWltcSZ7TQairA7hAO8DPxljWgIdcNHXJCL1gSeAEGNMW8ADGGFtqiKZC9xyWduLwBpjTHNgje2+s5vLla9jNdDWGNMe2A+8VNqh7KHF/RqMMfHGmHDb7RTyCkiprhPrSCISANwOfGZ1FnuIiB/Qh7z1BDDGZBpjzlqbyi6eQEUR8QQqAcctzlNoxph1wOnLmgcD82y35wF3lmqoYijodRhjfjbGZNvubgYCSj2YHbS4F9Jl68S6qv8CzwO5VgexU2MgEfjc1sX0mYj4WB2qOIwxx4B3gCPkLUuZbIz52dpUdqttjIm33T4B1LYyjIM8CPxodYii0OJeCAWsE+tyRGQgkGCMCbM6iwN4Ap2AGcaYjsAFXOOt/xVs/dGDyfuDVQ/wEZH7rE3lOCZvrLVLj7cWkSnkddEusDpLUWhxv46C1ol1Ub2AQSISC3wF3CAi862NVGxxQJwx5uK7qGXkFXtXdCNwyBiTaIzJAr4GelqcyV4nLy63afueYHGeYhORscBAYJRxsYuCtLhfw9XWiXVFxpiXjDEBxphA8j6w+9UY45JniMaYE8BREQmyNfUH9lgYyR5HgO4iUsn2+9YfF/1wOJ9VwP222/cDKy3MUmwicgt53ZiDjDGpVucpKi3u13ZxndgbRGS77es2q0MpAB4HFohIJBAM/MviPMVie/exDAgHdpL3f9JlLnkXkUXAJiBIROJE5CFgKnCTiEST985kqpUZC+Mqr+MjoAqw2vZ/f6alIYtIpx9QSik3pGfuSinlhrS4K6WUG9LirpRSbkiLu1JKuSEt7kop5Ya0uCullBvS4q7KHMmjv/vKrekvuCoTRCRQRPaJyBfALmC2bf70nSIy3LaN2Obwvry9r4j8LiIrReSgiEwVkVEistW2XVPbdkNt++4QkXXWvVql8iZgUqqsaE7e5fD1gQnkzQNfE9hmK8Y9ybva9fJ2bG2tyJsW9iDwmTGmq20Bl8eBJ4HXgAHGmGOutrCDcj965q7KksPGmM3AX4BFxpgcY8xJ4HegyzXaAbbZ5vfPAA4AF6fl3QkE2m7/AcwVkXHkLbqhlGW0uKuy5IId+2bku52b734utnfAxpgJwCtAAyBMRGrY8XxK2UWLuyqL1gPDbevJ+pO3qtPWa7QXiog0NcZsMca8Rt5iIg1KILtShaJ97qosWgH0AHaQt5DE88aYEyJytfaWhTzu2yLSHBDy1g7d4fjoShWOzgqplFJuSLtllFLKDWlxV0opN6TFXSml3JAWd6WUckNa3JVSyg1pcVdKKTekxV0ppdzQ/wHoI8KX2pJMXAAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ] + }, + { + "cell_type": "code", + "source": [ + "fur_mean = df.groupby('furniture').mean()\n", + "fur_mean" + ], + "metadata": { + "id": "5YPR2ePVDRhR", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 143 + }, + "outputId": "38ceb64c-492f-4c90-d4ce-1d23d0134f30" + }, + "execution_count": 16, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " area rooms bathroom parking spaces hoa (R$) \\\n", + "furniture \n", + "furnished 156.950883 2.339601 2.281274 1.595932 1267.761704 \n", + "not furnished 146.725699 2.559733 2.222483 1.613406 1143.810660 \n", + "\n", + " rent amount (R$) property tax (R$) fire insurance (R$) \\\n", + "furniture \n", + "furnished 4882.28703 372.097467 65.229087 \n", + "not furnished 3578.46092 364.966238 49.456592 \n", + "\n", + " total (R$) \n", + "furniture \n", + "furnished 6587.506907 \n", + "not furnished 5136.933465 " + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
arearoomsbathroomparking spaceshoa (R$)rent amount (R$)property tax (R$)fire insurance (R$)total (R$)
furniture
furnished156.9508832.3396012.2812741.5959321267.7617044882.28703372.09746765.2290876587.506907
not furnished146.7256992.5597332.2224831.6134061143.8106603578.46092364.96623849.4565925136.933465
\n", + "
\n", + " \n", + " \n", + " \n", + "\n", + " \n", + "
\n", + "
\n", + " " + ] + }, + "metadata": {}, + "execution_count": 16 + } + ] + }, + { + "cell_type": "code", + "source": [ + "fur_mean.plot(y = 'hoa (R$)')\n", + "plt.show()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 279 + }, + "id": "ctId7w5-dWxA", + "outputId": "6c3cc6e7-2bdb-43d5-e8fd-f944432f0987" + }, + "execution_count": 18, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEGCAYAAACJnEVTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3dd3RUdfrH8feTQgq9BKRK700IHRILTUVAFEVdUUFAEYGwa1tdxV13XXU3FEERFEFF7AgK0vy5CV1CJ9TQQ5HQe//+/mB0s4gmkAkzyXxe5+Q4873fe+e58ZxPLvfeea455xARkcAQ5OsCRETk2lHoi4gEEIW+iEgAUeiLiAQQhb6ISAAJ8XUBGSlWrJgrX768r8sQEckxlixZss85F3W5ZX4f+uXLlycpKcnXZYiI5Bhmtu23lun0johIAFHoi4gEEIW+iEgA8ftz+iISGM6ePUtqaiqnTp3ydSk5Rnh4OGXKlCE0NDTT6yj0RcQvpKamkj9/fsqXL4+Z+bocv+ecY//+/aSmplKhQoVMr6fTOyLiF06dOkXRokUV+JlkZhQtWvSK/2Wk0BcRv6HAvzJX8/vKtaE//PuNrNhxyNdliIj4lVwZ+odOnOHjRdu58615/GPaWk6eOe/rkkRE/EKuDP1CkXmYOSiGexuVY3TiZm4dlsiCTft9XZaI+LGtW7dSu3btbNn2119/zV//+lcABg8eTOnSpalfvz41a9Zk4sSJv5o/ePDg/3mflpZG+/btvVJLrgx9gALhobzapQ4f92qCA+4bs5A/T1rFkVNnfV2aiASY119/nb59+/7yPi4ujuXLlzN58mT69OnD2bMXc2nNmjXExsYyatQoGjRo8MsfhKioKEqWLMm8efOyXEuuv2WzeaViTB8QQ/ys9bw3dwv/t3Yvf7+zNrfUKOHr0kTkN7z8TTJrdh3x6jZrlirAS3fU+t0558+fp1evXsyfP5/SpUszefJkIiIiWL58OY899hgnTpygUqVKjB07lsKFCzNmzBhGjx7NmTNnqFy5Mh9++CGRkZH/s80NGzYQFhZGsWLFfvV5VapUITIykoMHD1K8eHEGDx5Mjx492LJlC8888ww7d+78ZW7nzp2ZMGECLVq0yNLvIdce6acXkSeY52+vyVd9W1AwIpSe45PoP3EZ+4+d9nVpIuJHNm7cyBNPPEFycjKFChXiyy+/BKB79+689tprrFy5kjp16vDyyy8D0KVLFxYvXsyKFSuoUaMG77333q+2OW/ePBo0aHDZz1u6dClVqlShePHiAOTJk4d9+/Zx4cIFIiIiqFy58i9zo6OjmTNnTpb3Mdcf6adXv2whvnmyJW/9J4WRP6QwN2UfL91Rk471SulWMRE/ktEReXapUKEC9evXB6Bhw4Zs3bqVw4cPc+jQIWJjYwF46KGH6Nq1KwCrV6/mhRde4NChQxw7dox27dr9apu7d+8mKup/uxwPGTKE999/nw0bNvDNN9/8Mv7aa6/x1FNPMX36dJYtW8Yrr7xCvXr1AChevDi7du3K8j4GxJF+enlCghjYuirfPtmKskUiGfDJch4dn8Tuwyd9XZqI+FhYWNgvr4ODgzl37tzvzn/44YcZMWIEq1at4qWXXrrsF6UiIiJ+NR4XF0dycjJffvklPXv2/GV56dKl+fjjj+nXrx+9e/emS5cuv6xz6tQpIiIisrJ7QACG/s+qXZefrx5vzgu312Depn20jU/k40XbuXDB+bo0EfEjBQsWpHDhwr+cWvnwww9/Oeo/evQoJUuW5OzZs0yYMOGy69eoUYOUlJTLLuvYsSPR0dGMHz8egOTkZACCgoJo2LAhx48f/2Xuhg0bvHJ3UcCGPkBwkPFoq4rMGBhD7dIF+fOkVdz/7kK27jue8coiEjDGjx/PU089Rd26dVm+fDkvvvgiAH/7299o0qQJLVq0oHr16pddNyYmhmXLluHc5Q8oX3zxReLj47lw4QKTJk2iWbNmjB07lrZt2zJ8+PBf5v3www/cfvvtWd8Z59zv/gBjgb3A6nRjbwDrgJXAJKBQumV1gQVAMrAKCPeMN/S8TwGGA5bRZzvnaNiwobsWLly44CYu2uZqvzjdVX1+mnsnIcWdPXf+mny2iDi3Zs0aX5eQbfr37+9mzZqV6fkvvfTSr8ZatWrlDhw48Kvxy/3egCT3G5mamSP9ccCl3wqYBdR2ztUFNgDPAZhZCPAR8JhzrhZwI/DzjfFvA72AKp4f73zTwEvMjG6NyzFrUCytqhTjH9PWcdfb81m3x7u3jYlI4Pnzn//MiRMnMj3/xhtv/J/3aWlpDBo0iMKFC2e5lgxD3zmXCBy4ZGymc+7nKxwLgTKe122Blc65FZ55+51z582sJFDAObfQ81foA6BzlqvPBtcVDGdM92jevO8GUg+epMPwucTP2sDpc2rlIJLd3G+cAsnpSpQoQceOHTM9/9LQj4qKonPnX0fm1fy+vHFOvwfwned1VcCZ2QwzW2pmT3vGSwOp6dZJ9Yz5JTPjjnqlmDUolg51SzL8+43c8eZclm0/6OvSRHKt8PBw9u/fn2uD39ucp59+eHj4Fa2Xpfv0zex54Bzw82XrEKAl0Ag4AXxvZkuAw1e43d5Ab4By5cplpcQsKZI3D0O73UDH+qV4ftJqurw9nx4tKvDHtlWJzBNQX3EQyXZlypQhNTWVtLQ0X5eSY/z85KwrcdXJZWYPAx2AW9x//zSnAonOuX2eOdOABlw8z5++sjLATn6Dc240MBogOjra53/2b65egplxRXht+jrem7uFmWv28M8udWlR+ddfqxaRqxMaGnpFT4CSq3NVp3fMrD3wNNDROZf+6sQMoI6ZRXou6sYCa5xzu4EjZtbULn71tTswOYu1X1P5w0N5pXMdPundlGAzHnh3Ec9+uZLDJ9XATURyjgxD38wmcvEWzGpmlmpmPYERQH5glpktN7NRAM65g0A8sBhYDix1zk31bKov8C4Xb9ncxH+vA+QoTSsWZfrAGPrEVuSzpB20iU9gZvIeX5clIpIp5u8XTaKjo11SUpKvy7islamHePqLlazbc5QOdUsyuGMtiuULy3hFEZFsZGZLnHPRl1sW0N/Izaq6ZQoxpV9L/timKjOTf6J1fAKTlqXq7gMR8VsK/SzKExLEk7dUYWr/llQolpe4T1fQY9xidh1SAzcR8T8KfS+pUiI/XzzWnBc71GTh5gO0iU/gw4Xb1MBNRPyKQt+LgoOMHi0rMDMuhhvKFeYvX6+m2+iFbE475uvSREQAhX62KFskkg97Nub1u+qyds8Rbh02h1EJmzh3/oKvSxORAKfQzyZmxj2NyjJ7UCyxVaP453fr6PzWPK8/91NE5Eoo9LNZiQLhvPNgQ956oAF7Dp+i44i5/HvmejVwExGfUOhfA2bGbXVKMisulo71S/Hm/6Vw+/C5LNl2IOOVRUS8SKF/DRXOm4f4e+oz7pFGnDxznrtHLWDwlGSOn/7953CKiHiLQt8HbqxWnBlxMTzY9HrGzd9Ku6GJzNmozoIikv0U+j6SLyyEv3aqzWd9mpEnOIgH3/uRpz5fweETauAmItlHoe9jjSsUYdqAVvS9sRJfLdtJ6yEJTF+tBm4ikj0U+n4gPDSYp9tXZ/ITLYjKF8ZjHy2h74Ql7D16yteliUguo9D3I7VLF2RyvxY81a4as9fupU18Il8sUQM3EfEehb6fCQ0O4ombKjOtfysqF8/Hnz5fwUPvLyb14ImMVxYRyYBC309VLp6Pz/s04+WOtUjaeoC2QxIZP3+rGriJSJYo9P1YUJDxUPPyzIyLIbp8EV6aksw97yxgkxq4ichVUujnAGUKRzL+kUb8q2s9Nu49xq3D5jDyhxTOqoGbiFwhhX4OYWbc3bAMswbF0LpGcd6YsZ5OI+axeudhX5cmIjmIQj+HKZ4/nLceaMioPzRg79HTdBo5j9emr+PUWTVwE5GMKfRzqPa1S/L9oFi63FCat/+ziduGzWHxVjVwE5Hfp9DPwQpGhvJG13p80KMxp89doOuoBbw4eTXH1MBNRH6DQj8XiKkaxcy4GB5uXp4PF26j3ZBEEjaogZuI/FqGoW9mY81sr5mtTjf2hpmtM7OVZjbJzApdsk45MztmZn9KN9bezNabWYqZPevd3ZC8YSEM7liLLx5rRnhoEA+N/ZFBny3n0Ikzvi5NRPxIZo70xwHtLxmbBdR2ztUFNgDPXbI8Hvju5zdmFgyMBG4FagL3mVnNq6xZfkfD64swtX8r+t1UmSnLd9E6PoFpq3arlYOIAJkIfedcInDgkrGZzrmfTxwvBMr8vMzMOgNbgOR0qzQGUpxzm51zZ4BPgE5ZrF1+Q3hoMH9qV43J/VpwXcFw+k5YymMfLWHvETVwEwl03jin3wPPUb2Z5QOeAV6+ZE5pYEe696meMclGtUoV5Ou+LXimfXV+WJ9G6/gEPkvaoaN+kQCWpdA3s+eBc8AEz9BgYIhzLkt9Asyst5klmVlSWpouSGZFSHAQj99YiekDWlH9ugI8/cVKHnzvR3YcUAM3kUB01aFvZg8DHYAH3H8PHZsAr5vZVmAg8Gcz6wfsBMqmW72MZ+yynHOjnXPRzrnoqKioqy1R0qkYlY9Pejflb51rs2z7QdoOSeT9eVs4rwZuIgEl5GpWMrP2wNNArHPul0NG51yrdHMGA8eccyPMLASoYmYVuBj23YD7s1K4XLmgIOPBptdzc/XiPD9pFS9/s4ZvVuzi9bvrUrl4fl+XJyLXQGZu2ZwILACqmVmqmfUERgD5gVlmttzMRv3eNjwXffsBM4C1wGfOueTfW0eyT+lCEbz/cCOG3FuPzfuOc9uwubz5/UY1cBMJAObvF/Wio6NdUlKSr8vItfYdO81LU5KZunI31a/Lzxt316NOmYK+LktEssDMljjnoi+3TN/IDXDF8oUx8v4GvPNgQw4cP0OnkXN59bu1auAmkksp9AWAdrWuY9agWO6JLss7CZu5ddgcFm3e7+uyRMTLFPryi4IRofzzrrpMeLQJ5y5c4N7RC3nh61UcPXXW16WJiJco9OVXWlQuxoyBMfRsWYEJi7bTbkgiP6zb6+uyRMQLFPpyWZF5QvhLh5p8+Xhz8oaF8Mi4xcR9upwDx9XATSQnU+jL72pQrjDf9m9J/1uq8M2KXbSJT+CbFbvUykEkh1LoS4bCQoIZ1KYq3zzZktKFI3hy4jJ6fbCEn9TATSTHUehLptUoWYCvHm/On2+rzpyNFxu4ffLjdh31i+QgCn25IiHBQfSOqcSMgTHULFmAZ79axQPvLmL7fjVwE8kJFPpyVcoXy8vEXk35x511WJl6mLZDE3h3zmY1cBPxcwp9uWpBQcb9Tcoxa1AMzSsV45Wpa+ny9nzW7znq69JE5Dco9CXLShaM4L2HohnWrT47Dpygw5tzGDp7A2fOqYGbiL9R6ItXmBmd6pdmVlwMt9UpydDZG7njzbms2HHI16WJSDoKffGqovnCGNbtBt7tHs3hk2e58615/H3qGk6eUQM3EX+g0Jds0bpmCWYOiqFb43KMmbOF9sMSWbBJDdxEfE2hL9mmQHgo/7izDh/3agLAfWMW8txXqziiBm4iPqPQl2zXvFIxpg+IoXdMRT5dvJ028QnMXvOTr8sSCUgKfbkmIvIE8+fbavBV3xYUisjDox8k0X/iMvYfO+3r0kQCikJfrqn6ZQvxzZMtiWtdle9W76Z1fAKTl+9UKweRa0ShL9dcnpAgBrSuwtT+rbi+aF4GfLKcR8cnsfvwSV+XJpLrKfTFZ6qWyM+XjzfnhdtrMG/TPtrEJzJh0TYuqJWDSLZR6ItPBQcZj7aqyMyBsdQtU5DnJ63m/ncXsnXfcV+XJpIrKfTFL5QrGsmER5vwzy51SN55hHZDExmduIlz59XKQcSbMgx9MxtrZnvNbHW6sTfMbJ2ZrTSzSWZWyDPexsyWmNkqz39vTrdOQ894ipkNNzPLnl2SnMrM6Na4HLMGxdKqShT/mLaOLm/PZ+3uI74uTSTXyMyR/jig/SVjs4Dazrm6wAbgOc/4PuAO51wd4CHgw3TrvA30Aqp4fi7dpggA1xUMZ0z3hoy4/wZ2HjzJHW/OJX7WBk6fUysHkazKMPSdc4nAgUvGZjrnznneLgTKeMaXOed2ecaTgQgzCzOzkkAB59xCd/HevA+Azt7aCcl9zIwOdUsxe1Asd9QrxfDvN9Jh+FyWbj/o69JEcjRvnNPvAXx3mfG7gKXOudNAaSA13bJUz9hlmVlvM0sys6S0tDQvlCg5VeG8eRhyb33ef7gRx06f46635/O3b9dw4sy5jFcWkV/JUuib2fPAOWDCJeO1gNeAPlezXefcaOdctHMuOioqKislSi5xU/XizIyL4YEm5Xhv7hbaDU1kXso+X5clkuNcdeib2cNAB+ABl+7rlGZWBpgEdHfObfIM78RzCsijjGdMJNPyh4fySuc6fNq7KSFBQTzw7iKe+WIlh0+qgZtIZl1V6JtZe+BpoKNz7kS68ULAVOBZ59y8n8edc7uBI2bW1HPXTndgcpYql4DVpGJRvhvQisdiK/HF0lTaxCcwM3mPr8sSyREyc8vmRGABUM3MUs2sJzACyA/MMrPlZjbKM70fUBl40TO+3MyKe5b1Bd4FUoBNXP46gEimhIcG8+yt1fm6bwuK5guj94dLeOLjpaQdVQM3kd9j/t7oKjo62iUlJfm6DPFjZ89f4J2ETQz/PoXIsGBeuqMmneuXRl8FkUBlZkucc9GXW6Zv5EqOFxocRL+bqzBtQEsqFstL3KcreGTcYnYeUgM3kUsp9CXXqFw8P58/1pyX7qjJos0HaBufwIcLtqqBm0g6Cn3JVYKDjEdaVGBmXAwNri/MXyYn0230QjanHfN1aSJ+QaEvuVLZIpF80KMxb9xdl3V7jtB+2Bze/o8auIko9CXXMjO6Rpdl9qBYbqoWxWvT19H5rXms2aUGbhK4FPqS6xUvEM47D0bz9gMN2HP4NB1HzOVfM9Zz6qwauEngUehLwLi1TklmD4qhU/3SjPghhduHz2HJtgMZryiSiyj0JaAUiszDv++px/gejTl19gJ3j1rA4CnJHD+tBm4SGBT6EpBiq0YxIy6G7k2vZ/yCrbQdkkjiBnV0ldxPoS8BK19YCC93qs1nfZoRFhpE97E/8qfPV3D4hBq4Se6l0JeA16h8Eab1b0XfGysxadlOWg9JYPrq3b4uSyRbKPRFuNjA7en21Zn8RAui8oXx2EdLefyjJew9esrXpYl4lUJfJJ3apQsyuV8LnmpXje/X7aVNfCJfLEnF3xsTimSWQl/kEqHBQTxxU2Wm9W9FleL5+NPnK+g+9kd2HDiR8coifk6hL/IbKhfPx2d9mvHXTrVYuu0g7YYmMm7eFjVwkxxNoS/yO4KCjO7NyjMjLobo8kUY/M0a7nlnASl71cBNciaFvkgmlCkcyfhHGvHvrvXYuPcYtw2bw8gfUjirBm6Swyj0RTLJzLirYRlmD4qldc3ivDFjPZ1GzGP1zsO+Lk0k0xT6IlcoKn8Ybz3QkFF/aEDasdN0GjmP16avUwM3yREU+iJXqX3tksyOi+WuBqV5+z+buG3YHBZvVQM38W8KfZEsKBgZyut31+Ojnk04c/4CXUct4MXJqzmmBm7ipxT6Il7QskoxZgyM4ZEW5flw4TbaDUnkP+v3+roskV9R6It4Sd6wEF66oxZfPNaciDzBPPz+YgZ9tpyDx8/4ujSRX2QY+mY21sz2mtnqdGNvmNk6M1tpZpPMrFC6Zc+ZWYqZrTezdunG23vGUszsWe/vioh/aHh9Yab2b8mTN1dmyvJdtBmSwNSVu9XKQfxCZo70xwHtLxmbBdR2ztUFNgDPAZhZTaAbUMuzzltmFmxmwcBI4FagJnCfZ65IrhQWEswf21ZjSr+WlCwYwRMfL6XPh0vYe0QN3MS3Mgx951wicOCSsZnOuZ+vVC0EynhedwI+cc6dds5tAVKAxp6fFOfcZufcGeATz1yRXK1mqQJM6tuc526tTsKGNG6JT+CzxTt01C8+441z+j2A7zyvSwM70i1L9Yz91vhlmVlvM0sys6S0ND3NSHK2kOAg+sRW4rsBrahRsgBPf7mSB99TAzfxjSyFvpk9D5wDJninnIucc6Odc9HOueioqChvblrEZypG5eOTXk15pXNtlu84RNshiYydu4XzauAm19BVh76ZPQx0AB5w//236k6gbLppZTxjvzUuElCCgow/NL2emXExNKlYhL9+u4auo+az8aejvi5NAsRVhb6ZtQeeBjo659L/G3UK0M3MwsysAlAF+BFYDFQxswpmloeLF3unZK10kZyrVKEI3n+4EUPvrc+Wfce5ffhc3vx+I2fOqYGbZK/M3LI5EVgAVDOzVDPrCYwA8gOzzGy5mY0CcM4lA58Ba4DpwBPOufOei779gBnAWuAzz1yRgGVmdL6hNLMGxdKu9nX8e9YGOo6Yy8rUQ74uTXIx8/e7CKKjo11SUpKvyxDJdrPW/MQLX68i7ehperWqSFybqoSHBvu6LMmBzGyJcy76csv0jVwRP9GmZglmxsVyb6OyvJO4mfZDE1m4eb+vy5JcRqEv4kcKRoTyape6fPxoEy446DZ6Ic9PWsXRU2d9XZrkEgp9ET/UvHIxpg9sxaMtKzDxx+20HZLID+vUwE2yTqEv4qci84TwQoeafPl4c/KFhfDIuMUM/GQZB9TATbJAoS/i524oV5hv+7dkwC1VmLpqN63jE5iyYpdaOchVUeiL5ABhIcHEtanKN0+2pGzhCPpPXEavD5aw57AauMmVUeiL5CDVryvAV31b8PxtNZibkkab+AQm/rhdR/2SaQp9kRwmOMjoFVOR6QNiqFW6AM99tYr7xyxi2/7jvi5NcgCFvkgOVb5YXj5+tCn/uLMOq3cept3QRN6ds1kN3OR3KfRFcrCgIOP+JuWYOSiGFpWK8crUtXR5ez7r96iBm1yeQl8kFyhZMIJ3H4pm+H03sOPACTq8OYehszeogZv8ikJfJJcwMzrWK8XsQbHcVqckQ2dv5I4357J8hxq4yX8p9EVymSJ58zCs2w2891A0h0+epctb8/j71DWcPHPe16WJH1Doi+RSt9QowcxBMXRrXI4xc7bQbmgi8zft83VZ4mMKfZFcrEB4KP+4sw4TezXFDO4fs4jnvlrFETVwC1gKfZEA0KxSUaYPiKFPTEU+XbydNvEJzF7zk6/LEh9Q6IsEiIg8wTx3Ww2+fqIFhSPz8OgHSTw5cRn7j532dWlyDSn0RQJM3TKFmNKvJYPaVGX66osN3CYv36lWDgFCoS8SgPKEBNH/lipM7d+K64vmZcAny+k5Poldh076ujTJZgp9kQBWtUR+vny8OX/pUJMFm/bTdkgiExZt44JaOeRaCn2RABccZPRsWYEZA2OoV7Ygz09azX1jFrJlnxq45UYKfREBoFzRSD7q2YTX7qrDmt1HaD80kXcSNnHuvFo55CYKfRH5hZlxb6NyzB4US0zVKF79bh1d3p7P2t1HfF2aeEmGoW9mY81sr5mtTjfW1cySzeyCmUWnGw81s/FmtsrM1prZc+mWtTez9WaWYmbPen9XRMRbShQIZ/SDDRl5fwN2HTrJHW/OJX7mek6fUyuHnC4zR/rjgPaXjK0GugCJl4x3BcKcc3WAhkAfMytvZsHASOBWoCZwn5nVzErhIpK9zIzb65ZkVlwsHeuVYvj/pdBh+FyWbj/o69IkCzIMfedcInDgkrG1zrn1l5sO5DWzECACOAMcARoDKc65zc65M8AnQKesFi8i2a9w3jzE31uf9x9pxPHT57jr7fn89Zs1nDhzztelyVXw9jn9L4DjwG5gO/Av59wBoDSwI928VM/YZZlZbzNLMrOktLQ0L5coIlfjpmrFmREXwx+aXM/YeRcbuM3dqAZuOY23Q78xcB4oBVQA/mhmFa90I8650c65aOdcdFRUlJdLFJGrlT88lL91rs1nfZoREhTEH95bxNNfrODwSTVwyym8Hfr3A9Odc2edc3uBeUA0sBMom25eGc+YiORAjSsU4bsBrXj8xkp8uXQnbeITmJG8x9dlSSZ4O/S3AzcDmFleoCmwDlgMVDGzCmaWB+gGTPHyZ4vINRQeGswz7avzdd8WFM0XRp8Pl/DEhKWkHVUDN3+WmVs2JwILgGpmlmpmPc3sTjNLBZoBU81shmf6SCCfmSVzMejfd86tdM6dA/oBM4C1wGfOueTs2CERubbqlCnIlH4teKpdNWat+Yk2QxL4ammqGrj5KfP3/zHR0dEuKSnJ12WISCak7D3K01+sZOn2Q8RWjeIfXepQulCEr8sKOGa2xDkXfbll+kauiHhN5eL5+fyx5gy+oyaLtx6gbXwCHyzYqgZufkShLyJeFRxkPNziYgO3BtcX5sXJydw7egGb0o75ujRBoS8i2aRskUg+6NGYN+6uy/o9R7l12Bze+k+KGrj5mEJfRLKNmdE1uiyz/xjLzdWK8/r09XR+ax7Juw77urSApdAXkWxXPH84ox5syNsPNGDP4dN0HDGPN2as49RZNXC71hT6InLN3FqnJLMHxXDnDaUZ+cMmbh8+h6StBzJeUbxGoS8i11ShyDz8q2s9PujRmFNnL9D1nQUMnpLM8dNq4HYtKPRFxCdiqkYxMy6Gh5qVZ/yCrbQdkkjiBjVYzG4KfRHxmbxhIQzuWIvP+zQjLDSI7mN/5E+fr+DQiTO+Li3XUuiLiM9Fly/CtP6teOKmSkxatpPW8Yl8t2q3r8vKlRT6IuIXwkODeapddab0a0GJAmE8PmEpj3+0hL1HT/m6tFxFoS8ifqVWqYJ8/UQLnmlfne/X7aVNfCKfJ+1QAzcvUeiLiN8JDQ7i8Rsr8d2AVlQtkY+nvlhJ97E/suPACV+XluMp9EXEb1WKysenvZvxt061WLrtIO2GJjJu3hY1cMsChb6I+LWgIOPBZuWZERdDo/JFGPzNGrq+s4CUvUd9XVqOpNAXkRyhTOFIxj3SiPh76rEp7Ri3DZvLyB9SOKsGbldEoS8iOYaZ0aVBGWbFxdKmVgnemLGeTiPmsXqnGrhllkJfRHKcqPxhjLy/Ae882JC0Y6fpNHIer5TKAxoAAArLSURBVE1XA7fMUOiLSI7VrtZ1zI6L5e4GZXj7P5u4bdgcftyiBm6/R6EvIjlawchQXru7Lh/1bMKZ8xe4550F/OXr1RxTA7fLUuiLSK7QskoxZsbF0KNFBT5atI228Qn8sH6vr8vyOwp9Eck1IvOE8OIdNfniseZEhoXwyPuLGfTpcg4eVwO3nyn0RSTXaXh9Yab2b0n/myszZcUu2gxJYOrK3WrlQCZC38zGmtleM1udbqyrmSWb2QUzi75kfl0zW+BZvsrMwj3jDT3vU8xsuJmZ93dHROSisJBgBrWtxjdPtqRkwQie+HgpfT5cwk9HAruBW2aO9McB7S8ZWw10ARLTD5pZCPAR8JhzrhZwI3DWs/htoBdQxfNz6TZFRLyuRskCTOrbnOdurU7ChjRaxyfw6eLtAXvUn2HoO+cSgQOXjK11zq2/zPS2wErn3ArPvP3OufNmVhIo4Jxb6C7+pj8AOme9fBGRjIUEB9EnthLTB8ZQo2QBnvlyFX94bxHb9wdeAzdvn9OvCjgzm2FmS83sac94aSA13bxUz9hlmVlvM0sys6S0ND0+TUS8o0KxvHzSqymvdK7Nih2HaTc0kffmbuF8ADVw83bohwAtgQc8/73TzG650o0450Y756Kdc9FRUVFeLlFEAllQkPGHptczMy6GphWL8Ldv13D3qPls/CkwGrh5O/RTgUTn3D7n3AlgGtAA2AmUSTevjGdMRMQnShWKYOzDjRjWrT5b9x3n9uFzGf79Rs6cy90N3Lwd+jOAOmYW6bmoGwuscc7tBo6YWVPPXTvdgcle/mwRkStiZnSqX5rZg2JpV/s64mdtoOOIuazYccjXpWWbzNyyORFYAFQzs1Qz62lmd5pZKtAMmGpmMwCccweBeGAxsBxY6pyb6tlUX+BdIAXYBHzn9b0REbkKRfOF8eZ9NzCmezQHT5zhzrfm8eq0tZw8k/sauJm/37YUHR3tkpKSfF2GiASII6fO8uq0tUz8cQfli0byz7vq0rRiUV+XdUXMbIlzLvpyy/SNXBGRdAqEh/Jql7p8/GgTLjjoNnohz09axdFTZzNeOQdQ6IuIXEbzysWYMTCGXq0qMPHH7bQdksj/rfvJ12VlmUJfROQ3ROQJ5vnba/JV3xYUCA+lx7gkBnyyjP3HTvu6tKum0BcRyUD9soX45smWDGxdhWmrdtNmSCJTVuzKka0cFPoiIpmQJySIga2r8u2TrShbJJL+E5fR64Mk9hzOWQ3cFPoiIleg2nX5+erx5rxwew3mpuyjTXwCE3/MOQ3cFPoiIlcoOMh4tFVFZgyMoXbpgjz31SruH7OIbfuP+7q0DCn0RUSu0vVF8/Jxrya82qUOq3debOA2JnGzXzdwU+iLiGSBmXFf43LMGhRLy8rF+Pu0tXR5ax7r9/hnAzeFvoiIF1xXMJwx3aN5874bSD14kg5vzmHIrA1+18BNoS8i4iVmxh31SjFrUCy31ynJsO830uHNOSz3owZuCn0RES8rkjcPQ7vdwNiHozl66hxd3prHK9+u8YsGbgp9EZFscnP1EsyMi+G+xuV4d+4W2g1NZP6mfT6tSaEvIpKN8oeH8vc76/BJ76YEGdw/ZhHPfbWSwyd908BNoS8icg00rViU6QNj6BNbkU8X76DtkARmrbn2DdwU+iIi10h4aDDP3VqDr59oQeHIPPT6IIl+Hy9l3zVs4KbQFxG5xuqWKcSUfi35Y5uqzEz+iTbxCXy9bOc1aeWg0BcR8YE8IUE8eUsVpvZvSflieRn46XJ6jk9i16GT2fq5Cn0RER+qUiI/XzzWnBc71GTBpv20HZLIRwu3cSGbWjko9EVEfCw4yOjRsgIz42KoX7YQL3y9mm5jFnLizDmvf1aI17coIiJXpWyRSD7s2ZjPk1JZsu0gkXm8H9EKfRERP2Jm3NOoLPc0Kpst29fpHRGRAJJh6JvZWDPba2ar0411NbNkM7tgZtGXWaecmR0zsz+lG2tvZuvNLMXMnvXeLoiISGZl5kh/HND+krHVQBcg8TfWiQe++/mNmQUDI4FbgZrAfWZW80qLFRGRrMnwnL5zLtHMyl8ythYunnu6lJl1BrYA6Z8b1hhIcc5t9sz5BOgErLnKukVE5Cp49Zy+meUDngFevmRRaWBHuvepnrHf2k5vM0sys6S0tDRvligiEtC8fSF3MDDEOXcsKxtxzo12zkU756KjoqK8U5mIiHj9ls0mwN1m9jpQCLhgZqeAJUD6+4/KADu9/NkiIpIBr4a+c67Vz6/NbDBwzDk3wsxCgCpmVoGLYd8NuN+bny0iIhnLMPTNbCJwI1DMzFKBl4ADwJtAFDDVzJY759r91jacc+fMrB8wAwgGxjrnkjNT4JIlS/aZ2bbMzL2MYoBvH1Nz7Wmfc79A21/QPl+p639rgV2LVp6+YmZJzrlffY8gN9M+536Btr+gffYmfSNXRCSAKPRFRAJIbg/90b4uwAe0z7lfoO0vaJ+9Jlef0xcRkf+V24/0RUQkHYW+iEgA8Xnom1l/M1trZhO8sK2/mlnr31k+zszuzsL2B6dvFy0iktP4w5Oz+gKtnXOpGU20i209zTl34XLLnXMvers4EZHcxKdH+mY2CqgIfGdmhy956MpqMyvv+VlvZh9wsY9/K8+/DMZ4HuQy08wiPOv8ciRvZv80szVmttLM/pXuY2PMbL6ZbU5/1G9mT5nZYs/8l9ONP29mG8xsLlAte38jIiLZy6eh75x7DNgF3AQM+Z2pVYC3nHO1gG2e9yM97w8Bd6WfbGZFgTuBWs65usAr6RaXBFoCHYB/eua39WyzMVAfaGhmMWbWkIt9guoDtwGNsrTDIiI+5g+ndzJjm3NuYbr3W5xzyz2vlwDlL5l/GDgFvGdm3wLfplv2tef00BozK+EZa+v5WeZ5n4+LfwTyA5OccycAzGyKl/ZHRMQnfH4hN51z/G894eleH79k7ul0r89zyR8v59w5Lh61f8HFI/rpv7Gupfvvq865+p6fys659658F0RE/Js/hf5WoAGAmTUAKlzthjxP8CronJsGxAH1MlhlBtDDsx5mVtrMinPxGcCdzSzCzPIDd1xtTSIi/sCfTu98CXQ3s2RgEbAhC9vKD0w2s3AuHsUP+r3JzrmZZlYDWOB57u8x4A/OuaVm9imwAtgLLM5CTSIiPqc2DCIiAcSfTu+IiEg2U+iLiAQQhb6ISABR6IuIBBCFvohIAFHoS0DIrm6uZjbQzCKzXqHItaFbNiUgmNk6vNTN9ZK5W4Fo59y+K6glxPOtcZFrTkf6kutlVzdXM+sPlAJ+MLMfPMuOpdv23WY2Lt06o8xsEfC6mVUys+lmtsTM5phZ9Wv1+5DAptCXXC+7urk654b/vF3n3E2ZKKUM0Nw5N4iLD71+0jnXEPgT8NaV7ZXI1fGnNgwivnal3Vyv1OfOufOeHk/Ngc89bT8AwrK4bZFMUehLoMlKN9eITGw//UWy8EuW/bz9IOCQc65+JrYn4lU6vSOBZite6ubqcZSLDf5+9pOZ1TCzIC4+yOdXnHNHgC1m1tVTh5lZRp1gRbxCoS+B5kugiKebaz+y1s0VLp6bn/7zhVzgWS4+tGc+sPt31nsA6GlmK4BkoFMW6xDJFN2yKSISQHSkLyISQBT6IiIBRKEvIhJAFPoiIgFEoS8iEkAU+iIiAUShLyISQP4fi0lKa8usKsoAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ] + }, + { + "cell_type": "code", + "source": [ + "fur_mean.plot(y = 'property tax (R$)')\n", + "plt.show()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 279 + }, + "id": "Br1nEldhd4Im", + "outputId": "e3f9ccc7-0359-4795-ed27-bc704b0f5180" + }, + "execution_count": 19, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEGCAYAAACevtWaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3dd3QV5dbH8e9OgdBrQDpIDS0RQg0kgFQRQcQGioCIoBSTa7neawP1ilcFREUEsV5ABZQmXTEh9ARCh0iXIoReQ8t+/8jIGyFAQspJTvZnrbM8Z+aZOXvM4ncmT+bsEVXFGGOMe/FwdQHGGGPSn4W7Mca4IQt3Y4xxQxbuxhjjhizcjTHGDXm5ugCA4sWLa8WKFV1dhjHGZCvR0dFHVNU3uXVZItwrVqxIVFSUq8swxphsRUT23GidTcsYY4wbsnA3xhg3ZOFujDFuKEvMuRtjbt+lS5fYt28f8fHxri7FZBAfHx/Kli2Lt7d3irexcDcmm9u3bx8FChSgYsWKiIiryzHpTFU5evQo+/bto1KlSinezqZljMnm4uPjKVasmAW7mxIRihUrlurfzCzcjXEDFuzu7XZ+vtk63I+eucCwWZs5FX/J1aUYY0yWcstwFxEfEVklIutEZJOIDHWWLxGRGOdxQESmO8t7iMh6EdkgIstExD+jil+64yhfLdtFmxHhLNp8KKPexhiTxf32228sW7YsVdtMnz6dzZs3p1sNo0aN4ptvvgGgV69eVKpUiYCAAPz9/fnll1+uG//GG2/87fWGDRvo1atXutWTkjP3C0ArVfUHAoD2ItJYVZuraoCqBgDLgR+d8buAEFWtA7wJjEu3aq9xn39pfnomiCJ5c9H3mygGT17L0TMXMurtjDFpcOXKlQzZ7+XLl10e7pcvX+aLL76ge/fuV5e99957xMTEMGrUKPr37391eWRkJI0aNWLs2LE0aNDgavDXqVOHffv2sXfv3nSp6ZbhronOOC+9ncfV2zeJSEGgFTDdGb9MVY87q1cAZdOl0hvwL1eYmQObEdq6GnM3HqT1iHBmxOzH7jBlTObYvXs3NWrUoEePHvj5+dGtWzfOnTsHJLYWeemll6hXrx5Tpkxh8uTJ1KlTh9q1a/PSSy9d3Uf+/PkJDQ2lVq1a3H333cTFxQGwY8cO2rdvT/369WnevDlbt24FEs+M+/fvT6NGjXjooYcYO3YsI0eOJCAggCVLllCpUiUuXUqcrj116tTfXgMsW7aMmTNn8sILLxAQEMCOHTsYP348DRo0wN/fnwceeODqMXTu3PnqGflnn31Gjx49rvt/8Ouvv1KvXj28vK6/ALFJkybs37//6uuwsDD++9//0r9/fxYtWkTVqlWvruvUqRPffffd7f0grpGiSyFFxBOIBqoAn6jqyiSruwC/qOqpZDZ9Eph7g332A/oBlC9fPjU1XyeXlwdDWlelQ507eHHqeoZ8F8OMmAO81aU2pQvnSdO+jclOhs7axOYDyf1TvH01Sxfk9U61bjpm27ZtTJgwgaCgIPr06cOYMWN4/vnnAShWrBhr1qzhwIEDNG7cmOjoaIoUKULbtm2ZPn06Xbp04ezZswQGBjJy5EiGDRvG0KFD+fjjj+nXrx9jx46latWqrFy5kmeeeYZff/0VSLwEdNmyZXh6evLGG2+QP3/+q+/ZokULfv75Z7p06cJ3331H165d/3aNeNOmTbnvvvu499576datGwCFCxfmqaeeAuCVV15hwoQJDBo0iHHjxhEUFESlSpX44IMPWLFixXXHv3TpUurXr5/s/5t58+bRpUuXq69z5cp19cOrUKFCFCpU6Oq6wMBAhg8fzosvvnjzH0oKpOgPqqp6xZl+KQs0FJHaSVY/Cky+dhsRaUliuL907Tpnn+NUNVBVA319k21qlmrVShZg2oCmvNLRj2U7jtB2ZAQTV+4hIcHO4o3JSOXKlSMoKAiAxx57jMjIyKvrHn74YQBWr15NixYt8PX1xcvLix49ehAREQGAh4fH1XF/bX/mzBmWLVvGgw8+SEBAAE8//TQHDx68ut8HH3wQT0/PZOvp27cvX375JQBffvklvXv3vuUxbNy4kebNm1OnTh0mTpzIpk2bAChZsiTDhg2jZcuWfPDBBxQtWvS6bQ8ePMi1OfbCCy9QrVo1unfv/rffUsaNG8fXX3/N6NGjefTRR9m9e/fVdSVKlODAgQO3rDUlUvUlJlU9ISKLgfbARhEpDjQE7k86TkTqAp8DHVT1aLpUmkKeHkLf5nfStuYd/PPH9fz7p43MjDnA8AfqUql4vswsxZhMd6sz7Ixy7aV6SV/ny5f6f3ciQkJCAoULFyYmJibZMTfbb1BQELt37+a3337jypUr1K5d+4Zj/9KrVy+mT5+Ov78/X331Fb/99tvVdRs2bKBYsWI3DN48efJcdx36e++9R7du3fjoo4/o06cP0dHRANSsWZNZs2bx73//mzJlyvDkk09enXePj48nT570mW1IydUyviJS2HmeB2gDbHVWdwNmq2p8kvHlSfzj6uOqGpsuVd6G8sXyMrFvI959oA6bD56i/agIxkXs4PKVBFeVZIzb2rt3L8uXLwdg0qRJNGvW7LoxDRs2JDw8nCNHjnDlyhUmT55MSEgIAAkJCUydOvVv2xcsWJBKlSoxZcoUIPGbmuvWrUv2/QsUKMDp06f/tqxnz5507979hmft125z+vRpSpUqxaVLl5g4ceLV5atWrWLu3LmsXbuW999/n127dl23Lz8/P7Zv357s+wwcOJCEhATmz58PJP6GAODt7U29evX+VkNsbGyKPohSRFVv+gDqAmuB9cBG4LUk634D2l8z/nPgOBDjPKJu9R7169fXjPTnyfPa9+vVWuGl2drpoyW6+cDJDH0/YzLT5s2bXfr+u3bt0urVq2uPHj20Ro0a2rVrVz179qyqqlaoUEHj4uKujp00aZLWrl1ba9WqpS+++OLV5fny5dPQ0FCtVauWtmzZUg8fPqyqqjt37tR27dpp3bp11c/PT4cOHaqqqk888YROmTLl6vbbtm3TOnXqqL+/v0ZERKiq6sGDB9XHx0ePHz+ebN2RkZHq5+enAQEBun37dh0zZoxWrFhRGzRooAMHDtQnnnhC4+PjtW7duhodHa2qqjNmzNAWLVpoQkLC3/a1e/dubd68+dXX19Y3depUbdWqlaqqDhgwQJs0aaJly5ZVf39/Xbx48dVxzz77rM6cOTPZepP7Od8sX28Z7pnxyOhwV1VNSEjQWev2a71hC7Tyyz/rB/O3avylyxn+vsZktKwQ7rVq1UrTPvLly5dO1fy/KVOm6GOPPZbu+72RLl26aGxsbIrHv/766397HR8fr40aNdJLly4lOz614Z5jGoeJCPfWLU1Q5eIMm72Z0b9uZ+7GP3m3W13qlS/i6vKMMelo0KBBzJ07lzlz5mTaew4fPpyDBw/+7dLGm2nRosXfXu/du5fhw4cneznl7RDNAteDBwYGambfZm/x1sP866cN/Hkqnt5NK/F8u2rkzZVjPuuMG9myZQt+fn6uLsNksOR+ziISraqByY3P1r1l0qJljRIsCA2mR6PyfLF0F+1GRbB0+xFXl2XMbckKJ2km49zOzzfHhjtAAR9v3upSh+/7NcbLw4Men6/kpanrOXneGpGZ7MPHx4ejR49awLspdfq5+/j4pGq7HDstc634S1cYteh3xi/ZSbF8uXizS23a1brDpTUZkxJ2Jyb3d6M7Md1sWsbC/Rob9p3kxWnr2XLwFB3rlOKN+2rhWyC3q8syxpjr2Jx7KtQpW4iZA4N4vm01Fm4+RJuR4fy4Zp/9ymuMyVYs3JPh7enBwFZVmTOkGXcWz0fYD+vo/dVq9p847+rSjDEmRSzcb6JKiQJM6d+U1zvVZOXOY7QdEc63y3dbIzJjTJZn4X4Lnh5C76BKLAgNpl6FIrw6YxOPjFvBzrgzt97YGGNcxMI9hcoVzcs3fRryXre6bP3zFO0/XMKnv1kjMmNM1mThngoiwoOB5VgUFkLL6r68O28rXcYsZdOBk64uzRhj/sbC/TaUKOjDZ48H8mmPevx58gL3fbyU9+ZvJf5Sxtwj0hhjUsvCPQ061CnForBgugSU4ZPFO+g4egnRe465uixjjLFwT6vCeXPxwUP+fN2nIfGXEug2djlvzNzE2QuXXV2aMSYHs3BPJyHVfJkfGkzPxhX4evlu2o6MICI2ztVlGWNyKAv3dJQ/txdDO9fmh6ebkNvbg55frOL5Kes4ce6iq0szxuQwFu4ZoEHFoswZ3JxnWlTmp7X7aT0igrkbDt56Q2OMSScW7hnEx9uTF9vXYMazQZQokJsBE9cw4H/RHD5tnfuMMRnvluEuIj4iskpE1onIJhEZ6ixfIiIxzuOAiEx3ltcQkeUickFEns/oA8jqapcpxIyBQbzQrjq/bD1MmxERTIn6wxqRGWMyVErO3C8ArVTVHwgA2otIY1VtrqoBqhoALAd+dMYfAwYD72dIxdmQt6cHz7aswpzBzalaIj8vTF1Pzy9W8cexc64uzRjjpm4Z7s5Ntv9qpOLtPK6edopIQaAVMN0Zf1hVVwN2O6NrVCmRnx+ebsKwzrVYs+c47UZF8NXSXdaIzBiT7lI05y4iniISAxwGFqrqyiSruwC/qOqp1LyxiPQTkSgRiYqLyzmXDHp4CD2bVGR+aDCBFYvyxqzNPPTZcrYftkZkxpj0k6JwV9UrzvRLWaChiNROsvpRYHJq31hVx6lqoKoG+vr6pnbzbK9skbx83bsBHzzoz++Hz3DPh0v4ZPF2LlkjMmNMOkjV1TKqegJYDLQHEJHiQEPg5/Qvzf2JCA/UL8uisBBa1yzBe/O30fnjpWzcb43IjDFpk5KrZXxFpLDzPA/QBtjqrO4GzFZVu74vDXwL5GZMj/qMfaw+cWcu0PmTpbw7zxqRGWNun1cKxpQCvhYRTxI/DH5Q1dnOukeA4UkHi8gdQBRQEEgQkeeAmqmdk8+J2te+gyZ3FuPtOZv59LcdzN/4J+92q0uDikVdXZoxJpuRrHC9dWBgoEZFRbm6jCwl8vcj/PPH9ew7fp6eTSrwYvsa5M+dks9iY0xOISLRqhqY3Dr7hmoW1axqceY/F0zvoIp8u2IPbUeEs3jbYVeXZYzJJizcs7B8ub14vVMtpvZvSt7cXvT+cjVh38dw/Kw1IjPG3JyFezZQv0IRfh7cjEGtqjBz3QHajAzn5/UHrYWBMeaGLNyzidxenvyjbXVmDmxGqUJ5eHbSGp7+NprDp+xCJWPM9Szcs5mapQvy0zNNeblDDcJj47h7RDg/rLZGZMaYv7Nwz4a8PD14OqQyc4c0x69UQV6ctp7HJ6xi71FrRGaMSWThno3d6Zuf755qzFtdahPzxwnajYpgQuQurlgjMmNyPAv3bM7DQ3iscQUWhAbT6M6ivDl7M93GLuP3Q6ddXZoxxoUs3N1E6cJ5+LJXA0Y9HMDuI2fpODqS0b/8zsXL1ojMmJzIwt2NiAhd7irDwrAQ2tW+gxELY7nv40jW7zvh6tKMMZnMwt0NFc+fm48evYvxPQM5fu4iXT5ZyjtztlgjMmNyEAt3N9amZkkWhIbwcINyfBaxk/ajIlix86iryzLGZAILdzdXKI8373Sty6S+jUhQeGTcCv790wZOx9tdEI1xZxbuOUTTKsWZ91xz+jarxORVe2k7MoJftx5ydVnGmAxi4Z6D5M3lxSv31mTagKYU8PGiz1dRPPfdWo5ZIzJj3I6Few50V/kizB7UnCF3V+XnDQdpPSKcmesOWAsDY9yIhXsOlcvLg9A21Zg1qBnliuRh8OS1PPVNNH+etEZkxrgDC/ccrsYdBfnxmSD+fY8fkdvjaDMinMmr9tpZvDHZXEpukO0jIqtEZJ2IbBKRoc7yJSIS4zwOiMh0Z7mIyGgR2S4i60WkXkYfhEkbTw/hqeA7mTckmFplCvLyjxvoPn4le46edXVpxpjblJIz9wtAK1X1BwKA9iLSWFWbq2qAqgYAy4EfnfEdgKrOox/waQbUbTJAxeL5mNS3Mf+5vw4b95+k3agIPl+y0xqRGZMN3TLcNdEZ56W387j6r11ECgKtgOnOos7AN852K4DCIlIqfcs2GcXDQ+jeqDwLwoIJqlyct37eQtdPl7HtT2tEZkx2kqI5dxHxFJEY4DCwUFVXJlndBfhFVU85r8sAfyRZv89Zdu0++4lIlIhExcXF3V71JsOUKpSHz58IZPSjd/HHsXPc+9ESRi2KtUZkxmQTKQp3Vb3iTL+UBRqKSO0kqx8FJqf2jVV1nKoGqmqgr69vajc3mUBEuM+/NIvCQrinTilGLfqdTh9FEvOHNSIzJqtL1dUyqnoCWAy0BxCR4kBD4Ockw/YD5ZK8LussM9lU0Xy5+PCRu5jwRCAnz1+i65ilvDV7M+cvWiMyY7KqlFwt4ysihZ3neYA2wFZndTdgtqomvTh6JtDTuWqmMXBSVQ+mc93GBe72K8mCsGAeaViezyN30W5UBMt2HHF1WcaYZKTkzL0UsFhE1gOrSZxzn+2se4Trp2TmADuB7cB44Jl0qtVkAQV9vPnP/XWY/FRjPAS6j1/Jyz+u55Q1IjMmS5Gs8GWVwMBAjYqKcnUZJpXOX7zCqEWxjF+yE98CuXm7Sx1a1yzp6rKMyTFEJFpVA5NbZ99QNbctTy5PXr7Hj+nPBlEkby76fhPFoMlrOXrmgqtLMybHs3A3aVa3bGFmDmxGWJtqzNuY2Ihs+tr91sLAGBeycDfpIpeXB4PvrsrPg5tToVg+nvs+hie/juLAifOuLs2YHMnC3aSraiULMG1AU169tybLdxyl7cgI/rdiDwnWwsCYTGXhbtKdp4fwZLNKzH8uGP9yhXhl+kYeHb+CXUesEZkxmcXC3WSY8sXy8r8nG/HfB+qy+eAp2o+K4LPwHVy+Yi0MjMloFu4mQ4kIDzUox6KwEIKr+fLO3K10/XQZWw6euvXGxpjbZuFuMkXJgj6Me7w+n3Svx4ET5+n0USQjFmzjwmVrYWBMRrBwN5lGROhYtxQLQ0O4z780o3/dTsfRkUTvOe7q0oxxOxbuJtMVyZeLEQ8H8GXvBpy7cJluY5cxdNYmzl287OrSjHEbFu7GZVpWL8GCsBAeb1yBL5fupu3ICCJ/t0ZkxqQHC3fjUvlzezGsc21+eLoJ3p4ePDZhJS9OXcfJ89aIzJi0sHA3WULDSkWZO6Q5A1pUZtqa/bQZEc78TX+6uixjsi0Ld5Nl+Hh78lL7Gkx/Johi+XPz9LfRPDtxDXGnrRGZMall4W6ynDplCzFzYBAvtKvOws2HaD0inGnR+6wRmTGpYOFusiRvTw+ebVmFOUOaUaVEfv4xZR29vlzNfmtEZkyKWLibLK1KiQJMeboJb3Sqyerdx2g7Ipxvlu+2RmTG3IKFu8nyPDyEXkGJjcjqVSjCazM28fC45eyIO+Pq0ozJsizcTbZRrmhevunTkPe61WXbn6fp8OESxvy2nUvWiMyY69wy3EXER0RWicg6EdkkIkOd5SIib4tIrIhsEZHBzvIiIvKTiKx3tqud0Qdhcg4R4cHAciz6Rwitqpfgv/O20eWTpWzcf9LVpRmTpaTkzP0C0EpV/YEAoL2INAZ6AeWAGqrqB3znjP8XEKOqdYGewIfpXrXJ8UoU8GHs4/X5tEc9Dp26QOdPlvLe/K3EX7JGZMZACsJdE/01uentPBQYAAxT1QRn3GFnTE3gV2fZVqCiiJRM78KNAehQpxSLwoK5/64yfLJ4B/eMXkLU7mOuLssYl0vRnLuIeIpIDHAYWKiqK4HKwMMiEiUic0WkqjN8HdDV2a4hUAEom8w++znbRsXFxaXHsZgcqnDeXLz/oD/f9GnIhUsJPPjZct6YuYmzF6wRmcm5UhTuqnpFVQNIDOmGzjx6biBeVQOB8cAXzvDhQGHnw2AQsBa47ndlVR2nqoGqGujr65sOh2JyuuBqviwIDeaJJhX5enliI7KIWDtxMDmTpPZbfyLyGnAO6At0UNVdIiLACVUtdM1YAXYBdVX1hrfeCQwM1KioqFQXb8yNRO0+xovT1rMz7izd6pfllY5+FM6by9VlGZOuRCTaOcG+TkqulvEVkcLO8zxAG2ArMB1o6QwLAWKdMYVF5K9/RX2BiJsFuzEZIbBiUeYMbs6zLSvz09r9tB4RwdwNB11dljGZJiXTMqWAxSKyHlhN4pz7bBKnXx4QkQ3AOyQGOYAfsFFEtgEdgCHpX7Yxt+bj7ckL7Wowc2AQJQvmZsDENfT/NprDp+JdXZoxGS7V0zIZwaZlTEa7fCWB8Ut2MXJRLD5eHrx6b0261S9L4syhMdlTmqZljHEHXp4eDGhRmblDmlP9jgK8MHU9Pb9YxR/Hzrm6NGMyhIW7yVEq++bn+35NeLNzLdbsOU67URF8tXSXNSIzbsfC3eQ4Hh7C400qMj80mAYVi/LGrM08+Nlyth8+7erSjEk3Fu4mxypbJC9f9W7AiIf82RF3hns+jOTjX3+3RmTGLVi4mxxNROharywLQ0NoU6sk7y+I5b6PrRGZyf4s3I0BfAvk5pPu9fjs8focOZPYiGz4XGtEZrIvC3djkmhX6w4WhYbQrV5Zxobv4J4Pl7BqlzUiM9mPhbsx1yiU15t3u9Xlf0824uKVBB76bDmvTt/I6fhLri7NmBSzcDfmBppVLc6C0GD6BFXifyv30G5kBIu3Hb71hsZkARbuxtxE3lxevNapJlP7NyVfbi96f7masO9jOH72oqtLM+amLNyNSYH6FYowe3AzBreqwsx1B2g9IpzZ6w+QFdp3GJMcC3djUii3lydhbasza1AzShfOw8BJa3n622gOWSMykwVZuBuTSn6lCvLTM015uUMNwmPjaD0inO9X77WzeJOlWLgbcxu8PD14OqQy854Lxq9UQV6atoHHJqxk71FrRGayBgt3Y9KgUvF8fPdUY97qUpt1f5yk3agIJkTu4oo1IjMuZuFuTBp5eAiPNa7AgtBgmlQuxpuzN/PAp8uIPWSNyIzrWLgbk05KF87DhCcC+fCRAPYcPUvH0UsY/cvvXLxsjchM5rNwNyYdiQidA8qwKCyE9rVLMWJhLPd9HMm6P064ujSTw1i4G5MBiuXPzUeP3sX4noEcP3eR+8cs5Z05Wzh/0RqRmcxxy3AXER8RWSUi60Rkk4gMdZaLiLwtIrEiskVEBjvLC4nIrCTje2f0QRiTVbWpWZKFYSE83KAcn0XspMOHESzfcdTVZZkcICVn7heAVqrqDwQA7UWkMdALKAfUUFU/4Dtn/LPAZmd8C+ADEcmV3oUbk10U9PHmna51mdS3EQkKj45fwb9+2sApa0RmMtAtw10TnXFeejsPBQYAw1Q1wRn3V0clBQpI4m3l8wPHgMvpXbgx2U3TKsWZ/1wwTzWvxHer9tJ2RAS/bj3k6rKMm0rRnLuIeIpIDHAYWKiqK4HKwMMiEiUic0WkqjP8Y8APOABsAIb89QFwzT77OdtGxcXFpcvBGJPV5cnlyb871uTHZ4IolMebPl9FMeS7tRw9c8HVpRk3k6JwV9UrqhoAlAUaikhtIDcQr6qBwHjgC2d4OyAGKE3iNM7HIlIwmX2OU9VAVQ309fVNh0MxJvsIKFeYWYOa8VzrqszZcJA2IyOYuc4akZn0k6qrZVT1BLAYaA/sA350Vv0E1HWe9wZ+dKZztgO7gBrpU64x7iOXlwfPta7G7EHNKVc0L4Mnr+Wpb6L486Q1IjNpl5KrZXxFpLDzPA/QBtgKTAdaOsNCgFjn+V7gbmd8SaA6sDN9yzbGfVS/owA/DmjKKx39iNx+hDYjwpm0ci8J1sLApIHc6tdAEakLfA14kvhh8IOqDnMCfyJQHjgD9FfVdSJSGvgKKAUIMFxV/3ez9wgMDNSoqKi0Hosx2d6eo2f557QNLN95lMZ3FmV417pULJ7P1WWZLEpEop2p8evXZYU5Pgt3Y/6fqvL96j94++ctXEpI4B9tqtOnWSU8PcTVpZks5mbhbt9QNSaLEREeaViehWEhNKtSnLfnbKHrmKVs+9MakZmUs3A3Jou6o5AP43sG8tGjd7Hv+Hnu/WgJIxfGWiMykyIW7sZkYSJCJ//SLAwLoWOdUnz4y+/c+9ES1u497urSTBZn4W5MNlA0Xy5GPXIXX/QK5HT8Zbp+uow3Z2/m3EX78rdJnoW7MdlIqxolWRAaTI9G5ZkQuYv2o5awbPsRV5dlsiALd2OymQI+3rzVpQ7f9WuMh0D3z1fyz2nrOXneGpGZ/2fhbkw21fjOYsx7LpinQ+7kh6g/aDsynIWbrRGZSWThbkw25uPtycsd/Jj+bBBF8ubiqW+iGDhpDUesEVmOZ+FujBuoW7YwMwc24x9tqrFg0yHajAhn+tr91ogsB7NwN8ZN5PLyYNDdVfl5cDMqFs/Hc9/H0Oer1Rw4cd7VpRkXsHA3xs1ULVmAqf2b8tq9NVmx8xhtR0bw7Yo91ogsh7FwN8YNeXoIfZpVYkFoMAHlCvPq9I08Mn4Fu46cdXVpJpNYuBvjxsoVzcu3Tzbkvw/UZcvBU7QfFcHY8B1cvmItDNydhbsxbk5EeKhBORaFhRBSzZfhc7dy/5hlbD5wytWlmQxk4W5MDlGyoA+fPV6fT7rX4+DJ89z3cSQfLNjGhctXXF2ayQAW7sbkICJCx7qlWBgawn0Bpfno1+10HB1J9B5rROZuLNyNyYGK5MvFiIcC+Kp3A85fvEK3scsYOmsTZy9YIzJ3YeFuTA7WonoJ5ocG83jjCny5dDftRkWw5Pc4V5dl0kFKbpDtIyKrRGSdiGwSkaHOchGRt0UkVkS2iMhgZ/kLIhLjPDaKyBURKZrRB2KMuT35c3sxrHNtfni6Cbk8PXh8wipenLqOk+esEVl2lpIbZAuQT1XPiIg3EAkMAfyAlkAvVU0QkRKqeviabTsBoara6mbvYfdQNSZriL90hQ9/+Z1xETspmi8Xb3auTfvad7i6LHMDabqHqiY647z0dh4KDACGqWqCM+5wMps/Cky+raqNMZnOx9uTl9rXYMazQfjmz03//0Xz7MQ1xJ22RmTZTYrm3EXEU0RigMPAQlVdCVQGHr0NlCMAAA63SURBVBaRKBGZKyJVr9kmL9AemJbeRRtjMlbtMoWYMTCIF9pVZ+GWQ7QeEc606H3WiCwbSVG4q+oVVQ0AygINRaQ2kBuId34lGA98cc1mnYClqnosuX2KSD/ngyEqLs7+gGNMVuPt6cGzLaswZ3BzqpTIzz+mrOOJL1ez7/g5V5dmUuCWc+7XbSDyGnAO6At0UNVdzrz8CVUtlGTcT8AUVZ10q33anLsxWVtCgvLtij28O28rArzUoQaPNaqAh4e4urQcLU1z7iLiKyKFned5gDbAVmA6iX9QBQgBYpNsU8hZNiNtpRtjsgIPD+GJphWZ/1ww9SoU4bUZm3h43HJ2xJ259cbGJVIyLVMKWCwi64HVJM65zwaGAw+IyAbgHRLP5P9yP7BAVa0FnTFupFzRvHzTpyHvP+hP7KEzdPhwCWN+284la0SW5aR6WiYj2LSMMdnP4dPxvDFzE3M2/Emt0gV594G61C5T6NYbmnSTpmkZY4xJTokCPozpUZ+xj9Xj0KkLdP5kKf+dt5X4S9aILCuwcDfGpEn72qX4JSyErneVYcxvO7hn9BKidid7kZzJRBbuxpg0K5TXm/ce9OebPg25cCmBBz9bzuszNnLGGpG5jIW7MSbdBFfzZUFoME80qcg3K/bQbmQE4bH2PRZXsHA3xqSrfLm9eOO+Wkzt3wQfbw+e+GIV//hhHSfOXXR1aTmKhbsxJkPUr1CUnwc3Z2DLKsyI2U/rEeHM2XDQ1WXlGBbuxpgM4+PtyfPtqjNjYBB3FPLhmYlr6P9tNIdPxbu6NLdn4W6MyXC1Shdi+jNBvNS+Br9uO0zrEeH8EPWHNSLLQBbuxphM4eXpwYAWlZk3pDk17ijIi1PX0/OLVfxxzBqRZQQLd2NMprrTNz/f9WvMm51rsWbPcdqNiuDLpbu4kmBn8enJwt0Yk+k8PITHm1RkQVgIDSsVZeiszTw4dhnbD592dWluw8LdGOMyZQrn4cteDRj5sD87j5zlng8j+fjX360RWTqwcDfGuJSIcP9dZVkUFkKbWiV5f0EsnT6KZMO+k64uLVuzcDfGZAnF8+fmk+71+Ozx+hw7e5EuY5YyfK41IrtdFu7GmCylXa07WBgWQrd6ZRkbvoMOHy5h5c6jri4r27FwN8ZkOYXyePNut7pM7NuIywkJPDxuBa9O38jp+EuuLi3bsHA3xmRZQVWKM/+5YJ5sVon/rUxsRLZ462FXl5UtWLgbY7K0vLm8ePXemkwb0JR8ub3o/dVqQr+P4dhZa0R2MxbuxphsoV75Iswe3IzBd1dl1roDtBkRzuz1B6yFwQ3cMtxFxEdEVonIOhHZJCJDneUiIm+LSKyIbBGRwUm2aSEiMc748Iw8AGNMzpHby5OwNtWYNagZZYrkYeCktfT7NppD1ojsOre8QbaICJBPVc+IiDcQCQwB/ICWQC9VTRCREqp6WEQKA8uA9qq696/lN3sPu0G2MSa1Ll9J4Iulu/hgQSy5vDx4paMfDwWWIzGycoY03SBbE51xXno7DwUGAMNUNcEZ91eAdwd+VNW91yw3xph04+XpQb/gysx/LpiapQry0rQN9Ph8JXuPWiMySOGcu4h4ikgMcBhYqKorgcrAwyISJSJzRaSqM7waUEREfhORaBHpeYN99nO2jYqLs9twGWNuT8Xi+Zj8VGP+c38d1u87SdtR4Xy+ZGeOb0SWonBX1SuqGgCUBRqKSG0gNxDv/EowHvjCGe4F1Ac6Au2AV0WkWjL7HKeqgaoa6Ovrmw6HYozJqTw8hO6NyrMwLJimlYvz1s9beODTZcQeyrmNyFJ1tYyqngAWA+2BfcCPzqqfgLrO833AfFU9q6pHgAjAP33KNcaYGytVKA8Tngjkw0cC2HvsHB1HL+HDRb9z8XLOa0SWkqtlfJ0/kiIieYA2wFZgOol/UAUIAWKd5zOAZiLiJSJ5gUbAlvQu3BhjkiMidA4ow8LQYDrULsXIRbHc93Ek6/444erSMlVKztxLAYtFZD2wmsQ599nAcOABEdkAvAP0BVDVLcA8YD2wCvhcVTdmRPHGGHMjxfLnZvSjd/F5z0BOnLvE/WOW8p85Wzh/MWc0IrvlpZCZwS6FNMZkpFPxlxg+dyuTVu6lQrG8DO9alyaVi7m6rDRL06WQxhiT3RX08eY/99dh0lONAHh0/Ape/nEDp9y4EZmFuzEmx2hauTjzhgTTL/hOvl+9l7YjIvhlyyFXl5UhLNyNMTlKnlye/OseP358JohCebx58usoBk9ey9EzF1xdWrqycDfG5EgB5Qoza1AzQltXY+7Gg7QZGcGMmP1u04jMwt0Yk2Pl8vJgSOuq/Dy4OeWL5mXIdzH0/TqKgyfPu7q0NLNwN8bkeNVKFmDagKa80tGPpTuO0HZEBJNW7iUhG7cwsHA3xhjA00Po2/xOFjwXQp2yhfjXTxvo/vkKdh856+rSbouFuzHGJFG+WF4m9m3E8K512LT/FO1GRTAuYgeXr2SvFgYW7sYYcw0R4ZGG5VkYFkLzqr78Z85WHvh0GVv/POXq0lLMwt0YY27gjkI+jO9Zn48evYt9x89z7+hIRiyM5cLlrN/CwMLdGGNuQkTo5F+ahWEhdPIvzehffqfTR5Gs3Xvc1aXdlIW7McakQNF8uRj5cABf9mrA6fjLdP10GW/O3sy5i5ddXVqyLNyNMSYVWtYowYLQYHo0Ks+EyF20GxXB0u1HXF3WdSzcjTEmlQr4ePNWlzp8368xXh4e9Ph8Jf+ctp6T57NOIzILd2OMuU2N7izG3CHNeTrkTn6I+oM2I8JZsOlPV5cFWLgbY0ya+Hh78nIHP6Y/G0TRfLno9200Ayet4YiLG5FZuBtjTDqoWzaxEdnzbauxYNMhWo8I56e1+1zWiMzC3Rhj0om3pwcDW1VlzpBm3Fk8H6Hfr6P3V6vZfyLzG5FZuBtjTDqrUqIAU/o35fVONVm58xhtR4Tz7Yo9mdqI7JbhLiI+IrJKRNaJyCYRGeosFxF5W0RiRWSLiAx2lrcQkZMiEuM8XsvogzDGmKzG00PoHVSJBaHB3FW+CK9O38gj41awM+5Mpry/VwrGXABaqeoZEfEGIkVkLuAHlANqqGqCiJRIss0SVb03A+o1xphspVzRvHz7ZEOmRO/jrdmb6fDhEkLbVKNvs0p4eWbc5Mkt96yJ/vqo8XYeCgwAhqlqgjPucIZVaYwx2ZiI8FBgORaFhdCiui/D526ly5ilbD6QcY3IUvSxISKeIhIDHAYWqupKoDLwsIhEichcEamaZJMmzjTOXBGpdYN99nO2jYqLi0vzgRhjTFZXoqAPnz0eyKc96vHnyQvc93EkEyJ3Zch7pSjcVfWKqgYAZYGGIlIbyA3Eq2ogMB74whm+Bqigqv7AR8D0G+xznKoGqmqgr69vWo/DGGOyjQ51SrEoLJjOAWWoUDRvhryHpPYaTOcPpOeAvkAHVd0lIgKcUNVCyYzfDQSq6g2bLwQGBmpUVFSq6jDGmJxORKKdE+zrpORqGV8RKew8zwO0AbaSeEbe0hkWAsQ6Y+5wwh4Raei8x9G0HoQxxpiUS8nVMqWAr0XEk8Sg/kFVZ4tIJDBRREKBMySeyQN0AwaIyGXgPPCIuuorWsYYk0PdMtxVdT1wVzLLTwAdk1n+MfBxulRnjDHmttg3VI0xxg1ZuBtjjBuycDfGGDdk4W6MMW7Iwt0YY9xQqr/ElCFFiMQBe25z8+JA1rs7bcayY84Z7JhzhrQccwVVTfYr/lki3NNCRKJu9A0td2XHnDPYMecMGXXMNi1jjDFuyMLdGGPckDuE+zhXF+ACdsw5gx1zzpAhx5zt59yNMcZczx3O3I0xxlzDwt0YY9xQpoW7iAwWkS0iMjEd9jVMRFrfZP1XItItDft/Q0Sev93tjTHG1VLSzz29PAO0VtV9txro3OxD/rr59rVU9bX0Ls4YY9xJppy5i8hY4E5groicTHpWLCIbRaSi89gmIt8AG4Hmzpn+eBHZJCILnDtB/e3MXESGi8hmEVkvIu8nedtgEVkmIjuTnsWLyAsistoZPzTJ8n+LSKxzE5LqGft/xBhjMlamhLuq9gcOkHhbvpE3GVoVGKOqtUhsR1AV+MR5fQJ4IOlgESkG3A/UUtW6wFtJVpcCmgH3AsOd8W2dfTYEAoD6IhIsIvWBR5xl9wAN0nTAxhjjYpk5LZMSe1R1RZLXu1Q1xnkeDVS8ZvxJIB6YICKzgdlJ1k13pnU2i0hJZ1lb57HWeZ2fxLAvAPykqucARGRmOh2PMca4hCuulrl8zfv6JHl+9pqxF5I8v8I1H0aqepnEs/CpJJ6hz7vBtpLkv++oaoDzqKKqE1J/CMYYk7W5Itx3A/UARKQeUOl2dyQi+YFCqjoHCAX8b7HJfKCPsx0iUkZESgARQBcRySMiBYBOt1uTMcZkBa6YlpkG9BSRTcBKIDYN+yoAzBARHxLPysNuNlhVF4iIH7A88YIczgCPqeoaEfkeWAccBlanoSZjjHE5az9gjDFuyL6haowxbsjC3Rhj3JCFuzHGuCELd2OMcUMW7sYY44Ys3I1byajuoyLynIjkTXuFxmQOuxTSuBUR2Uo6dR+9ZuxuIFBVj6SiFi/nW9TGZDo7czduI6O6j4rIYKA0sFhEFjvrziTZdzcR+SrJNmNFZCXwXxGpLCLzRCRaRJaISI3M+v9hcjYLd+M2Mqr7qKqO/mu/qtoyBaWUBZqqahiJNz8epKr1geeBMak7KmNuT1brCmlMZkht99HUmqKqV5weRk2BKU67C4Dcady3MSli4W7cVVq6j+ZJwf6T/rHK55p1f+3fAzihqgEp2J8x6cqmZYy72k06dR91nCaxUd1fDomIn4h4kHjDmOuo6ilgl4g86NQhInKrzqXGpAsLd+OupgFFne6jA0lb91FInDuf99cfVIF/knhzmGXAwZts1wN4UkTWAZuAzmmsw5gUsUshjTHGDdmZuzHGuCELd2OMcUMW7sYY44Ys3I0xxg1ZuBtjjBuycDfGGDdk4W6MMW7o/wAkkz/8iOq1pQAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ] + }, + { + "cell_type": "code", + "source": [ + "fur_mean.plot(y = 'fire insurance (R$)')\n", + "plt.show()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 283 + }, + "id": "CzqHQYXseB8J", + "outputId": "89839483-acfe-47b8-eac6-b6fb93210a12" + }, + "execution_count": 20, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAEKCAYAAAALoA6YAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3dd3RUZf7H8fc3CSHU0DtI75AAoUMQqQoCIlhXQBQWlZpV1rK6uroulh+IFVEEewMRFKmKJAEpCb33EqREeifA8/sjAwcBYSBlMsnndQ4nM3fuvfMd4Hx4eObe72POOURExP8E+LoAERG5MQpwERE/pQAXEfFTCnARET+lABcR8VMKcBERP+VVgJtZPjMbb2ZrzWyNmTX2bB/g2bbKzF5N21JFRORiQV7uNxKY5pzrZmbBQE4zawl0BsKcc6fMrEiaVSkiIpexa93IY2ahwFKgvLtoZzP7BhjtnJuVtiWKiMiVeDMCLwckAmPNLAyIBwYBlYHmZvZf4CTwuHNu0dVOVKhQIVe2bNmUVSwiksXEx8f/4ZwrfOl2bwI8CKgLDHDOLTCzkcCTnu0FgEZAfeAbM/vTKB3AzPoCfQHKlClDXFxcyj6JiEgWY2bbrrTdmy8xE4AE59wCz/PxJAd6AvCdS7YQOAcUuvRg59xo51yEcy6icOHL/gEREZEbdM0Ad87tBnaYWRXPplbAauB7oCWAmVUGgoE/0qhOERG5hLdXoQwAPvdcgbIZeBA4BnxkZiuB00DPS6dPREQk7XgV4M65pUDEFV76W+qWI5K1JSUlkZCQwMmTJ31divhASEgIpUqVIlu2bF7t7+0IXETSQUJCAnny5KFs2bKYma/LkXTknGPfvn0kJCRQrlw5r47RrfQiGcjJkycpWLCgwjsLMjMKFix4Xf/7UoCLZDAK76zrev/s/SLA52/ex5jYLZw9p+9IRUTO84sAn7J8Fy/+uJpuo+axYc8RX5cjkqm9+eabVKtWjfvvv5/JkyczbNiwGz5XSo/PiHbt2kXHjh0B+PXXXwkNDSU8PJyqVavy+OOPX7b/888/f9m21q1bc+DAgZQX45xLt1/16tVzN+LcuXNu4uIEF/7CdFfp6Z/cyFnr3amkszd0LpGMbPXq1b4uwVWpUsXt2LHjqvskJSWlUzVX54s6Hn/8cff9998755ybPXu269Chg3POuePHj7sqVaq42NhY55xzR44ccd27d3dFihRxtWrVck888cSFc4wbN8699NJLVzz/lf4OAHHuCpnqFyNwM6NLnZLMjGpBu5rFGD5zPZ3ejmV5wkFflyaSqfTr14/Nmzdz6623MmLECMaNG0f//v0B6NWrF/369aNhw4YMHTqUTZs20b59e+rVq0fz5s1Zu3btZee79PiBAwfSpEkTypcvz/jx44HkEW1kZCTh4eHUrFmTmJgYAHLnzn3hPOPHj6dXr15XrGPhwoU0btyYOnXq0KRJE9atW3fhvbt27Ur79u2pVKkSQ4cOvXC+adOmUbduXcLCwmjVqhUAx44do3fv3jRo0IA6deowadKkK/4eTZgwgfbt21+2PUeOHISHh7Nz504APvnkE3Lnzs0jjzzC0qVL6dGjx4V9O3XqxJdffunFn8jV+dVlhIVyZ+ete+vQKawE//p+BV3emUuf5uUZ3LoyOYIDfV2eSKp64YdVrP79cKqes3qJvPz79hp/+fqoUaOYNm0as2fPplChQowbN+5PryckJDBv3jwCAwNp1aoVo0aNolKlSixYsIBHH32UX3755arvv2vXLmJjY1m7di2dOnWiW7dufPHFF7Rr145nnnmGs2fPcvz48Wt+jovrOHz4MDExMQQFBTFr1iyefvppJkyYAMDSpUtZsmQJ2bNnp0qVKgwYMICQkBD69OlDdHQ05cqVY//+/QD897//5ZZbbuGjjz7i4MGDNGjQgNatW5MrV64L77tlyxby589P9uzZL6vpwIEDbNiwgcjISACCg4M5fPgwJ06cICAggJo1a17YN3/+/Jw6dYp9+/ZRsGDBa37ev+JXAX5em+pFaVCuAMOmruH96M1MX7WbYXfWplH5G/+NEJFr6969O4GBgRw9epR58+bRvXv3C6+dOnXqmsd36dKFgIAAqlevzp49ewCoX78+vXv3JikpiS5duhAeHu51HQCHDh2iZ8+ebNiwATMjKSnpwn6tWrUiNDQUgOrVq7Nt2zYOHDhAZGTkhWutCxQoAMCMGTOYPHkyr7/+OpB8Sef27dupVq3ahfPt2rWLS3s6xcTEEBYWxoYNGxg8eDDFihUDoEePHqxfv56PP/6YmJgYoqKi6Nat24XjihQpwu+//571AhwgNEc2/te1NrfXLsGT363gntHzub9hGZ68tSp5Qry7i0kkI7vaSNlXzo9Gz507R758+Vi6dOl1HX/xyNV5Om9ERkYSHR3NlClT6NWrF1FRUfTo0eNPl9Rdem30xaPiZ599lpYtWzJx4kS2bt3KzTfffMX3CwwM5MyZM39Zm3OOCRMmUKVKlb/cJ0eOHJfV0rx5c3788Ue2bNlCo0aNuOuuuwgPDyc4OJhXX32VnDlzcvfdd9OuXTsiIiI431L75MmT5MiR4y/fyxt+MQd+NU0qFmLa4OY83KwcXy7cTtsR0fyydo+vyxLJ1PLmzUu5cuX49ttvgeTwW7Zs2Q2da9u2bRQtWpQ+ffrw8MMPs3jxYgCKFi3KmjVrOHfuHBMnTvzL4w8dOkTJkiUBLpvyuZJGjRoRHR3Nli1bAC5MobRr14633nrrwj8sS5YsuezYypUrs3Xr1iuet1y5cjz55JO88sorAGzYsIHTp08DUKlSJUJDQy9MDznn2L17NyldH8HvAxwgZ3AQ/+pYnQmPNCFPSBC9x8Ux+Ksl7D922teliWRan3/+OWPGjCEsLIwaNWr85Zd+1/Lrr78SFhZGnTp1+Prrrxk0aBAAw4YNo2PHjjRp0oTixYv/5fFDhw7lqaeeok6dOlcdYZ9XuHBhRo8eTdeuXQkLC+Puu+8GkkfySUlJ1K5dmxo1avDss89edmyuXLmoUKECGzduvOK5+/XrR3R0NFu3bmXt2rXcfPPNjB07ljp16tChQweqV68OQHx8PI0aNSIoKGWTINdcUi01RUREuLRe0OH0mXO8M3sj7/66kTwh2Xi+Uw1ur11cd7eJX1izZs2f5lwl45k4cSLx8fG89NJLXu3//PPPX3Yt+KBBg+jUqdOFK2AudqW/A2YW75y7rKFgphiBXyw4KIAhbSrzw4BmlM6fg4FfLqHPJ3HsPqTubiKScnfcccd1TX1cPCd/Xs2aNa8Y3tcr043AL3b2nOOj2C3838x1ZAsI4OkO1binfmmNxiXD0ghcsvQI/GKBAUafyPJMGxRJjZJ5eeq7Fdz3wQK27Tvm69JE/lJ6DqokY7neP3uvAtzM8pnZeDNba2ZrzKzxRa/9w8ycmV22HmZGUbZQLr54uBH/61qLlTsP0e6NaD6M2azmWJLhhISEsG/fPoV4FuQ8/cBDQkK8Psbbr0BHAtOcc908y6rlBDCz0kBbYPv1FpveAgKMexuUoWWVIvzr+xW8NGUNPyzfxat31qZKsTy+Lk8EgFKlSpGQkEBiYqKvSxEfOL8ij7euOQduZqHAUqC8u2RnMxsPvAhMAiKcc1dd1Di958D/inOOH5bv4vnJqzhyMolHb67IYy0rEhyUqWeURMRPpWQOvByQCIw1syVm9qGZ5TKzzsBO59yNXb3vQ2ZGp7ASzIpqwW21ijPy5w10fCuGpTvUHEtE/Ic3AR4E1AXec87VIXk1+ueBp4HnrnWwmfU1szgzi8to/y0skCuYkffUYUzPCA6fOEPXd+fy0o+rOXH6rK9LExG5Jm+mUIoB851zZT3Pm5Mc4LWA823DSgG/Aw2cc7v/6lwZZQrlSg6fTGLY1LV8sWA7ZQrkZNidtWhSIcN+LysiWcgNT6F4AnmHmZ3v8NIKWOycK+KcK+sJ9gSg7tXCO6PLG5KNl++oxZd9GhFgcN8HC3jqu+UcPpl07YNFRHzA22/tBgCfm9lyIBx4Oe1K8q3GFQoydVAkf48sz9eLdtBm+BxmrlZzLBHJeDL1nZgptTzhIEPHL2ft7iN0rF2c5zvVoFDuyxu5i4ikpSx5J2ZK1S6Vj8n9mxHVpjLTV+2mzfA5fL9kp26yEJEMQQF+DcFBAQxsVYkpA5tzU8FcDP56KQ99HMfvB0/4ujQRyeIU4F6qXDQPEx5pwrMdq/Pbpn20HRHNZ/O3cU6344uIjyjAr0NggPFQs3JMHxxJWOlQ/vX9Su79YD5b/lBzLBFJfwrwG1CmYE4+e6ghr95Zm9W7DtP+jWjen7OJM2fP+bo0EclCFOA3yMy4q35pZkW1ILJyYf43dS13vDuP1b8f9nVpIpJFKMBTqGjeEEY/UI937qvLrkMn6PR2LP83Yx2nzuh2fBFJWwrwVGBmdKhdnJlDWtAprARv/bKRDm/GEr/tgK9LE5FMTAGeivLnCmb43eGMfbA+x0+doduoebzwwyqOn772StkiItdLAZ4GWlYpwoyoFjzQ6CbGzt1K2xHRxG64aqt0EZHrpgBPI7mzB/GfzjX55u+NyRYYwN/GLGDo+GUcOq7mWCKSOhTgaaxBuQJMHdScR26uwITFO2k9Yg7TVvpt00YRyUAU4OkgJFsg/2xfle8fbUqh3Nnp91k8j32+mMQjp3xdmoj4MQV4OqpVKpTJ/ZvyRLsqzFy9h9bD5zAhPkHNsUTkhijA01m2wAAea1mRnwY1p2KR3Pzj22X0GruInWqOJSLXSQHuIxWL5Obbvzfm+durs2jrftoOn8Mnv21VcywR8ZpXAW5m+cxsvJmtNbM1ZtbYzF7zPF9uZhPNLF9aF5vZBAQYvZomN8eqe1N+npu0irtH/8amxKO+Lk1E/IC3I/CRwDTnXFUgDFgDzARqOudqA+uBp9KmxMyvdIGcfNK7Aa91q8263Ue4dWQM7/66kSQ1xxKRq7hmgJtZKBAJjAFwzp12zh10zs1wzp2/xXA+ySvTyw0yM7pHlGbWP1pwS5UivDptHV3emcvKnYd8XZqIZFDejMDLAYnAWDNbYmYfmlmuS/bpDUxN9eqyoCJ5Qhj1QD3eu78uew6fovM7c3lt+lpOJqk5loj8mTcBHgTUBd5zztUBjgFPnn/RzJ4BzgCfX+lgM+trZnFmFpeYmJgKJWcNt9YqzqyoSO6oU5J3Zm/itjdjiNu639dliUgG4k2AJwAJzrkFnufjSQ50zKwX0BG43/3FxczOudHOuQjnXEThwoVToeSsI1/OYF7vHsYnvRtwKukc3d//jecnr+LYKTXHEhEvAtw5txvYYWZVPJtaAavNrD0wFOjknDuehjVmeZGVCzNjSCQ9G5fl49+Sm2PNWa//zYhkdebNXYBmFg58CAQDm4EHgUVAdmCfZ7f5zrl+VztPRESEi4uLS1HBWV3c1v0MnbCczYnHuLNuKZ7tWI18OYN9XZaIpCEzi3fORVy2PT1v41aAp46TSWd5+5eNvDdnE/lzBvNi5xrcWqu4r8sSkTTyVwGuOzH9UEi2QB5vV4XJ/ZtSNG92Hvl8Mf0+jWfv4ZO+Lk1E0pEC3I/VKBHKpMea8s/2Vfll3V5aD5/Dt3E71BxLJItQgPu5oMAAHrm5AlMHNadKsTw8MX45PT5ayI79+l5ZJLNTgGcSFQrn5uu+jXmxcw0WbztAuzeiGTt3C2fVHEsk01KAZyIBAcYDjcsyfUgk9csW4IUfVnPX+7+xce8RX5cmImlAAZ4Jlcqfk3EP1mf4XWFsSjzKbSNjefuXDWqOJZLJKMAzKTOja91SzBzSgjY1ivL6jPV0elvNsUQyEwV4Jlc4T3beua8u7z9Qjz+OJjfHGjZVzbFEMgMFeBbRrkYxZg1pQbe6pRg1ZxO3jYxh4RY1xxLxZwrwLCQ0ZzZe6Vabzx5qyOmz57jr/d949vuVHDmZ5OvSROQGKMCzoGaVCjFjSCS9m5bjswXbaDcimtnr9vq6LBG5TgrwLCpncBDP3V6d8f2akCt7EA+OXUTU10s5cOy0r0sTES8pwLO4ejfl58eBzRh4S0UmL/ud1sPn8OPy33U7vogfUIAL2YMCiWpbhR8GNKNEvhz0/2IJfT+NZ4+aY4lkaApwuaBa8bxMfLQJT91alej1ibQePoevF23XaFwkg1KAy58EBQbw9xYVmDY4kmrF8/LPCSu4/8MFbN+n5lgiGY1XAW5m+cxsvJmtNbM1ZtbYzAqY2Uwz2+D5mT+ti5X0U65QLr7q04j/3lGT5QmHaPdGNGNi1RxLJCPxdgQ+EpjmnKsKhAFrSF6Z/mfnXCXgZy5aqV4yh4AA4/6GNzEzKpLGFQry4o+rufO9eazfo+ZYIhnBNQPczEKBSGAMgHPutHPuINAZ+Niz28dAl7QqUnyreGgOxvSMYOQ94Wzbd4wOb8bw5s8bOH1GzbFEfMmbEXg5IBEYa2ZLzOxDM8sFFHXO7fLssxsomlZFiu+ZGZ3DSzIrqgXtaxZn+Mz1dHo7lmU7Dvq6NJEsy5sADwLqAu855+oAx7hkusQlX6ZwxclRM+trZnFmFpeYmJjSesXHCubOzlv31uGDHhEcOH6aO96dy8s/reHEaTXHEklv3gR4ApDgnFvgeT6e5EDfY2bFATw/r3gvtnNutHMuwjkXUbhw4dSoWTKANtWLMjOqBXfXL83o6M3cOjKa3zbt83VZIlnKNQPcObcb2GFmVTybWgGrgclAT8+2nsCkNKlQMqy8Idn4X9fafPFwQ845uPeD+Tw9cQWH1RxLJF2YNzdpmFk48CEQDGwGHiQ5/L8BygDbgLucc1ftTxoREeHi4uJSWrNkQCdOn2X4zHWMid1CkTwhvNy1JrdU1dciIqnBzOKdcxGXbU/Pu+wU4Jnf0h0H+ef45azbc4TO4SV4rmN1CubO7uuyRPzaXwW47sSUVBVeOh8/DGjG4NaV+GnFLtqMiGbS0p26HV8kDSjAJdUFBwUwuHVlfhzQnNIFcjLoq6U8/HEcuw6d8HVpIpmKAlzSTJViefjukSb8q0M15m76g7bDo/liwXbO6XZ8kVShAJc0FRhgPNy8PNMHR1KzZChPT1zBfR/OZ+sfx3xdmojfU4BLuripYC6+6NOQYV1rsWrnYdqPjOaD6M1qjiWSAgpwSTdmxj0NyjAzqgXNKhbivz+toeu7c1m3W82xRG6EAlzSXbHQED7oEcFb99Yh4cAJOr4Vw4iZ6zl1Rrfji1wPBbj4hJlxe1gJZka1oEOt4oz8eQO3vxXLku0HfF2aiN9QgItPFcgVzBv31OGjXhEcOXmGru/N48UfV3P89BlflyaS4SnAJUO4pWpRZgyJ5P6GZRgTu4X2b8Qwb+Mfvi5LJENTgEuGkSckGy91qcVXfRsRYHDfhwt4csJyDp1QcyyRK1GAS4bTqHxBpg2O5O8tyvNN3A7ajpjDzNV7fF2WSIajAJcMKSRbIE/dWo3vH2tK/pzB9Pkkjv5fLOaPo6d8XZpIhqEAlwytdql8TO7fjH+0qcyMVXtoPXwOE5ckqDmWCApw8QPBQQEMaFWJKQObUa5QLoZ8vYze4xbx+0E1x5KsTQEufqNS0TyM79eE5zpWZ/7m/bQdEc2n87epOZZkWV4FuJltNbMVZrbUzOI828LNbP75bWbWIG1LFUlujtW7WTlmDIkkvHQ+nv1+Jfd8MJ8tao4lWdD1jMBbOufCL1oV4lXgBedcOPCc57lIuihdICefPtSAV++szZpdh2n/RjSj5mzizNlzvi5NJN2kZArFAXk9j0OB31Nejoj3zIy76pdmVlQLWlQuzLCpa+ny7lxW/37Y16WJpAtvFzXeAhwgObTfd86NNrNqwHTASP6HoIlzbtvVzqM1MSWtOOeYunI3z01aycHjSTxycwX631KR7EGBvi5NJMVStKixmZV0zu00syLATGAA0A2Y45ybYGZ3AX2dc62vcGxfoC9AmTJl6m3bdtWMF0mRA8dO8+KU1Xy3eCcVi+TmlTtrU++m/L4uSyRFUm1VejN7HjgKPAvkc845MzPgkHMu79WO1Qhc0suv6/byzMSV/H7oBL2alOXxtlXIlT3I12WJ3JAbXpXezHKZWZ7zj4G2wEqS57xbeHa7BdiQeuWKpMzNVYowfUgkDzS6ibFzt9LujWhiNiT6uiyRVOXNkKQoMDF5kE0Q8IVzbpqZHQVGmlkQcBLPNIlIRpE7exD/6VyTjrVL8OSE5TwwZiF3RZTimduqE5ozm6/LE0mx655CSQlNoYivnEw6y8ifNzA6ejMFcgXzYueatK9ZzNdliXjlhqdQRDKDkGyB/LN9VSY91pTCubPT77N4Hv08nr1HTvq6NJEbpgCXLKVmyVAm9W/KE+2qMGvNXtoMj2ZCvJpjiX9SgEuWky0wgMdaVuSngc2pWCQ3//h2GT3HLiLhwHFflyZyXRTgkmVVLJKbb//emBc61SBu637ajYjmk9+2qjmW+A0FuGRpAQFGzyZlmT44kro35ee5Sau46/3f2JR41NeliVyTAlyE5OZYn/RuwOvdw9iw9yi3jozhndkbSVJzLMnAFOAiHmZGt3qlmBkVSetqRXht+jq6vDOXlTsP+bo0kStSgItcokieEN69vx6j/laXPYdP0fmdubw6bS0nk876ujSRP1GAi/yF9jWL83NUC7rWKcm7v27itjdjiNu639dliVygABe5itCc2Xitexif9G7AqaRzdH//N/49aSVHT53xdWkiCnARb0RWLsyMIZH0bFyWT+Zvo92IaOasV3Ms8S0FuIiXcmUP4vlONRjfrzEh2QLo+dFCor5ZysHjp31dmmRRCnCR61TvpgJMGdic/i0rMnnp77QePoefVuzydVmSBSnARW5ASLZAHm9XhUn9m1IsNIRHP19Mv0/j2XtYzbEk/SjARVKgRolQvn+0Kf9sX5Vf1u2l9fA5fBO3Q82xJF0owEVSKCgwgEdursC0Qc2pWiwvQ8cvp8dHC9mxX82xJG0pwEVSSfnCufmqbyNe7FKTxdsO0HZENGPnbuGsmmNJGvEqwM1sq5mtMLOlZhZ30fYBZrbWzFaZ2atpV6aIfwgIMB5odBMzolrQsHwBXvhhNd1HzWPj3iO+Lk0yoesZgbd0zoWfX9bHzFoCnYEw51wN4PW0KFDEH5XMl4Oxveoz4u4wNv9xjNtGxvL2LxvUHEtSVUqmUB4BhjnnTgE45/amTkkimYOZcUedUsyKakGbGkV5fcZ6bn8rlhUJao4lqcPbAHfADDOLN7Pzq89XBpqb2QIzm2Nm9a90oJn1NbM4M4tLTNSda5L1FMqdnXfuq8v7D9Rj/7HTdHl3LsOmqjmWpJxXq9KbWUnn3E4zKwLMBAYA7wKzgYFAfeBroLy7ygm1Kr1kdYdOJPHylDV8HbeDcoVyMaxrLRqWL+jrsiSDS9Gq9M65nZ6fe4GJQAMgAfjOJVsInAMKpV7JIplPaI5svNKtNp8/3JAz585x9+j5/Ov7FRw5meTr0sQPXTPAzSyXmeU5/xhoC6wEvgdaerZXBoKBP9KuVJHMo2nFQkwfHMlDzcrx+YLttBsRzey1+hpJro83I/CiQKyZLQMWAlOcc9OAj4DyZrYS+AroebXpExH5s5zBQTzbsToTHmlCruxBPDhuEUO+Xsr+Y2qOJd7xag48tWgOXOTKTp05yzuzN/Hu7I2E5sjGC51r0KFWcczM16VJBpCiOXARSVvZgwKJalOZHwY0o2T+HPT/Ygl9P41nj5pjyVUowEUykGrF8/LdI014+raqRK9PpPXwOXy1cLuaY8kVKcBFMpigwAD6RlZg+uBIqhfPy5PfreD+DxewfZ+aY8mfKcBFMqiyhXLxZZ9GvHxHLZYnHKLtG3P4MGazmmPJBQpwkQwsIMC4r2EZZkZF0qRCIV6asoY735vH+j1qjiUKcBG/UDw0B2N6RjDynnC27z9OhzdjGDlrA6fPqDlWVqYAF/ETZkbn8JLMHBLJrTWLM2JWcnOsZTsO+ro08REFuIifKZg7O2/eW4cPe0Rw6EQSd7w7l/9OWc2J02qOldUowEX8VOvqRZkRFck9DcrwQcwW2o+M5rdN+3xdlqQjBbiIH8sbko2X76jFF30aAnDvB/N56rsVHFZzrCxBAS6SCTSpUIhpgyLpG1merxdtp+3waH5es8fXZUkaU4CLZBI5ggN5+rZqfPdoU0JzZOOhj+MY+OUS9h095evSJI0owEUymfDS+fhhQDOGtK7M1JW7aDMimklLd+p2/ExIAS6SCQUHBTCodSWmDGxOmQI5GfTVUh7+OI5dh074ujRJRQpwkUysctE8THikCf/qUI25m/6gzfBoPl+wjXO6HT9TUICLZHKBAcbDzcszY3ALapcK5ZmJK7nvw/ls/eOYr0uTFPIqwM1sq5mtMLOlZhZ3yWv/MDNnZloPUyQDK1MwJ58/3JBhXWuxaudh2r0RzejoTZw5q9vx/dX1jMBbOufCL14VwsxKk7xG5vZUr0xEUp2ZcU+DMsyMakHzSoV5+ae13PnePNbuPuzr0uQGpHQKZQQwFNCEmogfKRYawgc96vH2fXVIOHCCjm/GMnzmek6d0e34/sTbAHfADDOLN7O+AGbWGdjpnFt2tQPNrK+ZxZlZXGJiYgrLFZHUYmZ0rF2CWVEtuD2sBG/+vIGOb8ayePsBX5cmXvJqUWMzK+mc22lmRYCZwADgNaCtc+6QmW0FIpxzf1ztPFrUWCTjmr12L09PXMHuwyfp3bQc/2hbmZzBQb4uS0jhosbOuZ2en3uBiUALoBywzBPepYDFZlYs1SoWkXTVsmoRZgyJ5P6GZRgTu4V2b0Qzd+NVx2TiY9cMcDPLZWZ5zj8m+UvLRc65Is65ss65skACUNc5tztNqxWRNJUnJBsvdanF130bERQQwP0fLuDJCcs5dELNsTIib0bgRYFYM1sGLASmOOempW1ZIuJLDcsXZOqg5vy9RXm+idtBm+FzmLFK47OMxqs58NSiOXAR/7M84SBDxy9n7e4jdKhdnOdvr0HhPNl9XVaWkqI5cBHJumqXSm6O9XjbysxctYc2I+YwcUmCmmNlAApwEbmmbIEB9L+lEj8Nakb5Qtsfj70AAAvmSURBVLkY8vUyHhy3iJ0H1RzLlxTgIuK1ikXy8G2/Jvz79uos2LyftsPn8Ol8NcfyFQW4iFyXwADjwablmDEkkjpl8vPs9yu5Z/R8Nice9XVpWY4CXERuSOkCOfn0oQa82q02a3cf5taRMYyao+ZY6UkBLiI3zMy4K6I0s6JacHOVwgybupYu785l9e9qjpUeFOAikmJF8obw/gMRvHd/XXYfOkWnt2N5ffo6TiapOVZaUoCLSKq5tVZxZkVF0jm8JG/P3kiHN2OI37bf12VlWgpwEUlV+XIG8393hfFx7wacTDpHt1G/8fzkVRw7dcbXpWU6CnARSRMtKhdm+pBIejS6iXHzttLujWhiNqildGpSgItImsmdPYgXOtfk236NCQ4K4IExC3ni22UcOq7mWKlBAS4iaa5+2QL8NLA5j95cge+W7KT1iDlMW7nL12X5PQW4iKSLkGyBDG1flUmPNaVw7uz0+2wxj3wWz94jJ31dmt9SgItIuqpZMpRJ/ZvyRLsq/Lx2L22GRzM+Xs2xboQCXETSXbbAAB5rWZGfBjanUpHcPP7tMnqOXUTCgeO+Ls2vKMBFxGcqFsnNN39vzH861yB+637ajojm43lb1RzLS14FuJltNbMVZrbUzOI8214zs7VmttzMJppZvrQtVUQyo4AAo0fjskwfEklE2QL8e/Iq7nr/NzbuVXOsa7meEXhL51z4RatCzARqOudqA+uBp1K9OhHJMkrlz8nHD9bn/7qHsWHvUW4bGcM7szeSpOZYf+mGp1CcczOcc+dvrZpP8sr0IiI3zMy4s14pZkW1oHX1Irw2fR2d357Lyp2HfF1ahuRtgDtghpnFm1nfK7zeG5h6pQPNrK+ZxZlZXGKi7sISkWsrnCc7795fj1F/q0vi0VN0fmcur0xbq+ZYl/BqUWMzK+mc22lmRUieOhngnIv2vPYMEAF0ddc4mRY1FpHrdeh4Ei9NWc238QmUL5SLV7rVpn7ZAr4uK12laFFj59xOz8+9wESggeekvYCOwP3XCm8RkRsRmjMbr3UP49OHGnD67Dm6j/qN5yat5KiaY107wM0sl5nlOf8YaAusNLP2wFCgk3NOF2+KSJpqXqkw0wdH8mDTsnw6fxvtRkTz67q9vi7Lp7wZgRcFYs1sGbAQmOKcmwa8DeQBZnouLxyVhnWKiJArexD/vr0G4/s1IUdwIL3GLiLqm6UcOHba16X5hFdz4KlFc+AiklpOnTnL279s5L1fN5EvZzb+07kmt9Yshpn5urRUl6I5cBGRjCZ7UCD/aFuFyf2bUTw0B49+vph+n8Wz93DWaY6lABcRv1a9RF4mPtqEJ2+tyq/rEmk9fA7fxO3IEs2xFOAi4veCAgPo16ICUwc1p2rxvAwdv5wHxixkx/7MfX2FAlxEMo3yhXPzVZ9GvNSlJkt3HKTtiGg+it3C2UzaHEsBLiKZSkCA8bdGNzFjSCQNyxfgPz+upvuoeWzYc8TXpaU6BbiIZEol8uVgbK/6vHF3OFv+OEaHN2N56+cNmao5lgJcRDItM6NLnZLMjGpB2xpF+b+Z67n9rVhWJGSO5lgKcBHJ9Arlzs7b99Vl9AP1OHD8NJ3fieV/U9f4fXMsBbiIZBltaxRjxpAW3F2/NO/P2cytI2OYv3mfr8u6YQpwEclSQnNk439da/PFww05e85xz+j5PDNxBUdOJvm6tOumABeRLKlJxUJMG9ych5uV48uF22k7IprZa/2rOZYCXESyrJzBQfyrY3UmPNKE3NmDeHDcIgZ/tYT9ftIcSwEuIllenTL5+XFgMwa1qsSPy3fRZvgcflj2e4a/HV8BLiJCcnOsIW0q8+PAZpTKn4MBXy6hzyfx7D6UcZtjKcBFRC5StVhevnu0Kc/cVo3YjYm0GT6HLxduz5CjcQW4iMglAgOMPpHlmTYokhol8/LUdyu474MFbNt3zNel/YlXAW5mW81shWflnTjPtgJmNtPMNnh+5k/bUkVE0lfZQrn44uFGvHxHLVbuPES7N6L5MGZzhmmOdT0j8JbOufCLVoV4EvjZOVcJ+NnzXEQkUwkIMO5rWIYZUZE0rVCIl6asoet781i32/fNsVIyhdIZ+Njz+GOgS8rLERHJmIqH5uDDnhG8eW8dduw/Tse3Ynhj1npOn/FdcyxvA9wBM8ws3sz6erYVdc7t8jzeTfLix5cxs75mFmdmcYmJiSksV0TEd8yMTmElmBXVgttqFeeNWRu4/a1Ylu446Jt6vPlm1cxKOud2mlkRYCYwAJjsnMt30T4HnHNXnQfXosYikpn8vGYPz0xcyd4jJ3moWTmi2lQhR3Bgqr9PihY1ds7t9PzcC0wEGgB7zKy45+TFAf+6B1VEJIVaVSvKjKhI7mlQhg9ittDujWjmbfoj3d7/mgFuZrnMLM/5x0BbYCUwGejp2a0nMCmtihQRyajyhmTj5Ttq8WWfRpjBfR8s4KnvVnA4HZpjeTMCLwrEmtkyYCEwxTk3DRgGtDGzDUBrz3MRkSypcYWCTBsUSd/I8ny9aDtths9h1uo9afqeXs2BpxbNgYtIVrBsx0H+OWE5a3cfoVNYCf59e3UK5s5+w+dL0Ry4iIh4L6x0Pib3b0ZUm8pMXbmL1sPn8Num1F84QgEuIpIGgoMCGNiqElMGNqdmyVDKFsqZ6u8RlOpnFBGRCyoXzcOnDzVMk3NrBC4i4qcU4CIifkoBLiLipxTgIiJ+SgEuIuKnFOAiIn5KAS4i4qcU4CIifipde6GYWSKw7QYPLwSkX5/GjEGfOWvQZ84aUvKZb3LOFb50Y7oGeEqYWdyVmrlkZvrMWYM+c9aQFp9ZUygiIn5KAS4i4qf8KcBH+7oAH9Bnzhr0mbOGVP/MfjMHLiIif+ZPI3AREblIqge4mQ00szVm9nkqnOs/Ztb6Kq+PM7NuKTj/82b2+I0eLyLiS2mxoMOjQGvnXMK1djQzI3ka59yVXnfOPZfaxYmIZBapOgI3s1FAeWCqmR26eHRrZivNrKzn1zoz+wRYCTT3jNg/MLNVZjbDzHJ4jrkwwjazYWa22syWm9nrF71tpJnNM7PNF4/GzewJM1vk2f+Fi7Y/Y2brzSwWqJKan19EJD2laoA75/oBvwMtgRFX2bUS8K5zrgbJd2ZWAt7xPD8I3HnxzmZWELgDqOGcqw28dNHLxYFmQEdgmGf/tp5zNgDCgXpmFmlm9YB7PNtuA+qn6AOLiPiQr9bE3Oacm3/R8y3OuaWex/FA2Uv2PwScBMaY2Y/Ajxe99r1nCma1mRX1bGvr+bXE8zw3yYGeB5jonDsOYGaTU+nziIiku7S8CuXMJecPuejxsUv2PXXR47Nc8g+Lc+4MyaPp8SSPtKf9xbF20c//OefCPb8qOufGXP9HEBHJuNIywLcCdQHMrC5Q7kZPZGa5gVDn3E/AECDsGodMB3p7jsPMSppZESAa6GJmOcwsD3D7jdYkIuJraTmFMgHoYWargAXA+hScKw8wycxCSB5dR11tZ+fcDDOrBvyWfKELR4G/OecWm9nXwDJgL7AoBTWJiPiU7sQUEfFTuhNTRMRPKcBFRPyUAlxExE8pwEVE/JQCXETETynAxS+lVddLMxtsZjlTXqFI2tNlhOKXzGwtqdT18pJ9twIRzjmvVw83syDP3cIi6UojcPE7adX10swGAiWA2WY22/Pa0YvO3c3Mxl10zCgzWwC8amYVzGyamcWbWYyZVU2v3w/JuhTg4nfSquulc+7N8+d1zrX0opRSQBPnXBTJ6x0OcM7VAx4H3r2+TyVy/XzVjVAkPVxv18vr9a1z7qyn504T4FtP6waA7Ck8t8g1KcDF36Wk62UOL85/8ZdEIZe8dv78AcBB51y4F+cTSTWaQhF/t5VU6nrpcYTk5mnn7TGzamYWQPKiIpdxzh0GtphZd08dZmbX6pgpkmIKcPF3E4ACnq6X/UlZ10tInsuedv5LTOBJkhcQmQfsuspx9wMPmdkyYBXQOYV1iFyTLiMUEfFTGoGLiPgpBbiIiJ9SgIuI+CkFuIiIn1KAi4j4KQW4iIifUoCLiPgpBbiIiJ/6fz9jZJNrgDC+AAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ] + }, + { + "cell_type": "code", + "source": [ + "" + ], + "metadata": { + "id": "r4oX0YQIeQjL" + }, + "execution_count": null, + "outputs": [] + } + ] +} \ No newline at end of file diff --git a/Assignment/Assignment_1/README.md b/Assignment/Assignment_1/README.md index 571fbcd..04909a6 100644 --- a/Assignment/Assignment_1/README.md +++ b/Assignment/Assignment_1/README.md @@ -1,3 +1,15 @@ # Stamatics-Summer-Project-2022 Assignment - 1 + +### Links for part - 1: + +200124_Aniket-Sharma_Part-1 + +https://colab.research.google.com/drive/14GxGkCiEGql_2vpLjaUTA9Es3Wuz8aq0?usp=sharing + +### Links for Part - 2,3: + +200124_Aniket-Sharma_Part-2 + +https://colab.research.google.com/drive/1eZ98tj0yaAKGMgo-T8LiC6MzStNPY9yh?usp=sharing \ No newline at end of file diff --git a/Assignment/Assignment_2/200124_Aniket-Sharma_.ipynb b/Assignment/Assignment_2/200124_Aniket-Sharma_.ipynb new file mode 100644 index 0000000..d03294d --- /dev/null +++ b/Assignment/Assignment_2/200124_Aniket-Sharma_.ipynb @@ -0,0 +1,1059 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "Aniket_copy_of_DL_Stamatics_Assignment_2.ipynb", + "provenance": [], + "collapsed_sections": [], + "history_visible": true + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "language_info": { + "name": "python" + }, + "accelerator": "GPU" + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "rvFM645NE-D2" + }, + "source": [ + "# Assignment 2\n", + "In this assignment, we will go through Perceptron, Linear Classifiers, Loss Functions, Gradient Descent and Back Propagation.\n", + "\n", + "\n", + "PS. this one is not from Stanford's course.\n", + "\n", + "\n", + "\n", + "\\\n", + "\n", + "## Instructions\n", + "* This notebook contain blocks of code, you are required to complete those blocks(where required)\n", + "* You are required to copy this notebook (\"copy to drive\" above) and complete the code.(DO NOT CHANGE THE NAME OF THE FUNCTIONS)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true, + "id": "QLtp15rqE-EU" + }, + "source": [ + "# Part 1: Perceptron\n", + "In this section, we will see how to implement a perceptron. Goal would be for you to delve into the mathematics.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Zao4e-DphaGA" + }, + "source": [ + "## Intro\n", + "What's a perceptron? It's an algorithm modelled on biological computational model to classify things into binary classes. It's a supervides learning algorithm, meaning that you need to provide labelled data containing features and the actual classifications. A perceptron would take these features as input and spit out a binary value (0 or 1). While training the model with training data, we try to minimise the error and learn the parameters involved." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "wDTUoAd6ixm-" + }, + "source": [ + "**How does it work?**\\\n", + "A perceptron is modelled on a biological neuron. A neuron has input dendrites and the output is carried by axons. Similarly, a perceptron takes inputs called \"features\". After processing, a perceptron gives output. For computation, it has a \"weight\" vector which is multipled with feature vector. An activation function is added to introduce some non linearities and the output is given out.\\\n", + "It can be represented as: $$ f=\\sum_{i=1}^{m} w_ix_i +b$$\n", + "\n", + "Let's implement this simple function to give an output.\n", + "\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "iXezofBIgzId" + }, + "source": [ + "import numpy as np\n", + "\n", + "class perceptron():\n", + " def __init__(self,num_input_features=8):\n", + " self.weights = np.random.randn(num_input_features)\n", + " self.bias = np.random.random()\n", + "\n", + " def activation(self,x):\n", + " '''\n", + " Implement heavside step activation function here (google ;))\n", + " '''\n", + " if x >= 0 :\n", + " return 1\n", + " else :\n", + " return 0\n", + "\n", + " def forward(self,x: np.ndarray):\n", + " '''\n", + " you have random initialized weights and bias\n", + " you can access then using `self.weights` and `self.bias`\n", + " you should use activation function before returning\n", + " \n", + " x : input features\n", + " return : a binary value as the output of the perceptron \n", + " '''\n", + " # YOUR CODE HERE\n", + " r1 = np.dot(x, self.weights)\n", + " f = r1 + self.bias\n", + "\n", + " res = perceptron.activation(self, f)\n", + " \n", + " return res\n", + " # YOUR CODE HERE" + ], + "execution_count": 9, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "oSKwDFAyocVo" + }, + "source": [ + "np.random.seed(0)\n", + "perc = perceptron(8)\n", + "assert perc.forward(np.arange(8))==1" + ], + "execution_count": 10, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true, + "id": "NWTTg1e9r7uM" + }, + "source": [ + "# Part 2: Linear Classifier\n", + "In this section, we will see how to implement a linear Classifier.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "DYDO4GcHr7uM" + }, + "source": [ + "## Intro\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "-HFvjH06r7uN" + }, + "source": [ + "**How does it work?**\n", + "\n", + "Linear Classifier uses the following function: $$Y = WX+b$$ Where, $W$ is a 2d array of weights with shape (#features, #classes).\n", + "\n", + "\n", + "Let's implement this classifier.\n", + "\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "9A13CEkGr7uN" + }, + "source": [ + "import numpy as np\n", + "\n", + "class LinearClassifier():\n", + " def __init__(self,num_input_features=32,num_classes=5):\n", + " self.weights = np.random.randn(num_input_features,num_classes)\n", + " self.bias = np.random.rand(num_classes, 1)\n", + "\n", + " def forward(self,x: np.ndarray):\n", + " '''\n", + " x: input features\n", + " you have random initialized weights and bias\n", + " you can access then using `self.weights` and `self.bias`\n", + " return an output vector of num_classes size\n", + " '''\n", + " # YOUR CODE HERE\n", + " row, col = x.shape\n", + " if row == 32:\n", + " res = np.dot(x.transpose(), self.weights) + self.bias\n", + " else:\n", + " res = np.dot(x, self.weights) + self.bias\n", + " return res\n", + " # YOUR CODE HERE" + ], + "execution_count": 11, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "zgzPxyTsr7uN", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "5ec2b0c0-4bd6-4ecc-ac8a-d0de0487b511" + }, + "source": [ + "np.random.seed(0)\n", + "lc = LinearClassifier()\n", + "lc.forward(np.random.rand(32, 1))\n", + "# Should be close to:\n", + "# array([[ 1.30208164, 5.58136003, 0.87793013, -4.7332119 , 4.81172123]])" + ], + "execution_count": 12, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array([[ 1.30208164, 5.53878912, 0.22321609, -5.16223002, 4.29982075],\n", + " [ 1.34465255, 5.58136003, 0.26578699, -5.11965911, 4.34239165],\n", + " [ 1.95679569, 6.19350317, 0.87793013, -4.50751597, 4.95453479],\n", + " [ 1.73109976, 5.96780724, 0.6522342 , -4.7332119 , 4.72883886],\n", + " [ 1.81398213, 6.0506896 , 0.73511657, -4.65032953, 4.81172123]])" + ] + }, + "metadata": {}, + "execution_count": 12 + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true, + "id": "ZVgOVzJetuqo" + }, + "source": [ + "# Part 3: Loss Functions, Gradient descent and Backpropagation\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "4pXryjpctuqy" + }, + "source": [ + "## Intro\n", + "\n", + "Loss Functions tells how \"off\" the output od our model is. Based upon the application, you can use several different loss functions. Formally, A loss function is a function $L:(z,y)\\in\\mathbb{R}\\times Y\\longmapsto L(z,y)\\in\\mathbb{R}$ that takes as inputs the predicted value $z$ corresponding to the real data value yy and outputs how different they are We'll implement L1 loss, L2 loss, Logistic loss, hinge loss and cross entropy loss functions." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "QGRb8BHotuqy" + }, + "source": [ + "### **L1 loss**\n", + "L1 loss is the linear loss function $L = \\dfrac{1}{2}|y−z| $\n", + "\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "YxVh6IL2tuqz" + }, + "source": [ + "import numpy as np\n", + "def L1Loss(z,y):\n", + " '''\n", + " y : True output.\n", + " z : Predicted output.\n", + " return : L\n", + " '''\n", + " return (abs(y - z)) / 2" + ], + "execution_count": 13, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "2xy8ZS84cKtQ" + }, + "source": [ + "### **L2 loss**\n", + "L2 loss is the quadratic loss function or the least square error function $L = \\dfrac{1}{2}(y−z)^2 $\n", + "\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "JThp5P-KcKtS" + }, + "source": [ + "\n", + "import numpy as np\n", + "def L2Loss(z,y):\n", + " '''\n", + " y : True output. \n", + " z : Predicted output. \n", + " return : L\n", + " '''\n", + " return ((y - z)**2)/2" + ], + "execution_count": 14, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Z2JNLnWYcLSC" + }, + "source": [ + "### **Hinge Loss**\n", + "Hinge loss is: $ L = max( 0, 1 - yz ) $" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "gQ1YM4J-cLSC" + }, + "source": [ + "import numpy as np\n", + "def hingeLoss(z,y):\n", + " '''\n", + " y : True output. \n", + " z : Predicted output. \n", + " return : L\n", + " '''\n", + " return max(0, 1 - (y * z))" + ], + "execution_count": 15, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "m15_MjradMNY" + }, + "source": [ + "### **Cross Entropy Loss**\n", + "Another very famous loss function is Cross Entropy loss: $ L = −[ylog(z)+(1−y)log(1−z)] $." + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "snJLqhszdMNY" + }, + "source": [ + "import numpy as np\n", + "import math \n", + "def CELoss(z,y):\n", + " '''\n", + " y : True output. \n", + " z : Predicted output. \n", + " return : L\n", + " '''\n", + " return (-1 * ((y * math.log(z)) + ((1 - y) * math.log(1 - z))))" + ], + "execution_count": 16, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "OsRPsfzxyEVL" + }, + "source": [ + "### **0-1 Loss**\n", + "Loss Function used by perceptron is: $ \\begin{cases} \n", + " 0=z-y & z=y \\\\\n", + " 1=\\dfrac{z-y}{z-y} & z\\neq y\n", + " \\end{cases} $." + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "5sA7GxLHyEVM" + }, + "source": [ + "import numpy as np\n", + "def zeroOneLoss(z,y):\n", + " '''\n", + " y : True output. \n", + " z : Predicted output. \n", + " return : L\n", + " '''\n", + " if z == y :\n", + " return 0\n", + " else:\n", + " return 1" + ], + "execution_count": 17, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "CWhbibHcgRR8" + }, + "source": [ + "## Cost Function\n", + "The cost function $J$ is commonly used to assess the performance of a model, and is defined with the loss function $L$ as follows:\n", + "$$\\boxed{J(\\theta)=\\sum_{i=1}^mL(h_\\theta(x^{(i)}), y^{(i)})}$$\n", + "where $h_\\theta$ is the hypothesis function i.e. the function used to predict the output." + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "SSbmhW4og97t" + }, + "source": [ + "lossFunctions = {\n", + " \"l1\" : L1Loss,\n", + " \"l2\" : L2Loss,\n", + " \"hinge\" : hingeLoss,\n", + " \"cross-entropy\" : CELoss,\n", + " \"0-1\" : zeroOneLoss\n", + "}\n", + "\n", + "def cost(Z : np.ndarray, Y : np.ndarray, loss : str):\n", + " '''\n", + " Z : a numpy array of predictions.\n", + " Y : a numpy array of true values.\n", + " return : A numpy array of costs calculated for each example.\n", + " '''\n", + " loss_func = lossFunctions[loss]\n", + " # YOUR CODE HERE\n", + " res = np.empty(len(Z))\n", + " for i in range(len(Z)):\n", + " res[i] = loss_func(Z[i], Y[i])\n", + " # YOUR CODE HERE\n", + " return res" + ], + "execution_count": 18, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "upsN7A0zjGqx" + }, + "source": [ + "## Gradient Descent and Back Propagation\n", + "Gradient Descent is an algorithm that minimizes the loss function by calculating it's gradient. By noting $\\alpha\\in\\mathbb{R}$ the learning rate, the update rule for gradient descent is expressed with the learning rate $\\alpha$ and the cost function $J$ as follows:\n", + "\n", + "$$\\boxed{ W \\longleftarrow W -\\alpha\\nabla J( W )}$$\n", + "​\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "AFCN-fYCqidi" + }, + "source": [ + "But we need to find the partial derivative of Loss function wrt every parameter to know what is the slight change that we need to apply to our parameters. This becomes particularly hard if we have more than 1 layer in our algorithm. Here's where **Back Propagation** comes in. It's a way to find gradients wrt every parameter using the chain rule. Backpropagation is a method to update the weights in the neural network by taking into account the actual output and the desired output. The derivative with respect to weight ww is computed using chain rule and is of the following form:\n", + "\n", + "$$\\boxed{\\frac{\\partial L(z,y)}{\\partial w}=\\frac{\\partial L(z,y)}{\\partial a}\\times\\frac{\\partial a}{\\partial z}\\times\\frac{\\partial z}{\\partial w}}$$\n", + "​\n", + " \n", + "As a result, the weight is updated as follows:\n", + "\n", + "$$\\boxed{w\\longleftarrow w-\\alpha\\frac{\\partial L(z,y)}{\\partial w}}$$\n", + "\n", + "So, In a neural network, weights are updated as follows:\n", + "\n", + "* Step 1: Take a batch of training data.\n", + "* Step 2: Perform forward propagation to obtain the corresponding loss.\n", + "* Step 3: Backpropagate the loss to get the gradients.\n", + "* Step 4: Use the gradients to update the weights of the network.\n", + "​\n", + "\n", + "Bonus Problem\n", + " \n", + "Now, Assuming that you know Back Propagation (read a bit about it, if you don't), we'll now implement an image classification model on CIFAR-10." + ] + }, + { + "cell_type": "markdown", + "source": [ + "# **Bonus Problem**\n", + "\n", + "Now, Assuming that you know Back Propagation (read a bit about it, if you don't), we'll now implement an image classification model on CIFAR-10." + ], + "metadata": { + "id": "sJoG5kkYopRN" + } + }, + { + "cell_type": "code", + "source": [ + "import tensorflow as tf \n", + " \n", + "# Display the version\n", + "print(tf.__version__) \n", + " \n", + "# other imports\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import tensorflow as tf\n", + "from tensorflow import keras\n", + "from tensorflow.keras import layers\n", + "from tensorflow.keras.layers import Input, Conv2D, Dense, Flatten, Dropout\n", + "from tensorflow.keras.layers import GlobalMaxPooling2D, MaxPooling2D\n", + "from tensorflow.keras.layers import BatchNormalization\n", + "from tensorflow.keras.models import Model" + ], + "metadata": { + "id": "_4-4RceVsor_", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "72ffe2ec-5492-44d8-b8bb-41a770dea5f7" + }, + "execution_count": 2, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "2.8.0\n" + ] + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "yyplk5PLEUsJ", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "d8790f9a-6e9b-4af7-c401-77d18e68deed" + }, + "source": [ + "# Load in the data\n", + "cifar10 = tf.keras.datasets.cifar10\n", + " \n", + "# Distribute it to train and test set\n", + "(x_train, y_train), (x_test, y_test) = cifar10.load_data()\n", + "print(x_train.shape, y_train.shape, x_test.shape, y_test.shape)\n", + "\n", + "# Reduce pixel values\n", + "x_train, x_test = x_train / 255.0, x_test / 255.0\n", + " \n", + "# flatten the label values\n", + "y_train, y_test = y_train.flatten(), y_test.flatten()" + ], + "execution_count": 3, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Downloading data from https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz\n", + "170500096/170498071 [==============================] - 2s 0us/step\n", + "170508288/170498071 [==============================] - 2s 0us/step\n", + "(50000, 32, 32, 3) (50000, 1) (10000, 32, 32, 3) (10000, 1)\n" + ] + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "qQhkATYhEkkC", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "outputId": "3737ab05-4822-4a21-afc4-3a414380c86a" + }, + "source": [ + "'''visualize data by plotting images'''\n", + "# YOUR CODE HERE\n", + "#showing the first 10 images from the training set\n", + "for i in range(10):\n", + " plt.imshow(x_train[i])\n", + " plt.show()\n", + "# YOUR CODE HERE" + ], + "execution_count": 4, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD5CAYAAADhukOtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAfMklEQVR4nO2da2yc53Xn/2dunOGdFC+SKNmy5UvtNLbiqIbXyXaTBi3coKgTYJFNPgT+EFRF0QAN0P1gZIFNFtgPyWKTIB8WWSgbt+4im8vm0hiFsW1qpDDaFK7l2PG9tizLkSiKokRS5HCGcz37YcZb2fv8H9IiOVTy/H+AoOF7+LzvmWfe877zPn+ec8zdIYT41Sez2w4IIXqDgl2IRFCwC5EICnYhEkHBLkQiKNiFSITcVgab2X0AvgogC+B/uPsXYr+fz+e9r1gM2lqtFh2XQVgezBo/ViHHr2P5iC2XzVKbWfiAZpFrZsTHZpO/55ggmo35SKTUtrf5sdr8aJaJvIEI7Xb4vcV8j+4v4r9FJpnZMhE/shn+ebJzAADaERnbYycCGxPdX5jF5VWUK+vBg111sJtZFsB/A/DbAM4CeNLMHnH3F9mYvmIRR+56b9C2vLxIj9WXCX/Q4wU+Gdft6ae2yfEBapsYHaS2QjYf3J7rK9ExyPIpXlxaprZ6k7+3sdERasu0GsHttVqNjllfX6e2Yil8cQaAFvjFqlItB7ePjA7TMXC+v3qtTm1ZhD8XgF9chgb55zwwwM+PfJ7PRzXio8duCJnwORJ7z00PXzy++I3v88NwDzbkbgAn3f2Uu9cBfBvA/VvYnxBiB9lKsM8AOHPFz2e724QQ1yBbembfDGZ2DMAxAOjr69vpwwkhCFu5s88COHjFzwe6296Cux9396PufjSX589WQoidZSvB/iSAm83sBjMrAPg4gEe2xy0hxHZz1V/j3b1pZp8G8NfoSG8PufsLsTHr6+t44cXwryxfvEjHjZMFUNvDV0YnWkPUZqUpaltrc1Wg3AqvkLsV6JjKOl9RrVT5CnmjxaWmixHNsZgL+9hs8v1lyWowEH/0qqyvUVuzHX7ftr6HjslEVLlGRE0o5fh5UCYr2outJh3T389X4y3Dv50aUWsAABE5r7IeVlCajfB2AMjmwp9LY71Kx2zpmd3dHwXw6Fb2IYToDfoLOiESQcEuRCIo2IVIBAW7EImgYBciEXb8L+iuJAOglCOyUeSP664nEtuhaZ4QMjU5Tm2lmLQSyWqq1sIJI+sNLgt5ZH+FUiSBJpII421+vJHxcAJQs8H3V8hzPyLJiMgW+IdWq4fnqtHk89Ef2V9ugPtYjIxrWlgezESy6JqRDLVYpuXgAE++Kq9VqK3RDEtssYTD1ZXLwe3taPaoECIJFOxCJIKCXYhEULALkQgKdiESoaer8WaOooUTEIaGuCu3zIwFt+8p8cyJfJuXWiov8uSUVptf/6qVsO8ZngeD4UiZq1xkFXn58iofF/nUxofCK8KrKzxppR5JaKmSJA0gXldtkJR2atR5okamxd9YPpKQ0yKluAAgR5bPazU+ppDnH2imzRNoauUlagNJogKAPnIaN9tcMbi8FlZkWpF6grqzC5EICnYhEkHBLkQiKNiFSAQFuxCJoGAXIhF6Kr3lzDDWFz5kKSKtjJAkiMlhXvOrRdoPAYj0MQGyuUghNFJHrNaOSD8RnSwXScZo1bhE5Vl+jb5wIdxlptXg73q1wpM0Ki0uUw6WIt1daqT9E/h7zhiXjbJ9kU4sa1xm7c+HfcxFWiutR+oGVhtcemtHmnYtl7mPy5Xw+VMmUi8ArDfC50A9UmtQd3YhEkHBLkQiKNiFSAQFuxCJoGAXIhEU7EIkwpakNzM7DWAVHTWr6e5HowfLGiZHwxLKUJ5LXsVi2JbJcqmjFKnv1mhyGaodyeTqtKH//6lH6sW16lyWa3skoywieXmOZ2Wt1sMZbK0Wn99KpNVUM2JbXeP+zy6G/chn+P6Gy3zuG+d5e7DqZS4dXjdxU3D71NQBOsaGwvXdAKC2dInaymWePXh5lUtvFy+HZdbTZ7gfrWw4dGt1Ltdth87+QXfnn4QQ4ppAX+OFSIStBrsD+Bsze8rMjm2HQ0KInWGrX+Pf7+6zZjYF4Mdm9rK7P37lL3QvAscAoBh5LhdC7CxburO7+2z3/wsAfgjg7sDvHHf3o+5+tJDTU4MQu8VVR5+ZDZjZ0JuvAfwOgOe3yzEhxPayla/x0wB+2G2XlAPwv9z9/8QG5HNZ7J8MFyIcLnDJYLA/LDVZRLpCJAPJItlmtSqXcTJEltszxNtQDQzwbK2Vy1zEGBnmGWWrkSKQb8yG91mu8UeoAp8OzPRHsvbyPDPv9KVw9l3NI0VCI1lvI8ND1Hbv7VzxXZkLy6xeiRxrgmdT1ip8Psplfu/sy/N9Htwbfm9TU9N0zPxKWMq79Mp5Ouaqg93dTwG482rHCyF6ix6ihUgEBbsQiaBgFyIRFOxCJIKCXYhE6G3ByaxhfCicjZarh6UaAOjLh93s7wv3NQOAWpXLU41Iv67R0XBfOQBwUqSw3uLXzEYjUgxxkPeBO7cQ7uUFAK+9wbOhFlbD7y1SuxDXR3rmfeRfH6G2A/u4/9976lRw+z+e5NJQs80z/XIZLpWtLi9QW6UcnsehIS6FocWz74pFPq5AsjMBoN/4uGYr/OFcd3A/HTO0GO4F+OzrfC50ZxciERTsQiSCgl2IRFCwC5EICnYhEqG3q/G5HKbG9wRt1UW+ap2xsJtl0jYHAKqxWlwWqccWaZPErozVBl9FHh3jCS31Fl9hPnX2HLUtrnAfWX26bKRl1HCR728qF171BYDiIlcMbh7eG9w+N879mF++QG21Cp/jp195hdoypB1SYyDSumqEJ6Agw0NmZISrQ0PtSLspUqfQ6yt0zCGSUNaX5/OrO7sQiaBgFyIRFOxCJIKCXYhEULALkQgKdiESocfSWx5jE5NB29ggb9eUyYSTCJZXluiYxlqZ768Va//EC7I5ScgZHOR15hrgtpdOcclorcZbCRWLfdxWCPtYGuCy0FiWy5RPnZyntmadnz61kbD0NjnG58PA5bBGk0uzlTqvhbdGas3Vm/w9W0RKjXQHQz4TaR2WidTey4XnsVnj0qYT2ZbkagHQnV2IZFCwC5EICnYhEkHBLkQiKNiFSAQFuxCJsKH0ZmYPAfg9ABfc/de728YBfAfAIQCnAXzM3bkO9i97A4iMZpH2OIy+SD2wfoSzggAgF7nGZTKRenJElusr8fZPF8/zrLHKRT5lN45ziarGVSgUicR26+EZOiYT2WEzy+d4JSJ95rLhOnlDBf657Bk7TG2Hb76O2l7/xZPU9vIrs8HthVxE1nIu2zabPGQyJOMQAPIFPo/tdvi8akd0PrPweRpRBjd1Z/9zAPe9bduDAB5z95sBPNb9WQhxDbNhsHf7rS++bfP9AB7uvn4YwEe22S8hxDZztc/s0+4+1319Hp2OrkKIa5gtL9B5p5g6/SM9MztmZifM7MRqJfKwKYTYUa422OfNbB8AdP+n9YTc/bi7H3X3o0P9fNFJCLGzXG2wPwLgge7rBwD8aHvcEULsFJuR3r4F4AMAJszsLIDPAfgCgO+a2acAvAHgY5s5WNsd1fVwcT1r8MwlIJyhtLbGC/LVG/w61szwbxjlCpfKVoht5iCfRm/y/V0/wYWSw/u5VFNZ5+NmbrkzuL3g/BFq6TIv3FkaDRcIBQBc4plcB/fuC25fXuPZfDf+2s3UNjzGs/aGx26jtqWF8PwvXeYttPIReTDjPOOw0Y5kU/JkSrQa4fM7kkRHW5FFkt42DnZ3/wQxfWijsUKIawf9BZ0QiaBgFyIRFOxCJIKCXYhEULALkQg9LTjpcLQsLE94ixcAZDJDqciLVA4Ocanm3AKX+V4/u0BtuXzYj8I878u2Ps/3d/MUl9c+9AEuQ702+/ZUhX9haCZc0HNiT7gAJABcWOBFJUdHIzJUm/tfIAUWLyyEs9AAIFdcpraF5Tlqm53jWWr5fPg8GB3mWli1ygUsz/H7o0W0snZElstYeJxFMjAjbQL5cd75ECHELyMKdiESQcEuRCIo2IVIBAW7EImgYBciEXoqvWWzGYyODgZtzRyX3srlcMaWN7iccXmVZzW98QsuNZXLXMYpFcPXxrnXefbddJEXIZyZuZ7aRvffQG351UgKFSnCeeDOu/mQ81wOKzW5dNgCz6RbWwvb9vWHpUEAqLf4+7KB8HkDAAcG9lPb0GhYcly9dJ6OuTB/idoaxuXG9TovYokM18oG+sJZmPVqRFIkBSyNyHiA7uxCJIOCXYhEULALkQgKdiESQcEuRCL0dDW+3WpidTm80pmr81ptedLqBrwEGnJZbqyU+Ur92BBP/BgdCK+aVpf4avzUfl7DbeaOf0Ntz5+tU9srJ7nt3n3jwe3Ly3zM9OFw3ToAyKBCbfUaX6kf9fDK+soFvtJdqvNaePvGw+8LAJZbvC5c/o6x4PZqJLHmHx59hNrOnuHvORtp8RRrzMTybhqxNmWN8FyxpDFAd3YhkkHBLkQiKNiFSAQFuxCJoGAXIhEU7EIkwmbaPz0E4PcAXHD3X+9u+zyAPwDwpg7xWXd/dDMHzBIFohX5o38nskWGtIUCgJZx6W2JKzxYWYnUH6uF5at9I1yu+40PfpDaDtx6D7X94M8eora9kaSQbD1cX2/21Gt8fzfeTm3FPTdR24BzubSyGO71WWqHpTAAqFe5zHdxldtGJ3nS0J69h4Lbq+VhOibDTWgVePJPrAZdo8GlT2uGE7rMeaJXsxkO3a1Kb38O4L7A9q+4+5Huv00FuhBi99gw2N39cQC8nKkQ4peCrTyzf9rMnjWzh8yMfzcTQlwTXG2wfw3AYQBHAMwB+BL7RTM7ZmYnzOxEucKfW4QQO8tVBbu7z7t7y93bAL4OgJZBcffj7n7U3Y8O9vOqLUKIneWqgt3M9l3x40cBPL897gghdorNSG/fAvABABNmdhbA5wB8wMyOAHAApwH84WYOZgCMKAMtksUD8DY4kU488Gpkf5ESbuN7eNuovf1hqe+uo7fQMbfdy+W1pQtcbuxr8sy8Gw8coLY2eXN7p3jtt+Y6lzArkWy5epOPa1TDp1YLXDZ8bfYstT33/Alqu/ce7uOeveGsw5XVsDQIAKRjFABg4hCXWduxdk31iIxGJN3LC7wdVm017GSbZBsCmwh2d/9EYPM3NhonhLi20F/QCZEICnYhEkHBLkQiKNiFSAQFuxCJ0NOCk+5Am2T4VGtcMiiQLK9cjhf4y2a4HHPTXv7XvcUSv/4duv5gcPud7+eZbftuvYPanvnHP6O26w5yH/e+693UVpg8HNye6x+hYyrrXAKsrvDMtvlzZ6htaT4so7UaPHutNBQu6AkAExP8sz5z7mlqm943E9zerESyLKu8jZOtLVFby8MZhwDgTHMGUOoLv7fCXv6eV/pIJmgkonVnFyIRFOxCJIKCXYhEULALkQgKdiESQcEuRCL0VHozM+Sz4UMuRQoKttbDMkOpv0THZDNc6piKZLadmeOZRofvCpXiAw68O7y9A5fQGqtr1DYyxKWyyVuOUNtaLtwT7YWnn6RjalXux8oKn4+Ls7+gtmwrLH0Wi/yUm7khLJMBwB238MKXzSzPRMtnR8PbCzwrMrfOi0pW3pilNiYrA0Azclstk76E/Xv4+5omPQTz+Uh/OO6CEOJXCQW7EImgYBciERTsQiSCgl2IROhtIky7jVo1vNLZ38ddsWJ4tTKf4TXQvMVtpUHeGur3/93vU9u9v/uh4PbhiWk6Zv7US9SWjfi/vMpr0C2c/mdqO7caXhH+u7/8SzpmsMQTLtZrPGFk7zRXDIaHwivJr5/lyTP1yHyM7z9Ebbe8+73UhlZfcPPiMq93VyHqDwAsVbmP5vwcXq/yRK8yadnkZa4K3BYWGdDmIpTu7EKkgoJdiERQsAuRCAp2IRJBwS5EIijYhUiEzbR/OgjgLwBMo9Pu6bi7f9XMxgF8B8AhdFpAfczdeYEuAA5H20ltuDZPIrBmWLZoeqTFU6TmV7FvmNqOvJfLOH35sET14jO8BtrSudeorVbj0srq0iK1nTn5IrWVPZwclG/xYw3muBQ5XOTJGJNjXHqbmz8f3N6MtPmqrHKZ78zrPOkGeIFayuVwDb1ijp8fzb4parvU5OdOqcRr6PUP8aStUi4sD65WVuiYZjssAUaUt03d2ZsA/tTdbwdwD4A/NrPbATwI4DF3vxnAY92fhRDXKBsGu7vPufvPuq9XAbwEYAbA/QAe7v7awwA+slNOCiG2zjt6ZjezQwDeA+AJANPuPtc1nUfna74Q4hpl08FuZoMAvg/gM+7+locJd3eQxwUzO2ZmJ8zsxFqV13IXQuwsmwp2M8ujE+jfdPcfdDfPm9m+rn0fgGDDa3c/7u5H3f3oQKmwHT4LIa6CDYPdzAydfuwvufuXrzA9AuCB7usHAPxo+90TQmwXm8l6ex+ATwJ4zsye6W77LIAvAPiumX0KwBsAPrbxrhxAWEZrN/lX/Fw+XDOuFan5VQfPTpoe4XXh/vqRv6K28emwxDO1L9wWCgDqFZ69ls+HJRcAGBzgEk8uw6WyASIP7p0K1ywDgOoqV0xLWe7jpYWL1Naohz+boSKXoOplLr29+vQJapt7+RVqqzVJS6Y8n8NWbH4PcCkSA/wczvRx6bNIZLQx8Lm67V03BLeXiqfomA2D3d3/HgDL+QvnfAohrjn0F3RCJIKCXYhEULALkQgKdiESQcEuRCL0tOAk3NBuhxf2C5HMq2KOFOvL8MKAHmkJ1K7zzKuLF8PZWgBQXgjbSg2endQGf1/jY1wOG90/SW3NVo3aZs+FffRIPlQmw0+DepNLmFnjhSoHimG5lCQwdvYXM0ayGFt1Lm9myPm2UuFyY72PyHUAhvbzuV8r8VZZq20uy62vhe+5e4ZvpGMmiJSay/PPUnd2IRJBwS5EIijYhUgEBbsQiaBgFyIRFOxCJEJvpTcYMhbOoir28QwfJxlsA6WwvAMAA0MT1FZp8AykPUM85z5H/Khfnqdj2hm+v0qeS03T0+GsJgBo17mMc+sdB4Lbf/qTx+iYuleoLW9c3qyW+bjhoXDWXiHHT7msRfqhrfPP7PU5LqMtL4c/s5qt0TGTt/B74MxoJGvP+We9dJHPVWE9LGEOzEQyFSvhrMJ2RL3UnV2IRFCwC5EICnYhEkHBLkQiKNiFSISersZnDCjkwteXSo0nGGRJC6J2pD5apcGTGbJ5nlTRV+Crrfl82I9CP2+DNDLME3LOL/BV/MpMeFUdAKYO3kRtsxfCdeHe9Rvvo2PKC+eo7dQrvLXSWpknfuSy4fkfGeG19YzUJwSAuVnu4y/eiCTC9IXnf3iaKzmT4xEfI6qALfLPemyJh9rM1Hhw+4FRfg6cfDGc8FSr8iQv3dmFSAQFuxCJoGAXIhEU7EIkgoJdiERQsAuRCBtKb2Z2EMBfoNOS2QEcd/evmtnnAfwBgIXur37W3R+NHixnmJ4MX18aly7RcdVWWJJZ47kM8AxvDZWLJGMMD/PkgwJprVRd4zXoSpGaYKhz24mf/pTabryVS3Znz4YlmUykXl9/H68ll43Im6USl5rWymHprVrlkmgz0gJssMT9uPc9t1BbkSTkNLO8tl6rwZNWqme49JZZLVLbVP8Qtb3nlneFx4zyLuhPzb0e3N5s8Pe1GZ29CeBP3f1nZjYE4Ckz+3HX9hV3/6+b2IcQYpfZTK+3OQBz3derZvYSgJmddkwIsb28o2d2MzsE4D0Anuhu+rSZPWtmD5kZb40qhNh1Nh3sZjYI4PsAPuPuKwC+BuAwgCPo3Pm/RMYdM7MTZnZipcKfyYQQO8umgt3M8ugE+jfd/QcA4O7z7t5y9zaArwO4OzTW3Y+7+1F3Pzrczyt5CCF2lg2D3cwMwDcAvOTuX75i+74rfu2jAJ7ffveEENvFZlbj3wfgkwCeM7Nnuts+C+ATZnYEHTnuNIA/3GhHhYLhuoPhu/uIcdni5JmwFDK/wLPX6i0u1QwO8re9VuEZVK12Obg9G7lmLi5wSXG1zGWS9Qb3I+vcNjQYXjqZP79Ix5xd43JS27lkNz3JZUprh7OvlpZ5vbi+Af6ZjY5w6aqQ5fNfqxMJNsflxrUa31+9HGl51ebjbjq4l9r27w3P45mzXGK9tBCOiWakhdZmVuP/HkDoE49q6kKIawv9BZ0QiaBgFyIRFOxCJIKCXYhEULALkQg9LTiZzRmGx0jmGJESAGBsKhs2DPCigRfneQHL9Uj7pFyBFxtkw9oNnmHXaHE/Lle5DDUQyfJar3CprLoeLjhZj/jYitjcydwDKK9E2j8Nhwt3Dg/z4pzVKt/fxUt8rgYHefadZcL3M2ty2baQ40VH+7hCjEKBz9Whmw5RW7US9uXxx1+kY5595UJ4X+tcztWdXYhEULALkQgKdiESQcEuRCIo2IVIBAW7EInQU+nNzJArhg9ZHOa57uOD4WtSrsplrXyJZ/+sRPpuocWvf6XiVHhInh+rVeP90Ar93I98js9HNsslx5qHfak3uNzokcw24woVvM4lwBYx5SPZZihwuXF5iUtv1TrvbzYyGpZSc0SSA4BMZO4r4NLW/MVValuKZDiuroWzGP/2717mxyIq5Xpd0psQyaNgFyIRFOxCJIKCXYhEULALkQgKdiESoafSW7ttKLOCfdlBOm5wIKzj5EtcFxqIpCeNjHCprLzCe5GVV8IFAMuVSNbbOrcNFXjBxiLpKwcAzRqXHHO58PW7ELms5/t4tpYZH9gfKdyZIaZmi0tDhVKkB98olxsXF7nktUqkyOFxPveVSM+5V0/zAqIvP3eG2qbHeTbl9AHy3jL8PJ0gBTjnV7kMqTu7EImgYBciERTsQiSCgl2IRFCwC5EIG67Gm1kRwOMA+rq//z13/5yZ3QDg2wD2AHgKwCfdPdqmtV4Hzr4RttWW+er50GR4BbdYiiRA8MV9jI/zt11e43XQlpfDtqVLPHFiiS/eItvmq+Bt50pDq8VX+NEO22JXdcvwRJhsjs9VNZI05GTRPU/aQgFAs8JbVLUi9elakeSa5XJ4HOsKBQCLEUXm9En+gS5fWqO2+ho/4N6RcGuo266foWOYi6+eX6FjNnNnrwH4LXe/E532zPeZ2T0AvgjgK+5+E4AlAJ/axL6EELvEhsHuHd7saJjv/nMAvwXge93tDwP4yI54KITYFjbbnz3b7eB6AcCPAbwGYNn9/31ZOwuAf+cQQuw6mwp2d2+5+xEABwDcDeDXNnsAMztmZifM7MTlMi92IITYWd7Rary7LwP4CYB/BWDUzN5cvTkAYJaMOe7uR9396MhgpMK+EGJH2TDYzWzSzEa7r0sAfhvAS+gE/b/t/toDAH60U04KIbbOZhJh9gF42Myy6Fwcvuvuf2VmLwL4tpn9ZwBPA/jGRjtyy6GVnwjaGoWjdFytHU78yDTDrY4AoDjC5aTRSf4NYyzDEzXGK+HEhOVF3i5o+SKX16prfPpbTS7nwfk1ut0M+7he5Y9QhUKk3l2O+7+6zhM1quSRLR9RZ4cy4eQOAGhnuKTUaPB57BsIS5jFPK93N1rgPt6IUWp79528DdWtd9xJbYduuim4/e57uNx49lw5uP0fXuMxsWGwu/uzAN4T2H4Kned3IcQvAfoLOiESQcEuRCIo2IVIBAW7EImgYBciEcwj2VXbfjCzBQBv5r1NAOA6Qe+QH29FfryVXzY/rnf3yZChp8H+lgObnXB3Lq7LD/khP7bVD32NFyIRFOxCJMJuBvvxXTz2lciPtyI/3sqvjB+79swuhOgt+hovRCLsSrCb2X1m9s9mdtLMHtwNH7p+nDaz58zsGTM70cPjPmRmF8zs+Su2jZvZj83s1e7/Y7vkx+fNbLY7J8+Y2Yd74MdBM/uJmb1oZi+Y2Z90t/d0TiJ+9HROzKxoZv9kZj/v+vGfuttvMLMnunHzHTOLpEYGcPee/gOQRaes1Y0ACgB+DuD2XvvR9eU0gIldOO5vArgLwPNXbPsvAB7svn4QwBd3yY/PA/j3PZ6PfQDu6r4eAvAKgNt7PScRP3o6JwAMwGD3dR7AEwDuAfBdAB/vbv/vAP7onex3N+7sdwM46e6nvFN6+tsA7t8FP3YNd38cwNvrJt+PTuFOoEcFPIkfPcfd59z9Z93Xq+gUR5lBj+ck4kdP8Q7bXuR1N4J9BsCV7S53s1ilA/gbM3vKzI7tkg9vMu3uc93X5wFM76IvnzazZ7tf83f8ceJKzOwQOvUTnsAuzsnb/AB6PCc7UeQ19QW697v7XQB+F8Afm9lv7rZDQOfKjs6FaDf4GoDD6PQImAPwpV4d2MwGAXwfwGfc/S2laXo5JwE/ej4nvoUir4zdCPZZAAev+JkWq9xp3H22+/8FAD/E7lbemTezfQDQ/f/Cbjjh7vPdE60N4Ovo0ZyYWR6dAPumu/+gu7nncxLyY7fmpHvsd1zklbEbwf4kgJu7K4sFAB8H8EivnTCzATMbevM1gN8B8Hx81I7yCDqFO4FdLOD5ZnB1+Sh6MCdmZujUMHzJ3b98hamnc8L86PWc7FiR116tML5ttfHD6Kx0vgbgP+ySDzeiowT8HMALvfQDwLfQ+TrYQOfZ61Po9Mx7DMCrAP4WwPgu+fE/ATwH4Fl0gm1fD/x4Pzpf0Z8F8Ez334d7PScRP3o6JwDuQKeI67PoXFj+4xXn7D8BOAngfwPoeyf71V/QCZEIqS/QCZEMCnYhEkHBLkQiKNiFSAQFuxCJoGAXIhEU7EIkgoJdiET4vyrWWZ/xQ9u6AAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD5CAYAAADhukOtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAf8ElEQVR4nO2dW5BdZ5Xf/+vc+n5vdasltdSSLAkZ+YpQbOwAGQI2hJShZuKCB8IDNZ5KQSVUJg8upiqQqjwwqQDFQ0LKBNeYCcGQAQaXYTJ4jAfDGNvIN1mybFnWXepuXVunL+d+Vh7OcZXsfP+v25L6tJj9/1WpdPpb/e29zt577X36+5+1lrk7hBD/+EmttANCiNagYBciISjYhUgICnYhEoKCXYiEoGAXIiFkrmSymd0N4JsA0gD+p7t/Nfb7Pb19PjQyGrSViwt0XrVcDI67G52TzbVTW66N29LZHLWlUuH9FQtzdE65VKA2r9WozcDfWyqd5vNS4ft3V3cPndMWOR5eq1JbocDPGRCWdOtepzOKBX6sahE/YvIxM1Wr3I96PbY9Pi+T4eGUyfBz5ghfBzFVvE7cKCwUUCqVgxfPZQe7maUB/DcAHwZwAsDvzOwRd3+FzRkaGcWfff2/B20nXn2O7uvM4f3B8VqNuz+6/l3Utn7zdmobWL2e2to7wvs7sO8pOufowT3UVpnlN4l05L31DvRRW6a9Mzi+64730znXbeXHqnjxPLXt2/sCtdXr5eB4uRK+cQPAK/teprb8zFlqK5VL1FYph4Ps/Dl+o5pb4D5Wa3xfq1YNUtvAYDe11Xw2vK8KnYJiIXwn+PsnnqZzruRj/C4AB939kLuXATwM4J4r2J4QYhm5kmBfC+D4JT+faI4JIa5Bln2BzszuM7PdZrZ7Nn9xuXcnhCBcSbCfBDB+yc/rmmNvwd0fcPed7r6zp5f/rSmEWF6uJNh/B2CLmW00sxyATwF45Oq4JYS42lz2ary7V83sCwD+Fg3p7UF33xebU6vVkL8QXt0d6ucrmb4qLNd5ppfOGVu/iftR58ucqTpfpa0vhOWf4oVzdI4X+Mru2uERals/fh21jV+3gdrWrF0XHB8hkicAZLNt1FbtD6/uA8D4utV8XjW8Gl8scnlt5gJXJ86e5apAJiKzwsKr8QND/D23d3EfL+YvUFtbOw+nunPpMJsJ+5K/OEPnlEvh1XhnmhyuUGd3958D+PmVbEMI0Rr0DTohEoKCXYiEoGAXIiEo2IVICAp2IRLCFa3Gv2PcgUpY9iqXuBy2sBCWcSa28m/nzs3PU1ssGWNwOJJkkg3fG7ds2UrnvO+2ndS2djQskwFAX98qaqtkeLZcZ3tYxslEMqisGslsm+dyWImcSwDo7AhLdgP9XG7cvOl6atu//zVqg3E/SqWwlNrXO0DnRBIfcTE/TW2O8HUKxDPpLlwIX6uFBZ50wzLiYhmAerILkRAU7EIkBAW7EAlBwS5EQlCwC5EQWroa7/U6qiQRwqp8hbkt1xEcv3iWlyoaWs1Xute/myeZjIyvobYsW6aN1A+qVPnK/6uTPIFm4dAZvs0UX/V97eWXguPv3c5Xut+/673UFlvdzUfqExw7eio4nstGagPmeGLT8CquvBw7/jrfJinTNVfgak0+z6+rTJbXBuzt5UlDsXp9rLxerE5eW1v4WjTunp7sQiQFBbsQCUHBLkRCULALkRAU7EIkBAW7EAmh5dJbaSEseXR3cEmmdzCcFHLrTTfTOeObtlDbbCTx47VDx6ktvxCWT+ZmeK2wczNcXpuc4vXMeiOJMEjxBIlHf/Cj4Hj2Xn5f/8Dtd1JbNstlxdWruUwJD8tXMxfC3U8A4PkXePecTKROXlcPl+yqtbB0WJ7j5ywdeQTGur7UalwSPXeey3kphCW7WDup/v5wwlY60mZKT3YhEoKCXYiEoGAXIiEo2IVICAp2IRKCgl2IhHBF0puZHQEwC6AGoOruvOAaAEsZ2tqyQVsl3UPnFTrCjewP53mbnhd/8yy1nT/H66qdPMVrjGXT4ZSibIpnJ5VIGyQAKBa5bWwVPzWnp45SWy/JhpqdydM5Bw4f5n6MDVNbNst9HBsPt4ZaQ8YB4NgUlz1fe5nbRsa4THnkGJG8Kvyc1cvcVovU/2vPcXmwLRO+7gGgUAxvs7eXS4oZ0jLKIs/vq6Gz/zN3IqoKIa4Z9DFeiIRwpcHuAH5hZs+Z2X1XwyEhxPJwpR/j73T3k2Y2AuAxM3vV3Z+89BeaN4H7AKB/gH/VUAixvFzRk93dTzb/Pw3gJwB2BX7nAXff6e47u7rDC21CiOXnsoPdzLrMrOfN1wA+AmDv1XJMCHF1uZKP8aMAfmKNCncZAP/b3f9vbEIqlUFn52jQdnqGZ6IdPB6WXV7Zx+8tqYgsVIu0mirM8kKEaSKxFUpc1pqZ5bbZSGulIyf2U1tXB5cpt23eFjZEJMB/+PXfU9uGjRupbes23vZqaCicldXWzs9LXy+XrlJVXtxyvsSfWayFUmGGZ9/VarxIaHsHl9Dm8nybvZHMvLb2cKZauRxriRbOwKzXuWx42cHu7ocA3HS584UQrUXSmxAJQcEuREJQsAuREBTsQiQEBbsQCaGlBSfT6Qz6B8NZVAePH6DzJo+Es7I6s7zw4sV5XsxxLn+a2iwiXczMhqWymQKXajIkyw8AhkdHqK2jJyxdAcDaCS6CjBMZ5/BLv6Vz0sZluUqNZ3mdOcuLad5ww/bg+HVbNtE545Hste7bbqG2Pa8eo7ZSMVzItJSNZL2By2R15xLx1FS4vx0A5Nq4rNg3wK4DLgMXCuGMz7rz96UnuxAJQcEuREJQsAuREBTsQiQEBbsQCaGlq/Gl0jzeeCNcG+7VNw7Seacm3wiO1yJJKz19XdS2bcsEte3YvoPaJs+EV0CPnuF+rFodTvwBgA2beZJJzxBfqZ++wPfnZ8PKxbGjfMX6TKRF1fbrqQkf3hpecQeA+TmyWswX9+Flrgrse5qrCVu28TZgo2v7g+NPP/tkcBwApqZ58lKlwlfjiwXu/4VI26uO7rCPsZX1edJGLZYIoye7EAlBwS5EQlCwC5EQFOxCJAQFuxAJQcEuREJoqfQ2P5fH008+FnZklNROA7B5+w3B8Y5Im57t12+htm1b11FbrRhOJAEAT4XlpHnwhjiZbDgRAwDS6bDkAgCVKk+cmJ89T2195bA0VK05nXPsNE8aau8+yffVO0BtmzZPBMc98nwpzITrqgHAq8+8SG1e4NfBjrvuDo7fcCNPyCns5tLbGwePUFtnJ6+e3Nc/RG2N7mn/P/k8Py+lUvhYuaQ3IYSCXYiEoGAXIiEo2IVICAp2IRKCgl2IhLCo9GZmDwL4OIDT7r6jOTYI4AcAJgAcAXCvu3OdoEmlXMXp42GZ6pab/gWd19YWrk02yFUyjK3hdcTOR1r/HD/IZa1yPSyHpYyncqUzXAqpOa+hh2qsfVVYAgQAr4X3190Xrv0HAOfmeBZdKsezB+vO5bxGN+/QJD6ju52fs4k149TWnuZ+pBCuG3jDDp5x2N/PJdFHCr+gtqlJHgJrR9ZQW83CNQyzkRZm+XxYHtyfDbdKA5b2ZP8LAG8XK+8H8Li7bwHwePNnIcQ1zKLB3uy3/vbH3T0AHmq+fgjAJ66yX0KIq8zl/s0+6u6TzddTaHR0FUJcw1zx12Xd3c2M/tFkZvcBuA8AslleQ10Isbxc7pN92szGAKD5P+264O4PuPtOd9+ZybT0q/hCiEu43GB/BMBnm68/C+CnV8cdIcRysRTp7fsAPghg2MxOAPgygK8C+KGZfQ7AUQD3LmVnqVQGnd2DQVs2ouLMzIQ/OLQNcolkoco1niLv1oSOgR5qa6sb2SCX3jxyhIsVnuXV3sEnpiLtmuqp8LzuIS795JzLjekOntnmOa591i383qzGpbxUmr/nbFeO2jq6ua1aCsus505O0zlDXbwN1T0fu4vadr90hNrmIsUoi6UzwfESafEEAP094Ws/k+bnZNFgd/dPE9OHFpsrhLh20DfohEgICnYhEoKCXYiEoGAXIiEo2IVICC39lksu14ax9eFsI0vx+06xGM7wmc5z93P9PMurUuVSjUW+5VeYC2dQVZz7nsnwwpHVNLd19vIMsJGhGWrz82G5phzpUWZ17n9HRwe1pSJZh3UP769W4zJlKhsp9pnmPs7N8yxGIwUY2yLXW/4Ml+U6OsPSMQC8//Ybqe21N45S295XpoLjc3mejZgjhUzr9VgGoBAiESjYhUgICnYhEoKCXYiEoGAXIiEo2IVICC2V3twAt7C8UolIQwuzYWmlLSILzeYjhSOLvNDjQp7LOFmS9NbTxSW0VQNcqukd5Blgq/r5e6tl+qit0BY+juc38Ky3Um2S2hDJzKtVI9l3JEOwluLZiBaR3voHefZdvRbxkVxXfX38+OZ4LRbMzEZkz0pYmgWAm7evprb+nvD18+ijvLjlmelw4dZqJI70ZBciISjYhUgICnYhEoKCXYiEoGAXIiG0ttyrO0BWcDN1vrLbF/7OP8b7yPI4gHdt4vXputv5Smza+P1vPh9eiS0uXKRzOroq1LZtC1+pH9+wjtpS2Q3UNjcT9nF8bIz7cZgWB0bvIDn4AAYHeLJOJhNONorkacAjiTXtXZ3UVi1GVqDJ/rKxxCtwtWZouJva5ha4KjA/E052AYC1q8I17z7xLz9C5/z1z/4uOJ7J8IOoJ7sQCUHBLkRCULALkRAU7EIkBAW7EAlBwS5EQlhK+6cHAXwcwGl339Ec+wqAPwbwZt+aL7n7zxfbVk9XJz5w+3uCtk3X30TnnTp5Mji+dg2XrrZu2Uxtq1eNUFvauZw3S5IgSpFkEUvx7XV38USY7m4ueaVzXDrMEgmzMB9uMQQAt+7gUt7E1glqq9S5rOjkOVKtc5nM0/xYpbP8Uq0UuZ5XJ4khqQx/zlk79wOReaUKPx6ZNK9tWCuHr6tVEZnvzn/63uD4b599mc5ZypP9LwDcHRj/hrvf3Py3aKALIVaWRYPd3Z8EwPNFhRC/F1zJ3+xfMLM9ZvagmfFkYyHENcHlBvu3AGwGcDOASQBfY79oZveZ2W4z2z03z5P7hRDLy2UFu7tPu3vN3esAvg1gV+R3H3D3ne6+s7uLLzgIIZaXywp2M7s0q+KTAPZeHXeEEMvFUqS37wP4IIBhMzsB4MsAPmhmNwNwAEcA/MlSdtbZ2YH33PiuoO3dt3DprbAjLKN19fGsK17pDHDj0koqIpEMdoXriEW6P0XvpnXSmgiI1xJDROIplcLtnzZft57O6chxCbAwzzP6PBW5fCxs80h9t7pzWy1yzmItj8qF8PGo1fl7TmUi10fkjM6e4xLs0cPHqe2OO28Jji9UeD3ETiIPRpTexYPd3T8dGP7OYvOEENcW+gadEAlBwS5EQlCwC5EQFOxCJAQFuxAJoaUFJ1OpFDpIpld3O2+h1NVJ3IwU14sVNrSY9BaTeDwsldUrXEKLyUkWKXpYjYiHMXnFScHM7n6eIVit8X3V6pEqkKTFEwA4asHxVMz5GrfVMlwSdURONilwavWwfwDQFnnP2Ro/Z11FPs+nwxIgAJw5NB0cX7eNFx09mwp/GzV2ePVkFyIhKNiFSAgKdiESgoJdiISgYBciISjYhUgILZXe0uk0evrCEpBHss0WSmH5xEu8J1eJzAGA+bl5aitX+LxSKZxtVq1y6aoSyVCrRPa1EOkbtjDPs6GqJJOuZ7CPzunp433x+nuGqa09F+7nBgA11rvPIn3ZwG09PbwA57nT/DgWC2GJql7nxZUM/H3Va/ya6+3h8vGG9aPUVlgIX48eKc7Z1xOWsNMROVdPdiESgoJdiISgYBciISjYhUgICnYhEkJLV+NnZvL460f+JmirZX9N5124EE4UmLt4ls5JRXIjYiv109PhfQFAjWTXDEbaSQ0MD1FbW5of/vnz4ZZAAHDg9f3Ulp8Lrz6Pb+QtntJZroT09nD/N27kde3WjYfr9W3ctJbOGWzjWRw97dzHeqQWIdLh5JRKja90pyMtntIRH0cnIspFL1+pr3g4KSfNRQEMDobfcyaSHKYnuxAJQcEuREJQsAuREBTsQiQEBbsQCUHBLkRCWEr7p3EA3wUwika7pwfc/ZtmNgjgBwAm0GgBda+7X4htKz87h8eeeCpo61+3jc7zWlhOeuGpJ+icDet4/a7hIS4nnTwxRW1VUresc5AnkpRTPElm+gRvCfShXbdT2803vpvaFkrF4Hgqy0/14WNHqe3A629Q28t7X6C2/r5wE88//KNP0jl3vHsrteUiPbbWjY1TW5lIbxYp1harG1ghtfUAIJWJ1LXr54k8HSR5pZ7mEjETIiMlFJf0ZK8C+FN3vx7AbQA+b2bXA7gfwOPuvgXA482fhRDXKIsGu7tPuvvzzdezAPYDWAvgHgAPNX/tIQCfWC4nhRBXzjv6m93MJgDcAuAZAKPuPtk0TaHxMV8IcY2y5GA3s24APwLwRXfPX2pzdwfCxbvN7D4z221mu8tlnvgvhFhelhTsZpZFI9C/5+4/bg5Pm9lY0z4G4HRorrs/4O473X1nLse/HyyEWF4WDXZrtE/5DoD97v71S0yPAPhs8/VnAfz06rsnhLhaLCXr7Q4AnwHwspm92Bz7EoCvAvihmX0OwFEA9y62oYHBIfyrT//roK1tZAudtzAblsNef/klOmdsNZdjUpE6XR3tPIOqXA+38Nm6g/s+MMYz4haGeR20j3/0n1NbZ08Htc0T6S3SqQlV0tYKAIrV8PYA4PTp89R29PCp4HhnJz++UyfOUduRfa9TW6rIfTw0FfzAiV0f2UnnbJhYQ22xbLlUeyRNLctlOWO15ozPyVn4nMWkt0WD3d1/A4Bt4kOLzRdCXBvoG3RCJAQFuxAJQcEuREJQsAuREBTsQiSElhacNAPacuH7y4FX99J5+Yth6c1j2UllnjE0F2n/ZBHtor0tnGtUWeDtmC6e4T5OH+NZb3/zt+HCnABwYTayv7mLwfGeXi559Q2EW3IBQFekUOKJE2F5DQBGhsOFJdt7uRT565/x93z+9T3UVivzFlsHp8IFRE9EWmht2c6l1L7eTm4b4C22Ojp51ltfV/i6yrbz4pGdneHz4s6vXz3ZhUgICnYhEoKCXYiEoGAXIiEo2IVICAp2IRJCS6W3erWC2XNhGe2XP/0ZnXd86kRwPFUJZ6EBwJ49eWqLpQZVqzyrCSTT6LFHf0mn5LJcurr5lluprZzrobZ8aYHaDh0LZ3mdO8f7w5WLPOvt1NQRajt8hG9z5y3vCY7/28//ezrn2ad/S23VizwjLl/iRVEK4ZoqOLSby56/fm6S2royXObL5rhUlm7j10EPkd7WbZigc+75w08Fx8tV/vzWk12IhKBgFyIhKNiFSAgKdiESgoJdiITQ0tX4bDaHsdGxoG3LxEY6zxFeLc5EWiulIyvuqTS/x3mdJ67k2rvChixPclizJpwQAgAfvOsuauvpjCRctPPada/sDdflO3CQt3FavXaC2oqRtkvpDu7j3gOvBsdfOXCAzumc2E5tp07x9zzQz20juXBduM5uXsfv/BRvh3Xu5EFqO3M2nHQDAMVaJGmLFAicnOHh+b4PhedUedk6PdmFSAoKdiESgoJdiISgYBciISjYhUgICnYhEsKi0puZjQP4LhotmR3AA+7+TTP7CoA/BnCm+atfcvefx7ZVrVZx/ky4ZdBt/+R9dN77PvCB4HhbG088yETktVj7p3qkFVIa4f1VylzvKJR50sq5E4ep7XyRJ1ycP8vbLh0iEtup0+EEJADoHuHtjtDGZUXLcemtXA0npzz2q9/QORs230Bt44NcwmxP8cu4kyQilYq8Bt2h/D5q6+7htfxqzpOopi7MUdvw8ERwfKHCr8Vf/urZ4PjsLK+vuBSdvQrgT939eTPrAfCcmT3WtH3D3f/rErYhhFhhltLrbRLAZPP1rJntB8Bvs0KIa5J39De7mU0AuAXAM82hL5jZHjN70Mz415iEECvOkoPdzLoB/AjAF909D+BbADYDuBmNJ//XyLz7zGy3me2eneN/JwkhlpclBbuZZdEI9O+5+48BwN2n3b3m7nUA3wawKzTX3R9w953uvrOnm1dfEUIsL4sGuzVapHwHwH53//ol45dmtHwSAG/pIoRYcZayGn8HgM8AeNnMXmyOfQnAp83sZjTkuCMA/mSxDaVShi7StuZcvkjnvbDnueD4yAhfJhgdGaa2SoXLWhcuzFAbimEfM3W+vbUbuaw1PsA/6Zw8wOugzc/xmmsjo6uD451D/XROup3LSQsFfl7GxtZT29SpcN3As+fC7akAYGxNpC1XpNXXXIkff2TC11ulzuXStg6S3QigLZJNWT53htqQCteZA4BRknVYLvEWZuxw8KO0tNX43wAIvcOopi6EuLbQN+iESAgKdiESgoJdiISgYBciISjYhUgILS04mTKgLRvO5CkVueT11FOPB8e9wmWh3k5eULBS4dlJxQJvKZUh98YNE+N0zo7brqe2zeu5LDdzPCxdAcDUhbPUlusIS02bh8KSHACcOcMzsm7YtoPa3n3DNmp7+H99NzieQbgAJABU5vn5LJe5zWNVFtvD5zrWjmli4yZqO338Nb6vFM/C7Oji+9u+fWtwvLjAz8v42Ehw/Fc5LvHpyS5EQlCwC5EQFOxCJAQFuxAJQcEuREJQsAuREFoqvdXrdSwUSAHGSBHIuz768fD2yjxLKh2R1+o1XsjP01w+SWfCslF7Fy+8ODXDpbzZGd737HyB+2/tvAjkay8eCo6f+y3PyNq0kUto771uC7WVIxlxHbmw1OSRjMNYhl0qzS9V0ioNAFCokz6BNX58N6zj0ltx7hy1Xd/Ls+Wefe4Fajt1NCznFeb59e0LF4Lj5RLPiNSTXYiEoGAXIiEo2IVICAp2IRKCgl2IhKBgFyIhtDbrLWXo6g7LV32RSnk9q8JZQaWIzNAeuY/ljGdeeQfPlmvrDM+rF3l20uxsntrSnbzQ48hmXiBycyfPenv9cLjXG4xLillSBBQATk4eo7ahYV7wk9nKBS4nlUq8GOV8JCOuFMkOq5TCUm+mnculo2tWUdvRyWlqmz5Gjj2A4hx/b2/sezE4PjTE/fCBwfB4pDCnnuxCJAQFuxAJQcEuREJQsAuREBTsQiSERVfjzawdwJMA2pq//1fu/mUz2wjgYQBDAJ4D8Bl35/1qANTrRSzMkuSPOr/vZK07OD49zVc4X3/lCLW1Z/iKe66Pr4IPk3ZTa4b76JxMJMFnqG+I2iK5OigWwkkQADAyEl7hX7smvHoLAJNTU9R24MB+apsob6Q2ppTMzvJztrDAV7rzF7mqEVuNr5XDiUjpNp60sm8vbx0Wa8k0MjJKbWtv5LX8RlaF5w2v4nUD24n/j//DE3TOUp7sJQB/4O43odGe+W4zuw3AnwP4hrtfB+ACgM8tYVtCiBVi0WD3Bm/eOrPNfw7gDwD8VXP8IQCfWBYPhRBXhaX2Z083O7ieBvAYgDcAzLj7m0nBJwCsXR4XhRBXgyUFu7vX3P1mAOsA7ALwrqXuwMzuM7PdZrZ7dpYUrhBCLDvvaDXe3WcAPAHgdgD9ZvbmAt86ACfJnAfcfae77+zp4V9RFEIsL4sGu5mtMrP+5usOAB8GsB+NoP+j5q99FsBPl8tJIcSVs5REmDEAD5lZGo2bww/d/VEzewXAw2b2nwG8AOA7i26p7qiTNj6pyH0nUwkncfSSVlIA8NzTv6K2qWmeSGJZnhSya9d7guN33r6Tzrl4kUtNe55/htrmizzx48Cx49R26MiR4Hhhgf8J5c6LuLX38mSMfH6W2mZJi6r5PJcNI6XkkElza1/kE+OajWF5cGBojM4ZWcMlrzW33EBtg5EadLlYbUNmiyQvwcPxkoq0oFo02N19D4BbAuOH0Pj7XQjxe4C+QSdEQlCwC5EQFOxCJAQFuxAJQcEuREKwWM2qq74zszMAjjZ/HAbANbDWIT/eivx4K79vfmxw96Be2tJgf8uOzXa7Oxeo5Yf8kB9X1Q99jBciISjYhUgIKxnsD6zgvi9FfrwV+fFW/tH4sWJ/swshWos+xguREFYk2M3sbjN7zcwOmtn9K+FD048jZvaymb1oZrtbuN8Hzey0me29ZGzQzB4zs9eb//PeSsvrx1fM7GTzmLxoZh9rgR/jZvaEmb1iZvvM7N81x1t6TCJ+tPSYmFm7mT1rZi81/fhPzfGNZvZMM25+YBbpYxbC3Vv6D0AajbJWmwDkALwE4PpW+9H05QiA4RXY7/sB3Apg7yVj/wXA/c3X9wP48xXy4ysA/kOLj8cYgFubr3sAHABwfauPScSPlh4TNLJ9u5uvswCeAXAbgB8C+FRz/H8A+DfvZLsr8WTfBeCgux/yRunphwHcswJ+rBju/iSA828bvgeNwp1Aiwp4Ej9ajrtPuvvzzdezaBRHWYsWH5OIHy3FG1z1Iq8rEexrAVxafWEli1U6gF+Y2XNmdt8K+fAmo+4+2Xw9BYAXIV9+vmBme5of85f9z4lLMbMJNOonPIMVPCZv8wNo8TFZjiKvSV+gu9PdbwXwUQCfN7P3r7RDQOPOjsaNaCX4FoDNaPQImATwtVbt2My6AfwIwBfd/S1dIVp5TAJ+tPyY+BUUeWWsRLCfBDB+yc+0WOVy4+4nm/+fBvATrGzlnWkzGwOA5v+nV8IJd59uXmh1AN9Gi46JmWXRCLDvufuPm8MtPyYhP1bqmDT3/Y6LvDJWIth/B2BLc2UxB+BTAB5ptRNm1mVmPW++BvARAHvjs5aVR9Ao3AmsYAHPN4OrySfRgmNiZoZGDcP97v71S0wtPSbMj1Yfk2Ur8tqqFca3rTZ+DI2VzjcA/NkK+bAJDSXgJQD7WukHgO+j8XGwgsbfXp9Do2fe4wBeB/B3AAZXyI+/BPAygD1oBNtYC/y4E42P6HsAvNj897FWH5OIHy09JgBuRKOI6x40biz/8ZJr9lkABwH8HwBt72S7+gadEAkh6Qt0QiQGBbsQCUHBLkRCULALkRAU7EIkBAW7EAlBwS5EQlCwC5EQ/h+CqIklWmKmUgAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD5CAYAAADhukOtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAbNklEQVR4nO2de2yc13nmn3eGd5GURN0sS3KZuN4m2bRxDFZN62zWcZDCG3jhpF0YCdDABYKoWDTABuj+YaRAkwL9I11sEuSPIoUSG3WLNJc2ycZbeNM43iaOm9Y27diSbNmWbFE3UxQpieJlyLm++8eMu7Jznpc0L0PZ5/kBgobn5fm+M2e+Z76Z8/B9j7k7hBBvfgobPQAhRHuQ2IXIBIldiEyQ2IXIBIldiEyQ2IXIhI7VdDaz2wB8GUARwNfc/fPR72/fvt2Hh4dXc0rRZhqNBo3VajUa6+goJtu9wa3eQoHfe6xgNAbwGDtbdLQ3MmNjY5iamko+vRWL3cyKAP4CwAcBnAHwuJnd7+7Psj7Dw8MYHR1NxqKLSqwBwZ9TmPFLf2G+RGMXLk7R2NDQ1mR7vbJI+/T29dFYsaubxtz4m0SDyDr9VvTGZ//+/TS2mo/x+wEcd/eX3L0C4JsA7ljF8YQQ68hqxL4HwOkrfj7TahNCXIWs+wKdmR0ws1EzG52cnFzv0wkhCKsR+1kA+674eW+r7VW4+0F3H3H3kR07dqzidEKI1bAasT8O4AYze4uZdQH4KID712ZYQoi1ZsWr8e5eM7NPAfhHNBc373X3Z1Z6vMh2ERtHuXSZxi6eeYnGTh9N97s8M0/73HzrB2hssLeHxqJ7lpHV+ByvtlX57O7+AIAH1mgsQoh1JMc3OCGyRGIXIhMkdiEyQWIXIhMkdiEyYVWr8WuJCl+uL9H8FozHzp0+QWOH/uVhGqsupBNoOvvTCTIAsDDDbb7BoSEaY8kuAE+SyfFq051diEyQ2IXIBIldiEyQ2IXIBIldiEy4albjo9JIYvU4eNmvapmXnnr59EkaG+zrpbG+LQPJ9vOXZmmfC+O/kCH9b+zadx2NocCLTNEadGFNuzcnurMLkQkSuxCZILELkQkSuxCZILELkQkSuxCZcNVYb2JtYAkvUbLL5MULNDY2dorGykG/gZ6uZHtpbob2ee7pn9PYNcPX09iWa4LtCsh8RHlXb1YbWHd2ITJBYhciEyR2ITJBYhciEyR2ITJBYhciE1ZlvZnZGIBZAHUANXcfWYtBidXArKY67XH2zBkaO3GKx04f59s/bR/oT7bv3b6J9hk/xTPsDo8+TmMjt2yhsb7BzenAm9NdC1kLn/397j61BscRQqwj+hgvRCasVuwO4Idm9oSZHViLAQkh1ofVfox/r7ufNbOdAB40s+fc/VXFxFtvAgcA4LrrgmojQoh1ZVV3dnc/2/r/PIDvAdif+J2D7j7i7iM7duxYzemEEKtgxWI3s01mNvDKYwC/DeDIWg1MCLG2rOZj/C4A32tlCHUA+Ft3/8HKD8cLIq7MJ1kHb4VkSnm0mZAHzyvIrrIVvw+nj9lo1GiPaq1KY7OlRRo7M3GRxiZIrF7fSfvs3cmf83OPP0ZjO6/ZTWP/7td/4cNmC37pFzx4XaJ9o4KXLDgkLLpG1pAVi93dXwLwrjUcixBiHZH1JkQmSOxCZILELkQmSOxCZILELkQmXEUFJyNPYyVHW6H1Fg2DFi/knRzc8grttdCWi2KvP3Ld8DCN9Q0M0tjM/AKNwdLP7cjp87RLb0c3jXUsVmjsmZ/9hMa27dmVbN+69620j9X462mBhxZdc40CP2YQWlN0ZxciEyR2ITJBYhciEyR2ITJBYhciE66i1fi1fd8JExYCopV1NNKxRlDfrVrjq8hdXektkgDAwicQrQizLkXaZ+vW7TT23vfdQmOHn3qOxsZOpOvJ1Wt8ro4Xz9FYz/C1NFZ//hiNHf7JPyfbf+M/83Tr3r50/TwAqEcJLVGMh1BbgRPFHJkV5ukIId5MSOxCZILELkQmSOxCZILELkQmSOxCZMLVY72FRbpWcrwoOSVIdAgOWfN0Usux49z6WViYp7G3vf3tNNbdza2yQuTxEBrOj9cILoPfuvk/0NipE2dp7Gt/+bVke22BW5GnJqdprLuPJ8ncMMTvWc//dDTZviNIhHnbzaxuHVAKEps6G3wcXcFrdrF0OdlerpRpH2ZhVqq8j+7sQmSCxC5EJkjsQmSCxC5EJkjsQmSCxC5EJixpvZnZvQBuB3De3d/ZahsC8C0AwwDGANzp7pdWM5BGYJWxBLCw9ls9qP0WvcUFFsnps6eS7f/7gX+gfWZm0rYKAPzWFK/H9v7/eCuNdXdzG4rNY7TBUK3Oo/0DAzR2+x2309jx519Itv/o/zxI+8xU+Wv23FmeEbfVemmsZzH9Yv/rD35I+3Rs41lvhV1baGx+mr/WnQ2e7Tc+cybZfnmWH29xMb0t11xphvZZzp39rwDc9pq2uwE85O43AHio9bMQ4ipmSbG39lt/7S59dwC4r/X4PgAfXuNxCSHWmJV+Z9/l7uOtx+fQ3NFVCHEVs+oFOm9+ceYFUswOmNmomY1OTk6u9nRCiBWyUrFPmNluAGj9T1ea3P2gu4+4+8iOHbwUkBBifVmp2O8HcFfr8V0Avr82wxFCrBfLsd6+AeAWANvN7AyAzwL4PIBvm9knAJwEcOfqh8KtCeaVXbp0gXa5fOm1a4pXHK7I7bVzk9wO+5fRx5LtTzzzNO0zc5FncpWrPAPs3//qO2ls5w5eILJYTL+kM7Ml2md6mo9xeO9eGrt2704a+/1P/l6y/fTZF2mfR58+RGPleZ61d+wMt+X6rkn3u3DkCO1T+i4N4fqbb6KxS3Oz/JiBJVa29PxHGWwNUvw0KnC6pNjd/WMk9IGl+gohrh70F3RCZILELkQmSOxCZILELkQmSOxCZEKbC046gLSd0AiyglgVyMszU7TLT3/2CI2dfDmdZQQAUzPchro0n7ZWCpv4nm095U00dv5CNP6f0tjw8D4aYxlxZ8/wv16sVrhds1Di8zE3y2Od5Mp6+6/zQo9PHT9MY5VZnuF4ZprbWn1d6fnYu7mH9jkx+iSNFbv5/bFw7RCNXa5x65Oais6vq3I5rSMP0ht1ZxciEyR2ITJBYhciEyR2ITJBYhciEyR2ITKhrdbbwmIJzxxNZ4h1dHTSfswauhRka03P8WJ9p8b5HmWbd26jsaHN6cKG27bzPP3JF8dp7OgRbjU9+CNemHHzIC+wWOxIGznlCreuKuV08UIA+ME/8lhncKtgGXF92/nr/K4b30ZjP3/keRorBeU0X7gwkWzvrXNLdGuNF9k8/q9P0Nj0Dm7nXSzwMXZW0v1qQQHOUilt5c3OLNA+urMLkQkSuxCZILELkQkSuxCZILELkQltXY2fn5/Dzx77WTK2MDNP+23qSa+c3n77HbRPzfkWSU8cfo7GNg9spbGFRnpl+tqdvGx+dYKvjl6e58kRpWN89XlrkIyxaXN6rvq3csegZxNfKd68hdd+2zw4SGODg+ktlHr7+2ifW279DRq7PMXdlSNHXqKxejWdRXVqOnAZOrlj0HGOr5DPXuKx2gB3UAq96ZqCZ09zJ2eG6KWyyJOadGcXIhMkdiEyQWIXIhMkdiEyQWIXIhMkdiEyYTnbP90L4HYA5939na22zwH4JIBXCpt9xt0fWOpY5XIFL42lbZLL5y/Rfje85YZke28vT2Z4+WW+jdPJE6dorH8Tt0jK1bRVZkHywcI0t2NQ4NtQ/fL1vFbb9Ts209jA1rQddv48t662DvH3/N37+BzPznDrsIu4eT0NbuUNBs/rg7e9n8YuXuI16CbOpK+DqTK3G/su8+PtDOzGDuPJRnsGeH26TbuuSbafHRujfSqldD1ED2o5LufO/lcAbku0f8ndb2z9W1LoQoiNZUmxu/vDAPguiUKINwSr+c7+KTM7ZGb3mhn/szMhxFXBSsX+FQDXA7gRwDiAL7BfNLMDZjZqZqOlEv9uK4RYX1YkdnefcPe6uzcAfBXA/uB3D7r7iLuP9PXxxS8hxPqyIrGb2e4rfvwIAL6zvRDiqmA51ts3ANwCYLuZnQHwWQC3mNmNaO7nNAbgD5Zzska9jvnLaQuotMg/4nf3pWt0XZ7ldtLJ02M0tmUzt0/q8zwbyhbTW+6MnztO+4y/zLd4skL6eABw5+/+Do015vh66f995MfJ9pOHeN29bZv5NkPnjnF7cM+119HY5Wq69hs6uSU6tI1nD/7qr7yTxiof5pfxvff8TbJ9YZa/zi9Pz9EYOoItmSrczpubukBj15LrsauXZ99t37kl2T51nsw7liF2d/9YovmepfoJIa4u9Bd0QmSCxC5EJkjsQmSCxC5EJkjsQmRCWwtONryBSjltsZXKvODk8RNpa+t7/+s7tM8jP/kJjZlzO2lihtsukydPJ9s7ueOCapCF1HUNz/L654d/SmPlGW7nPXvshWT7/ATPvpue5GPcso1vaTQZFF+cuZx+Pbdu4X9YVamnxw4AP/7xkzTWO8i37Nq6Pb0N1VSVW2GlMn9eZwPLzrv5ddVH5gMAipNpO3LLNn59FItp6b54jBff1J1diEyQ2IXIBIldiEyQ2IXIBIldiEyQ2IXIhLZab8WOIjYPpe2EavC2MzOXLgD47FNP0T4TJ07QWCF42n0dPNOoq5DOePJKtL8Wt2P27t5DY0PBnnOXgiIgbx3+lWT7yTov6Dl9kdtQ9e50dhUATAQZgqVS2s6bvsizsqzIi1EuWjD+0os0VuhKW32NIs9e8y4+jhK4z1qv8dgmMg4A6N+cfq2LRS6KhqfntxjMoe7sQmSCxC5EJkjsQmSCxC5EJkjsQmRCe1fji0X0k9X4jgG+zVDlQjqJYOqFdGIKAOzr50kERlbVAWB2ga8wLxbSCRLWy5NFuo2vjk5O8FpyTzz6NI3tGhigsQuXppPtlxf4Cv5ckMizMMW3QkLgNHSQ1e7eTr5F0mLgakxOp58XANQLfI77OtKr4Fbg97lCDz8egtV4eJWG5uf5/M+Q7cO2buNOCBps7vlroju7EJkgsQuRCRK7EJkgsQuRCRK7EJkgsQuRCcvZ/mkfgL8GsAvN7Z4OuvuXzWwIwLcADKO5BdSd7s6zFQC4AY2u9PuL17ll0EUSAjqrvHbadYNDNFYLrJrZwKIqDvYn2wtd3HpbmOBbVJWnS3wcF2ZpbKrB36Ony+ljDt/0a7TPuUmeCDN9iY+/v5/bpYultF1a7eRztRjUfluocsurUODXTg95bdy4TVYP7LViB5dMocZtxUaDH/P8ZNpWrPHLGx1d6edcqwfzxA/3//sD+CN3fweA9wD4QzN7B4C7ATzk7jcAeKj1sxDiKmVJsbv7uLs/2Xo8C+AogD0A7gBwX+vX7gPw4fUapBBi9byu7+xmNgzg3QAeBbDL3cdboXNofswXQlylLFvsZtYP4DsAPu3ur/obSnd3NL/Pp/odMLNRMxstzfHvw0KI9WVZYjezTjSF/nV3/26recLMdrfiuwEkK927+0F3H3H3kb5+Xq1DCLG+LCl2MzM092M/6u5fvCJ0P4C7Wo/vAvD9tR+eEGKtWE7W280APg7gsJm9UvTtMwA+D+DbZvYJACcB3LnUger1Bqan05ZSucQznjZV0lbZjmuupX0unExvqQMAx8dO0thklWe9DQ2l7bxCD//EMt/gbmS9yi2jWqlMY4tl7snULG3/TJ7jW0bNz3EL0KvcTurr7qOxCsketO5u2qe2yJ9z1yZu83lgNy2W09dVo8CfV6XGr8XuTp4x2dXDn1t/X9q2BYBeEqsGc19gWXu8y9Jid/dHwPPmPrBUfyHE1YH+gk6ITJDYhcgEiV2ITJDYhcgEiV2ITGhrwUk0DFgg2ytx1wU1S9sd80FdwPGg0ON4sE3PXCUoKHghnQFW7OTWVSnIdnJaNBBYqPEMMCdb/wBAF7GGzk5y6y3KlLKggOHkpSDJ0dL9vM7H3tnLLczBLm551YP0sOYfd/4ixQ5+n+sF3wKsEGzJ1BnYchaM38k1YsG5CkakS+Yd0J1diGyQ2IXIBIldiEyQ2IXIBIldiEyQ2IXIhLZab2aGDkvbGlVikQDA3ELal7s4w/chu1jhXl6tkz9tr3HLbpFlcpHMKgCoelQokZ9r0+ZBGisWeT9WENGDt3VmTy15riDGikAGW6yhEe2/Fj5nPsf1RtqW86BIZXQumm2G5vXNg7xfg4wxcF9RY8HgtdSdXYhMkNiFyASJXYhMkNiFyASJXYhMaOtqfKNex9zsXDI2M5PeLggA5kkJ6vl5Xi8uWhgd3MJXurt7eR0xeq5ghba3gydAdHbxc0Ur3Z2Bm8BW4+tRQk6wghsVNYu6FdmckBp5AFAPkmTo6jPi8VdJv3rwvIodfO47gu2fonH09PBtr7rJ6+lklR4Aukktv8gR0J1diEyQ2IXIBIldiEyQ2IXIBIldiEyQ2IXIhCWtNzPbB+Cv0dyS2QEcdPcvm9nnAHwSwGTrVz/j7g9Ex6rVapi6cCEZq1a4zbC4mE40qVR4AkpnD68j1tnD7bCFBb7TLKs/FiW0IIi5B9s/1bnVVIjqp/URSybKQAkso8iyi2AWUFTTLqJU4nX+Isuug9laQSJMNFeRtRVbmMHzJt16gm3FmPUWJeosx2evAfgjd3/SzAYAPGFmD7ZiX3L3/7mMYwghNpjl7PU2DmC89XjWzI4C2LPeAxNCrC2v6zu7mQ0DeDeAR1tNnzKzQ2Z2r5ltXeOxCSHWkGWL3cz6AXwHwKfdfQbAVwBcD+BGNO/8XyD9DpjZqJmNlstBcXghxLqyLLGbWSeaQv+6u38XANx9wt3r7t4A8FUA+1N93f2gu4+4+whbVBBCrD9Lit2ay4/3ADjq7l+8on33Fb/2EQBH1n54Qoi1Yjmr8TcD+DiAw2b2VKvtMwA+ZmY3omkcjAH4g6UO1HBHtUrssqBIWkdH2kaLPih0B1sJRS4I21UH4JlojcBxqQf2WmQZFQPLrtgV1EjrTM9jF5lDILaMojHGVlOaIJErtI22bNlCY9VqlcbKxJ6tB9l3K7XXosy8Wo2PEXUWe/2vSz3Yyms5q/GPIC2P0FMXQlxd6C/ohMgEiV2ITJDYhcgEiV2ITJDYhciEthac7OjowLZt25KxArg1VK+nLYhqLdj2J7BWFhd5ZpsVg2wosoVPI8gMqwRWSLERZMsFRMUoG562ZKK5WmkmWlTUs0H8yFqNe28N8joDcRHIyPJiBSerjSCrMJjfldpy4VZZxGKLbE92zXm03RiNCCHeVEjsQmSCxC5EJkjsQmSCxC5EJkjsQmRCW623YrGIwcH0PmuNelSQL/2eVK7wTKKZUnpPOQDo6AwyyoIYtUKCTK7OIJOrFlh2jch2IfYaAIDYgxZk34VpewGNwGpqEMvRg/tLI7CNKgu8uGiU9dZgmWNBwcloNiKb1YOefcFeb13EViwENh/bcy7KHNSdXYhMkNiFyASJXYhMkNiFyASJXYhMkNiFyIS2Wm8AYOT9xYIstUo1XW9+scyz12hhS8RZTR2BdeHETqoEWVflIMvLVrjfWGTJMOulUePzu8IdyhDtAudkjNHecW5BxlYHH0lnkWdM8nMFsbAAZ2A3RhMZZaMRuzTqU6umrytlvQkhJHYhckFiFyITJHYhMkFiFyITllyNN7MeAA8D6G79/t+7+2fN7C0AvglgG4AnAHzc3fkSOAA4TyQol6NEh3SsUlmkfSrB8SpVvnoeJWOwWm1RfbGeYI+qQlBXrR6s8EerxWx+LdhOKqpBFyVWdAXPm7G4yF+zqJZcMRhHNP9srqIdhUuloEZh4IT0BMku0fhrlfRY6Co9gJ6e9HUVjW85d/YygFvd/V1obs98m5m9B8CfA/iSu/8ygEsAPrGMYwkhNoglxe5NXskX7Wz9cwC3Avj7Vvt9AD68LiMUQqwJy92fvdjawfU8gAcBvAhg2t1f+dx1BsCe9RmiEGItWJbY3b3u7jcC2AtgP4C3LfcEZnbAzEbNbHRhgX8XEkKsL69rNd7dpwH8E4DfBLDF7N92M98L4Czpc9DdR9x9pDfaM10Isa4sKXYz22FmW1qPewF8EMBRNEX/X1q/dheA76/XIIUQq2c5iTC7AdxnZkU03xy+7e7/YGbPAvimmf0ZgJ8DuGepA7k7rRcWJa5QSyawoFiNLgBAaENxmMUT2VMeJLuwrYmAePzRtkBG0lqKQbJIIZqPFW535MQC7OrqCsbB53Glll1nZ/p5h9sxBeOI5j4aRxexygCgr7sv2R5di+x1iWzUJcXu7ocAvDvR/hKa39+FEG8A9Bd0QmSCxC5EJkjsQmSCxC5EJkjsQmSCRfbJmp/MbBLAydaP2wFMte3kHI3j1Wgcr+aNNo5fcvcdqUBbxf6qE5uNuvvIhpxc49A4MhyHPsYLkQkSuxCZsJFiP7iB574SjePVaByv5k0zjg37zi6EaC/6GC9EJmyI2M3sNjN73syOm9ndGzGG1jjGzOywmT1lZqNtPO+9ZnbezI5c0TZkZg+a2bHW/1s3aByfM7OzrTl5ysw+1IZx7DOzfzKzZ83sGTP7b632ts5JMI62zomZ9ZjZY2b2dGscf9pqf4uZPdrSzbfMjKcQpnD3tv4DUESzrNVbAXQBeBrAO9o9jtZYxgBs34Dzvg/ATQCOXNH2PwDc3Xp8N4A/36BxfA7Af2/zfOwGcFPr8QCAFwC8o91zEoyjrXOCZnZrf+txJ4BHAbwHwLcBfLTV/pcA/uvrOe5G3Nn3Azju7i95s/T0NwHcsQHj2DDc/WEAF1/TfAeahTuBNhXwJONoO+4+7u5Pth7PolkcZQ/aPCfBONqKN1nzIq8bIfY9AE5f8fNGFqt0AD80syfM7MAGjeEVdrn7eOvxOQC7NnAsnzKzQ62P+ev+deJKzGwYzfoJj2ID5+Q14wDaPCfrUeQ19wW697r7TQD+E4A/NLP3bfSAgOY7O+KdlNeTrwC4Hs09AsYBfKFdJzazfgDfAfBpd5+5MtbOOUmMo+1z4qso8srYCLGfBbDvip9pscr1xt3Ptv4/D+B72NjKOxNmthsAWv+f34hBuPtE60JrAPgq2jQnZtaJpsC+7u7fbTW3fU5S49ioOWmd+3UXeWVshNgfB3BDa2WxC8BHAdzf7kGY2SYzG3jlMYDfBnAk7rWu3I9m4U5gAwt4viKuFh9BG+bEmgXV7gFw1N2/eEWorXPCxtHuOVm3Iq/tWmF8zWrjh9Bc6XwRwB9v0BjeiqYT8DSAZ9o5DgDfQPPjYBXN716fQHPPvIcAHAPwIwBDGzSOvwFwGMAhNMW2uw3jeC+aH9EPAXiq9e9D7Z6TYBxtnRMAv4ZmEddDaL6x/MkV1+xjAI4D+DsA3a/nuPoLOiEyIfcFOiGyQWIXIhMkdiEyQWIXIhMkdiEyQWIXIhMkdiEyQWIXIhP+H2bIhEK3l+KSAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD5CAYAAADhukOtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAeoklEQVR4nO2dW4xk13We/1Wn7l1d3dPTPT09F94ZW4RhU8KAkWPBUGzYYBQjlIBAkB4EPggew7CACHAeCBmIFCAPchBJ0JOCUUSYDhRdYkkQYQiJZUKI4hdaQ4UiKY5EjnjRcNgzPdPT97pXrTxUDdAk9r+7Od1dPdb+P2Aw1XvXPmedfc46p2r/tdYyd4cQ4lef3GEbIIQYD3J2IRJBzi5EIsjZhUgEObsQiSBnFyIR8nsZbGYPA/gigAzAf3P3z8ben8uZ5/Ph+0vOLLajcHPcukjfrcmNvX4/2J4zfs+M3U0HMdkzx+2PzVUuF95jlvFT3e/3aN9gcGtz5Wxc7DRHtmeRY84y3lfIh4+72+3SMf3IeYnNY+x0DgbhawcAioXwOYsdM+vbanTQ7vSCnXarOruZZQBeAvAHAN4A8CMAH3X3F9mYYjHz+dlysK9SqcT2FWzP5zI6hl30ANCLTDy7sQDA6tp6sL2cK9IxEzl+cWy0m7QvVy3Rvkopsr+JiWD71NQ0HbOycoP2dbbatC925XQ7xJkiHp3l+flkDgEAUxPhawoAFuaOBNsvX71Kx2x1+PVRr4e3BwC9Lp+Rra012nfqZD3YXijwaydPbmJ//39fwo3VRnCW9/Ix/iEAF939FXfvAPg6gEf2sD0hxAGyF2c/CeDStr/fGLUJIW5D9vSdfTeY2VkAZ4H4dyshxMGylyf7ZQCnt/19atT2Ftz9nLufcfczuciikxDiYNmLs/8IwP1mdreZFQF8BMCT+2OWEGK/ueWP8e7eM7NPAPjfGEpvj7v7T2NjDEAhC6+49ntcChn0B+HtFfmqdLvH5aTYqm9sNX56shpsr5MVcADobGzRvkGzQ/uqBa5OTFV5X7USXpmuFQt0zPUmX3EfOO8rl7liMDc3G2xfWVnh2yO2A8CJhWO0L4voAseOzQTbC5F9vXrpTdpXLESuj2l+HdR4F45OTQXbLSJdbDXIdRWRSPb0nd3dvwfge3vZhhBiPOgXdEIkgpxdiESQswuRCHJ2IRJBzi5EIhz4L+i2Y2Yokqg3i0SOHZk9GmzfajbomEKfy2u9iCxnkcCgheNh+ef4XNg+AHj14i9o32w+LLkAwPETx2lfrheJsiPSYT0iNR2dmqR9nkUkQCIZAUB1IixTZjk+93PzYbkOAMoR6XBjnQeZ9Dws6U5Nc9tP9iJRbxGPyRf4uFLGZcoBCbypT4YDZADAu2E5OhoRSXuEEL9SyNmFSAQ5uxCJIGcXIhHk7EIkwlhX47Msh6l6eOU3FgRx7Fh4FXxpeZmOKZf46ufayirtm5+do32lUniFv1LhK8UnT/NVdZZCCgC6Hb5qXQQPACoVw8fdaPIUWKdP8CATL4RXfQGgGEmP1emEg3xmj/JV8HyO76vd5gFFk/Xwyj8ANEnqr401HpDTbvO0VEdnuXJRmYikkTK+zXwnPI+tLX7Oeu2wyhBLM6cnuxCJIGcXIhHk7EIkgpxdiESQswuRCHJ2IRJhrNJbPp/HLAlqGQy47NJptYLt8yQwBQCqZR7AUSJ58ABgYY5Lb91uOPBm+foSHTNJpEYAyEeqnAw6fD4K+Vj5p7D00myEq9kAiFZpyZX5XLU7XBpqd8K560oRSXRzfYP2TdS4vNYnZbkAYPlGWGIrFbjsGatE1iHHBQAbm5u0LxeZ5M562P4Oq6oDoEZkW1p2C3qyC5EMcnYhEkHOLkQiyNmFSAQ5uxCJIGcXIhH2JL2Z2WsANgD0AfTc/Uz0/QByCEtKnXZYXgOAPpE7erEoqRbPT5fP+D1uffUG7TOEJRKPSD+XFxdp31SNy3LVPI8oW2/znGss6qlY5qe6Gym91Y1ITZaLSIe98JwMMj5XpUieuVhZo0akfFWxFJbsigUuAVbLXCYrRSL91lZ5NOXaKj9ntTIp/xSRiKv18JhcZMx+6Oz/0t2v78N2hBAHiD7GC5EIe3V2B/B3ZvaMmZ3dD4OEEAfDXj/Gv8/dL5vZMQDfN7OfufsPt79hdBM4CwCVUuQ7mRDiQNnTk93dL4/+XwLwHQAPBd5zzt3PuPuZYnGsP8UXQmzjlp3dzCbMbPLmawB/COCF/TJMCLG/7OVROw/gOzYMEcoD+B/u/r/iQxxGNJTYU5/JSb0+l4zaLR6RdaTCI54KOS675HPhryGtDpc7iiWeSLPTDidlBIDOOk+wWKzxiL5iMSwNWYHb2O9x6aoSiR7sRqKyJuvTwfZymc+HRZIyxiLKuqR8EgAYkdhidqAbua4afK76Hf7sLOZrtK8+M0PM4ElH17fC0nI/Ej16y87u7q8A+K1bHS+EGC+S3oRIBDm7EIkgZxciEeTsQiSCnF2IRBjzr1wMORIpFUuUV5kIyz8ti9Qhi9RR629x+QTGp+T4/HywvbccCcnqcXltgtRlA4D2Bpeapo6HpRoAaDR4tB9jdp4n2Wxvcvsz47+ILDDJq8SlvFaTH3OpyMflilzWWiPnutvlcl3W55JXq8VlOQy4vFmJSH15Ipe2unzur12/Fmzv9rjterILkQhydiESQc4uRCLI2YVIBDm7EIkw1tX4bq+Py9fCubhYsAsATLTDq+61Kb7i3ooER9QyvjJ6cuEI7StVw0EyWbjCEADgSJXnLJuucjsmj8/SvjYp8QQAL115M7yv6Trf3hY/gFaDr+4WIvPYXQ+Pa7W5EjIwvpqdRQJ5Njd52ageiYfq9Pkczk3zUlMzdX59vLzxCu07eoSPY4ddJyoUAAy64fyF+WyZjtGTXYhEkLMLkQhydiESQc4uRCLI2YVIBDm7EIkwVunN3dHuhWW0Gzd42aVqI1waaiYSKFCIHFq5FpHsGuu0b5PJUDxtHbJIYEJ7g8tQc5M8uOPnL79K+2rlsGxUq3AZp92O5Otb4EE31ueBMD2Sqy1ShQobrUhpqEguvytXw3IjAGAQPu7aVDhHHgC0mjyYqBfJT1cpc3lwcoJLsDdI0FMrUhJtsha+PmLln/RkFyIR5OxCJIKcXYhEkLMLkQhydiESQc4uRCLsKL2Z2eMA/gjAkrv/xqhtBsA3ANwF4DUAH3b3SOzXaGf5DMdmwtE6vRbPPzZZC+cz80h+tyzP72OVCpdBIsF3aDTD++v0+L5KEa3pXb92H+27cuUq7Wu3uZGzc+F8crFSWQNwCa0akSk7DZ4DMKuQCMEcl9e2boQjIgFgrcH7puo8om+zEZ6r/oDPR6nA5yOW4+3kHadp3yCiz66sh6/9QaSU0/RM+DyzHI/A7p7sfwXg4be1PQbgKXe/H8BTo7+FELcxOzr7qN7623/x8giAJ0avnwDwwX22Swixz9zqd/Z5d18cvb6CYUVXIcRtzJ4X6HyYYoZ+iTSzs2Z23szOx3J1CyEOllt19qtmtgAAo/+X2Bvd/Zy7n3H3M4VIaiEhxMFyq87+JIBHR68fBfDd/TFHCHFQ7EZ6+xqA9wOYNbM3AHwawGcBfNPMPg7gdQAf3s3OcmaolcJP93fdewcdV6mGI7lyGTf/yqVF2tfr8Wizidox2re6GY5CyoxLeRaRXDbWeKLEa0vXaV8k8AogMtrmJpc2B8432Ghs0b7NdR6VVa+GJdYO+L7cuKyVRSSl+mR4XwBQqYavkXw+EqE2ySPsshwfF5PKXv3lJdpn+fD1U4xEsG2QSNB+pIzajs7u7h8lXb+/01ghxO2DfkEnRCLI2YVIBDm7EIkgZxciEeTsQiTCWBNOZgbUimE5YaLKo6sKxbCcNDXNkyGSoCsAwMoyr4f10wsv0b7eIHxvLBV5csiZCV7j683Ll2nf8nUuvbV6XBpaZ3Ke8fu6c8UIq6s8mDGS7xOddrizWuVy0szRKdpnEfvbPf7LTCdSVLPFk2w6uDTbiyUQjdSx6w+4jZXItc/IF8JynRm/8PVkFyIR5OxCJIKcXYhEkLMLkQhydiESQc4uRCKMVXorFgo4dTwcVRaTJo5Mh+WrzLiMU5jlktfxuaO076kf/B/aNxiE9zc9yeWOK4s8Mmz+CJfQpqe4nLe6xGWj60tXwts7wpMyTkTqkE1Fxk1OcOlzcioso03UIvXhmvy4Xrn4Ou3LSNQYADSIBNjpcN2w0+bXYpbx56OBa5iVcjhpKgD0LTwn3Uh4Y5fUgfNI5J2e7EIkgpxdiESQswuRCHJ2IRJBzi5EIox1Nd7hcBJ1USLBLgBfAe1u8fxopYyvkHuB9/VJsAsA5HJhG6N3zEiZoTvvvJv2sTJOAHBqkeeTK5XCNtaneLBFFpmrpSUerPMv/vlDtO/4iRPB9p5zdWJ9+RrtW7nOA3KWV/l1kM/CgTBzszzoZhDJ4zbo85X6qRpXUFYi+QY9F57/TpPPVb8bDshh/gXoyS5EMsjZhUgEObsQiSBnFyIR5OxCJIKcXYhE2E35p8cB/BGAJXf/jVHbZwD8MYCbWsmn3P17O22r0+nil5feCPbVJrg0tLERllamSzwAIlZmqJ/nMl81Ukqo0wzLHcfmeNBNKceDO+695yQfFzm2XKFC+4pEeqtU+DHniPQDAN7kklF7nUuA3anwcR9d4JJXrsfn6s7Tp2hfqbxO+9a3VoPtxSK/9PPG+3qR4JQsUlKqTwJyACArh699j5Qpq5EgpFKBBwzt5sn+VwAeDrR/wd0fHP3b0dGFEIfLjs7u7j8EcGMMtgghDpC9fGf/hJk9Z2aPmxn/HCuEuC24VWf/EoB7ATwIYBHA59gbzeysmZ03s/Nt8hM/IcTBc0vO7u5X3b3vwx/ifhkA/ZG0u59z9zPufqZUGOtP8YUQ27glZzezhW1/fgjAC/tjjhDioNiN9PY1AO8HMGtmbwD4NID3m9mDABzAawD+ZDc7GwwGaDTDcsIAXP7pkPI+M3M8B9pgwL8ytFpcPjl9+jTte/GFnwfbC3lu+8JxHr02F5HsMuPRSwWuoqFYCp/SapXnu4tFvaF5nHetc8nrxrWlYLvneCRXpcztiNlfn+RRauuN8Nqy9/k1UClzadMi+e66kXpY9UqV9vXJ9VOv8n0ViMoXqf60s7O7+0cDzV/ZaZwQ4vZCv6ATIhHk7EIkgpxdiESQswuRCHJ2IRJhrL9yMTPksrBu1G5x2aJE5I52h0cFlcqRxJFdLmv1OzzyamMlHEHV2OQS1N133Ev7KiWuk9SqPPpu6giXhrq9sKTU70eiriIljWZnuR1LkTJUi9fCktczLzxHx9x33x18X9f4HL+5yBNV9hC+Rqbr/LgKkTJOpRKXAHuRqLd2i0uOA3IZVGem6Zj1zXDEYUR505NdiFSQswuRCHJ2IRJBzi5EIsjZhUgEObsQiTBW6a2QL+D4bDiKqlTg950qSb5YqXKhoReRmgqRWl71Mo+Wu/fkfLB9usqlsBPHuHxSK3Gppj7BJZ5WLpJwchCeq/U1flzlCb69QpWH2F25xhNOXrrRCLb//OJVvr2lSB24tUhyyy7ve+BdC8H2WpkfV7/BJV0M+Dlz59dVOVLLsE+iOi2LJL7sk1pv4DboyS5EIsjZhUgEObsQiSBnFyIR5OxCJMJYV+PdAM+F7y/lSI6uQj48plDi96rWBl9R7XbDq58AMDVZp30PPjgbbK8U+ApoocDziOUj+cz6Ax6MgUgetxIpa1Sr8dXgYiQgxwf8EimQcwkAL/4snK9vq8Fzv6EfLvMFAO02H1ckwVUAkMuVgu0eSdY2yPHrY70ZCZRq8POSzyKlyjrhlfVem2+v0w5f3x65bvRkFyIR5OxCJIKcXYhEkLMLkQhydiESQc4uRCLspvzTaQB/DWAew3JP59z9i2Y2A+AbAO7CsATUh919JbYtHwAdUsl1YyscOAEAucmwLNdc3aBjWC42AKhWeP6xLMclktXltWB7OyK9rW1yqabb5+WfvM0DV2Llpgq5cKBGox8J7uBKEzqkXBcAVEmpKQC4cmUx2N52HuDTziLyWkSmzMo8OKXRCB9crxPJeVjk+1pr8fN5ZZlf/g5uIzx8Ps34iamwuY9Iirt5svcA/Lm7PwDgvQD+zMweAPAYgKfc/X4AT43+FkLcpuzo7O6+6O4/Hr3eAHABwEkAjwB4YvS2JwB88KCMFELsnXf0nd3M7gLwbgBPA5h395uf1a5g+DFfCHGbsmtnN7MagG8B+KS7vyWJtw+j9oNfXM3srJmdN7PzrU7kp5JCiANlV85uZgUMHf2r7v7tUfNVM1sY9S8ACBbkdvdz7n7G3c/EsnUIIQ6WHZ3dzAzDeuwX3P3z27qeBPDo6PWjAL67/+YJIfaL3US9/Q6AjwF43syeHbV9CsBnAXzTzD4O4HUAH95pQ71+D9dJCaUTx47ScUyW6w14VNDM0Rm+vXUu8/V6vK9N5JpISjv87OKrtC9nPEKpGCnJdMddJ/g2a+Eor9YWl3H6ERmqFymHVYrYuLoSlilfuvw6HXP3XDhfHADMTE7RvvwMj1Tc2gp/dVzphe0DgDyJHASAjSa/5lYifQPnc2XEDQvG5dctkievR/LZAbtwdnf/B/ASUr+/03ghxO2BfkEnRCLI2YVIBDm7EIkgZxciEeTsQiTCWBNOdrpdXHrzzWBfocCjgpj8c/p0uJQUwKUJAFjfjElvXEfLWERZj0tXFy6+QvvyZHsA8OalcNQYAMzO8Gi5qalwuamXX75Ix8RKBv2bf/3btK/kXPI6Mh2OLKys819RLq+GZVkAGHS4TBm7dtY3wxGTW22e3LIRkRtzxbC0CQCtLrcxVsppQJJErmxyeXB2kpfsYujJLkQiyNmFSAQ5uxCJIGcXIhHk7EIkgpxdiEQYb603AD0PyzzLa1xmqFfDSQpjElqWj0gdkeR/W81I4ktya/QBl2omK3xfSzf4vp59nkeHTVSu0b52i0lbkQi7SMLGCy9zO+ar4dp3ADA5Ec5dcPw4H7P8+hXaZ5Ekm0vX+HycOhWOpuwP+PbaEfm1scWTnPYi2+zHrpF6LdjeiYRTbhEpsh+JwNSTXYhEkLMLkQhydiESQc4uRCLI2YVIhLGuxuezPI4cDa/G1usTdFy5EDbzxjpfGa1UwgEQANDt8DxdnVgOr0L43lgs8XJBnT4P/Fi6we1v9fh9eGYyHOwCAKfuCc9vl5TdAoD1DR6A8tobfKW7OMezBec8vL9alc+VHeMBPvUKD7rZXF2nfa+9/lqw/d5/dgcd0yHlmACg0+d55iKCR3QV/w6SQ69S5nPVbrLgq72VfxJC/AogZxciEeTsQiSCnF2IRJCzC5EIcnYhEmFH6c3MTgP4awxLMjuAc+7+RTP7DIA/BnBTm/mUu38vtq3+YICNRjj4YzDgEtWJ+WPB9mJEXmu0eV64iSqXcSzPpTfLwlEGhWIk91hEQms0+b6KlXDwDwDUjoYDJwCgmwtLXr08l97K03weB3kur21EApHuv+fOsB1XNumY3hYPFlnbvMH3dd/9tO+NSy8H27sRiZWVYwKAzUjpsEHk2Vmr8jlmcuQWKXsGAFk1nOMPkbyGu9HZewD+3N1/bGaTAJ4xs++P+r7g7v9lF9sQQhwyu6n1tghgcfR6w8wuADh50IYJIfaXd/Sd3czuAvBuAE+Pmj5hZs+Z2eNmxn/+JIQ4dHbt7GZWA/AtAJ9093UAXwJwL4AHMXzyf46MO2tm583sfK8f+T2hEOJA2ZWzm1kBQ0f/qrt/GwDc/aq79919AODLAB4KjXX3c+5+xt3P5CP1vIUQB8uO3mdmBuArAC64++e3tS9se9uHALyw/+YJIfaL3azG/w6AjwF43syeHbV9CsBHzexBDOW41wD8yU4bymU5VCfCEkQ/UkKp3Q3LcvlI2Z9CgUcMZRkfF7v/5YgKlS/c2teTdkRutDy3sTrFj21jIxxdVanwckHXrnFZK58nEg+AIxU+V9XpsLxZK3N5bX5uivZd9xW+ryqXB48dC+eg21jnkXKRoEjkeFAZ6qT0FgBM1vn8r6+Fow6vX79Ox3guLL/2elxi3c1q/D8gHDcX1dSFELcX+hItRCLI2YVIBDm7EIkgZxciEeTsQiTCWBNO5sxQroRlo5xxOanZaQfbSwMuT1UiSSANXJ4oRuQ8ZGHdpT41Q4e01nlZq06ey435Epfzmh2e9DDLwsfdDU/h0I4mrxm02OLyz8xJHiLRXVwKtleM76s8yed+bioc+QgA15d/SftmpkiEI9NRAWz2+GT92sIJ2jdwbn+jwWXWxla4byYi5bH8oVlEG9STXYhEkLMLkQhydiESQc4uRCLI2YVIBDm7EIkwVunNzFAkMe3VSEK+fj8chpSBhydlRCYbbo/LIL1I9J0T2zc2uOTSjERXxewvl/mp6UTqtnWb4b7GGpeTinkekTU5w+UfFEvcjkY4ui0rcuktVjPPSb0/IB5RViLRg9Mzc3xf6zwK0HL8nLU2tmhfsxE51+TaH0aXEzw8j1kkZ4Se7EIkgpxdiESQswuRCHJ2IRJBzi5EIsjZhUiEsUe9TRC5Jh9MczcaR9rLZV4PbXOT1xSLJZwslricVCHJMqNjIrfTJkk0CADzx+6gfa2IZDc9EZ6TwlxE1orky+yCS3a9PpcAK7WJsB2krhmAcKbDm3ZEZKjZOV77rjgIX+JZpIZdqcSvK3c+H9Uqt6MSO25yPTabPDkn63MiyQF6sguRDHJ2IRJBzi5EIsjZhUgEObsQibDjaryZlQH8EEBp9P6/cfdPm9ndAL4O4CiAZwB8zN15FAmGi60FslqYi6zsFrOwmRZbwc/x+9hgwJefiwW+SstK6wwG3PZyxI6pSb56GyszVC7yoKEBqV1UrfEx3TY/ba1mg/a1e1wVqBbD56wQCZ7ZavB9lSdJLjkAzQ6f/yY5toLz85zluFqTy/hKfT/y6Gw0+TW3uhoubRUr5VQsstX9veWgawP4PXf/LQzLMz9sZu8F8JcAvuDu9wFYAfDxXWxLCHFI7OjsPuSmaF0Y/XMAvwfgb0btTwD44IFYKITYF3Zbnz0bVXBdAvB9AL8AsOruNz9nvAGA5xUWQhw6u3J2d++7+4MATgF4CMCv73YHZnbWzM6b2fl25LuVEOJgeUer8e6+CuAHAH4bwLSZ3VyFOQXgMhlzzt3PuPuZElm0EUIcPDs6u5nNmdn06HUFwB8AuICh0//b0dseBfDdgzJSCLF3dvOoXQDwhJllGN4cvunuf2tmLwL4upn9JwD/D8BXdtpQzgyVYljyYHnmAMAHJAddxuWTep1LNTHpLZb3i0kkHpHepio8P1ot8knHI6Wtmm0+VzYIS5uDLi/jNDnBJcBIXEUkHAfYIiW7Cl1+zprNSNBNjgeFXF/boH2by+EcgNPTs3TM8lb4PANAORLZ5M7P58oNLituEMmxErl2WF/s2t7R2d39OQDvDrS/guH3dyHEPwH0CzohEkHOLkQiyNmFSAQ5uxCJIGcXIhEslrNq33dmdg3A66M/ZwFwPWh8yI63Ijveyj81O+5092Btq7E6+1t2bHbe3c8cys5lh+xI0A59jBciEeTsQiTCYTr7uUPc93Zkx1uRHW/lV8aOQ/vOLoQYL/oYL0QiHIqzm9nDZvZzM7toZo8dhg0jO14zs+fN7FkzOz/G/T5uZktm9sK2thkz+76ZvTz6/8gh2fEZM7s8mpNnzewDY7DjtJn9wMxeNLOfmtm/G7WPdU4idox1TsysbGb/aGY/GdnxH0ftd5vZ0yO/+YaZRWpKBXD3sf4DkGGY1uoeAEUAPwHwwLjtGNnyGoDZQ9jv7wJ4D4AXtrX9ZwCPjV4/BuAvD8mOzwD492OejwUA7xm9ngTwEoAHxj0nETvGOicYpoitjV4XADwN4L0AvgngI6P2/wrgT9/Jdg/jyf4QgIvu/ooPU09/HcAjh2DHoeHuPwRw423Nj2CYuBMYUwJPYsfYcfdFd//x6PUGhslRTmLMcxKxY6z4kH1P8noYzn4SwKVtfx9mskoH8Hdm9oyZnT0kG24y7+6Lo9dXAMwfoi2fMLPnRh/zD/zrxHbM7C4M8yc8jUOck7fZAYx5Tg4iyWvqC3Tvc/f3APhXAP7MzH73sA0Chnd2DG9Eh8GXANyLYY2ARQCfG9eOzawG4FsAPunub0kxM845Cdgx9jnxPSR5ZRyGs18GcHrb3zRZ5UHj7pdH/y8B+A4ON/POVTNbAIDR/0uHYYS7Xx1daAMAX8aY5sTMChg62Ffd/duj5rHPSciOw5qT0b7fcZJXxmE4+48A3D9aWSwC+AiAJ8dthJlNmNnkzdcA/hDAC/FRB8qTGCbuBA4xgedN5xrxIYxhTmyY+O8rAC64++e3dY11Tpgd456TA0vyOq4VxretNn4Aw5XOXwD4i0Oy4R4MlYCfAPjpOO0A8DUMPw52Mfzu9XEMa+Y9BeBlAH8PYOaQ7PjvAJ4H8ByGzrYwBjveh+FH9OcAPDv694Fxz0nEjrHOCYDfxDCJ63MY3lj+w7Zr9h8BXATwPwGU3sl29Qs6IRIh9QU6IZJBzi5EIsjZhUgEObsQiSBnFyIR5OxCJIKcXYhEkLMLkQj/HxyX73FdLOfSAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD5CAYAAADhukOtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAd6ElEQVR4nO2dWYzk13Xev1Nrr7NvPYtmhhRDg1pI0Q2akiiaFC2DFhRQDBJCehD4IJhGYAER4jwQdBApQR5kJ5Is2ImMkcWYDhQttkRonCiJaMIAYUuhONyGy1DiNsPZetbu6b3Wk4eqCYbM/U73dE9Xj3W/HzCY6nvq/v+nbtWpf9X96pxj7g4hxC8/hdV2QAjRGxTsQmSCgl2ITFCwC5EJCnYhMkHBLkQmlJYz2czuBvA1AEUAf+buX4ruv2btOt+8ZYRYuQRoln5PKhSMzvHgfSwSGw38mEYm8hkLnM0i/5d0RBiVUoNzBQcMhdn4gV/+yVaAK3222P2lnY3Nik+Vtp47fQJTk+PJZ2bJwW5mRQD/CcDHABwD8JSZ7Xf3l9mczVtG8KU/ejhpa7fb9Fz91WpyvNLXR+e0i+k5ANB0/kZQQpHaiq30eJm7Hr46vMT9aLB3FsQvgkKLWL1M5zQb/IitAnnQwJKCPfpdR/ibj+Bc7XbgP5kYvpkGfkSv01YrWKvofGS8Ga5V2o9/9y/vo3OW8zH+FgCvufsb7l4H8B0A9yzjeEKIFWQ5wb4DwNFL/j7WHRNCXIWs+AadmT1gZgfM7MDkhfGVPp0QgrCcYD8OYNclf+/sjr0Nd9/n7qPuPrpm7fplnE4IsRyWE+xPAbjOzPaaWQXApwDsvzJuCSGuNEvejXf3ppl9DsD/Rkd6e9jdX1poXpvsqpaqfLe43k7vcs5cmKJzyoN8+7ZY7qc2OJ/XJju7zWDnvDXfoLb5C3PUVunjakILfEd4em46OV4wfryhwbXU5sG52sHusxFZcam74MESh7vx7DmLNv6jHffIx2g3nq0HALTJqrSXqAowlqWzu/uPAPxoOccQQvQG/YJOiExQsAuRCQp2ITJBwS5EJijYhciEZe3GXy6tdguTM2lpqNHgEtXZM+eS48eOn6Zzin2D1DY0zH/cUy1wiYqpcvUm973daFLb7FR6LQCgv8z9QIHLLlP1tBxZr3Pp55q911Hbu6/dTW39USISkYZCyShIdvHA2I50OZYXtNSEnCUSSW8F8tjagey5FHRlFyITFOxCZIKCXYhMULALkQkKdiEyoae78dMzM/jJ//kpsfGd6QLSSTJzNb5rOt9K7+ADQLnCbcU2f/9rkQ3Veec77q1gp3iwwnez+40/NX1VXjqrVagnx2dmuGJw4OCz1Hb67Alqu2bvXmrbtGlTcrx/YIDO8ai8VJBk0iYlmgDA2PPZ61p4UXINSxpaQiJMNEdXdiEyQcEuRCYo2IXIBAW7EJmgYBciExTsQmRCbxNhWm1MTKfrrnlQ+81INkOpwuvWDQTSVbHAbRVUqG0eafmnGbxnTs3OUNvcDLdVjctrQ86TZIrkoZWrvO7e/PQ8tb1+9P8rGPz/OHJyjNrWrUnXtdu1cyeds3nTRn689Tx5qVQIuvgQWW6pyS6s4Q7A690tdD7W3SWuQXf5/uvKLkQmKNiFyAQFuxCZoGAXIhMU7EJkgoJdiExYlvRmZocBTAFoAWi6+2h0/7Y75uppmaFcjlwhWUEtnsnl4DYrBm16AkWj3khLVI3A9eGBIWqbmpyltsk6bw1VCzKoKpW0dDhc4Q+sWORy40yzxucFGYK1sxeS4xMTPLtxcIjLgyMj26nt2r3XUNtQJS1TVsk6AXE9xEZQFs7BJcAoM4/JcpE6yCTAqFbfldDZ73T3s1fgOEKIFUQf44XIhOUGuwP4sZk9bWYPXAmHhBArw3I/xt/m7sfNbAuAx8zsFXd/4tI7dN8EHgCAvsE1yzydEGKpLOvK7u7Hu/+fBvAogFsS99nn7qPuPlrpC/qiCyFWlCUHu5kNmtnwxdsAfhPAi1fKMSHElWU5H+O3Ani029amBOC/ufv/iia03TFXS8tXtQZ/32Gtc/qC9kNRTlCQYBe2EmK2maBYZl8/P1m1HBSObPB58zUuyzWNZHkFj6sSZI3FlwN+zFIpfczIj6lZvo4XXj1EbWfPcTFouC+dfbdzB8++Wx9k2FWC7MGof1W7yYuSNokqF2VTtjwtH6+I9ObubwC4canzhRC9RdKbEJmgYBciExTsQmSCgl2ITFCwC5EJPS046e6ok+wfa/GsINbXql0INLSIalAYsMjf/9qFtHxSClaxEWSvVUpcOhzq51lZs3VeILKJtI9BWzzUmtxYDYpzFoMsLyfXkUY7kKBIQU8AKBT48zJ2/jS1nail+/q9duQtOmfz5nSfOgDYvn0XtQ0NDVNbXzWQiYn02fBAeiO971pBIUpd2YXIBAW7EJmgYBciExTsQmSCgl2ITOjtbjyAZlCLi9EiO7jz01N0TinYIm8Fm/ilQp3aWAJNuRwlHwRLHNSSi4rhDQVtr5rk7TsoF4dG4EezxdejYPygTrI7WsGOe6sYFV3jpqhWm1l6rZpBMbnJE+PUduTkYWqrVviO+8DAALWxhK6oTl65nH5c9Rqva6gruxCZoGAXIhMU7EJkgoJdiExQsAuRCQp2ITKh54kwtUZaymF15gCgTX7cz9rmAEAzqNM2F8gT5UDWKhKpqVric5zUhAMA86BdUCCHeZvrUCwPYrbFE1Dq4OcqBPXp6sFzViY6pRf4uRoF/rgiea1QDGroWTppKMirCesXtgMNsz7Ha+hNzgTaIZM3a/x4LF7mZifpHF3ZhcgEBbsQmaBgFyITFOxCZIKCXYhMULALkQkLSm9m9jCATwA47e7v7Y5tAPBdAHsAHAZwn7vzVKEu7XYbs/NpKaQUaSFt4mYgT83NnKK2SoWLKxu28rZA/UQ9KQSyVjGoJeeFBrVdGE/XTgOAuWkur+zee31yfKoxSOeMj1+gtmqVZ2s1iIwKAEbS1NqRhsaXMZzXCg5ZQXqNC8WgFl7QeqsVpQ9GWYC1GWprTxxNjp87/gY/F6lP1wjkv8Vc2f8cwN3vGHsQwOPufh2Ax7t/CyGuYhYM9m6/9fPvGL4HwCPd248A+OQV9ksIcYVZ6nf2re5+snt7DJ2OrkKIq5hlb9B55zer9FuTmT1gZgfM7ECrXlvu6YQQS2SpwX7KzEYAoPs/rdLv7vvcfdTdR4uV6hJPJ4RYLksN9v0A7u/evh/AD6+MO0KIlWIx0tu3AdwBYJOZHQPwBQBfAvA9M/ssgCMA7lvMyRyOVpNIHoF8sr7anxxfM8hlobmB4KEZl4zK0zxbro9Uc9yyZQudM9/PixDWm1x66+/jj604kF4PABhYsyY5vm5whM7Ztol/vYqy7+YDOWyWzBs7wyXRxswEtZWdr1WpydthFdvp57rRCIqVFvnat8Gfz3bQKgtz/HyTJw4nx2vjfK2mp9PPWZMU+gQWEezu/mliumuhuUKIqwf9gk6ITFCwC5EJCnYhMkHBLkQmKNiFyISeFpyEO9BMSyFrB4bptHVERjt+8i06Zy74AU8tyFKzsSPUtndjWmLbsmsHnfPKiRPU5m2eXTUwwyXAtYNc/nnh6PPJ8aFtPOtqqMoLZr75i5eprTW4ntrWXff+9Lm2v5vOmTlyiNqKQabfGueZXrPTaTlvdor+DgyV8hC1Tc7z4pb96zZT28Z+/lxPk8w8BD0JjWWJBgVOdWUXIhMU7EJkgoJdiExQsAuRCQp2ITJBwS5EJvRceiu00jLDtiEud5waT8skjWGuTZSGuZRXMC6fNBu8bubum9+THB8PeqXV1wfZa8aXv7CGy2sTkzyDamo+Ldm1Z3lGWW2eS5FrAz+OTnPJa+ZMumDm7nXr6Jzt16flOgCYeJlnts0c53Lp+Km0bXKGF/RskexGALgwx19z/eu59Da8i9uapD/b/BzPRmQ9+CzQ63RlFyITFOxCZIKCXYhMULALkQkKdiEyoae78aViERvWpHfJNw3x3fOJ8+laXBv6eAJHtcx3JZsNvvu85dp0+yQAuGZkV3L8pbd4m551Vd7+qRm0T9qyje9aFzZx5WKmlH7/LgxzP8bPjFHb7i28HdZshfs/3kon3pwfP0PnFEbeRW07b7iV2o4fe4Xa5udmk+PlIn99eNBPqtjmtfBqEzy55gy4gtKcTftYKPJrcYu0IovQlV2ITFCwC5EJCnYhMkHBLkQmKNiFyAQFuxCZsJj2Tw8D+ASA0+7+3u7YFwH8NoCLOspD7v6jhY5VKRexe9uGpO2f/NZH6bwjb+xJjk/N80SM2jyXhZo1Lr3t2c7lH2+nJRnftI3OuRDIazOz3P+dm3hLqabzxJvpmXTCiPfxmnxDzmvJFdtc49m6lrehmjmdltimj6dlJgBo1PjjGtzKJcDt7/kItbUbF5Ljp0+8TufMTnOZDMF6rBnkCVYl8JqCTqKwMcvP5SThxYOWXIu5sv85gLsT419195u6/xYMdCHE6rJgsLv7EwDO98AXIcQKspzv7J8zs4Nm9rCZ8c+BQoirgqUG+9cBXAvgJgAnAXyZ3dHMHjCzA2Z2oEYKKwghVp4lBbu7n3L3lru3AXwDwC3Bffe5+6i7j1b7+IaOEGJlWVKwm9nIJX/eC+DFK+OOEGKlWIz09m0AdwDYZGbHAHwBwB1mdhMAB3AYwO8s5mRFc6wppqWhD97MJa9b3pNurzQ1y2t0NZy/jzWaXJ5ozvKvGnPz6fPtrfP2T7M1Lp9MBy2eymX+1IxP8lZIfXvT2W1zNb5Wvm4TtR0fO0ltr77J22/dsD4tHb51JtjrbXPpqtXHsyKHdt9MbR+5dk9y/PxRLr39/Jmnqe302M+pbdB4/ULUePut+RapJ9fmUmSpnJ5TJzUegUUEu7t/OjH8zYXmCSGuLvQLOiEyQcEuRCYo2IXIBAW7EJmgYBciE3pacLLdbGL6fFqeOPYml+p37tibHN8xspXOKQ1wqaYdtF2aPHuW2iYm0r5v3LCRzpmZ41LI7FyQETfNpZqp6bXUdv2116SPNxNIP3NcAtzcz7PlyjX+2H711z6UHD8/y+ccHktnqAFAvcDbULXmeGsokJZM29+ffk0BwOb3f4zamuPp4qcAcP7Qk9T25otPUdvZ13+RHC9U+HNWKKVlOQuKqerKLkQmKNiFyAQFuxCZoGAXIhMU7EJkgoJdiEzoqfRWLBSxrn8waZs6x/uNnSTZP5u28X5da4v8oQ0O8z5qWMslu6KlZaPhIE1/bdDDzgtL6wN36GXe22zz5rTUNDDAswpnA5nvxj08o+/XR3m22RzJLJzlyhCu28UzBE+d4/LgiTGeSTf25tHk+FtBP7f5QLbtX8cLX657b6pUY4ebrv8gte1482By/OBPeGnHM2NvJsfdeEFPXdmFyAQFuxCZoGAXIhMU7EJkgoJdiEzo6W58uVjEyIZ0EofVeYLE+VOnk+PPH3yNznn2RV4rbOuOXdT2kV+/ndp2bE77Pj/Od0CLpWCrPtiNL5X4U/Ou7bxMf39fOTlerfD39TWVAWrDMPex0eJ+TJEEoLkWV1AOvXqY2sZr6XZSAHDzNWkFAgCmt6TX8c2TXP05dISrHc+/wV9zU1Wu8mxaw9f4hq1pxWP0dp6Q8+xPH0uOH3ktSJ6hFiHELxUKdiEyQcEuRCYo2IXIBAW7EJmgYBciE8ydJwQAgJntAvAXALai0+5pn7t/zcw2APgugD3otIC6z92D/jfA+uEhv2P0fUnb+96VbhcEAGs3pqWVp1/iEskrgYzz4TvvorYm+Hr847tuS46v7+Nz+vp5UkWpzOWYuXku523eyNdqoJpONKoH7Z8irBi00QquFVZO14x79cgxOucP/8NXqe3saZ7s8mu3pp8XAPjEP/tMctxrvG7di0/9jNpONLl0+NIEb9fULvJafj43kRy/LoiJ468+kxz/yeP7ceH82aSTi7myNwH8nrvfAOBWAL9rZjcAeBDA4+5+HYDHu38LIa5SFgx2dz/p7s90b08BOARgB4B7ADzSvdsjAD65Uk4KIZbPZX1nN7M9AD4A4EkAW939YovPMXQ+5gshrlIWHexmNgTg+wA+7+5v6xnsnS/+yS+uZvaAmR0wswO1Bv9JrBBiZVlUsJtZGZ1A/5a7/6A7fMrMRrr2EQDJH7C7+z53H3X30Wo5/bttIcTKs2Cwm5mh04/9kLt/5RLTfgD3d2/fD+CHV949IcSVYjFZbx8G8BkAL5jZc92xhwB8CcD3zOyzAI4AuG+hAzVabZyZSEtKr5R5VlPx9Lnk+FsnTybHAeD2u+6gtof+9e9T2x//yX+mtv/x1/uT47+yg7d/KleK1DY4vIbaWi1ej23D2g3UtnlDeuskyqKrVHhmWyFolTXd4gXl6qX0deTrf/pf6JyXX3mB2qpl7uOj+/+S2nZeT6Te6/4RndNf5a2m1jh/zNuHqAlNsh4AMEMyAb3O5dLdO9I1BQ8E67RgsLv73wFg4iIXrIUQVxX6BZ0QmaBgFyITFOxCZIKCXYhMULALkQk9LThZqVaxY8+7k7YWpui8RiOdoVQZ5FrHyC7etsiNZ6nt2s7b+/zND7+fHJ8a44UXB/p5tlO1PyhGSQUQoFriP04aGkivyUA/z7CrBHJNX4X76H38sZ2ZSz+fLx16mc75jd/g4s6NN91Ibd/4My7n/fSJ/5kcv2YbLw5ZGeBy6dkxXqjy+Vd/QW3lQb6OW9ekfWnNcfm1nxQQ5a8aXdmFyAYFuxCZoGAXIhMU7EJkgoJdiExQsAuRCT2V3hyOJtJyQqvN5bBKNS0bDfKkMUxO84KNp07zDLuz53nNzGNj6ew7b/KiHH1VLrk0GlxaicqAVsv8aRuspmW5YonLSf19PMurr49Ldu0iF3reOnMqbXA+55P33kttH/rQh6jt6FFexPLR/X+dHH/2+d10Tmu+Tm3jpy5QW/3ccWortXjh0dnmdHL8jfGjdM5ANS2X1mpzdI6u7EJkgoJdiExQsAuRCQp2ITJBwS5EJvR0N77ZbOHsRHpHu9Hk7XhKhfR7kjf5bvazB1+ktvfd+KvBPF4HjbU7qpf4jnu9wXfBT548S23zQXuiSlBPrkxOFyVIlCs8saYc7Py3nLc7mp5P7wpv2MTbC2zayGv5TU1OUtu2kW3Udn48rbz8+Mc/onPmp2eo7dy59M45AMwYv3aWgoSoIlEo1m9Ntz0DgC1b04+5GdQu1JVdiExQsAuRCQp2ITJBwS5EJijYhcgEBbsQmbCg9GZmuwD8BTotmR3APnf/mpl9EcBvA7iobTzk7lzPQKf2W8vSco0VeR206dl0UsvcNJdBxs6kJT4A+KM//hNqO/LaEe5HPS1rvHacJ9Z4kOATtXhqtLisZS3eFqhI3r8tEN8sqHXmxtsdRXIePP24+we57+fO8eesGrSomrzAZblaLe3/4cM8ecYCSbfBnxZ4kDQUJTaxGoCDVV5jcXYm7WM7eL0tRmdvAvg9d3/GzIYBPG1mj3VtX3X3/7iIYwghVpnF9Ho7CeBk9/aUmR0CwEu3CiGuSi7rO7uZ7QHwAQBPdoc+Z2YHzexhM+P1lIUQq86ig93MhgB8H8Dn3X0SwNcBXAvgJnSu/F8m8x4wswNmdqBZ50UehBAry6KC3czK6AT6t9z9BwDg7qfcveXubQDfAHBLaq6773P3UXcfLQW/wRZCrCwLBruZGYBvAjjk7l+5ZHzkkrvdC4BnngghVp3F7MZ/GMBnALxgZs91xx4C8GkzuwkdVeEwgN9Z8GSlEjZs3ECsPDtsjmQh1YL2T4UgA2lifILaNm7eQm1rN6SzkJqB3NF2Xs+s2eAyVKvJJa+odl27kfYlkvlqNe5jm0hoAIAg661AriMTQfba3//k76ntzjvvpLaXXj5Ebexh14PnrBi8FtvB6yqSS1u14CtsPe3L0SO8Bl2xmq5p1wi+Ki9mN/7vkJZUQ01dCHF1oV/QCZEJCnYhMkHBLkQmKNiFyAQFuxCZYB5JK1eYtRvW+m133Za0tYNsItIxCsVATCgFRRkteshBxhPLKCoUuVTTrPM2VO0Wl7xagYzTDhaLPZ3NBpfypmd49mCtxuXBRiPwn6xjdLyBfl64c8/evdR24OlnqG1iMl24M8oCjGKiFdiCzlaAhTmCSQoF/rrqG0hn2M1PT6DVaiZPpiu7EJmgYBciExTsQmSCgl2ITFCwC5EJCnYhMqGnvd4MBrO0nFAu8/cdKxLZosXljHI5yJ2PErkCiaTKJLZgTiVYYUMftUVSWSvSKYk0FMmDGzexTESgEfjhQdYbkw7bbS5tzsxwmXLs1Clq27OHy3JTM+kssNm5dC+6DvwF0gxluUASDZ4z9twUSI/Dji39mjs9P8XnUIsQ4pcKBbsQmaBgFyITFOxCZIKCXYhMULALkQk9ld4cBve0zODtoBcZyVCKEomizLBQlitxicrICQuRI8HxioG0Ug4KIjYavKggLSwZuBj1oysaX6tmi8tyTOkrB4+5f3gdte14F+/1FvU3myP9+SJJMXrtWJH7H2XLRccsksWKi4SmswcvnD9L5+jKLkQmKNiFyAQFuxCZoGAXIhMU7EJkwoK78WbWB+AJANXu/f/K3b9gZnsBfAfARgBPA/iMe9DrCJ1d3/p8eoeR7XQDANsAjXZ2w93PqD5dsHvuJEGiHSROWNAuqBDsdJf7uc2LfDe+GuwWc5ZWj60Ztaiqp18K7SBZJDrebD1KuuG71vPN9FpFrzewxCsAHpwrSnapVLiaENVLZAyQGnRh8swijlsD8FF3vxGd9sx3m9mtAP4AwFfd/d0AxgF89nIdFkL0jgWD3TtcLD9a7v5zAB8F8Ffd8UcAfHJFPBRCXBEW25+92O3gehrAYwBeBzDh7hc/dx0DsGNlXBRCXAkWFezu3nL3mwDsBHALgF9Z7AnM7AEzO2BmB9j3OCHEynNZuznuPgHgbwF8EMA6M7u4s7ATwHEyZ5+7j7r7aDnYpBBCrCwLBruZbTazdd3b/QA+BuAQOkH/T7t3ux/AD1fKSSHE8lnMnv8IgEesUzyuAOB77v7fzexlAN8xs38P4FkA31zMCZ32yOFyB2slBOMySLVapbY4kYTbypW0HBbJfCVwCa0VJGM0ozp5UcIFkQFZzTIglqEsStapBkk+5fSnuOhckYQWrXGDyGsAUGin17gdnKsZ2IpBj6d2IB1Gz9lSWrBxiY37t2Cwu/tBAB9IjL+Bzvd3IcQ/APQLOiEyQcEuRCYo2IXIBAW7EJmgYBciE2wp2/5LPpnZGQBHun9uAsALZvUO+fF25Mfb+Yfmx25335wy9DTY33ZiswPuProqJ5cf8iNDP/QxXohMULALkQmrGez7VvHclyI/3o78eDu/NH6s2nd2IURv0cd4ITJhVYLdzO42s5+b2Wtm9uBq+ND147CZvWBmz5nZgR6e92EzO21mL14ytsHMHjOzV7v/r18lP75oZse7a/KcmX28B37sMrO/NbOXzewlM/sX3fGerkngR0/XxMz6zOxnZvZ8149/2x3fa2ZPduPmu2Z2eQUi3L2n/wAU0SlrdQ2ACoDnAdzQaz+6vhwGsGkVzns7gJsBvHjJ2B8CeLB7+0EAf7BKfnwRwL/q8XqMALi5e3sYwC8A3NDrNQn86OmaoJOnOtS9XQbwJIBbAXwPwKe6438K4J9fznFX48p+C4DX3P0N75Se/g6Ae1bBj1XD3Z8AcP4dw/egU7gT6FEBT+JHz3H3k+7+TPf2FDrFUXagx2sS+NFTvMMVL/K6GsG+A8DRS/5ezWKVDuDHZva0mT2wSj5cZKu7n+zeHgOwdRV9+ZyZHex+zF/xrxOXYmZ70Kmf8CRWcU3e4QfQ4zVZiSKvuW/Q3ebuNwP4LQC/a2a3r7ZDQOedHQg6T6wsXwdwLTo9Ak4C+HKvTmxmQwC+D+Dz7j55qa2Xa5Lwo+dr4sso8spYjWA/DmDXJX/TYpUrjbsf7/5/GsCjWN3KO6fMbAQAuv+fXg0n3P1U94XWBvAN9GhNzKyMToB9y91/0B3u+Zqk/FitNeme+7KLvDJWI9ifAnBdd2exAuBTAPb32gkzGzSz4Yu3AfwmgBfjWSvKfnQKdwKrWMDzYnB1uRc9WBPrFKb7JoBD7v6VS0w9XRPmR6/XZMWKvPZqh/Edu40fR2en83UAv79KPlyDjhLwPICXeukHgG+j83Gwgc53r8+i0zPvcQCvAvgbABtWyY//CuAFAAfRCbaRHvhxGzof0Q8CeK777+O9XpPAj56uCYD3o1PE9SA6byz/5pLX7M8AvAbgLwFUL+e4+gWdEJmQ+wadENmgYBciExTsQmSCgl2ITFCwC5EJCnYhMkHBLkQmKNiFyIT/Cw67s5At/GQ5AAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD5CAYAAADhukOtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAfTElEQVR4nO2dbWyc15Xf/2feOBySEilRL5RMvVi27Miu36I6Tm24qYMN3CCAk+0iSD4EBhqsF8UGbYDtByMFmhToh2zRJEiBIoWyMdZbZPPSTdJ4F8Z6vd5N0mxS25JjS45lx7Isy6IkUiLFt+G8z+mHGady9v4vaYkcevf+f4Cg4T28z3PmznPm4dz/nHPM3SGE+MdPZr0dEEL0BgW7EImgYBciERTsQiSCgl2IRFCwC5EIuauZbGb3A/gqgCyAP3L3L8Z+f6hY9NGhoaCt3Y5IgEaGC3k6pZnh72OlLDkggPrSErXNlivB8dYV+L6MCRbxP5vjL1uWTCtG1mposERtMWm22WpTm2WywfFKrU7nLCyUqS26jhFblhgzkTntmBwdU6pjl0HEyTaZ2OTLCyPnWqrVUG80gie74mA3syyA/w7gtwCcAfCsmT3m7i+xOaNDQ/j8b38saKuU+UWQzYWvYBsfo3NmS/3UdsvGArWdPvoLavvznz8fPletQedkWfQhfgHk+4rUtmnLKLVt6A+f7/pdW+icD9x9J7U1G/y5XZxbpLb80Ehw/PiJN+icp370c2oDuQYAoC/PbRvz4Te5Qq5F59Qjz7kZjqMOzqOzL9tHbUsevvYvVfm7R4a4+H9eeJHPoZbluRPACXc/6e51AN8G8MBVHE8IsYZcTbDvBPDmZT+f6Y4JId6FrPkGnZk9ZGaHzezwQrW61qcTQhCuJtgnAIxf9vM13bG34e6H3P2gux8cKvLPoUKIteVqgv1ZANeb2V4zKwD4BIDHVsctIcRqc8W78e7eNLPPAHgCHentEXf/ZWxOs1HDpYnXw45EZJx8LrwrOeE1OufVCt9RveU911Jbu86PuW00vAveHzlXTI+J7cYv1bgfczOXqG3RwrvMtWpYNgSAW+94H7U1lvhHr4vT3I9txbAa0q7P0zn9fXyt2uDXx9ahQWq7+drrguMXpv7eH6G/plJZoLbFRa5AIMPlzb5ck9p2bN8YHG8UttI5J146FXYhoilelc7u7o8DePxqjiGE6A36Bp0QiaBgFyIRFOxCJIKCXYhEULALkQhXtRv/Tqm3M3i9Gk4IWKrM0XkFI/JPKyxZAEDGeLLLxTcmqe3I2TPU9vJUWGryGpdVYvJaMfIlo0aTJ2ogkhFX7A+v72yFS1fPHHuV2sY28zWuNWN5e2EZrS9yxeXzsVQ0brph3z5q27Nrd3B8eIhn+p0/d4q70eBS5OAIT8xq5XliVqkvLOftGOWS4pvZsP9m/NrQnV2IRFCwC5EICnYhEkHBLkQiKNiFSISe7sa3DaiQ+m8zGb77bK1wUsjmSC22wQ3hskgAUC3znf/ZBZ6AMl8NJ7x4xPdWi9uy5HgAkIu9Dzd4wkiZJPIMRuqqPfPCUWrbf104kQQAbty3i9pyhfBu8Z49fOe83OaJJJPnLlDb/AJP8kFxIDh88N5b6JTnn/0xtVWaXHlZaPAd/ukyvx43VcI7/DuzPCGnuhiOo0hlLN3ZhUgFBbsQiaBgFyIRFOxCJIKCXYhEULALkQg9ld4MTfTZTNA2VuKSxjDCksymEZ5c8Lpz2WKgP9K5g/XVAVCy8HI1Bni3j0aTy2vVSJ25VuR9uL/EJZ5CX3ittke65+y4ZpzaLi7yxI/z81zyet/7wl1mZibP0zm//a/uprbH/+IJavv5z/4vte26+Y7g+H23vJfOeW3iJLW9/nfPUttcPdzaDAAWI72c3vNPwz5WGrzG3+hoOIkql+MJYLqzC5EICnYhEkHBLkQiKNiFSAQFuxCJoGAXIhGuSnozs1MAFgC0ADTd/WD09zOGwkD4lNcO8VY3ez08Z2Mh0ihyjteSKw1zqaxcWKK2dj6cwXbwtrB0AgDbtvLndfLECWp78zRvT5TJ8uwwb4alsmIkM+/97+P+X+DLgWd+/CNqe+WVcEZcqxI54ADPDJstc5lyscHvWSfOTQfHy+0snVNu8uNNzXI/akVeM+763bzl2PC2HcHxC9Nh3wHgvvtuCo4/ceSv6ZzV0Nn/hbtfXIXjCCHWEP0ZL0QiXG2wO4C/MrMjZvbQajgkhFgbrvbP+HvcfcLMtgJ40sxedvefXP4L3TeBhwBgiNQ0F0KsPVd1Z3f3ie7/UwB+AODvfSHa3Q+5+0F3P9hPvrcthFh7rjjYzWzAzIbeegzgQwBeXC3HhBCry9X8Gb8NwA+67Y1yAP7U3f8yNqHthsV6+O6+MRsuDAgAjYvh7J83Z7k8dc+tN1JbpV6mtp2Rgn3FUjgj7q5h7vuBLaPUttTmGXYX+/hHnqU5ng3VqofHc3WeBbj79OvU1j/LsxE3bRmmtsaLvwiOx2TDn790nNpeOXuW2qpNLodNnA5LsFPTvIDlnbffRW27h3mG4H/70/9NbfUKz/Y78mxYzJqcfI3OueOD4es72+ZrccXB7u4nAdx6pfOFEL1F0psQiaBgFyIRFOxCJIKCXYhEULALkQg9LTiZQwZbsuFMtZ3gWUgbNoQL+T1/iWe2Xarxfm67t/Pii78ztZfa8vNhyW7zq9yPvtfOUVurzYtR7gm38ur40eLGTC68vi3jklftmeeobWNE1mqPcsmxxQoszvPsuw1ZnjVWK3O5dBO/dFDycFHM+fNv0Dk737Of2oYGeKblnft2UtvUHNFEAZxfDGcCLi2Fi7MCwMlXXw2O1yJFTHVnFyIRFOxCJIKCXYhEULALkQgKdiESoae78cVsBjcOhVsXDUzzylbZTHhnd/8119A5C5M80QHOd7N3xto/FcLzspFdU4sku/D9WaCWibwPF3iSTN7D58tF2g/lM1wVaAzxrW5f4ju/zVrYjxb42m/L8BW5r5/v/NeNtzxq7dgWHC+eOkXnLPHDAUQZAoCbbryO2saW+HMba4STjfbvC9emA4DrRsPKRfGJn9I5urMLkQgKdiESQcEuRCIo2IVIBAW7EImgYBciEXoqvbUaNcycPRm01Zpckqlkw7LR0kaeONG/xOWk6nFe26uV5YkaTdK6KpPlskpfRPIy8KSKZkQebLX5MT0fTnjhAmDcltvK2xYNzfJ7RZU8tfpu3uJppLlIbQNVvsbNSJ28xalwQtTS2b+jc84dfoHaNtzEk2Smz3O5t17aRG3NcK4OlqZ5rcH5fHg9Wi2+FrqzC5EICnYhEkHBLkQiKNiFSAQFuxCJoGAXIhGWld7M7BEAHwEw5e43d8c2AfgOgD0ATgH4uLtznaBLs9XC9OJs0PZmucrntcNyQsG20zmlEd52abrCWyFtz/KMsv5q+L2xNc9lvlqd2zDKfRzYzzOoqhGJavHifHC8r82lvGykblntAl8r9HEZzYbDsmguklXYnufXQP9NXAJEgUuwpamwrlWe4K3DZl8+QW3t05PUNrSJZ8TNDHO5dPp8+PU8N8VrG+4thOsotpr8elvJnf2PAdz/G2MPA3jK3a8H8FT3ZyHEu5hlg73bb/03E7YfAPBo9/GjAD66yn4JIVaZK/3Mvs3d36qRfB6djq5CiHcxV71B5+6OyDcuzewhMztsZoeXmvyrqEKIteVKg33SzMYAoPv/FPtFdz/k7gfd/WApF6nmL4RYU6402B8D8GD38YMAfrg67ggh1oqVSG/fAvABAKNmdgbA5wF8EcB3zezTAN4A8PGVnKzpbVyqhuWV80tcTmqQtkuj27bQOT6+ldr6RrhE0jfPs4ZyZ8NZTXXSvgcAFsEll9ZgP7Xld+/ifhj/ODQwHPal8avTdE4jIg9WI8Uoh+49QG1Ls6SA6Csv0zloRu4953hB0lo7LOcCQH57uGjj9n9+F53T18//Ap35Fc+YHF7i8zbu5pLu6fNhOa8/y2XKfD5cFdOMS6zLBru7f5KYPrjcXCHEuwd9g06IRFCwC5EICnYhEkHBLkQiKNiFSISeFpwsFAoYHw/3Z8u8zrOQ+klBvladSxN9Fi68CACXyuHMMAD42Zs802hHNZwBdiOIg4hnvVUimVf1517i8yIlIm3nzuB4dT/PEFxqhvvvAcAt+7i8Vs7wbLPK2VPB8cJcJLtxA2+yVj8dkQ4nw9IsAOS3hr/vtbSNS7P5TRupbeSDd1Db7JvnqG14lMtydwzuDo4/+VOeSNo3HJadM1ke0rqzC5EICnYhEkHBLkQiKNiFSAQFuxCJoGAXIhF6Kr3l8zls3xEuarMwwbOaSiMkk8d4JlE+w7N/zl2cprY/euGX1HbD5rDU9G+LA3ROKfJ26mWe6TdzjEtvM1u4NHSyFpah6hG5bsf+cGYYAOwa4eeqn+PFFweJDGVt3rMNC/w168vwDMH5Cs86bJ0M9xb0s+fpnEtD/LoauCEsHQPAjr37qK1KMtsAYEspfP3cfjMvOjq+N+xHvo/Ll7qzC5EICnYhEkHBLkQiKNiFSAQFuxCJ0NPd+Ja3MNcKf7k/53N0Xj4XdrMeqdE12+TJKTMVPq/pfEnm8+Ed4Yk8TyQZdl7Trp7hNnfekmmuzXefz0yFd+M3ZIp0ziW+0Y3HJh6jthtI0g0A7NsUPt/mPp6QUz7FE4NaFZ7s4i2+jpcuhesGeotfA/Ui341vzHHVqH70VWorRdSQWjGctLX7wE3cj7NvBMe9wdUO3dmFSAQFuxCJoGAXIhEU7EIkgoJdiERQsAuRCCtp//QIgI8AmHL3m7tjXwDwuwDe0jU+5+6PL3ssOAoeboeUa/NabaOZsDRRz0ZaNUUkiKUqb8m0cwtvKXXN3vHg+MQil/ngXHIpEMkFAKzJX5p6m8tyY5tHg+M5vlSYv8CTQnyGy3xnp7kcNlcKJ2TsqvHXOXORS2+o8CeQibSNqjTDPi61+PXhEZmyVIkkWE3w+oWlSFumcjP83IZr/DmP3rI/bGhE1pda/j9/DOD+wPhX3P227r9lA10Isb4sG+zu/hMAMz3wRQixhlzNZ/bPmNlRM3vEzEZWzSMhxJpwpcH+NQD7ANwG4ByAL7FfNLOHzOywmR1erEY+OAoh1pQrCnZ3n3T3lru3AXwdwJ2R3z3k7gfd/eBgsadfxRdCXMYVBbuZjV3248cAvLg67ggh1oqVSG/fAvABAKNmdgbA5wF8wMxuA+AATgH4vZWcLNPOoL8SzhA72+S1zrZmwi2DRiqzdE5uirfiaS7wtjrvObCX2nbdcH1wfOaFV+icMeNtf5Dnslze+ftw/yKXvHIku6pU4qltv3rtFLWNlrkf1+7ZRG1nCmEJaPIEf136F/g+sDUjLa9afI2rRJ6tZ/jzqpf5x82ZVrgFGACUShuobaHO5dJyLfzcZiZ43brcrnD2YKvV4nOopYu7fzIw/I3l5gkh3l3oG3RCJIKCXYhEULALkQgKdiESQcEuRCL0tuBk2zFXDksyP5rjckdzc3j87kgrof4pnslVbPBMrtvfex+17RgPt+P582eO0TlztbBsCACtHM9QakQku37nGVTVM+Hnnd3EZbJrR8KZcgBQbfFCoLkB3mrolnvC37Oa4QoUZo5MUVutzaW3do4XiKyQtRoYIBcVAPTzdl6VAn9d2pv5t8ar4PPOXwhLjnOzvLjlpZfDxS3LVX696c4uRCIo2IVIBAW7EImgYBciERTsQiSCgl2IROip9OatBurzZ4O2E9M8w6fSCEs8w9dwyejWPJe1hiLVF/eOh4tKAsCGwbB8VYsUL6wtcVshzzOUqh6Zl+GSV6Eefm6VGZ5RliG99ACgHemnNznN5c1Lx18KjpeKXIJaKA5yWz/vp1cbHKK2cjmcIVga5VLkTJ3LVwtN/pplGrzw6Lnzi3xeMSz1zUeKpg7MhyXRZiTrTXd2IRJBwS5EIijYhUgEBbsQiaBgFyIRerobv6Evgw/tDu88XpjhO7HPvh5OXHnyFE/S6L+WJzOUBnnixFCW7/o2FsK7tC3jO6DlSCJMMcuXv5WNvA8bt7VJbbWZMt8N9kiJ70KZ+9+YjbRQeu10cLwUub/UIzXcjjV5Bs2pizyBpkg6fRXafOc8H6mCbI1IEtIsVzzKzhWD3GC4DVgrz8+1e2Q4OF7I8hZUurMLkQgKdiESQcEuRCIo2IVIBAW7EImgYBciEVbS/mkcwJ8A2IZOu6dD7v5VM9sE4DsA9qDTAurj7s77KgEo5g37d4RP+a9Lu+i88b6J4PjfvMLlpKdO8USY23bvoLbF116ntlny3phtE30HwGyd17vbUuJyTMt5wkijzZ/bBQ/7crHEpc1qJDFoyPglMrCR+98mCTmYnqdz+vq4XHqmyqWy6RZP1tmeD8tapQG+HkMD3A+vcCnyYp37mMvy6yA7E7bd7DzhaXAhfA1kIrX6VnJnbwL4A3c/AOAuAL9vZgcAPAzgKXe/HsBT3Z+FEO9Slg12dz/n7s91Hy8AOA5gJ4AHADza/bVHAXx0rZwUQlw97+gzu5ntAXA7gKcBbHP3t1pynkfnz3whxLuUFQe7mQ0C+B6Az7r72z54ubsD4V7BZvaQmR02s8MXlvhnQyHE2rKiYDezPDqB/k13/353eNLMxrr2MQDBLyi7+yF3P+juB7eUevpVfCHEZSwb7GZm6PRjP+7uX77M9BiAB7uPHwTww9V3TwixWqzkVns3gE8BOGZmz3fHPgfgiwC+a2afBvAGgI8vd6C2t1EjUtSmIs/wef/+cK25i2UueR2Z4Blxxye5Qnh9ROKpF8LL5W3+nrlQ5dlaXuPSSizzyiPyCoitv69Ipyw4l5Pmd/GtmM033UhtWfLSHHvix3TOeGStrhnZQm2o8ey7Yi7syFykXlx5mstk2yMS5o5R3lKqkOGvZ34mfK3uXuDS8vgwy3rjcbRssLv7TwGwI3xwuflCiHcH+gadEImgYBciERTsQiSCgl2IRFCwC5EIPf2Wi8FgpMiiRQoKjg2HZaN/tncjnTMfaeFzapZLK0sR6WIraQ2VLfAildUml8mqCwvUlmvwIpaFfD+1sRVpTl6gcza0+Dcba/N8rWYaXPocHhkJj0eKZear/Fw7I5lohcg9ywbCxUUtz4+XWeRS3rYcf60j6jEyNf56LpHrYGMkU27frnBM9B3ha6E7uxCJoGAXIhEU7EIkgoJdiERQsAuRCAp2IRKhp9KbA3AP6xPejkhN7bAsd2ATd//CGM9OKte4zNeMFBQc3RzOvCoOcglwNpKh1qjzwpHNiK2W5T5mLFyockPkbZ3nwwH1eZ49iCr3w8+H+69dQ3OqgHw2Uviywv3YmuVS5CUis/YNhaVBAGg3+GI1l2apbb7GpbKI8oZ2rRwcHzuwlc7Zuyt8LfaRzExAd3YhkkHBLkQiKNiFSAQFuxCJoGAXIhF6XO7V0CaJEC3wdkdohnemN+b4zu7t4+G6dQAwvTBDbfXJc9TWKId3TQsDfDe4Gkn8aHgkaSHS4qkVSZKxVnhNmhE/6vlIBgf4Drk1uR+tLKmvl+HnajX5uTyy819shVs8AYA3wkkt54t8V73Rx2sDtsN5NQCA/AD3Y2mJJ9cUSMuuLbu20znFXNjHjPH11Z1diERQsAuRCAp2IRJBwS5EIijYhUgEBbsQibCs9GZm4wD+BJ2WzA7gkLt/1cy+AOB3AbxV3Oxz7v549FiZDAr94dpf2SKv7VWfDbfBiUlQO4b58f7JHJdxjs9OUtv5s6eD4/OV+eA4ACy2eZ22aiZSjy2SQNN0/rwzHn5JyxFJZokkJwFALnI/aNf4c2vXwmtsEemNta4CgGqOP+d2RLIrk2NW+3gyFDL8XMU8197aLS6vDZBkLgC4bttQcHykwNdjaTosHbYjcuhKdPYmgD9w9+fMbAjAETN7smv7irv/1xUcQwixzqyk19s5AOe6jxfM7DiAnWvtmBBidXlHn9nNbA+A2wE83R36jJkdNbNHzIwnCAsh1p0VB7uZDQL4HoDPuvs8gK8B2AfgNnTu/F8i8x4ys8NmdvjiEv8KqBBibVlRsJtZHp1A/6a7fx8A3H3S3Vvu3gbwdQB3hua6+yF3P+juB0dL/LvDQoi1ZdlgNzMD8A0Ax939y5eNj132ax8D8OLquyeEWC1Wsht/N4BPAThmZs93xz4H4JNmdhs6ctwpAL+3ojNmwtltnT8eiJMkqaya4R8L8hHZYtcYl+VeP8PlkzqpFdZq8zmzTW67aHz5h7I8C9CcPzcjEtscV8lwvh6R8iLZctmIZEePF7HlI5mPk5EswDlw/xfJ894ZkQCHI5Judoa37NqW49X83jvOM9j2jYcv8FIlLDkDQI3IfO3WVUhv7v5TIFglMKqpCyHeXegbdEIkgoJdiERQsAuRCAp2IRJBwS5EIvS84CTa4feXWoW3zmESTyyDyiPtkwYHwpl3ADC6gUtlMxfCLY0WSKsjAJjL8vfTn0XkpBGurmFDRKYcINJbI8MPON+MZJtFZK2Y8JYlGX2FiKRYih+RWnLGdcUSed7tBs+Uq5OinQDQH1mPjYP8mGhEMiMvhf2f38BfZyNFWFuRzEHd2YVIBAW7EImgYBciERTsQiSCgl2IRFCwC5EIPZbeuDTgEcnAiHxVIP2uAMArkUIZEVlr6wA/5nPHwlm802cvBMcBoBnJbLsQkZrmI9lypVZEaiKH7ItIgF7gzzkTKYrJMuwAIJcLy0Yt0tcMAOZb/DVrRgopeuSYBeZ+RHprR9Yqk+MXTxvc/9lF3lsu62Ff+jLhQpQAYO3wddWKFDjVnV2IRFCwC5EICnYhEkHBLkQiKNiFSAQFuxCJ0FvpzQyZfFiSyUfkMCM2y0bcjxTea5V5Ib+xIV6McnM+fMx8tULnbGhzeaoaKeYYK/TYzHF5pUykl0pkfRGRvLKRjDiLSIcZIh16pFimR7LXYvlweeMZcXlyjfRH1ncwcgscMH5dkcujCzfWKuFCppHLFKVM+DqNSdi6swuRCAp2IRJBwS5EIijYhUgEBbsQibDsbryZFQH8BEBf9/f/zN0/b2Z7AXwbwGYARwB8yt159kaXTC58yqxH3ndYokN0Nz7STipSu27Q+FO496YdwfG5JT7nF6cvUtvFGk/GqEZ2VWuRvek2WZN25H09WreMSSEAInkwyERq3jGykR3ySP4J+jP8OihlwtfBUI47P5ThqsDmyCVXiixIHvy1LpC18lbk+iAKUDuSFLSSO3sNwH3ufis67ZnvN7O7APwhgK+4+3UALgH49AqOJYRYJ5YNdu/wluKX7/5zAPcB+LPu+KMAPromHgohVoWV9mfPdju4TgF4EsBrAGbdf52IewbAzrVxUQixGqwo2N295e63AbgGwJ0AblzpCczsITM7bGaHL5aX/UgvhFgj3tFuvLvPAvhbAO8HMGz26zIs1wCYIHMOuftBdz84GqkCI4RYW5YNdjPbYmbD3cf9AH4LwHF0gv53ur/2IIAfrpWTQoirZyWJMGMAHjWzLDpvDt91978ws5cAfNvM/jOAXwD4xrJHymSAQpEYucxgLHmCyHgA0CTtcQCgHXnaMbljjOTIfORWvl2xLc+lkBOTvCXQZJn7f6kZSa5ph5NCahHpqmn8OXssWSfSyilLbNGElogEGMn9wUBEgu0j/vdFkm42ZHnSykhEshuI1K4r5rmPObKMjQa/BpZIQk47UoNu2WB396MAbg+Mn0Tn87sQ4h8A+gadEImgYBciERTsQiSCgl2IRFCwC5EIFqsJtuonM7sA4I3uj6MAeEpY75Afb0d+vJ1/aH7sdvctIUNPg/1tJzY77O4H1+Xk8kN+JOiH/owXIhEU7EIkwnoG+6F1PPflyI+3Iz/ezj8aP9btM7sQorfoz3ghEmFdgt3M7jezV8zshJk9vB4+dP04ZWbHzOx5Mzvcw/M+YmZTZvbiZWObzOxJM3u1+//IOvnxBTOb6K7J82b24R74MW5mf2tmL5nZL83s33XHe7omET96uiZmVjSzZ8zsha4f/6k7vtfMnu7GzXfM7J0ViHD3nv4DkEWnrNW1AAoAXgBwoNd+dH05BWB0Hc57L4A7ALx42dh/AfBw9/HDAP5wnfz4AoB/3+P1GANwR/fxEIBfATjQ6zWJ+NHTNUEnE3iw+zgP4GkAdwH4LoBPdMf/B4B/806Oux539jsBnHD3k94pPf1tAA+sgx/rhrv/BMDMbww/gE7hTqBHBTyJHz3H3c+5+3PdxwvoFEfZiR6vScSPnuIdVr3I63oE+04Ab17283oWq3QAf2VmR8zsoXXy4S22ufu57uPzALatoy+fMbOj3T/z1/zjxOWY2R506ic8jXVck9/wA+jxmqxFkdfUN+jucfc7APxLAL9vZveut0NA550dnTei9eBrAPah0yPgHIAv9erEZjYI4HsAPuvubyvj08s1CfjR8zXxqyjyyliPYJ8AMH7Zz7RY5Vrj7hPd/6cA/ADrW3ln0szGAKD7/9R6OOHuk90LrQ3g6+jRmphZHp0A+6a7f7873PM1CfmxXmvSPfc7LvLKWI9gfxbA9d2dxQKATwB4rNdOmNmAmQ299RjAhwC8GJ+1pjyGTuFOYB0LeL4VXF0+hh6siZkZOjUMj7v7ly8z9XRNmB+9XpM1K/Laqx3G39ht/DA6O52vAfgP6+TDtegoAS8A+GUv/QDwLXT+HGyg89nr0+j0zHsKwKsA/hrApnXy438COAbgKDrBNtYDP+5B50/0owCe7/77cK/XJOJHT9cEwC3oFHE9is4by3+87Jp9BsAJAP8LQN87Oa6+QSdEIqS+QSdEMijYhUgEBbsQiaBgFyIRFOxCJIKCXYhEULALkQgKdiES4f8Bjj+JdOtlST4AAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD5CAYAAADhukOtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAf3klEQVR4nO2da2yc55Xf/2fuw5nhVSRFinJEy3biy9qOV3G92HTrTZDUGyzgBCiC5EPgD8F6UWyABth+MFKgSdF+yBZNgnwo0jqNsd4izWU3CWIUbrup92KkCziWs458kS3LsiyR4kW8c8i5z+mHGS1k4/m/pEVxqM37/wGChs/h875nnnkP35nnP+ccc3cIIX79SRy0A0KI3qBgFyImKNiFiAkKdiFigoJdiJigYBciJqT2MtnMHgLwTQBJAP/N3b8a9fulwayPThaCtvJmg85LWC44nkwko3zjx0twWyqZ5rZEJuxHkvvRaNaprdbcprZkus39yLSozSw8r92OmsPXwyziEomQbd3D50smw2sIAIkEv/cYuP+tFvej2Qg/t3abv2bt9rXdA5stfg232/z1bLfCz83Bn1erFT7e1loN1a3wk77mYDezJID/DOBjAGYAPG9mT7n7q2zO6GQB//67Hw3a/t9fLdBzlXIfCI4X+vrpnHTERVos8IA+NDBJbUN9U8HxwYEBOmdu6QK1nbv8K2rrP1KmtpEjW9SWzob/gFS21uicXI4HYNIGqa3dalJbq7UZHB/qD68hAGSzfdSWQvh4ALC+UaO25YXwdVAt89dsu1aktqgAXF2Z48fc5j5ulNfJufj6rq6Er4//9V9P0Tl7eRt/P4Cz7n7O3esAvg/g4T0cTwixj+wl2I8AuHjVzzPdMSHEDci+b9CZ2aNmdtLMTm6s8rcyQoj9ZS/BPgvg6FU/T3XH3oG7P+7uJ9z9RP9Qdg+nE0Lshb0E+/MAbjWzaTPLAPgMgKeuj1tCiOvNNe/Gu3vTzL4A4P+gI7094e6vRE5KAElycy8c4rvPp174u+D40cP30TmlQp7aqnUuu1Q2+W5rZTAs4zSNS2hDk3yJbz3KbZUcVyc223xnvb0R3lnPtsKSJwB4lj/nRos/t1SS71oP9x8KjvdlIs61VaK2ja0Jattc3qC2C2feDo4ns1wKQ5pLaDOz89RWKnJVo7zJpcNmk83ja0WVvIgk1j3p7O7+NICn93IMIURv0DfohIgJCnYhYoKCXYiYoGAXIiYo2IWICXvajX+vNBpNzC4uB22T00N0XjIZlmSGizdHnY1aZt86R21vzfJkhiOTYRlqy7lkNJRapbZm/2vUliiG1wkAag2eyLO5Fk6eGE7xJJNMhBzWP8DltVKeJ7XUGuH1rze5TIYml8PWF0apbfUcv4zPnHwxOF44ypNMjtwyRm25iCSqjU3+3GpVfj5Y+JhLy5fplHqjGhxvRWTX6c4uRExQsAsRExTsQsQEBbsQMUHBLkRM6OlufLXawpkz4fJCx27mu63T778pOH7ujbN0ztY2T6wplPjO9GYlXCIIAF5+/aXgeHHyVjpnpMRr0DUTfOd05hzfjYdz/4cy4bJaUSWOchm+9sMD49RWXueJH6+dDp9vqHCYzin183tPY4QnL23N8mPOL4TLak1P8eP1FbkfzTZf+3qVX3OpDD/m6ko4Jra3wjvuAGDM/YhEGN3ZhYgJCnYhYoKCXYiYoGAXIiYo2IWICQp2IWJCT6W3et1x8QJrdVOh8zZGLgbH6wkuk7VSPBFmcGiY2m59/zS1LSyGz7dFkhIA4NQrXEJrJnhdssFDXM6D8+4o6WzYl6Fh/pyLfeF6cQCwucFbQy0t8NLg7Xr40sr1R9SZq/NkqJeqPOmpNjxCbYmxcA26vhx/XVbXVqht7hJf+2aNy5uNGr9GylvhBJpmM0ouJcUco9qeUYsQ4tcKBbsQMUHBLkRMULALERMU7ELEBAW7EDFhT9KbmZ0HsAmgBaDp7ieift/d0KyF622tLfLssMZ2uI5btsBTfIYOc6nJs1zSGLuF11zbaIezmsoV7nse3I/lZS7HlDID1DY5Fc7kAoAGFoPj621+rq2VJWrLJbkfZa6WotQfloaaGV6Tb3GL1357+id8jdt+idqOZ8LHTDrPelu6xGvJ1av8mkumuOxVJTX5AMCJXFYs8bU3D8+xiPv39dDZf9fd+dUihLgh0Nt4IWLCXoPdAfylmb1gZo9eD4eEEPvDXt/Gf9jdZ81sDMDPzOw1d3/26l/o/hF4FAByJV7ZRAixv+zpzu7us93/FwH8BMD9gd953N1PuPuJdF9Pv4ovhLiKaw52MyuYWenKYwAfB/Dy9XJMCHF92cutdhzAT6wjG6QA/A93/99RExIwZEmrm0aFS0NDh8MFBWcXFuicjeostXniDLXdc9dt1PZb/zzsRyHDM7ka29x25kxEpt8qb/2Tz5OMJwCtTDiTbmbjAp0zUuKy0OQQ/+hVGs5TW4bcR7aaXLp6cyacoQYA537OMxzrm29Smx0Nz9te5PLaxPt4Ucn8YMRH0QS/hhNJPq+vLxwT9QhJN50I+2i2D9Kbu58DcM+1zhdC9BZJb0LEBAW7EDFBwS5ETFCwCxETFOxCxISefsul1WpjczWcOdZ/iEsyyxtzwfFckWcZlbciiv81eaHH1159i9rmZsPyVamUo3PGx49S29gxLsdsv71FbRcvc6kpXwr3jxsZ7adzhvojJKPEDLWlMvx5ZxLhjK1mnRe3bDf464k2z5a7/Te4LPeB6bCt1MeLZQ6N8h5829sFaqvX+eu5ucxl4lY9fL58hkuAaJF4Ua83IYSCXYiYoGAXIiYo2IWICQp2IWJCb3NOHbB2eMc1EVG/q1xZC46Pj/OaZUnw+l2XLvHEjw3nO8wbq+HEhFSOJ60sb3HbQIm3O8oVeZJJ/8gUteWz4Zd0fGgiYg6vxwbwtWo0uKrRaITbK3ma3182VkeprZ+LCXjwY7z9U5bU5Js4zGsNZiLW48xLfKd+ZXWb2qobPOnJiTo0cIj72GKKknbjhRAKdiFigoJdiJigYBciJijYhYgJCnYhYkJPpbd2u43y5mbQltzif3dK6bCbjW0udSTAbfksT4JIGJfeSkPhtkutJE+6qdS59La9wGuMTR+5k9oG8lyiQiOsvTTWuYwzVIhIuEhzH7erPFkHqfCatJP8kjt3NlyLDQCGxnndvft+k0tvedwaHG+0wglZAFDd4jJws8ETWuqV8LUNANkk9z9fCNuSEYqoJcISoBnX3nRnFyImKNiFiAkKdiFigoJdiJigYBciJijYhYgJO0pvZvYEgN8HsOjud3XHhgH8AMAxAOcBfNrdeZGwfzgWkMyG/75Uqjy7qvx2WNKoLfFMorFJLkEUItonrZMMOwAopcKS3fA410guX+bnSrYisppq/JjVMpcVsxaukZZIhmVDAFhZ4sdLFXhm2/ImlzArZSJtpbgfF2f55TgxxevM5Yq8lVOqGpYOKxUuN3qN+zh1hEuRAxES5nxETcFCMTzPE/xcpIsaUhFZhbu5s/8pgIfeNfYYgGfc/VYAz3R/FkLcwOwY7N1+6yvvGn4YwJPdx08C+OR19ksIcZ251s/s4+5+pb7zPDodXYUQNzB73qBzd0dEfQwze9TMTprZyUaNf/4TQuwv1xrsC2Y2AQDd/8O1fwC4++PufsLdT6Qjyx8JIfaTaw32pwA80n38CICfXh93hBD7xW6kt+8BeBDAITObAfBlAF8F8EMz+zyAtwF8enenc5iHs6G8yt/ij/aHWwYlKzzbrLnJM6japCgjANSrPHNpaSksn3iaZ0kV0rxd0OjYJLWNjfA2SaODvNAmGuF3T+kkb03USPIMsI2IgpkzC7xV1vxMODtshSeNoVm7m9pKg9yP+aVXqW3AwrJWX+YOOmds8jZqmzxSojZr8ozJzdt5AdF6M7z+LeOS6HYtLDvn8s/ROTsGu7t/lpg+utNcIcSNg75BJ0RMULALERMU7ELEBAW7EDFBwS5ETOhxrzcHGtWgKZPiUlkxE84cS7e4+806l/IsG/YBAPpyPEtteTGcmdfih8PtNx+ltiMj09SWSnGprLrF1yqNsMRjyYheenWeIfj6WxeobW6N2xKkD1x7jfs+7DyL8bYhfl9qbvMXoJ4Ky2HJxhKdYwl+rkyen2v8ULi4JQAc6r+J2ja2wgmjtQbPKiykwkU285kf0Dm6swsRExTsQsQEBbsQMUHBLkRMULALERMU7ELEhJ5Kb8lkAv0D4SykXIFnBXkqLBsVBnnBxmaLyxbNJi/+V17nmUbJcliiyqa476hwqQkVntlmKd7PrdXkzzubDtsaLV7Qcz2iVKhv3E5t+cYwt3n4eWeTR+ic+bWT1HYsxTP9pnJ3UVsjEX7elW2e6bden6O29govfGltXvhysMBt7URY7t3c4PJxpjAUHHeuourOLkRcULALERMU7ELEBAW7EDFBwS5ETOh5IkyyFt4ubBmvJ9fw8I7qdsTO43aZ77inM3xiP6lZBgDZRLi+W6bZT+cUku+jtmTtOLW1K7wUfz7N2xOhFf77bS2+sztR4j4eHnyA2iotXq9vayWc1PLW4tt0zlDqFWobcP663DTG1/H0/JvB8YSFd7MBIG1cuahHlEOvVritUuS14VqZsJqzUY2oabcWVgxqDa4y6M4uRExQsAsRExTsQsQEBbsQMUHBLkRMULALERN20/7pCQC/D2DR3e/qjn0FwB8AuNKT50vu/vSOZ2sA7cWw7NXOt+m0eoLUrcvzOm2ZdLhGFwAk6vxc3qxTW7sZXq6xyXvpnHTr/dR2+RJPoEmnIurr5blM2aqHE4AqFf68cnku8SQirpCBwQlqy/SHZcqVUb72mQKX1zaqPFtnofIytRUPh+9nuRaX3mpVnmiUbPGWXQ5e529+5e+pLZsOt5QaHubtsBKNsI+pFG+eups7+58CeCgw/g13v7f7b+dAF0IcKDsGu7s/C2ClB74IIfaRvXxm/4KZnTKzJ8wivo4khLghuNZg/xaA4wDuBTAH4GvsF83sUTM7aWYn6xG13IUQ+8s1Bbu7L7h7y93bAL4N4P6I333c3U+4+4lMhm8eCCH2l2sKdjO7ehv2UwD4dqgQ4oZgN9Lb9wA8COCQmc0A+DKAB83sXgAO4DyAP9zNyXKZAu6Y+s2grdXH2y610uF6ZhODvIZbboBnolmbSySXL/OWRitbYckrmbuFzqlWeYZahbTCAoBcntc6q9f5vMpWuIbe1hbPAmxFZMS1Wlzm6y+FJSMAyBfDsuLsZb7XW01y6W1u6zK1FZd5FmNyKOxHY+M8ndOX4JLuUP4YtaUy/Lpq1vgxC9mwTDx1mLeTSiNcyy+b4TLqjsHu7p8NDH9np3lCiBsLfYNOiJigYBciJijYhYgJCnYhYoKCXYiY0NOCk335Iu6+58GgLTHAZZxEsRAcH8xxqSaZ5VJeErwl0yuv8xZEyxcWguNvzfOWUekUl8nyRf4lo0yDF3P0BpdxttbDhR6bztthZTJ8PbbL3I9z58PFHAGgmAv72GrzS67c4Jl5lzeXqe144xi1rcyGi0deOH+azknX+esyWAxfAwAweWyA2tabXHJsD4av4+F0hNyYDcdL53tuYXRnFyImKNiFiAkKdiFigoJdiJigYBciJijYhYgJPZXesn0F3HL3h4I2T/NsnVYqLJ+kkjyTK9nix7M8l1a2X+YZYLMXw/LPSpXLQqUiL17YnOc9xfqyfN7Y8Bi1jfSH5Z/yNl+rqCy6RpXLYeW1DWqrtsPZcol2xPGqF7mNHA8ANtpcHrREOCMubbyX3qtnuaQ4cIifazXF5eN0gb/WZSKzLq/yvm3T4yeC47Umf511ZxciJijYhYgJCnYhYoKCXYiYoGAXIib0dDc+kUyibyC8W9xs8787LVbaK813aNvOk1NyEQkojYhaZwtvvBocd5KoAwCjh++ktrOvX6K2ivHWULbFk1pSR8K7zwZep23uwnlq29rmO+7b23y3OEnq2pnz3WLk1qjJSR1CALg4z3fxhwbCr83Rm6bonFqNr32lzp9zvcZtpWHuf7UWTl6pb/A6hFmEFYNGk18burMLERMU7ELEBAW7EDFBwS5ETFCwCxETFOxCxITdtH86CuDPAIyj0+7pcXf/ppkNA/gBgGPotID6tLuv7nS8BFG9PKLNUIPUJmu2eAJHO8MliPYmT0qwMk9qaZbD9ceGRqfpnNplXrNsa5FLRs2IFlWNMpfDlsn5klkuN1YqPLmjUuHn2tzma5VMkEsryV+zqWl+OY5N8HZeEZ3D4B6WHLca83TO9LGbqC3VCrddAoDt+ivUlkjNUFu9FZb6CkUuD7bJJUyebscHbvoHmgD+2N3vAPAAgD8yszsAPAbgGXe/FcAz3Z+FEDcoOwa7u8+5+y+7jzcBnAZwBMDDAJ7s/tqTAD65X04KIfbOe/rMbmbHAHwQwHMAxt19rmuaR+dtvhDiBmXXwW5mRQA/AvBFd3/HBznvfDAKflows0fN7KSZnVxb3fEjvRBin9hVsJtZGp1A/667/7g7vGBmE137BIDF0Fx3f9zdT7j7icGhoevhsxDiGtgx2M3M0OnHftrdv36V6SkAj3QfPwLgp9ffPSHE9WI3WW+/DeBzAF4ysxe7Y18C8FUAPzSzzwN4G8CndzqQu6NC6p3VK7z2W7UebmnU8vA4ADQj2u00weugba9zGSqRDcthqQJfxrUlLl0tzUXIMc4lqmaLZ/QVByfCc6pcemvX+fG2KzwLsNoKvpkDABhpKZVKc23o0FTYdwC45TYub84vc3kzQxQ7S/A59S1+7Rwe+g1qQ2KSmrzIr4PXXwt/vJ0Y5dtghWy4ZVQq8Qs6Z8dgd/efA2Ci70d3mi+EuDHQN+iEiAkKdiFigoJdiJigYBciJijYhYgJPS046QBaJJurHZGtk8uE2+o0ahEtjdbmqG2lwQsb9o0MUts/+/g/DY5f2ubfDLy4Mktto8d5ulbbIgpwNrhUVke46GGhn8tCixf5WlXrXHq79d5hakM+/IIur/NMucExXugRxgs2Vso8Q3B4NFxwshmRoHloPFwUFQBGR/nrkkgcora1SlgqA4DRwfAxs0k+Z/FSWHZuNsLFKwHd2YWIDQp2IWKCgl2ImKBgFyImKNiFiAkKdiFiQm+lt7ajXg9LAxbhirE+cC0+J53jslZuMCzlAUBxi9s2z4ULRJ64c5TOOX4nzzZDgmc11Sv87/Dzz/JClUtLYYkqX+LPa7vCe5QNRPQou/tD76O2txZfDxtKXCabvOkwtQ0N8Yy4YoHLipVmOLttczuiIKnz5zyz9DK1DQ9y6a22zeW8gXy4zkMjIhO0Vg37346oOKk7uxAxQcEuRExQsAsRExTsQsQEBbsQMaG3u/EOtOrhHcZWlddcS6XCO4yW4jXoSv08qaJV4YkwsxdOU9sbL58Nnyv3ATqnOszbDFVIWysAGMnzFkSJNl+r0aHbguPZfDghBABqEckTA4d4YlCjyf3f3FwKjh+Z4sqFRbTz+tu/eo7a0n3c/7GbwtdbJsnVmvlLPPmn3uKJPCtlrgoM53jbqIFiuFBeM8Xvxc12+DknI+bozi5ETFCwCxETFOxCxAQFuxAxQcEuRExQsAsRE3aU3szsKIA/Q6clswN43N2/aWZfAfAHAK7oFF9y96ejj+VIpxtBW6PM66qlMuFkkmorLO8AwKWFU9T22smXqK2ULFJboZELjp/+mxeD4wCQPcYTP5Yj5Ma+41zyOjbFa5PNLIQTJFr1Jp2TymSobZxIVwDQdp5A094OH7MvwSWvt15/g9r+7jneKmvqDn4Zt0vh+1m6OULnNDf4egyP8nOdf+tNanttnbeU+vjvhmsbHp7i8vFWMywBWoLLkLvR2ZsA/tjdf2lmJQAvmNnPurZvuPt/2sUxhBAHzG56vc0BmOs+3jSz0wD4NwSEEDck7+kzu5kdA/BBAFe+zvQFMztlZk+YmZqvC3EDs+tgN7MigB8B+KK7bwD4FoDjAO5F587/NTLvUTM7aWYn19f411SFEPvLroLdzNLoBPp33f3HAODuC+7ecvc2gG8DuD80190fd/cT7n5iYJBvOgkh9pcdg93MDMB3AJx2969fNX51naBPAeD1eoQQB85uduN/G8DnALxkZlc0pi8B+KyZ3YuOHHcewB/udKCW17HaCNdPq9d4BtsWUeUW1riEdmn1b6ltaZ5/nDicvpPaRiwsAW5EZNGl58MZTQCQqXA5bKZ1htre/xFe+225HfZl9RJ/qUcnuLx294f4/SBXCEuRALC0FM7au3yZS1CFIq+Td/vtU9TWP8VlW2+Fr6tWg6/H/CxvK7a1wufVa1xKXSuvU9vs7eHadYXSGJ0ztxSWlhtNHke72Y3/OYCQWBypqQshbiz0DTohYoKCXYiYoGAXIiYo2IWICQp2IWJCTwtONtsNrJbngratDV6YsVUJSyFrZZ5l1K5yCWKgj7fI2V4PF5UEgMJwWHpLkIKBAJDO8Sy6/gZvCZQY55ltQ6Nc8uofCGfZXXidy4MG3qJqZYHfD2pNnnU4fjgslV2c5TLZ8hKXvDzNi1uO8eVANhtej87XR8LUajxzbO7MBrUV0tyR2+6dprYykeWWVvl1ms6G5VIztX8SIvYo2IWICQp2IWKCgl2ImKBgFyImKNiFiAk9ld7arQYqm2GJzZK8v1a6FM4mGuiLkE/OcemqNBouegkAjUM8K8vSw8HxyeG76JyZWS4prr/BM6HuOHIHtRWLXF45OhWWqJYv8ed17lV+vMoGl+WSfVxGy+TD0uf4ZHgNAWB+hkt5tTaX5eDcf0NYRusf5IUvp4/zokuXz4azNgGgSQqSAsDGSrgQKADMz4XlvFqLy6UjpAefJfjrpTu7EDFBwS5ETFCwCxETFOxCxAQFuxAxQcEuREzoqfTmzSoqK68FbckslyZqFpZPMiUudUzcOUltjQYvsNjM8r9/7fVwdtvGIpegymvcVpnjmXkvPc8LTo7085ctkQ5n2T3wIJcij02PU9vwKH9d+se4fJUfCb82icRhOmdplmeGLa7wbMR29gK1oZEmk3g/t0wftxl/yigVebZcu71JbeVyuPBoM8ELkuZy4T5w7Rb3QXd2IWKCgl2ImKBgFyImKNiFiAkKdiFiwo678WaWA/AsgGz39//C3b9sZtMAvg9gBMALAD7n7rxQGIB0wnA4Hz7lNqkV1nEyvLPrKf63KjPEd7rrq7zN0PYiNWH19HL4XOWIOnO1EWprpiPqu0UsZbvFd9ZXF8JJQ5sNfrybp8PthwCg1uA7wisXw+sBAIlyeCFzRf6cp6fvobbxI+HdZwBYrfIt8suXw7vg7TpXcpIZfi3e80+O8XmtVWprI0KVIS2bjFz3AGAJkvzDXd/Vnb0G4CPufg867ZkfMrMHAPwJgG+4+y0AVgF8fhfHEkIcEDsGu3cod39Md/85gI8A+Ivu+JMAPrkvHgohrgu77c+e7HZwXQTwMwBvAlhz9yvv8WYAHNkfF4UQ14NdBbu7t9z9XgBTAO4H8IHdnsDMHjWzk2Z2cqPMv40lhNhf3tNuvLuvAfhrAL8FYNDMruy2TQGYJXMed/cT7n6ivxjxXUMhxL6yY7Cb2aiZDXYf5wF8DMBpdIL+X3R/7REAP90vJ4UQe2c3iTATAJ40syQ6fxx+6O7/08xeBfB9M/sPAP4ewHd2PJkncagZru9Vm+AtlBZnwrW4FmcW6JxmH//IkKpHtF2a5UkyuRUiQyUi3rE0+fMq3MIltJHjvK5aMsJ/LIbXav4cX6vWKpeFxqYj1qrN653laxPB8ZV1Xksu3eIJLSPjPFnn8DCv19eqBt9w4uIsX498Mar1Fn+tm1UulaXSEZrYUvi1rq3za7FRDV+L3ubXzY7B7u6nAHwwMH4Onc/vQoh/BOgbdELEBAW7EDFBwS5ETFCwCxETFOxCxATziNY51/1kZpcBvN398RAA3u+nd8iPdyI/3sk/Nj/e5+6jIUNPg/0dJzY76e4nDuTk8kN+xNAPvY0XIiYo2IWICQcZ7I8f4LmvRn68E/nxTn5t/Diwz+xCiN6it/FCxIQDCXYze8jMXjezs2b22EH40PXjvJm9ZGYvmtnJHp73CTNbNLOXrxobNrOfmdkb3f/D6YH778dXzGy2uyYvmtkneuDHUTP7azN71cxeMbN/1R3v6ZpE+NHTNTGznJn9wsx+1fXj33XHp83suW7c/MDMeJ+qEO7e038AkuiUtboZQAbArwDc0Ws/ur6cB3DoAM77OwDuA/DyVWP/EcBj3cePAfiTA/LjKwD+dY/XYwLAfd3HJQBnANzR6zWJ8KOna4JOjdhi93EawHMAHgDwQwCf6Y7/FwD/8r0c9yDu7PcDOOvu57xTevr7AB4+AD8ODHd/FsDKu4YfRqdwJ9CjAp7Ej57j7nPu/svu4010iqMcQY/XJMKPnuIdrnuR14MI9iMALl7180EWq3QAf2lmL5jZowfkwxXG3X2u+3geAK/WsP98wcxOdd/m7/vHiasxs2Po1E94Dge4Ju/yA+jxmuxHkde4b9B92N3vA/B7AP7IzH7noB0COn/Z0flDdBB8C8BxdHoEzAH4Wq9ObGZFAD8C8EV337ja1ss1CfjR8zXxPRR5ZRxEsM8COHrVz7RY5X7j7rPd/xcB/AQHW3lnwcwmAKD7f0Rvmv3D3Re6F1obwLfRozUxszQ6AfZdd/9xd7jnaxLy46DWpHvu91zklXEQwf48gFu7O4sZAJ8B8FSvnTCzgpmVrjwG8HEAL0fP2leeQqdwJ3CABTyvBFeXT6EHa2Jmhk4Nw9Pu/vWrTD1dE+ZHr9dk34q89mqH8V27jZ9AZ6fzTQD/5oB8uBkdJeBXAF7ppR8AvofO28EGOp+9Po9Oz7xnALwB4P8CGD4gP/47gJcAnEIn2CZ64MeH0XmLfgrAi91/n+j1mkT40dM1AXA3OkVcT6Hzh+XfXnXN/gLAWQB/DiD7Xo6rb9AJERPivkEnRGxQsAsRExTsQsQEBbsQMUHBLkRMULALERMU7ELEBAW7EDHh/wNXl6noJsZxCAAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD5CAYAAADhukOtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAfP0lEQVR4nO2da4xlV5Xf/+s+6/3q6kf1224b242N26bGD/B4PMNgGWeIYZI4oAg5EpkeRYMUoskHi0iBSPnARAHEh4ioPVh4Rgw2GXDwMM5kwIOwmAFD27RfeLDbdrf7Xf2ox626dV/nrHy411Hb2f9d5a6uWw3n/5NafWuvu8/ZZ5+zzrl3/+9ay9wdQohff3JrPQAhRHeQswuREeTsQmQEObsQGUHOLkRGkLMLkREKK+lsZncB+DKAPIA/dffPx96fy+e9UCyGt+UW6Ri2lXrC22pvkJsatSa1eaRjPh++N7J2gA4dAFAkcwEASZpSWytpUVuhED6laYtvL20m1BY7tmKpxLeJ8P6SFh97kvAxWuS8xOTjJAkfWy5yXA6+vdi+LlTGNgsfW460x/bVqDfQaraCHW0FA8wDeBnABwEcBfAzAB9391+wPqWeHt+4dWfQlnN+4ef78sH2bVdNRMZHTTj06nFqS1N+/xscHiTtPbTPQCk8dgCYmNhEbTPzFWo7OzNNbWPrxoPtjelF2mf+1FlqGx0MHzMAbNqxhW+zVQu2z57l+5qvLFBbPvJcatb5zWp2bjbY3jvay7eX8IdBs8ltScrH4RFbqRg+tt4efl01Go1g+yvPvozqfDV49a/kY/xNAA66+2vu3gDwMIB7VrA9IcQqshJn3wLgyHl/H+20CSEuQVb0nX05mNleAHsBIE++TwohVp+VPNmPAdh23t9bO21vwd33ufuku0/m8vz7qxBidVmJs/8MwJVmdpmZlQB8DMBjF2dYQoiLzQV/rnb3lpl9CsD/QVt6e9DdX4x3ArwZXv2PrWQuktXRkyf4qvSG8X5q6ynEpDK+SltMw59M6tNV2md0fR+1bd24jtr6e/mpqc6dozbU54PN11zDl1M2ve9qahvoLVNbeYDb6ml4tbhe30r7zM1wBaJofD5OHz9Nba8fDst5pbEh2iffwz+BJhY+LgDoHeKr5z1lLlMO9oSv1WLka2+ahv3o1OH/78P1/2NFX6Ld/XEAj69kG0KI7qBf0AmREeTsQmQEObsQGUHOLkRGkLMLkRG6+pM2M0O5FN6lJzxyJUlIsE6LSyQbRsMBIQBQO8elssV5HpXVkw/Lcn19XF675qorqO3Kd+2kttlIIEyxJ3KPzoXnavd1fF+X7dxMbY06D07xHJ+rHDk1LOoRANIGl1+bC1zyaizwgKJbatcE263IZbIcCbwCgKTEA2Fy/DJArsiv75KF5+RCot7+19f+ho+BWoQQv1bI2YXICHJ2ITKCnF2IjCBnFyIjdHU1Pp839I+Ed1lI+X1nMAmvnPaW+YpqJF4BfQXer1abo7bq/Jlgu/fxsU8d5/v6ecJVgVqjTm3rNmygtomt4ZXpic1cnegd4WPk4RtAJLYDPSQdlzNlBUBzgR8zevnO6qVIPrl6OBAml0Qu/TJfBe/dMExtrV5+bPXIBekW7pdG8hCmTo4rz8euJ7sQGUHOLkRGkLMLkRHk7EJkBDm7EBlBzi5ERuiq9FbqLWDnuzcGbeVapNxRJSxNHDs2Q/v88jleeSTn/LDrc1wOs1a4qkqOyDsA8Pr+cEUSAHiDBAUBQItIKwAwvpFLb9NEeutP30P7bBgKB4sAwKZI1Zq+MpeaykROalQilWkaPLCmMcelq/lDPAfd3FQ4T2GjEq5YAwCL4MEu4+/aRm25SJWZng0D1GYjYZnSIrXDiiTSKFIISU92IbKCnF2IjCBnFyIjyNmFyAhydiEygpxdiIywIunNzA4BqABIALTcfTL2/uGRQdz1kd8M2hYOTdF+P/7fPwm25yP50apzPJ9ZkvB7XC+4nDTcF84V1l/k+1qX54nJRvp4BBUKkSKYTW7LHQtH7R347t/TPocP/ILa7rjzfdR27dU7qa2/GB5jaZbLa3aGz+PZN3jJq9o/nqC2hZNhWa5W5xLg8Tku6R5+5Qi1Fdbx89m3fZTadn/wumB7sY+X12omYWk2otheFJ39t909HPsphLhk0Md4ITLCSp3dAfytmT1tZnsvxoCEEKvDSj/G3+bux8xsA4Dvmdk/uvuT57+hcxPYCwBj6yPfUYUQq8qKnuzufqzz/xSARwHcFHjPPnefdPfJgSFeM10IsbpcsLObWb+ZDb75GsCdAF64WAMTQlxcVvIxfiOAR61doqYA4C/cndeeAdDbV8S1e7YEbQcXebLB2elwJNq6vkHap9XkkUtnKlzGmRjhiQ2vGAnvrwAuGRWNT/HoUCTRYy//FJRE7tE9PeHIq/5+Hg81O8Xn45ff/QG1jZyMRNKNDgXbWzUevZY2IlFei5EIu5TbqjNEKIpIVMksj3ycOcPLcvWd5lJwc4b3q99webA9v5NfOwm/vCkX7Ozu/hqA6y+0vxCiu0h6EyIjyNmFyAhydiEygpxdiIwgZxciI3S91tvwcDhy7MwZniCymAvLUAN5Ll1NpzyqCc6TDZacyz/bB8Pj6C3zKLRG5HZab/AxViLyT6mXS45eDI+/z/hcbRjndeBKhYisdeQktZ2YCkebtRIuveVyPGEjnM9xIVKbbXAsvM36HJd6+yI1BM/N8wSi1VNcwhwe5Mc2YOHotiQXScBJTotHojb1ZBciI8jZhcgIcnYhMoKcXYiMIGcXIiN0dTXeLIfeUnjl0Vo8mKQyHc4JlousxheMRwp4i9/jWi1epqfZJDno+nhURTHP91Wp8MCJEgloAYDBAX7cxVJ41XphYZ72QcIvg7ERHpBTq/MV7YSczmadqwy1Bb6aXanwfn39PHhpdCB8Pqci5aR6enjeQE95QEutwa+5I29w5eKyI2HlYsPOrbRPkobn3l2r8UJkHjm7EBlBzi5ERpCzC5ER5OxCZAQ5uxAZoavSG9yBZvjH/ZEKSiiSe9LIMA8I6Uu5PHVkjkte9YgMVamFB1ksclmoUOYlfFpNLv9s3cZll+F1Y9R25mw4oKgZ2VcrchU0G7xfucglrxrJKZgs8rmqRoJT5s6Fy1oBgLciQSbrw2WXmuQ6BID5BS6hVev8Qm22uOxVi+Sue/3lcEmp8Vs30z4FUl6rkxMyiJ7sQmQEObsQGUHOLkRGkLMLkRHk7EJkBDm7EBlhSenNzB4E8HsAptz92k7bGIBHAOwEcAjAve4+vdS20lYLc2fDb1sg7QAwSso89ZAIOgBo1Ll8kha4fFI1nhduuh6+Nw4OhaPhAKAYkUKG+rlkNDLMI68GB7jkNTsTPrazczx3Wh480m/9GJc3Y9RqREZjydMANBo8enB+nucNnI9E9JXL4blKcvy8nKlwmWyaHReAWpOPv9bk/Y4fC5eoil/D4XlcaQ66rwG4621t9wN4wt2vBPBE528hxCXMks7eqbf+9kDjewA81Hn9EICPXORxCSEuMhf6nX2ju5/ovD6JdkVXIcQlzIoX6LydGoN+UTCzvWa238z2T5+LZEsRQqwqF+rsp8xsAgA6/0+xN7r7PnefdPfJ0TG+ECSEWF0u1NkfA3Bf5/V9AL5zcYYjhFgtliO9fQPAHQDGzewogM8C+DyAb5rZJwEcBnDvcnbm7khJUr5mJKHg2EBY/pmd4ZFQpxe51DS+IxwJBQCj/VxGO3k0nDRwqDZB+5QLfHvrxkaobaAvkkwzzyWeoaFwv+NvcOlqYYHLUGkak8MiySOrYVvKg+gwPcfHOFPhHVPntsLJsKxVIqW8AGA+5RFxsy1uq0dKh9VTbqul4Qi2VspltIRFMUYSTi7p7O7+cWL6wFJ9hRCXDvoFnRAZQc4uREaQswuREeTsQmQEObsQGaG7td5gKJD7S9H4UBokeeFchf8ib9F5xNBtH3wftb17N5fRfvT1x4PtZ47xSLmJ4SFqGx7kPzJqNLgMVY/IP2kSPu56PaJ5JVxeO3uO118DqTcGAJ6Go+8W5vm+Zmb5MSfGIxxzEXnz5NmwPDsxws8L+ng0YiVS662eRmoIWlheA4B8X/g6SLhaBzMusTH0ZBciI8jZhcgIcnYhMoKcXYiMIGcXIiPI2YXICF2W3nIoeziR4qb1u2i/p5NTwfZp8Kirze/eQG3vu2M3tV19Da+vta4vPF1/840naJ+5GS4PVhd45NW5MzyirxFJXuiF8P27Uuc6zjyJRASAUSJ7AkAZPHFnQuTBmUh0YyNSK61Y4lGAtSYf/3QtLPUVI4kvF/NcEl0ErxPYAJcVqy1+HeQHw7JiXz8/5oREt1kkkaae7EJkBDm7EBlBzi5ERpCzC5ER5OxCZISursaniaM6F145zZV5YEKdxCVs3rGN9rnrX95CbVdcNU5tpV6+Svvu28Kr+K3ILP7ogb+itgOvvkZtVucbTVp81RelcMDFuciq+thoJN9dLy81tTjHg0Iqs+HV54VIPE4+z4+53uIdZ2s8gKaaC8/HS8dO0z5vnOH7qkSChtJI/rc6ImXAxoeD7QP9vATYuXmmCqys/JMQ4tcAObsQGUHOLkRGkLMLkRHk7EJkBDm7EBlhOeWfHgTwewCm3P3aTtvnAPwBgDf1i8+4ezhB23k0W00cPRsuofQPz/8D7bd+V1iauHfv79M+l+/m8poVeM64ej0S6NAIB35c+95raJ/Dz7xKbd9/5O+ordTgQTLNOg9AST0cgDLcw6WfbRNbqA2RXGfzDS7nsQCUmXoklxwfBYpFPo5KkY+jOBKWr44cPUv7nKzw7Y1v5wFWx49yOa/V5DnochaWN+emubRZa4XHmEZKRi3nyf41AHcF2r/k7ns6/5Z0dCHE2rKks7v7kwAiKUaFEL8KrOQ7+6fM7Dkze9DMeFlUIcQlwYU6+1cA7AKwB8AJAF9gbzSzvWa238z2z83yxAVCiNXlgpzd3U+5e+LuKYAHANwUee8+d59098mhYf5bXyHE6nJBzm5m55dN+SiAFy7OcIQQq8VypLdvALgDwLiZHQXwWQB3mNketENsDgH4w+XsrFguYdOurUFba4BHGu2ZvD7YfsX1m2ifxHnOr2bCo6QapHwSACAflq9KA3wat193JbXNP/oDais0uYQyt8CloRLJQbfn6stpn52XcdvsAp/HhSkuYZ6shufxVJVHjeXzXFLMF7gMNbCJy1rvvztc6uvUX/2U9jnePE5t9/yr36W2J//ux9T2kx8eprZjRLJr1rfTPkbLSXGJdUlnd/ePB5q/ulQ/IcSlhX5BJ0RGkLMLkRHk7EJkBDm7EBlBzi5ERuhqwsl8MY+RibGg7d/8+39N+5V6w/ekZo7LMblIaaJc5LB7ewepzT28zVbKpbDNO7g8+K5ruCx39HkeQeUJ31++GM7O2SjwpJIHXuWy0NTMLLWdPM1ludOzYSl1jkpGQC7PpbyBHi6J3vzbv0ltN33o5mD7j599nfapHjxCbf0jPAHnh3//dmp7+cVHqe3A/vDPVO74ML8+Nu0M/0I9n+PPbz3ZhcgIcnYhMoKcXYiMIGcXIiPI2YXICHJ2ITJCd2u9eYqFelgu6x/j0lCKsOzCpDAAsDy/j7XqPPLKPXb/C0eiNZo8im5kI5fyPvzPPkRtD598jNqqM5FabwhLW2dzPKpwfEM4oScAzLe49FaPJFEskDplvflwQkwA2LB+I7XdfGu4zh4A3PK776U2Gwmfz82XhSVgAEjTIrUdPMgluw//E5rWAVddNUFtTz/zy2D70UMnaJ8dV2wOtptJehMi88jZhcgIcnYhMoKcXYiMIGcXIiN0dTXePUWrFV4VTqOL4OFV90JkNbjlPIebRw7bnduarfCqu+f46ngrUppo23t2UlvvpiFqm33pGLVZIbySvO3my2iff3rvndR24hRfEZ6amqG2ykJYQWkZX43fMsFLdm2PlF1qFHiQzPRiuMzT1h18Nb6Q46W3XnuZz33/v+DXweSNV1Dbz595Jdi+uMAVlKRJ9sUvez3ZhcgKcnYhMoKcXYiMIGcXIiPI2YXICHJ2ITLCcso/bQPwZwA2or2wv8/dv2xmYwAeAbAT7RJQ97r79BJbg5HyNK0ml08KhbDElkbiQapVLnnF5DWAbzRphcdY7OGBE43I7bR3hEuHA5tHqO3kAs+9Nzwcluw27OJVtYd3DlBbz+Yd1HaFcVtzMSwbzdf4eUkTLsvlcpGgJ+fnrJwvB9vH16+jfQaHeFBWqchlub5BHlB0/U08n9zooz8MtqeRSmS95fA1bMbLPy3nyd4C8MfuvhvALQD+yMx2A7gfwBPufiWAJzp/CyEuUZZ0dnc/4e7PdF5XALwEYAuAewA81HnbQwA+slqDFEKsnHf0nd3MdgK4AcBTADa6+5s/rzqJ9sd8IcQlyrKd3cwGAHwLwKfdfe58m7s7yA/1zGyvme03s/0zZ/l3TSHE6rIsZzezItqO/nV3/3an+ZSZTXTsEwCmQn3dfZ+7T7r75Mg6nrVFCLG6LOns1l7e+yqAl9z9i+eZHgNwX+f1fQC+c/GHJ4S4WCwn6u39AD4B4HkzO9Bp+wyAzwP4ppl9EsBhAPcutaHUHYuNcFhOPpIzrlQID7MVCfGp1nnE0GItUjYqUj6HhRT157l0lcRyguUiuesmuFTWynOpL1cMS01jY3x7zYjk1SD5/wAg1+IymrF+EQmt0eTnzJxLSh65Dkr5cLmmgSEuvY2O8/md2BLO/QYASSRabt12Psbtu8Jj8YQfc4FIbLzHMpzd3X8U2cYHluovhLg00C/ohMgIcnYhMoKcXYiMIGcXIiPI2YXICF1OOAnUmCITCWFrIizJNJsR6ccickw5LMcAQNLi0lCahrdZi8h8tUbkuCKzPzjM5bx8iUfLFXt6g+3lIk/mWK9GEmbmIlFq9Sq1FVISqcinFx4RjlpNLg9WF/k46rnwuT53boH2WWzw7fX1h+cXAM6c46WyWk1+4P0kWm5hgfepVsOOxK5RQE92ITKDnF2IjCBnFyIjyNmFyAhydiEygpxdiIzQVektSYGFRlhCaUUingrF8D2pUuG1xgb7edLA9et4xJMXIzXiSP24xVokwq66SG1JPpLcMo0kXyxxiWpmfi7Yfvh1ngt0dILnGcj3zlObJzwiLiV1+Co1Ph+1RixJKD8vzUiy0hY5n28c4TXsZivhOQSAHLkWAWBuns9Vzrncu1gLj/GVg7yu3Oxc+JgTSW9CCDm7EBlBzi5ERpCzC5ER5OxCZISursanaYIKWbEsFflqZbkQzglWKoXzrQFAzvihWcTWaPC8cNVqOECiGQlyiKRHi5nQdL4an+/h9+iZmfCq+18//n3aZ2jd3dS28/JIfr1IfroWyWtXXeQr7uzaAIBWi89HsRTJyZeGbSdOnaV9GpFgqAIpu7RUvySiNLRIENjxN47TPmfPhueqFRmDnuxCZAQ5uxAZQc4uREaQswuREeTsQmQEObsQGWFJ6c3MtgH4M7RLMjuAfe7+ZTP7HIA/AHC689bPuPvjsW3lzNBL8r/19HDprUSCD3pGw7m7AKBciAQeLHJ5bXaG5xFbJLnOBgaGaB+PJF1jUh6A6G24f7iP2m74jRuD7YeOvEL7PPDf/5zafuv2m6jt6vdso7bhjWFZ1J3nzyvkefCSgc9jiwRXAcDp2XCw1MFXD9E+sblPIpJokvIApcUGD5bqHQjvsFjh7rmwGN5eLAfdcnT2FoA/dvdnzGwQwNNm9r2O7Uvu/t+WsQ0hxBqznFpvJwCc6LyumNlLALas9sCEEBeXd/Sd3cx2ArgBwFOdpk+Z2XNm9qCZ8TKhQog1Z9nObmYDAL4F4NPuPgfgKwB2AdiD9pP/C6TfXjPbb2b752Z4rm4hxOqyLGc3syLajv51d/82ALj7KXdP3D0F8ACA4EqOu+9z90l3nxwa4fWrhRCry5LObmYG4KsAXnL3L57XPnHe2z4K4IWLPzwhxMViOavx7wfwCQDPm9mBTttnAHzczPagLccdAvCHS23IABSJhJJLuDTRkw+X3PFI3JhHykmlCe9XLnP5p1QKy3m9vfwTS6XCI7mShEtvPX18HC1w+WfXVTuC7e+6biPt89eP/JDaHv2Lv6e2OxfCMh8ATH4gPI40xy+5WIkkM/5ccueS19RUOLqtMs/l1207tlNbZb5CbSenTlNbIXLcw+vCtlxxA+0zvxD+SpxGrvvlrMb/CAgW4Ypq6kKISwv9gk6IjCBnFyIjyNmFyAhydiEygpxdiIzQ1YST7ilaJKFjqxGJ1iGBUn19YUkOAIqRBJb5iAwSS3zJShDVazyZYNqIJABMeKLEVp33azb5/s5Nh6WmW2+/hva5+bZJavvJD1+kttcPH6W2TUfCUW/lAZ7Acnh4jNoakfJgc3P8l5mV+bC8eeXuXbTPyMgmahsa5VF7M7O8bFQ+x/ttvzIcalKr8mdxtfHOpTc92YXICHJ2ITKCnF2IjCBnFyIjyNmFyAhydiEyQleltyR1LFTD9cGaLV43rNkK35MaDR7t1NfLpbwkidVm49vM58PTlUTkteYiP67qPI9eO3WM1yLbuH6c2kaHR8L7ish1O65bT23TNW4rFfizYp6oUM0cP+ZSbySZYysizZZ5As6NW7YG23dezusENiIJLCPBd2g0ubw2O8cTmfYPhCXk3p7IMfcR2TbPr1892YXICHJ2ITKCnF2IjCBnFyIjyNmFyAhydiEyQneltyTFzOziBfQLRzxVFyMJClMun9RrfAxMXgOAck84CWSpxGWc+SpPbNiMyEmDY4PUdutvvZfatu+cCLbninw+Bsd4wsw9v7Gb2vpKXPIaGgrXv6sjMveRaESLyHzlSEQZy0laI9GXANBscrm0p5dHWg4O8nNWKvNrJF8KH3ejzuVStr1cRBvUk12IjCBnFyIjyNmFyAhydiEygpxdiIyw5Gq8mfUAeBJAufP+v3T3z5rZZQAeBrAOwNMAPuHuPFEYACCHFOEcb8UCz8eGXNg2v8BXdpMGX8lcmOc5y/KRVd/RkfCqb77ASzUhsgrbw4IZAGwiK7QA0D/OS0r1DobHn6T8uAopH2NhlI+xv8xX8YuF8Pibi/y85BIexBErDTVX4UEmdXIdxFb3C5G5d57iDeWeyDwW+TwuVMNjzOUiKk8lrCYkycpy0NUB/I67X492eea7zOwWAH8C4EvufgWAaQCfXMa2hBBrxJLO7m3efJQUO/8cwO8A+MtO+0MAPrIqIxRCXBSWW58936ngOgXgewBeBTDj7m/+UuMogHA+XCHEJcGynN3dE3ffA2ArgJsAXL3cHZjZXjPbb2b7FyL5vYUQq8s7Wo139xkAPwBwK4ARM3tzJWMrgGOkzz53n3T3yf4hvqAjhFhdlnR2M1tvZiOd170APgjgJbSd/p933nYfgO+s1iCFECtnOYEwEwAeMrM82jeHb7r7d83sFwAeNrP/AuDnAL661IbcHY1mODKhFQk+WCR53BYWwqV9AKAcK/9U4J8wInEwcAtLb/UWl4XqESmkSUr4AICDb7M8xAfZsrAk06jx7SV1Psb6ApfKGnmutDIp9cy5KdpnbDScPw8AUlJ6CwDOnDhNbbVGeIzjE7zEU2JcAjw3N01tNOoGQC5yYZ04Ht5mmkbyKKbh89mKXItLOru7PwfghkD7a2h/fxdC/AqgX9AJkRHk7EJkBDm7EBlBzi5ERpCzC5ERzCOSxkXfmdlpAIc7f44DONO1nXM0jreicbyVX7Vx7HD3YM2urjr7W3Zstt/dJ9dk5xqHxpHBcehjvBAZQc4uREZYS2fft4b7Ph+N461oHG/l12Yca/adXQjRXfQxXoiMsCbObmZ3mdkvzeygmd2/FmPojOOQmT1vZgfMbH8X9/ugmU2Z2QvntY2Z2ffM7JXO/6NrNI7PmdmxzpwcMLO7uzCObWb2AzP7hZm9aGb/rtPe1TmJjKOrc2JmPWb2UzN7tjOO/9xpv8zMnur4zSNmxkM7Q7h7V/8ByKOd1upyACUAzwLY3e1xdMZyCMD4Guz3dgA3AnjhvLb/CuD+zuv7AfzJGo3jcwD+Q5fnYwLAjZ3XgwBeBrC723MSGUdX5wSAARjovC4CeArALQC+CeBjnfb/AeDfvpPtrsWT/SYAB939NW+nnn4YwD1rMI41w92fBHDubc33oJ24E+hSAk8yjq7j7ifc/ZnO6wrayVG2oMtzEhlHV/E2Fz3J61o4+xYAR877ey2TVTqAvzWzp81s7xqN4U02uvuJzuuTADau4Vg+ZWbPdT7mr/rXifMxs51o5094Cms4J28bB9DlOVmNJK9ZX6C7zd1vBPAhAH9kZrev9YCA9p0dsbQnq8tXAOxCu0bACQBf6NaOzWwAwLcAfNrd5863dXNOAuPo+pz4CpK8MtbC2Y8B2Hbe3zRZ5Wrj7sc6/08BeBRrm3nnlJlNAEDnf56/aRVx91OdCy0F8AC6NCdmVkTbwb7u7t/uNHd9TkLjWKs56ez7HSd5ZayFs/8MwJWdlcUSgI8BeKzbgzCzfjMbfPM1gDsBvBDvtao8hnbiTmANE3i+6VwdPoouzImZGdo5DF9y9y+eZ+rqnLBxdHtOVi3Ja7dWGN+22ng32iudrwL4j2s0hsvRVgKeBfBiN8cB4Btofxxsov3d65No18x7AsArAL4PYGyNxvHnAJ4H8BzazjbRhXHchvZH9OcAHOj8u7vbcxIZR1fnBMB70E7i+hzaN5b/dN41+1MABwH8TwDld7Jd/YJOiIyQ9QU6ITKDnF2IjCBnFyIjyNmFyAhydiEygpxdiIwgZxciI8jZhcgI/xcFuLl3GEY9xQAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD5CAYAAADhukOtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAcKUlEQVR4nO2da4xdZ3WG33Vuc/fY41sG2+ROIAQSYAhQwl2gFKEmVFUEQig/EEYVqEWiPyIqFSr1B1QFxA9Ea0hEaCmBchERRQWaAgFSQiYhCbkSOzjEzjgTe+yxxzNz5lxWf5zjyom+d834zMw5Jt/7SJbP7DXf3ut8e6+9z3zvWWuZu0MI8fyn0GsHhBDdQcEuRCYo2IXIBAW7EJmgYBciExTsQmRCaTWDzexqAJ8HUATwZXf/VPT7Q6Njvmn7zqTNwSVApg5acKxCZAxGRkJkgzgSHsqb1FQInCwW+H04UkubHSipEl+fy5lfi90nfe0cmz6A+dmZpLHjYDezIoAvAHg7gAMA7jKzW939ITZm0/ad+PAXbk3aGs0GPVajmQ6YcuBfJQgWK1aobanJA/DE0kJyezH6fLQ4T00bBvu4bbif2up1frgTtWJye8H4+6qBz33T+TgLbGcL7HskDn4TjiK6GUZ7h/PRwQ3EyPn8l7/6MzpmNR/jrwSw190fd/clALcAuGYV+xNCrCOrCfYdAJ487ecD7W1CiLOQdV+gM7PdZjZpZpMnZ4+s9+GEEITVBPtBALtO+3lne9uzcPc97j7h7hNDo5tXcTghxGpYTbDfBeBiMzvfzCoA3gMgvfomhOg5Ha/Gu3vdzD4C4IdoSW83ufuD4RgzeDG9ht6MVjLJLWmhypelFxt8f5VAn7JADisV0tNlzWB5PLifRivdJxcXqa1oXE2wQnp+C4E6UYjmPli0tk5Xn9eYaDGbveticJ4LgTpRqwW2YK4iOhI1mLoS7GtVOru7/wDAD1azDyFEd9A36ITIBAW7EJmgYBciExTsQmSCgl2ITFjVavyZ4u6o1dP6hDcCOYxsLxTSSR8A6HEAoNmsUVshEnJYxkuDH6tS4cku9SK3zde4nDdQDmS0EpnfUF7j/scFSSPNiNg6zRoLEnmagf8sYaRgUVZhkPW2DhlxnRR9pWOCfenJLkQmKNiFyAQFuxCZoGAXIhMU7EJkQldX44GgTNAaF/cy63CFuchX+Nk4tuILALVqupQVAFSwxG0lXpYqKsdF/QgyWsL19k5zXdhOO95hZ7CV+lpwDUQeNj16PnaWCRNdP4xOokVPdiEyQcEuRCYo2IXIBAW7EJmgYBciExTsQmRCdxNhANSIaGAdSCFx+6dADguSTIqB9GakjlsjqFkWdYsZLHMfhwb4uPo87zJTLQymt4O/r4hojj1obYUOj9ct4mSXzsZ1lzOPCj3ZhcgEBbsQmaBgFyITFOxCZIKCXYhMULALkQmrkt7MbD+AEwAaAOruPrHcGNbqJujGgyKRE6K2OWGNsWBcVGOsVE5PV9Q+qVjk+6s1gvZVcyeobe6pKWrb8qLL0scK7utBuT40g1ZZ0Txak5yzQLnqoKLdsrDDhdJbx8XkOhvW0Q6pj8H1uzpnAABvcffDa7AfIcQ6oo/xQmTCaoPdAfzIzO42s91r4ZAQYn1Y7cf4q9z9oJltA/BjM3vE3W8//RfaN4HdALBh245VHk4I0SmrerK7+8H2/9MAvgvgysTv7HH3CXefGBwdW83hhBCroONgN7MhMxs59RrAOwA8sFaOCSHWltV8jN8O4LvtYnklAP/u7v8VDahVl3Dw939I2opBgchyKZ1BZRVeetGCdLO+coXaCk2ewVaupvfZLPFp7C8GolGdH6vu3Me+c86jtqPz1eT2k4EUWSryY7lxKacZZL0ZeY4USOZge4fc1mEbKtb2KsxsC2wRFunHkXhIilhGMnDT0i3MIt87DnZ3fxzA5Z2OF0J0F0lvQmSCgl2ITFCwC5EJCnYhMkHBLkQmdLXg5MmlGu75A8nYci5DMbmmHMlJgdRRKnHJrhxITWVSQ3ExUFW2jW6gtvPGuO2cfn5qhgeHqG1hcTG53Zq8AOTR47N8f0vp/QFAox4U7iTyZqXSR8dEUlMxkDeri2m5EQCMXAdRQdLqEu/BF73nUplfVwP9vIJowdLvLZLR6uTSj4qA6skuRCYo2IXIBAW7EJmgYBciExTsQmRCV1fjrVCEDW1MGztox1MNliv5eirQCGt78dXWQZKoUWukkxIAYGier2b7MF+Z3jjGT834SFDzbuNwcvvh2ZN0zL5p3k5q7xE+zoJWWUB6nxaoHX3FQCUp8GMtVfkcs0X3KGUlWo2v1fi5jpJ8+sPV+PR7i1bWK2Q6qtXAP2oRQjyvULALkQkKdiEyQcEuRCYo2IXIBAW7EJnQVenN3eHVdNKCB/XHjOgnzTBVIOpNFAkvXO6okzp5/VEST5NLeYdmF7gXwbj9x7hUViUJL8dOcklmdp4fa77B5/h4jY8rkOdIdJ5Lheh8RpISf2YZka/CknZB/b9mk4eMB3MV1Rt0dv0ETrJLuBr4oCe7EJmgYBciExTsQmSCgl2ITFCwC5EJCnYhMmFZ6c3MbgLwLgDT7n5Ze9sYgG8AOA/AfgDXufvRZY/mHtTwCmQG0lan2eQyWShbBNlJrGYZANRJxtZIgcsq/cHt9PAcl9AWazwDrHCM73R+Ke1j1IaqGUiRQ8F7W6pxW6ORzugrB88XB99fM/I/yA5zIpcGQwAP2kkF6loz1PMCaCZgkAlK/I/q+K3kyf4VAFc/Z9sNAG5z94sB3Nb+WQhxFrNssLf7rc88Z/M1AG5uv74ZwLVr7JcQYo3p9G/27e5+qib0IbQ6ugohzmJWvUDn7o7gjwsz221mk2Y2WZ8/vtrDCSE6pNNgf9rMxgGg/f80+0V33+PuE+4+URrkTRGEEOtLp8F+K4Dr26+vB/C9tXFHCLFerER6+zqANwPYYmYHAHwCwKcAfNPMPgDgCQDXrehoBhSIjMYy29rGMx7jYcZQdKzIlL43NpzfM/sKXOOZK/EihMdrfNzQQNDaqpJ+331lfqpnF4KCmaznFYDhCt/n/qPpoo3zwfOlHMhrbO4BIOgCxrWyKPGxw2TK2I1IRuOS41qybLC7+3uJ6W1r7IsQYh3RN+iEyAQFuxCZoGAXIhMU7EJkgoJdiEzoasHJFmntIuprxYjkjI7HBQURG0SyW2wERSrnDnM/bJTayn3pnm0AsH0DL4g4UEzfv8/dsoWOOX/bILUNBWl7xeCU/XzvoeT2nz7G52NmKehhF2VFBlJqvZ4eF10CoTQbSWhBtlxEcMlRwpqpBD3ZhcgEBbsQmaBgFyITFOxCZIKCXYhMULALkQld7/VWa6QzrKK7ToGkNXUqvYW6RSStECcbwSyWMUdtExvTRRkB4PJXTVDbtg38gE3iZKXAs9d2bQ2KWwYZWfU632fpknTxouMLfH8/3HeM2mg/NAAWSJ8lS/voQdFRD6+PQG9s8N53jWAemSdR8UhaFDMYoie7EJmgYBciExTsQmSCgl2ITFCwC5EJ3U2EccDJymm0AuqFM191j2t+8RXVqP2TIz2uWOqnY4oj5/FjDfJ7bfXkLLXNlIaobWQw7ctjz/Ay3nc9wlfBTx55itoGzzmf2gqN9DzW5nm9u+GgXt9iMzgvxi9jugbu3I9Gh23FmnW+z6hVWYnU3gvL5Dl7z6tr/ySEeB6gYBciExTsQmSCgl2ITFCwC5EJCnYhMmEl7Z9uAvAuANPufll72ycBfBDAM+1f+7i7/2DZfQEo0hp0gaRBZItQXuvQ1kn9MWvyRJIn57ntkVku1Tx05ElqGx0bobZmI+3jsdkFOqZ24CFqKx3dT23Xvo9Lb88cTEt2F45y2bDQz9/XHU8cpbZioMyOkhZVI308iaevwmv8WZGPqy7x87kwz+d/djEtED5T7UQZ59fvSp7sXwFwdWL759z9iva/ZQNdCNFblg12d78dwEwXfBFCrCOr+Zv9I2Z2v5ndZGab1swjIcS60GmwfxHAhQCuADAF4DPsF81st5lNmtlkfYF/ZVMIsb50FOzu/rS7N7zV2eFLAK4MfnePu0+4+0RpYEOnfgohVklHwW5m46f9+G4AD6yNO0KI9WIl0tvXAbwZwBYzOwDgEwDebGZXoJVisx/Ah1Z6wCKRr5pBtk6lmHazHtQDq9Z5PbC4dl1U9yt9bzSeW4VqkK11ZJH7XyGZUAAwsniS2lgZtOFF3nZp0fmfV7VgjutHp6jt0JOPpsc4Py+ve0tK9GmxZYBnFm4b5vLmrs1pOW+gzM9zfx+X3kqlIMMuyGyrV6vU9vtD6azDL/9iPx0zReS66NpeNtjd/b2JzTcuN04IcXahb9AJkQkKdiEyQcEuRCYo2IXIBAW7EJnQ1YKTZoZKOX1IK3D5anQg3SZpvs5lhoXjJ6gtusN10lGqUgxaCQVZSKVA1nrhBt4a6tLtG6lt5mhaxpk9MU/H1ILWRNPHefuqn/7sZ9R22cTrktv7+vglt2l4kNp2bd9KbVsD6W3jYHoeC8bnfrCfS2+F4FwvBVlvx+b4/D/6ZDpDsFFbpGOsybLvVHBSiOxRsAuRCQp2ITJBwS5EJijYhcgEBbsQmdBV6a1YKGBoKC2vFIOqgTOz6WKD80t8TIMUXgQAFPg9Li44mZZrCoF01WjyLK9X7uQS2hsvHqO2ZpXvc5ac0UZ9iY6ZP8H7yg1vGKW2y181QW0Tr70qvT8ihQHAUpX7WAgbnwVGYqr0cT9qNS6hHdh/gNpun7yP2ianuBT88LH09TO7FBTnLJ15fzg92YXIBAW7EJmgYBciExTsQmSCgl2ITOjqanyj2cDx4+l6Z40aT0xYYi2jglV10vVnWbyDRIKi8TEXbecrqu9700upbfYkT4I4OptOdgGATSTR5OAcX3F/+WWXUttrrnorP9YYbxcwUEonp/Q5X+netIHXmesPTmilwNWJI4efSW5/8JF0jTwA+Pn//orafvnzX1Lb0RJXV8b+5F3UNl9Pz1XTuMoDovJEeVx6sguRCQp2ITJBwS5EJijYhcgEBbsQmaBgFyITVtL+aReArwLYjtbK/h53/7yZjQH4BoDz0GoBdZ27pzNW2rg7lhqsbQ2X3krsS/9BiyQPVIt6cI+rBIkwXk/vdPswr1n27isvoLadG/m4+aD22/aN6ZZGALCpL12bbMtQuiYcALzkkpdQ24ZRnpCztMRbGvUV03NVCKS3mWneTuqJ/fuo7deT91DbXfekk1P27nucjjkxx9thNcBqvwGbXnMttS00uKxoJEmpHNS7463IOCt5stcBfMzdLwXwWgAfNrNLAdwA4DZ3vxjAbe2fhRBnKcsGu7tPufs97dcnADwMYAeAawDc3P61mwHw25oQouec0d/sZnYegFcAuBPAdnc/9bnrEFof84UQZykrDnYzGwbwbQAfdX92j19v9YlNflPPzHab2aSZTdbneQK/EGJ9WVGwm1kZrUD/mrt/p735aTMbb9vHAUynxrr7HnefcPeJ0iBfWBJCrC/LBru16jTdCOBhd//saaZbAVzffn09gO+tvXtCiLViJblhrwfwfgC/NbN729s+DuBTAL5pZh8A8ASA61ZyQKN5OTxzyTztZqXA3R8d5LJWNRAo6nXuR7GWlpN2DvN75iXjPDNsYZHXXLMGl7WG+nkm3bnnn5vcXrhgBx3TV+H12BpLC9R24vAhart7797k9gcffJCO+c19vIbbvscDqexEIJWR89kkEjAABOUQ0b+ZL02NbOVz7MF11aQZbFzmA9JStQf9y5YNdnf/Bbh897blxgshzg70DTohMkHBLkQmKNiFyAQFuxCZoGAXIhO6WnDSzNBXTBfXi1SGF71gW3L7heNb6Zhzx3iW0bG5k9Q2G9gq9XQRyJEaT/ZbWuQSTzVo4zQykm6TBQCDfdxmJHlwaIjPx9Gjye9DAQB+8pOfU9sdd9xJbQ8/ks5SO3wkmKs6lxsbTZ4ViajVF5F6i0V+6RcrfH7Lm19IbRaMKzQDmZX4EmWCurNr58wLpgohnmco2IXIBAW7EJmgYBciExTsQmSCgl2ITOiq9DYy0Ic3vfzipG3jIJcMLty6Ibl9KMhcGi1xWatW4jrfwhCRBgHUT6Zluep8cM8M+tEh6BE3WOHjygU+bu7wU+ntT/HMsNvu/A21/du3/pPaDk+n+6gBAFPKmsHzpWn8vESFKp1kgAGAldMZfZVAvqxU+DVQ2sYz21Di8iaa/FptIi05WlD8lFdUlfQmRPYo2IXIBAW7EJmgYBciExTsQmRCV1fjNw314bpXn5+0Vfr4KuITU+lV3zt+xpM0XrptgNqszOvTLQUr5PsefSC5/aKLX0THFILaescO8pZGJ4/OUtuhKZ648ti+9D6fPHyEjqkPnkNtYzvS5wsAvBjVrku/73rweKnWeLJIVIZ8oMxXrQtk1Xpxnic8Nfq38GNtSidlAYA3uGJQD1bjHWlbtBrfaJC6dU2txguRPQp2ITJBwS5EJijYhcgEBbsQmaBgFyITlpXezGwXgK+i1ZLZAexx98+b2ScBfBDAKV3s4+7+g2hf7oYF0spp5mS6vhsAPDKVll1++cBDdMyBQZ4csXmYy3KjZS6VbRhJN6YcGBnlfkwdprbHnuBy2N333sPHHUgnuwDAiUXyvktcJnvrKy6ltne+5AJq6w8eFf2kpdTBaS4bHpjmc3V8jreh+t2DaUkUAB69+47k9qj9U2U8nawFAM1IbpyfoTZEST5ECo6ltzNPhFmJzl4H8DF3v8fMRgDcbWY/bts+5+7/tIJ9CCF6zEp6vU0BmGq/PmFmDwMI8vyEEGcjZ/Q3u5mdB+AVAE7VEP6Imd1vZjeZGW9XKoToOSsOdjMbBvBtAB919+MAvgjgQgBXoPXk/wwZt9vMJs1s8thR/jeZEGJ9WVGwm1kZrUD/mrt/BwDc/Wl3b3irkv2XAFyZGuvue9x9wt0nNm7i3zkWQqwvywa7tZYEbwTwsLt/9rTt46f92rsB8CVRIUTPWclq/OsBvB/Ab83s3va2jwN4r5ldgdZa/34AH1puR3O1On71VLr9T3WRt/6ZejotvQ3yMmKYCbKkfn+Iyz8vGBmmtj+/9g3J7Ze+7HI6pjKQlusAYPP4Lmrb9uJLqO0tJKMMALaNpWXAjQP8VI8O8Ins6+d11YYCW5nU3pur8vM8M8+z3qaOcWn29q38E+MCyQJ76giXPb3I5av5GS57NoKScQOD/LryQlqWi6Q396jlVZqVrMb/AkDqqKGmLoQ4u9A36ITIBAW7EJmgYBciExTsQmSCgl2ITOhqwclGo4GjM2nprc7VJBgp5FexoHBkgWcnnTPGZYudF11BbRdc/urk9pGNXF4rBO2fNgxzaWX7Zi69VQKJp+DprDcLsqEsKba0aEQST4PLaEv1tB+FIPtrMGi7tH2UX6qvmZigtr7hjcnt3/+f2+iYPzz1BLU1mjz7rl7mUmShGLSUQvo6LhBJDuCyXHS69GQXIhMU7EJkgoJdiExQsAuRCQp2ITJBwS5EJnRVeisXCxgfHUraakEBwJql5ZO+ofR2APgDV4VQGeVZUm9446uobYxkxNWIzAQATdJrDADm+DBUSvw+PMIVR0rJg35oRX6sYiHQ+Sx4VpDeZt7sMJMrMG3cwKXPSy5M96p76NHx5HYAOHiQS29Rz7ZiIJV5MP/svXmTXyB8OtTrTYjsUbALkQkKdiEyQcEuRCYo2IXIBAW7EJnQVemtr1TEBVs2JG2NJi82eKyUliDmR7n0dvEm3rPiwlfxApE7dryQ2pZq6ey7YjGQk6glNjZJoUQAcOcST4nIaMXgvm6RvBaJPB1KZYxmIDVF89FX4vOxYTCdiXbRC/l53vf449R2YOY4tXkpyHoznvXGMtgKwXnxYD6oD2c8QgjxR4mCXYhMULALkQkKdiEyQcEuRCYsuxpvZv0AbgfQ1/79b7n7J8zsfAC3ANgM4G4A73d3vqQOoFQoYMvIQNJWW+KuzM2nC9QNXsaTVnaRVX8AuOSCrdRWCe5/hXLax3KwmF3mC8UIFpHDunAlC5IdyLCgk1BYJ6/TFWEHSYQJag3WAqMHfhTBJ3JoIF2L8OUvewkdUw2khB/9YpLapmd5i6pCcAKKNKGIj2Er+NF1s5InexXAW939crTaM19tZq8F8GkAn3P3iwAcBfCBFexLCNEjlg12bzHX/rHc/ucA3grgW+3tNwO4dl08FEKsCSvtz15sd3CdBvBjAPsAHHP//89dBwDsWB8XhRBrwYqC3d0b7n4FgJ0ArgTw4pUewMx2m9mkmU0emzncoZtCiNVyRqvx7n4MwE8AvA7ARjM7tWK1E8BBMmaPu0+4+8TGMV4hRgixviwb7Ga21axVF8rMBgC8HcDDaAX9X7R/7XoA31svJ4UQq2cliTDjAG42syJaN4dvuvv3zewhALeY2T8A+A2AG5fdkzfh9XRxuMUqLxo3UE7fk156EU9meMEmnpQwUOB1xApBUkuRSV5Ry50gWSRQ0EKpxoJ9spJ3zUJnCS31Bn8eNKK6gY30Pk8u8WSXuUV+DSxU+biG88t4oZ72sRG0YxrfeS61bd60n9qOHH+S2ui1A8BYy66obh2V2Phxlg12d78fwCsS2x9H6+93IcQfAfoGnRCZoGAXIhMU7EJkgoJdiExQsAuRCRbWEVvrg5k9A+BUb50tAM6Gr9TJj2cjP57NH5sf57p7Mq2zq8H+rAObTbr7RE8OLj/kR4Z+6GO8EJmgYBciE3oZ7Ht6eOzTkR/PRn48m+eNHz37m10I0V30MV6ITOhJsJvZ1Wb2qJntNbMbeuFD24/9ZvZbM7vXzHglwbU/7k1mNm1mD5y2bczMfmxmj7X/5/2r1tePT5rZwfac3Gtm7+yCH7vM7Cdm9pCZPWhmf93e3tU5Cfzo6pyYWb+Z/drM7mv78fft7eeb2Z3tuPmGmVXOaMfu3tV/AIpolbW6AEAFwH0ALu22H21f9gPY0oPjvhHAKwE8cNq2fwRwQ/v1DQA+3SM/Pgngb7o8H+MAXtl+PQLgdwAu7facBH50dU7Qyl8dbr8uA7gTwGsBfBPAe9rb/xnAX57JfnvxZL8SwF53f9xbpadvAXBND/zoGe5+O4CZ52y+Bq3CnUCXCngSP7qOu0+5+z3t1yfQKo6yA12ek8CPruIt1rzIay+CfQeA07P8e1ms0gH8yMzuNrPdPfLhFNvdfar9+hCA7T305SNmdn/7Y/66/zlxOmZ2Hlr1E+5ED+fkOX4AXZ6T9SjymvsC3VXu/koAfwrgw2b2xl47BLTu7Oio6fGa8EUAF6LVI2AKwGe6dWAzGwbwbQAfdfdn9Ubu5pwk/Oj6nPgqirwyehHsBwHsOu1nWqxyvXH3g+3/pwF8F72tvPO0mY0DQPv/6V444e5Pty+0JoAvoUtzYmZltALsa+7+nfbmrs9Jyo9ezUn72Gdc5JXRi2C/C8DF7ZXFCoD3ALi1206Y2ZCZjZx6DeAdAB6IR60rt6JVuBPoYQHPU8HV5t3owpxYq5fRjQAedvfPnmbq6pwwP7o9J+tW5LVbK4zPWW18J1ornfsA/G2PfLgALSXgPgAPdtMPAF9H6+NgDa2/vT6AVs+82wA8BuC/AYz1yI9/BfBbAPejFWzjXfDjKrQ+ot8P4N72v3d2e04CP7o6JwBejlYR1/vRurH83WnX7K8B7AXwHwD6zmS/+gadEJmQ+wKdENmgYBciExTsQmSCgl2ITFCwC5EJCnYhMkHBLkQmKNiFyIT/A9rvniPKTWIqAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD5CAYAAADhukOtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAcIklEQVR4nO2dbWyk1XXH/2eembFnbK9fds3ifYGFDU1K04REFkoUGlGiRDSKRCK1KKlE+UCyURukRko/ICo1VGqkpGoS5UOValNQSJUm0CQoqKItlCahSVNYQ2FZ2LALu17wsut9sb322jMezzynH2ZoDbnn2Duel4X7/0mWx/f4Pvc+d54zz8z9zzlHVBWEkLc+mW5PgBDSGejshEQCnZ2QSKCzExIJdHZCIoHOTkgkZDfSWURuBPANAAmAv1fVL3v/XywWdGhoMGirrayY/dI0NcZPnMnZpp6enqZsFpVKxbSVFxdN2/Lysn1QZ/4Q25jJhF+/k4y9VknSpC1rXz5Wv0zmwvsAQCax70tinDMAZMSwOX2apWkR2+zoHNG4Bk68ehxzs7NBY9POLnVP+1sAHwYwBWCfiDyoqs9bfYaGBvHpT98StJ07ecIcq7xYDrZne/rsCTpP5u637TZtV+62bTC+k3B86hWzy/P79pm2ySNHTFvNuRYzOftp6ykUg+1DA5vMPpsGwy/Aa9mGR4ZN2+DgSLC92G/3GRiwxyr0h88LAHqLjq0QvkaSfMHskzqvtOHbTh1t9vWjFr6urJscYL/4/dEf/oHd58Jm9TquBfCiqh5R1QqA7wO4aQPHI4S0kY04+3YAq29pU402QshFSNs36ERkj4hMiMjE0tJSu4cjhBhsxNmPA9i56u8djbbXoap7VXVcVceLzmcrQkh72Yiz7wNwlYhcISJ5AJ8E8GBrpkUIaTVN78aralVEbgfwb6hLb/eo6nNenySbw/DotqBtdPNWs99lOy4Ptg+PbDH7VCRn2iSbN21eFGC5XAq2v/3SXWaf3e94l2k7cuiQaTs3O2Pa5mZs28vHjgbbX3k53A4AWUfmK+TtdaxV7I9luWxYRuvttXfjsz29pq13wFZeCgP9pm1o82i4fSR8HQLA4JA9x/5BW9UYcGyF/gHTlvSE3/F60mbWkCk9xXZDOruqPgTgoY0cgxDSGfgNOkIigc5OSCTQ2QmJBDo7IZFAZyckEja0G3+h9PYW8Btv/82g7fALh81+Z84tBNuLTuBET8GWjMrl86Ytn7dlubQSlt4Wl20JavSSMdP2/u27TNvxlydN29K5OfuYH7gu2H5i+te+7/R/5HN2pN+QIxkd2G8H+fzs0bBIUztlB/9kMrZwpE6kX9JjP2fW85mk9vFyzjWQdaIii312cM2gIy0PjOwItg8Ph4OJAGDz5s3B9qWFsK8AvLMTEg10dkIigc5OSCTQ2QmJBDo7IZHQ0d34JMlgeCC8u3vl264y+029cizYPjMzbfbZ5O3U99q7pvnEDoTpy4dfG0tlOwed1uxd32rVNGFw0A7GqCyHVQEAqNbCc9nppNsq9A6Ztv6ibduy8wrTtmQEFD38wH1mn6Rqr30+sdWVXGqvf1oK2zI1O+dh2VEFUkcVOO0krdIXbbUJiREI4+QNtHIlzp49bfbhnZ2QSKCzExIJdHZCIoHOTkgk0NkJiQQ6OyGR0FHprbxUwsFnnwnaNm2+xOxXyIZfk2bPnjL7lAzJBQAuudRJb5+pmaYVo+RHxZGMJLVtGceWc6q+DA/buc5+8YufBNsHCnYAx9W/da1pWzZkIQCo2EuFTaOXBttXsrbsOTs7a9qKWVvWKjqyXI+Rx02y9np4ZZycpwzqJIBTdWrJVMLBK14+xIWlsK1atSVF3tkJiQQ6OyGRQGcnJBLo7IREAp2dkEigsxMSCRuS3kRkEsACgBqAqqqOe/9fra1gZi4clXPg6cfNfrlqWLa49IpwWSgAqBh9AKDYb5cSKhbtnHFqvDY6Q2Gp5OQEs4OasFJZNm2/euZJ0/bUTx8Otvf12ec8Nmqf89adToSgIw/+9tXvDrZnb/kTs89xI7oRAM7NnTFtC/N2Oazz8+F8fYuLi2afUsmOKlxZsaUtdUQ7Efu+mjfkyHzOlhStIqnJtH1erdDZf1dV7WeCEHJRwLfxhETCRp1dATwsIk+KyJ5WTIgQ0h42+jb+OlU9LiKXAHhERH6lqo+t/ofGi8AeABgasrPHEELay4bu7Kp6vPH7FIAHAPzal6xVda+qjqvqeF+f/T1rQkh7adrZRaRPRAZeewzgIwAOtGpihJDWspG38VsBPCD1BHxZAP+oqv/qdUiSBJsGw2/ljy7ZJZnOnAwnliyltgwysMWOohMnaWCht9e0bR7dFmzPZm2JZLlkl4YqFOwyQ4cPHTRtv/z5f5q2TC0cijZ3xhZMXp16xbT1DITLDAFAvthv2oaMhJm/c/0NZh+v/FOpbEtKS0u2vLm4cC7YPj1ly3yTR4+atsMvvmjaPHlzx46dpm2zURqqULBlz5GRcGmoI1/6ktmnaWdX1SMAwmIqIeSig9IbIZFAZyckEujshEQCnZ2QSKCzExIJHU04CckARqK/oeGwlAAA00cmg+29jqw1P/Wyfbxpu0bck089ZdquNiK5in12AsjKctm0OUoT9j/1hGk7Z0RyAUC1Gpbe0podmudMw016uFKxpc/zGpbKjGAtAEBPzpaaCs4aDw7bMmtvPiyL5jO2XDp/zr6ubrjBrpm3dWtYQgOA/gF7/tne8KKkqf2c9RoScd6oAQfwzk5INNDZCYkEOjshkUBnJyQS6OyEREJHd+NVFWUjYVve2JEEgMQo4VNdsUs8adZO8HbyVbts1EtH7aCQX/7yv4PtGaf8UDaxl3h0ZMi0YcXexTeqYQEAFubDQSGbB+yglXyPHZAjGXuwWmrXf0qN2lC5nD3W4FA4eAbw1YRy2V6rQy+EA4p+8dP/MPtMTh4xbdu22aXDzsyeNW3qaB7Z3nAATdbJQVc1cuEtnLcDynhnJyQS6OyERAKdnZBIoLMTEgl0dkIigc5OSCR0VHpLsjkMGbnhpg/bOdeySVhGKzuBMMjbp5bLOjnoeux+55fCJZksGQQA0qwtNc07JY1qTs61wSFbsquk4cCV8rJdTuq8I9d40uH5sn3MTUbgR7piS2hWrkEAWFy088y94OTrm9gXLit25MgL9ljOehw99pJpyznlsFK1r7lMEr5GEuO6B4BqtRpsn5ubtccxLYSQtxR0dkIigc5OSCTQ2QmJBDo7IZFAZyckEtaU3kTkHgAfA3BKVd/ZaBsBcB+AXQAmAdysqvaef4N8Po+dO3cFbYf2/ZfZ7+y5cAmf0qwt/ezYdZlpyzjlnzJOlJfVTdWWk1INSyQAUDUiwwCgr2CXoZpfsGWohcXwmhSc8/Ly7k2eCq89AAwYJZ4AoK8YjuTKix3JdejQr0zb7Nxp0zY5edjpF45Eq6m99mrIlwDchH01o/RW/Zh2P03DB/Xy/1nX6YojA6/nzv5tADe+oe0OAI+q6lUAHm38TQi5iFnT2Rv11mfe0HwTgHsbj+8F8PEWz4sQ0mKa/cy+VVVPNB6fRL2iKyHkImbDG3Ra/2BhfrgQkT0iMiEiE3Nzdr5zQkh7adbZp0VkDAAav808T6q6V1XHVXV8yPlONyGkvTTr7A8CuLXx+FYAP27NdAgh7WI90tv3AFwPYIuITAH4IoAvA7hfRG4DcAzAzesZLCMZFJOwpDRmSHIAsFIIl7SpLtsyw3LFli3m5u0EhStOdFLOkMPESYZYcyLDqk4JIk3sMj7ZHifB5XJY/llW+3X9wGFbujr75NOmrVhwklgaSULVWd+SE8WYelKZo2slZjJQO6IMGfvaceUwJ0IQiaPZGcf0xrI0QPESWzpHe23ATxmmD63VlxBy8cBv0BESCXR2QiKBzk5IJNDZCYkEOjshkdDRhJNpLUV5ISyvbN+20+zXPzQSbC9Nl8w+M7N2tNaikTgSsBP5AQAyYVkjrTkJJ2v28Sr2Fw8xOz9v2vJ5W3oTY46lZbsu3vllW4pcXvHWypbDEuM+4ihvbl05L1IxTb2oQ+t4nqxlU3NkVp8LH8+T3swITGcc3tkJiQQ6OyGRQGcnJBLo7IREAp2dkEigsxMSCR2V3lRTLJfDcplXU2x4UzixYdU4Vn0w27RUsvvls3Y0VKkclqhSJ8lf1ol2ctQkZJzIq3LZjg7LiPH67QxWqdiynIcnDVlRauqdtCOh2SKfjzXH1JOoDPkSAMSbf5OY6+isbzPCIe/shEQCnZ2QSKCzExIJdHZCIoHOTkgkdDYQJq1haSlcJeqYU8Kn0JsPtg9tGjD7LHtlcJyM1qObw0E3gL1rXVqyd8crzjwqFWcX31EFksR+jV5ZCQfeeEErNWcX3N8RdnbjrUN6ASjOTrcfFOL0MyZiBQx1A+vc3B13Nz9dGN7ZCYkEOjshkUBnJyQS6OyERAKdnZBIoLMTEgnrKf90D4CPATilqu9stN0F4DMATjf+7U5VfWitYy0uLuCJfT8L2o6/fNTsl8uGZYbF87aGlu0tmLb+frts0Y6xMdN2biY83mzNlrUKRukqAJh1qto66dhQdfKglUqLwfYEYfkSQFMyzlqYapgXSNKk9ObR6jNzZT5PpmzxGjdzvPXc2b8N4MZA+9dV9ZrGz5qOTgjpLms6u6o+BmCmA3MhhLSRjXxmv11E9ovIPSISDjgnhFw0NOvs3wSwG8A1AE4A+Kr1jyKyR0QmRGRiaclJNkEIaStNObuqTqtqTeuFsb8F4Frnf/eq6riqjheL9qYZIaS9NOXsIrJ6y/oTAA60ZjqEkHaxHuntewCuB7BFRKYAfBHA9SJyDerKxiSAz65nsOVyCS+9EH5dmDlzxux35ZWXB9t7Cr1mn3LFKbtUscsd5bL2658YmdASR45ZcD66aMaObOtxpMPq4oJ9TEMGrKT2elglkuo0Fx1mHdKTrpq1vRlotfSW8bRZgzWdXVU/FWi++4JHIoR0FX6DjpBIoLMTEgl0dkIigc5OSCTQ2QmJhI4mnKxWVnBm6njQlta8skDhaRaKQ2aXU6enTFt/wY56WzgfTogJALl8eI5loywUAJScykqF4ibTdu6cPQ+t2okqi4W+YPt8yY7MS6tOKSRX8nIiwAzxzT1aJ0srOWQcSbSTkW2tliJ5ZyckEujshEQCnZ2QSKCzExIJdHZCIoHOTkgkdFR6q6Up5kthmaqYsyPY5o3EjFkn6q3o2HLOWS+Xl01bfzEsa5XLTmTbsi2Traity2nVsTkKT80wekkqPUFMxL4fXAxJFNsxVuJElKVOv5qTeLTVpF59PgPe2QmJBDo7IZFAZyckEujshEQCnZ2QSOjobnyqilIlvDudwM6RNnPm1WD76NZLzT7bt11i2np77FJIM2ftXHhnTp8Ntqc1JzAlY9vyTsDFJdvsczt55pxpm50/H2xvfje+ueAUq1+z5ZNajTdWzdnp9nK/eefm7dQ3k0+OgTCEEBM6OyGRQGcnJBLo7IREAp2dkEigsxMSCesp/7QTwHcAbEW9qs9eVf2GiIwAuA/ALtRLQN2sqnbiNACa1lAthWWj1HvdqYVtorZcl83a8smlY7asdcmWrabtX156KNi+bWyb2aeQM01YKtvBLosrtlRTdeo1WeuYyXi500yTS6tzpHnBHZ5U5o8V7uedsjePZmSytfpZtlbnu1vPzKsAvqCqVwN4H4DPicjVAO4A8KiqXgXg0cbfhJCLlDWdXVVPqOpTjccLAA4C2A7gJgD3Nv7tXgAfb9ckCSEb54Lek4jILgDvAfA4gK2qeqJhOon623xCyEXKup1dRPoB/BDA51V1frVN6x8ggh8iRGSPiEyIyETNrw1MCGkj63J2Ecmh7ujfVdUfNZqnRWSsYR8DcCrUV1X3quq4qo4nmTd3jW1C3sys6exS3+q8G8BBVf3aKtODAG5tPL4VwI9bPz1CSKtYT9TbBwDcAuBZEXm60XYngC8DuF9EbgNwDMDNax0on83gsi3FoG3zSLgdAIaGw9sBOad8Urlmy1qnzwTfhAAALt++27Tt3H5ZsH10i12GqupExL363EHTdmZuwbRVnAA2MWQcEe8jVOs/XjUjDfkSmifzuUc1WjsbBehJb0kSjn6sVm1puRnWdHZV/Tnss/9QS2dDCGkb/AYdIZFAZyckEujshEQCnZ2QSKCzExIJHU042ZPPYvfOLUFbcaDf7JfrC0tbx161k0OeXZg3bUuLjix32Yxpu3T7WLjP6ZNmnyOTr5i24ydPmzaInYxSPZvxLcVmJaNW40lyGedLV+rJg06Umnnaznqkakccqnr3R09udNa/maemiT68sxMSCXR2QiKBzk5IJNDZCYkEOjshkUBnJyQSOiq9JUkGfYN9QVumx44cWzISTqaJ/VqVFbueW6HHlq4WFu06aosrS8H2I5NHzT4zM7YE6CWOdCOvHJstbdlr1Wxiw6bkPCf6Tp3DZR1ZLnUkLzVkudSNbLPXaqVmR6LV1ElU6ZxbxnBD77yaiVTknZ2QSKCzExIJdHZCIoHOTkgk0NkJiYTO7sZncxjcEi699PIJO+fasRPhgJGasxtcKdm7puWSHQgzt1g2bZILL9eyU6rJ23DPZu3lT2vO7rMT+GGaxMu5ZtP8Tn24PesoKKmzm63OpSq5HrtfLXzMxAuEqTmlt2reejg7/E4AjUj43MR7zsSYo7vrTwiJAjo7IZFAZyckEujshEQCnZ2QSKCzExIJa0pvIrITwHdQL8msAPaq6jdE5C4AnwHwmi52p6o+5B0rBbBsKGJTr9olmaaMXG0VT9dK7dexasWW5Yp94UAdAMhWw1JIbcULxHByruWc4BRHdfGkN2s0cV7XvdJEHqlzbpayJV4AhyPl1Rw5LMnYgU1WOay8FxiUNBNotIYkakiAAJBWloPtGS+wJjFyDZo91qezVwF8QVWfEpEBAE+KyCMN29dV9W/WcQxCSJdZT623EwBONB4viMhBANvbPTFCSGu5oPdvIrILwHsAPN5oul1E9ovIPSIy3OK5EUJayLqdXUT6AfwQwOdVdR7ANwHsBnAN6nf+rxr99ojIhIhMLDlfUyWEtJd1ObuI5FB39O+q6o8AQFWnVbWmqimAbwG4NtRXVfeq6riqjhcLdvYYQkh7WdPZpZ576G4AB1X1a6vaV5dH+QSAA62fHiGkVaxnN/4DAG4B8KyIPN1ouxPAp0TkGtTVnkkAn13rQGktRWkxnMdtZWXF7JcxcoLVVryPBbZs4UVeJY60kjVMeUfwSHvsiKxK1ZaTfBHFk6+Mo3nRUF5+t+aC5cxjivO8JLDXI+Occ6ZmRyomxjwKTsRhNutIeU7prapzDVcd6Q2w+jlrZciDZ708fs4MAACq+nOErzxXUyeEXFzwG3SERAKdnZBIoLMTEgl0dkIigc5OSCR0NOGkpjWUz4cTS1ZLJbOfWEkDHTmm5pTp8eQTXQlHIAFOCSJH7tCeXtNWVXusStWev7qyXJiaF5HlJpW84KEa/cJz9MoueXeeYtaefzFnH3NTMSx9Fov285JJ7OvDSxLqRQ+qE8HWTHLOXD5sm56dNPvwzk5IJNDZCYkEOjshkUBnJyQS6OyERAKdnZBI6Kz0poq0Go5QGtmUM/tlDdnFSl4JAJrasfO5xB4rn3VsRmLDWmr3OedIaL1G7TgAqPY6dewqtoxTNZJfetFrnizn1nNzZLTESIiYz9qRbYN9thy2dWTQ7lew17E3H37OMlmv9pp3Xl60nH0deMeUTHitEkcCTAxZLp+fMvvwzk5IJNDZCYkEOjshkUBnJyQS6OyERAKdnZBI6Kj0JlCIkVxvdMSWykY3hyWNNPUSFNqJHpNMc6dt1fLyanxtWrKTYuZ67LpyXhLI5bJ93kbZsKblNc+WcWqs5Y06doW8nZSx34hQA4BioWjaLBkKABIjEi3j1HPzro9MxpbXvHuneklCzW5eLcDw8azkrP7RCCFvKejshEQCnZ2QSKCzExIJdHZCImHNbWkR6QXwGICexv//QFW/KCJXAPg+gM0AngRwi6quXabV2N3NOoEJli2XswMncom9s+sljfN2n2u18C54pWIHu3g7uwOb7B3m1FlKgb0LDsMmGXsHX8RLNOcEcDjBHRnD5t1dvBJVbiCJswNt9UucYKjEURm83XgRbxffC4QJ29RbLSPHn6eQrOfOvgzgBlV9N+rlmW8UkfcB+AqAr6vq2wDMArhtHccihHSJNZ1d65xv/Jlr/CiAGwD8oNF+L4CPt2WGhJCWsN767EmjguspAI8AeAnAnKq+9v51CsD29kyRENIK1uXsqlpT1WsA7ABwLYB3rHcAEdkjIhMiMlHysk0QQtrKBe3Gq+ocgJ8AeD+AIfn/HYkdAI4bffaq6riqjhd6OvrtXELIKtZ0dhEZFZGhxuMCgA8DOIi60/9+499uBfDjdk2SELJx1nOrHQNwr9RrJmUA3K+q/ywizwP4voj8FYD/AXD3egYUIzDBy7eVz4fljt5eJ2+dI614udO8oBZLelOnTzFXMG05JxijaowFAJKxx7NiQnzpx5GuvFJTXhUqQ83zykl50psrKbmanbUgnrzmjdVkP2eNE+s6UO95MQJ8nLVY09lVdT+A9wTaj6D++Z0Q8iaA36AjJBLo7IREAp2dkEigsxMSCXR2QiJBvCivlg8mchrAscafWwCc6djgNpzH6+E8Xs+bbR6Xq+poyNBRZ3/dwCITqjrelcE5D84jwnnwbTwhkUBnJyQSuunse7s49mo4j9fDebyet8w8uvaZnRDSWfg2npBI6Iqzi8iNIvKCiLwoInd0Yw6NeUyKyLMi8rSITHRw3HtE5JSIHFjVNiIij4jI4cbv4S7N4y4ROd5Yk6dF5KMdmMdOEfmJiDwvIs+JyJ822ju6Js48OromItIrIk+IyDONefxlo/0KEXm84Tf3iYhdMy2Eqnb0B/X0py8BuBJAHsAzAK7u9Dwac5kEsKUL434QwHsBHFjV9tcA7mg8vgPAV7o0j7sA/FmH12MMwHsbjwcAHAJwdafXxJlHR9cE9eDh/sbjHIDHAbwPwP0APtlo/zsAf3whx+3Gnf1aAC+q6hGtp57+PoCbujCPrqGqjwGYeUPzTagn7gQ6lMDTmEfHUdUTqvpU4/EC6slRtqPDa+LMo6NonZYnee2Gs28H8Mqqv7uZrFIBPCwiT4rIni7N4TW2quqJxuOTALZ2cS63i8j+xtv8tn+cWI2I7EI9f8Lj6OKavGEeQIfXpB1JXmPfoLtOVd8L4PcAfE5EPtjtCQH1V3aYuV7azjcB7Ea9RsAJAF/t1MAi0g/ghwA+r6rzq22dXJPAPDq+JrqBJK8W3XD24wB2rvrbTFbZblT1eOP3KQAPoLuZd6ZFZAwAGr9PdWMSqjrduNBSAN9Ch9ZERHKoO9h3VfVHjeaOr0loHt1ak8bYF5zk1aIbzr4PwFWNncU8gE8CeLDTkxCRPhEZeO0xgI8AOOD3aisPop64E+hiAs/XnKvBJ9CBNZF6jaa7ARxU1a+tMnV0Tax5dHpN2pbktVM7jG/Ybfwo6judLwH48y7N4UrUlYBnADzXyXkA+B7qbwdXUP/sdRvqNfMeBXAYwL8DGOnSPP4BwLMA9qPubGMdmMd1qL9F3w/g6cbPRzu9Js48OromAN6FehLX/ai/sPzFqmv2CQAvAvgnAD0Xclx+g46QSIh9g46QaKCzExIJdHZCIoHOTkgk0NkJiQQ6OyGRQGcnJBLo7IREwv8CCap0jnvfVBUAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "yJgho2AEBFbx", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "ab9a7e1d-cdf8-4b8d-9a91-58c353b8205d" + }, + "source": [ + "# number of classes\n", + "K = len(set(y_train))\n", + "'''\n", + " calculate total number of classes\n", + " for output layer\n", + "'''\n", + "print(\"number of classes:\", K)\n", + "''' \n", + " Build the model using the functional API\n", + " input layer\n", + "'''\n", + "#YOUR CODE HERE\n", + "inp_layer = Input(shape = x_train[0].shape)\n", + "#YOUR CODE HERE\n", + "'''Hidden layer'''\n", + "# YOUR CODE HERE\n", + "r = Conv2D(32, (3,3), padding=\"same\", activation=\"relu\")(inp_layer)#This is the first concolutional layer in first hidden layer with 32 filters, size 3*3 pixels, with padding to maintain size same as of input layer given and activation function as rectified linear activation function.\n", + "r = Conv2D(32, (3,3), activation=\"relu\")(r)#This is the second concolutional layer in first hidden layer with 32 filters, size 3*3 pixels, with no padding leading and activation function as rectified linear activation function.\n", + "r = MaxPooling2D(pool_size=(2,2))(r)#It takes all possible 2*2 matrices in the Input it gets and continously takes out max value to form a new matrix of reduced size\n", + "r = Dropout(0.30)(r)#We drop out the 0.7 fraction of the nodes in the before layer, to prevent the model's weight and other parameters overfitting to the training dataset rather be more generalized.\n", + "# YOUR CODE HERE\n", + "\n", + "\"\"\"last hidden layer i.e.. output layer\"\"\"\n", + "# YOUR CODE HERE\n", + "r = Conv2D(64, (3,3), padding=\"same\", activation=\"relu\")(r)#Same as in the first layer just filters are increased to 64 \n", + "r = Conv2D(64, (3,3), activation=\"relu\")(r)#Same as in the first layer just filters are increased to 64 \n", + "r = MaxPooling2D(pool_size=(2,2))(r)#Same as in above layer \n", + "r = Dropout(0.30)(r)#Same as in above layer\n", + "\n", + "r = BatchNormalization()(r)#\n", + "r = Flatten()(r)#\n", + "r = Dense(512, activation=\"relu\")(r)#This is a dense layer \n", + "r = Dropout(0.5)(r)#Same as above just the difference is the rate of the rate is different \n", + "r = Dense(10, activation=\"softmax\")(r)#This is the final Output layer, with 10 outlets for the 10 classes of the y_train and y_test\n", + "\n", + "model = tf.keras.Model(inp_layer, r)\n", + "# YOUR CODE HERE\n", + " \n", + "'''model description'''\n", + "model.summary()" + ], + "execution_count": 19, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "number of classes: 10\n", + "Model: \"model_1\"\n", + "_________________________________________________________________\n", + " Layer (type) Output Shape Param # \n", + "=================================================================\n", + " input_2 (InputLayer) [(None, 32, 32, 3)] 0 \n", + " \n", + " conv2d_4 (Conv2D) (None, 32, 32, 32) 896 \n", + " \n", + " conv2d_5 (Conv2D) (None, 30, 30, 32) 9248 \n", + " \n", + " max_pooling2d_2 (MaxPooling (None, 15, 15, 32) 0 \n", + " 2D) \n", + " \n", + " dropout_3 (Dropout) (None, 15, 15, 32) 0 \n", + " \n", + " conv2d_6 (Conv2D) (None, 15, 15, 64) 18496 \n", + " \n", + " conv2d_7 (Conv2D) (None, 13, 13, 64) 36928 \n", + " \n", + " max_pooling2d_3 (MaxPooling (None, 6, 6, 64) 0 \n", + " 2D) \n", + " \n", + " dropout_4 (Dropout) (None, 6, 6, 64) 0 \n", + " \n", + " batch_normalization_1 (Batc (None, 6, 6, 64) 256 \n", + " hNormalization) \n", + " \n", + " flatten_1 (Flatten) (None, 2304) 0 \n", + " \n", + " dense_2 (Dense) (None, 512) 1180160 \n", + " \n", + " dropout_5 (Dropout) (None, 512) 0 \n", + " \n", + " dense_3 (Dense) (None, 10) 5130 \n", + " \n", + "=================================================================\n", + "Total params: 1,251,114\n", + "Trainable params: 1,250,986\n", + "Non-trainable params: 128\n", + "_________________________________________________________________\n" + ] + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "PLc4Bay65TyA" + }, + "source": [ + "# Compile\n", + "model.compile('adam', 'sparse_categorical_crossentropy')" + ], + "execution_count": 6, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "# Fit\n", + "result = model.fit(x_train, y_train, validation_data=(x_test, y_test), epochs= 50)" + ], + "metadata": { + "id": "U0fGsDCRsQrn", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "e9d27e24-d86b-4098-9aa6-fde3bcc71df5" + }, + "execution_count": 7, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Epoch 1/50\n", + "1563/1563 [==============================] - 20s 6ms/step - loss: 1.4996 - val_loss: 1.4793\n", + "Epoch 2/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 1.1772 - val_loss: 1.0125\n", + "Epoch 3/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 1.0536 - val_loss: 0.9653\n", + "Epoch 4/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.9724 - val_loss: 0.8178\n", + "Epoch 5/50\n", + "1563/1563 [==============================] - 9s 6ms/step - loss: 0.9151 - val_loss: 0.7910\n", + "Epoch 6/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.8703 - val_loss: 0.7622\n", + "Epoch 7/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.8350 - val_loss: 0.7503\n", + "Epoch 8/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.7977 - val_loss: 0.7286\n", + "Epoch 9/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.7766 - val_loss: 0.7439\n", + "Epoch 10/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.7535 - val_loss: 0.7926\n", + "Epoch 11/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.7359 - val_loss: 0.7032\n", + "Epoch 12/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.7147 - val_loss: 0.7417\n", + "Epoch 13/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.6999 - val_loss: 0.6490\n", + "Epoch 14/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.6876 - val_loss: 0.6867\n", + "Epoch 15/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.6719 - val_loss: 0.6451\n", + "Epoch 16/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.6562 - val_loss: 0.6558\n", + "Epoch 17/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.6546 - val_loss: 0.6570\n", + "Epoch 18/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.6320 - val_loss: 0.6479\n", + "Epoch 19/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.6266 - val_loss: 0.6541\n", + "Epoch 20/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.6232 - val_loss: 0.6045\n", + "Epoch 21/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.6081 - val_loss: 0.6016\n", + "Epoch 22/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.6039 - val_loss: 0.6075\n", + "Epoch 23/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.5939 - val_loss: 0.6202\n", + "Epoch 24/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.5862 - val_loss: 0.5830\n", + "Epoch 25/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.5760 - val_loss: 0.6227\n", + "Epoch 26/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.5787 - val_loss: 0.6310\n", + "Epoch 27/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.5658 - val_loss: 0.5804\n", + "Epoch 28/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.5586 - val_loss: 0.6180\n", + "Epoch 29/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.5543 - val_loss: 0.5746\n", + "Epoch 30/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.5501 - val_loss: 0.5795\n", + "Epoch 31/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.5417 - val_loss: 0.5625\n", + "Epoch 32/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.5375 - val_loss: 0.5893\n", + "Epoch 33/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.5361 - val_loss: 0.6275\n", + "Epoch 34/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.5229 - val_loss: 0.5925\n", + "Epoch 35/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.5276 - val_loss: 0.5766\n", + "Epoch 36/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.5201 - val_loss: 0.5837\n", + "Epoch 37/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.5221 - val_loss: 0.5760\n", + "Epoch 38/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.5149 - val_loss: 0.5833\n", + "Epoch 39/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.5016 - val_loss: 0.5788\n", + "Epoch 40/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.5099 - val_loss: 0.5667\n", + "Epoch 41/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.5016 - val_loss: 0.5894\n", + "Epoch 42/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.5002 - val_loss: 0.5634\n", + "Epoch 43/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.4923 - val_loss: 0.5574\n", + "Epoch 44/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.4910 - val_loss: 0.5878\n", + "Epoch 45/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.4958 - val_loss: 0.5760\n", + "Epoch 46/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.4884 - val_loss: 0.5547\n", + "Epoch 47/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.4868 - val_loss: 0.6037\n", + "Epoch 48/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.4795 - val_loss: 0.5462\n", + "Epoch 49/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.4730 - val_loss: 0.5518\n", + "Epoch 50/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.4828 - val_loss: 0.5795\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "plt.plot(result.history['loss'], label='loss')\n", + "plt.plot(result.history['val_loss'], label='val_loss')\n", + "plt.legend()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 282 + }, + "id": "8WXLvf_xRUNw", + "outputId": "9d9738e9-ba72-445f-ef2e-24c518708287" + }, + "execution_count": 10, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 10 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3dd3xUVd7H8c9JMsmkF9IgAQLSIRQJWEHRRVkbawVs6NpWXddVHsuu6+q6uq76rOv62HtZRLD3gooiCkgSCAlVQAgJkEJ6T2bO88eZhDSSkEwymZnf+/XKazJ37tx7LsbvnDntKq01Qggh3J+PqwsghBDCOSTQhRDCQ0igCyGEh5BAF0IIDyGBLoQQHsLPVSeOjo7WSUlJrjq9EEK4pbS0tEKtdUx7r7ks0JOSkkhNTXXV6YUQwi0ppfYc7jVpchFCCA8hgS6EEB5CAl0IITyEy9rQhRDeqb6+npycHGpqalxdlH7NarWSmJiIxWLp8nsk0IUQfSonJ4fQ0FCSkpJQSrm6OP2S1pqDBw+Sk5PDsGHDuvw+aXIRQvSpmpoaBgwYIGHeAaUUAwYMOOJvMRLoQog+J2Heue78G7ldoG87UM4jX2ylpKrO1UURQoh+xe0CfffBSp5csZOc4mpXF0UI4aZCQkJcXYRe4XaBHhdmBSCvTHrIhRCiOTcM9AAA8spqXVwSIYS701pz2223MWHCBJKTk1m6dCkA+/fvZ+bMmUyePJkJEybw/fffY7PZuOKKK5r2/fe//+3i0rfldsMWo0MCUEpq6EJ4gr99tInN+8qcesxxg8K45+zxXdr33XffZcOGDWRkZFBYWMi0adOYOXMmb7zxBqeffjp33XUXNpuNqqoqNmzYQG5uLllZWQCUlJQ4tdzO4HY1dIuvDwOCA8gvl0AXQvTMqlWrWLBgAb6+vsTFxXHSSSexbt06pk2bxssvv8y9995LZmYmoaGhDB8+nF27dnHTTTfx+eefExYW5urit+F2NXQwzS7S5CKE++tqTbqvzZw5k5UrV/LJJ59wxRVXcOutt3L55ZeTkZHBF198wTPPPMOyZct46aWXXF3UFtyuhg6mY1SaXIQQPTVjxgyWLl2KzWajoKCAlStXMn36dPbs2UNcXBzXXHMNV199Nenp6RQWFmK32zn//PO5//77SU9Pd3Xx23DbGvrGnFJXF0MI4ebOPfdcVq9ezaRJk1BK8fDDDxMfH8+rr77KI488gsViISQkhNdee43c3FyuvPJK7HY7AA8++KCLS9+WWwZ6bKiVg5W11NvsWHzd8kuGEMKFKioqADMb85FHHuGRRx5p8frChQtZuHBhm/f1x1p5c26ZhnFhVrSGwgppRxdCiEZuGeixoTIWXQghWnPLQG+cLZovHaNCCNHETQPdUUMvlxq6EEI0cstAHxASgI+SGroQQjTnloHu66OICQ2QsehCCNGMWwY6NE4ukiYXIYRo5LaBHhsqs0WFEL2vo7XTd+/ezYQJE/qwNB1z20CPCwsgXzpFhRCiiVvOFAXT5FJUWUdtg40AP19XF0cI0R2f3QkHMp17zPhk+PU/D/vynXfeyeDBg7nxxhsBuPfee/Hz82PFihUUFxdTX1/P/fffz9y5c4/otDU1NVx//fWkpqbi5+fHo48+yqxZs9i0aRNXXnkldXV12O123nnnHQYNGsRFF11ETk4ONpuNu+++m3nz5vXosqELNXSl1EtKqXylVFYn+01TSjUopS7ocam6oHHoYoHU0oUQR2DevHksW7as6fmyZctYuHAh7733Hunp6axYsYJFixahtT6i4z755JMopcjMzGTJkiUsXLiQmpoannnmGW6++WY2bNhAamoqiYmJfP755wwaNIiMjAyysrKYM2eOU66tKzX0V4AngNcOt4NSyhd4CPjSKaXqgtimW9HVkhgZ1FenFUI4Uwc16d4yZcoU8vPz2bdvHwUFBURGRhIfH88tt9zCypUr8fHxITc3l7y8POLj47t83FWrVnHTTTcBMGbMGIYOHcr27ds57rjjeOCBB8jJyeG8885j5MiRJCcns2jRIu644w7OOussZsyY4ZRr67SGrrVeCRR1sttNwDtAvjMK1RWN0/9lLLoQ4khdeOGFvP322yxdupR58+axePFiCgoKSEtLY8OGDcTFxVFT45xsufjii/nwww8JDAzkjDPO4JtvvmHUqFGkp6eTnJzMX/7yF+677z6nnKvHbehKqQTgXGAWMK2Tfa8FrgUYMmRIj87bNP1fmlyEEEdo3rx5XHPNNRQWFvLdd9+xbNkyYmNjsVgsrFixgj179hzxMWfMmMHixYs55ZRT2L59O9nZ2YwePZpdu3YxfPhw/vCHP5Cdnc3GjRsZM2YMUVFRXHrppURERPDCCy845bqc0Sn6GHCH1tqulOpwR631c8BzACkpKUfWQNVKVJA/fj5Khi4KIY7Y+PHjKS8vJyEhgYEDB3LJJZdw9tlnk5ycTEpKCmPGjDniY95www1cf/31JCcn4+fnxyuvvEJAQADLli3j9ddfx2KxEB8fz5///GfWrVvHbbfdho+PDxaLhaefftop16W60vCvlEoCPtZatxlwqZT6BWhM8migCrhWa/1+R8dMSUnRqampR1reFo5/8GuOOyqaf100qUfHEUL0nS1btjB27FhXF8MttPdvpZRK01qntLd/j2voWuthzU70Cib4OwxzZ4kNs8rNooUQwqHTQFdKLQFOBqKVUjnAPYAFQGv9TK+WrhNxYQH8UljpyiIIIbxAZmYml112WYttAQEBrF271kUlal+nga61XtDVg2mtr+hRaY5QXJiVNbs6G4AjhOhvtNZ01ufWnyQnJ7Nhw4Y+PeeRjoMHN576DybQS6vrqam3ubooQoguslqtHDx4sFuB5S201hw8eBCr1XpE73Pbqf/QfCx6LUMGyOQiIdxBYmIiOTk5FBQUuLoo/ZrVaiUxMfGI3uPWgd44Fj2vvEYCXQg3YbFYGDZsWOc7iiPm9k0ugIxFF0II3DzQG5tc5EYXQgjh5oEeEWTB39dHxqILIQRuHuhKKWLDAsiXGroQQrh3oEPjvUWlhi6EEB4Q6AES6EIIgQcEemyoVZpchBACDwj0uDAr5bUNVNY2uLooQgjhUh4Q6I7ZonKjCyGEl/OAQJfJRUIIAR4R6I2TiyTQhRDeze0DPSbUcW9R6RgVQng5tw/0MKsfVouP1NCFEF7P7QNdKUVcmFU6RYUQXs/tAx0gLlRmiwohhEcEemxYgNTQhRBezyMCvXE9F7mllRDCm3lIoAdQVWejQmaLCiG8mIcEeuPkIml2EUJ4L48I9NimsejSMSqE8F7uF+j11bA/A2z1TZuaZovKnYuEEF7M/QJ984fw7Ew4uLNpU6w0uQghhBsGeswo81i4rWlTSIAfwf6+MhZdCOHV3C/QB4w0j4XbW2yOC5MbXQghvJv7BXpACIQlQkHLQDeTi6SGLoTwXp0GulLqJaVUvlIq6zCvX6KU2qiUylRK/aiUmuT8YrYSM6pFkws0Ti6SGroQwnt1pYb+CjCng9d/AU7SWicDfweec0K5OhY9Cgp/Bru9aZPMFhVCeLtOA11rvRIo6uD1H7XWxY6na4BEJ5Xt8KJHQX0VlOU2bYoNDaC2wU5ZtcwWFUJ4J2e3oV8FfObkY7YVM9o8NusYbZotKu3oQggv5bRAV0rNwgT6HR3sc61SKlUplVpQUND9k0U3Dl1sJ9Bl6KIQwks5JdCVUhOBF4C5WuuDh9tPa/2c1jpFa50SExPT/RMGx4A1AgoOdYzGOwI9t7i6+8cVQgg31uNAV0oNAd4FLtNab+9sf6dQ6lDHqENiZCBhVj827C3pkyIIIUR/49fZDkqpJcDJQLRSKge4B7AAaK2fAf4KDACeUkoBNGitU3qrwE1iRsH2L5qe+vgopg6NJHVPcQdvEkIIz9VpoGutF3Ty+tXA1U4rUVdFj4b1/4WqIgiKAiAlKYoV27ZRXFlHZLB/nxdJCCFcyf1mijZq6hg91OySMjQSgDSppQshvJD7Bno7i3RNGhyBxVdJs4sQwiu5b6BHDAXfgBZDF60WX8YPCidtz2HnQQkhhMdy30D38YUBI9os0pUyNJKMnFJqG2wuKpgQQriG+wY6OBbpahXoSZHUNdjJyi1zUaGEEMI13DvQo0dByR6oPzQ7dOpQM+Ildbc0uwghvIv7B7q2Q9Gh29HFhAaQNCBIOkaFEF7HvQO9cZGugpZro08dGkX6nmJZSlcI4VXcO9AHjABUu+3oByvr+KWw0jXlEkIIF3DvQLcEQsSQtoHumGAkzS5CCG/i3oEOptml1dDFo2JCiAiykLZbAl0I4T3cP9CjR8HBlrej8/FRTB0SybrGCUYbl8GBTBcVUAgh+oZnBHpDDZRmt9g8NSmSXQWVlOT+DO9eCz887qICCiFE33D/QG8a6dK6Hd2MRy9Z+TSgoXh335ZLCCH6mPsHeju3owOYmBhOqG8dcTveMhtK9vRxwYQQom+5f6AHRUFQdItVF8Es1HV9VDqBtjIY8SuoyIO6KhcVUgghep/7Bzq0uR0dAFpzQcMnbNFDqZswz2yTWroQwoN5RqDHjGozW5Tdq4it3snLDaexs36A2Sbt6EIID+YZgR49GqqLoLLw0LafnsVujeQD2wmsLQk324qlhi6E8FweEuitOkZL9sLWT/CZupBB0ZGsytVgCZYauhDCo3lGoDfejq6x2SX1RfM47SpShkaSll2MjhwqgS6E8GieEehhiWAJMh2j9dWQ9gqMPgMihpCSFElxVT2VwYOlU1QI4dE8I9B9fMzKi4XbIPNtqC6GY64DDt3wIpcYU0OXJXWFEB7KMwIdDi3S9dOzEDsOkmYAcFRMMAOC/cmoiIT6KqgscHFBhRCid3hOoEePMuu5HMiE6deAUgAopTh70iC+2h9o9pN2dCGEh/KsQAewhsPEeS1euihlMDttMeaJDF0UQngozwn0mDHmccpl4B/c4qVxg8IIHzjcPJEauhDCQ3lQoI+Gc5+Fk25v9+XfTBtBno6gOHd7u68LIYS785xAVwomzTdNLu2YOymBHOIo2fdzu68LIYS76zTQlVIvKaXylVJZh3ldKaUeV0rtUEptVEod7fxi9lx4kAV7+BACKvZSU29zdXGEEMLpulJDfwWY08HrvwZGOn6uBZ7uebF6R9zQMcTrg3yVtdfVRRFCCKfrNNC11iuBog52mQu8po01QIRSaqCzCuhMicPH4qM0K9amu7ooQgjhdM5oQ08Amld5cxzb2lBKXauUSlVKpRYU9P0EH5/IJAAKsreRUyw3uxBCeJY+7RTVWj+ntU7RWqfExMT05akNR6APVvm8k5bb9+cXQohe5IxAzwUGN3ue6NjW/4QOBF9/joss5620vdjtsq6LEMJzOCPQPwQud4x2ORYo1Vrvd8Jxnc/HByKGMiWslJzialbvOujqEgkhhNP4dbaDUmoJcDIQrZTKAe4BLABa62eAT4EzgB1AFXBlbxXWKSKHMrAijzCrH8tS93LCiGhXl0gIIZyi00DXWi/o5HUN3Oi0EvW2yCR8ctYxd3ICS1P3cl9VPeFBFleXSgghesxzZop2VWQS1JQyPzmUugY7H2b0z+Z+IYQ4Ut4X6BFDARgXWMTYgWG8/ONumTkqhPAI3hfojqGLqngPt88Zza6CSh5dLgt2CSHcnxcGuqmhU7ybWaNjufiYITz//S7WyogXIYSb875At4ZDYGTTDaPvOmMsgyODWPRWBhW1DS4unBBCdJ/3BTqYZhfHjS6CA/x49KJJ5JZUc//Hm11aLCGE6AmvD3SAlKQorpt5FG+u28vXW/JcViwhhOgJ7w30kr1gPzS65ZbZIxkTH8od72RSVFnnurIJIUQ3eWegRwwFez2U7WvaFODny6MXTaa0uo6/vJ+JmS8lhBDuwzsD3TF0sfUNo8cNCuOW2aP4NPMAH2bsa/M2IYTozyTQW7lu5lFMHRrJ3e9nUVBe26fFEkKInvDOQA9PBOXTNHSxOV8fxcMXTKS63saDn25xQeGEEKJ7vDPQfS0m1NupoQMcFRPCtTOH8+76XJlwJIRwG94Z6NBm6GJrv581koSIQO7+IIt6m73PiiWEEN3lvYEeMRSK2za5NAr09+Xec8azPa+Cl3/4pQ8LJoQQ3eO9gR6ZBJX5UFd52F1mj4vj1DGxPPbVz+wvre67sgkhRDd4d6BDh7V0gHvPGY/Nrvm7LAsghOjnvDjQh5nHDtrRAQZHBfH7WSP4NPMAK7cX9H65hBCim7w40B3L6LYzdLG1a08azrDoYP76QZbcDEMI0W95b6AHDQD/kE5r6GCWBfjbOePZfbCK51bu6v2yCSFEN3hvoCvV6dDF5maOiuHM5IE8uWIHaXuKe7VoQgjRHd4b6ADRoyA3DWz1Xdr9r2ePIz7cyoLn1/CRrPUihOhnvDvQJ86DygLY9mmXdo8Ls/LeDScwKTGcm5as5/++/llWZRRC9BveHegjZ0NYIqS+3OW3RAX789+rj+HcKQn8a/l2Fr2VQW2DdJQKIVzPuwPdxxeOvhx2rYCirs8GNWunT+KWX43i3fRcLnvxJ4rlphhCCBfz7kAHmHKpWXkx/dUjeptSipt/NZL/zJ/MhuwSznv6R3YXHn7WqRBC9DYJ9PAEGDUH1v8XGo68lj13cgJvXHMMJVV1XPjsarYeKOuFQgohROck0AGmXnFEnaOtpSRF8dbvjsNHwbxn17Bhb4lzyyeEEF3QpUBXSs1RSm1TSu1QSt3ZzutDlFIrlFLrlVIblVJnOL+ovWjEryB8MKS90v1DxIby9u+OJzzQwiXPr+HHnYXOK58QQnRBp4GulPIFngR+DYwDFiilxrXa7S/AMq31FGA+8JSzC9qrWnSOdn8m6OCoIN763XEkRAZyxcvr+GpznhMLKYQQHetKDX06sENrvUtrXQe8CcxttY8Gwhy/hwPuN+tmyqWgfCHtyDpHW4sLs7L02uMYEx/K7/6bxgcbcp1UQCGE6FhXAj0B2NvseY5jW3P3ApcqpXKAT4Gb2juQUupapVSqUiq1oKCfrVwYNsh0jm5Y3K3O0eYig/1ZfPUxTB0ayR+XbmDx2s4XABNCiJ5yVqfoAuAVrXUicAbwulKqzbG11s9prVO01ikxMTFOOrUTNXWOftL+6wXb4Iu74Nt/mvb2bZ/Dvg1Qngf2lpOLQq0WXv3tdGaNjuWu97J4+tudvV58IYR38+vCPrnA4GbPEx3bmrsKmAOgtV6tlLIC0UC+MwrZZ0aceqhzdPy5h7bXlMF3D8HaZ8xze0Pb9ypfiB0LCVMhMQUSpmKNGcOzl01l0bIMHvp8K2U19dx++miUUn1yOUII79KVQF8HjFRKDcME+Xzg4lb7ZAOnAq8opcYCVqCftal0gY8vHL0QVtwPB3dC1HDYuBSW/xUq8uHoy+DUeyAgzNy+rvwAlO83j2W5sD8DNr9/aJKSfwiWQVN4bOqVhFpH8fS3Oymrrue+uRPw9ZFQF0I4V6eBrrVuUEr9HvgC8AVe0lpvUkrdB6RqrT8EFgHPK6VuwXSQXqHdddWqKZfCtw/CN/dD2T7Yu8bUuhcsMY+NwhPNT2tamw+D3FSzkuOu7/B557fcP/N2wk86j6e+20VZTQOPXjQJi69MAxBCOI9yVe6mpKTo1NRUl5y7U29eAls/hqBomP03mHQx+HQzfBvq4OM/ms7WifN5NuIWHvxyJ7NGx/DUJVMJ9Pd1btmFEB5NKZWmtU5p77WuNLl4n9n3mXbwqVdCYETPjuXnD3OfhKhh8M39XJeUS9RZD3L7J9nMe241f587gUmDe3gOIYRAauh9a+Nb8MENEJnEd9OeYtHyEgor6jj/6ERunzOauDAr2O2m09XP39WlFUL0Q1JD7y8mXmjGu795MSetXMCq2XfxY9YO9mduY/umfPyDiomoy0P5WeHmDRAU5eoSCyHciPTK9bWkE+Dqr8A/GOtnf+SUvU8wP2gdQwKqWF0Rz8fMgNpS2P6Fq0sqhHAzUkN3heiRcP2P5qYaEYPxtYYzFMjdWcjfP8xiWkkaBV8vZsS4i6TTVAjRZVJDdxX/YIifANbwpk3HHxXNR3+YyYGBpzKibC3zn/yanQUVLiykEMKdSKD3M36+PkyefSmBqo7hZes45/9W8VGG+611JoToexLo/VHSiWAN54ExuxkdH8pNS9bz1w+y5GbUQogOSaD3R74WGDWHoN3LWXrNNK4+cRivrd7Dhc+sJjOn1NWlE0L0UxLo/dWYM6G6GEvOGv5y1jieuXQq2UVVnP3EKm5YnMaO/HJXl1AI0c9IoPdXI34FflbYapbynTMhnpW3z+IPp47ku20FnPbvlSxalsHeoioXF1QI0V9IoPdX/sEwfJYJdMds3jCrhVtnj2Ll7bO46sRhfLRxH6f861vufj+LgxW1Li6wEMLVJND7s7FnQelesyxvMwNCArjrzHF8d9vJXJgymCU/ZXP6Yyv5eovcw1QIbyaB3p+NmgPKx6z82I6B4YH849xkPr9qFHEhFq56NZU/vZtJZW07N+AQQng8CfT+LDgahhzf1I7err0/MWLxsXw47B2uO2k4b67L5szHvyc9u7jvyimE6Bck0Pu7MWdC/mZz04zWyvNg2eWg7fiuf40/TajgzWuOpd6mueDpH3n0y23U2+x9X2YhhEtIoPd3Y840j61r6bZ6ePtKqC6BKz+F0EHwya0ckxTB53+cwblTEnn8mx3MeWwl76TlSLAL4QUk0Pu7yKEQn9y2HX35PbDnBzjncRhyLJz+ABzYCKkvEWq18K+LJvH85Sn4+/my6K0MTn7kW15fvZuaepltKoSnkkB3B2POhr0/mSYWgMy3Yc2TMP06mHiR2Tb+XBh2Enzzd6gw9+eePS6OT/9wIi9dkUJcWAB3f7CJEx9awbPf7aRCOk6F8DhyxyJ3cCALnjkBznoMBk+HF34F8RNh4Uct72xUsB2ePh4mzoPfPNniEFpr1uwq4qlvd/D9z4X4+ShGxYUyISGM5IRwxieEM25gGFZLO8v11lZA6ovgGwARQ8y3hoghEBDayxcuhGitozsWSaC7A63h8cmmnbziANRVwnUrITS+7b7L74EfHoPffglDjmn3cBl7S/hi0wGy9pWRlVtKUWUdAL4+ijHxoVx8zBDOPzrRhHvRL/DmxaZjtrXASIgYClOvMD9KOe+ahRDtkkD3BF/cBaufAB8/WPgxDD2u/f1qK+DJ6RAYBdd+C76t7mFSUWBq2xX5cNyN6Kjh7C+tITO3lE25pXyzLZ+s3DKigv3585h8ztt5Fz5ouPBl862gZA8U74GSbPOzbz3sS4dJC+DMR8E/qLf/JYTwahLoniAnDV44BX79MBxzXcf7bnof3lrYct/Cn80HQsab0FBjmk/sDTDlEjjpDghPBEzTzNpdB9n5yaPMO/g0vzCID8b+L+eeOoOjYkLanstuh5UPw7f/hLgJMO91iBrm5IsXQjSSQPcUFQUQEtP5flrD6+dCbhqc+wys/y9s+9SE+KT5cNzvzZ2SVj0KqS+Z90y7Gk68Faxh8MkiWP86FUmn8b/Bt/JGRgl1DXZOHBHN/OmDmT0ujgC/Vm3t27+Ed682v5/3Aow6zXnXXVdpPnz8As3Swr3RtGNraPttRoh+SALdGxX+DE8dB/Z60/wy/RqYdk3bD4SSbPjuIdjwhgnMiCFQsAVm3g4n/wl8fCisqGXxmmyWpe4lt6SayCAL5x2dyPxpgxkZ16xjtOgXWHaZ6cQ96Q7z49ODgVSlObDyf2H96ybQAZQvWALNSpSWIHPT7Rn/A9Ejun7cmlLYt8F84O1Lh9z1UJkPs++DY6/vfnk7vJZcyHrbfJj6yH1iRfdJoHurzR9AVZEZ9dJZ23bhz7DiH7Dzazj7P2YYZCs2u+aHHYUsXbeXLzcfoN6mOXpIBGdNHMTMUdEcFROCqq+GT26FjCUw/GRzrMikIyt3+QH4/l+Q9or5tjHlUhgwAhqqob4a6mvM7zWlsPVTsNVC8oUw8zZzA+7W7DbIXgNbPoSd30Dh9kOvRQ6DhKPNBK2dX8OxN8Jp9/fsg6g9b19lAv2cJ+Doy5x7bOFVJNBF12ndpSaNgxW1vJuey7LUvfycb25kPSjcyoyRMcwcGc2syk8J+vYe0HaYdRcc87vOmzQqCswInXUvmJmwUy4xIR0xpIP35MOPj8O6F03fwIQL4KTbzYfILytNiG/9BCoLTJPT8JMgcTokTIFBR0NQlDmO3WY6ntc+DeN+A+c+CxZrF//ROlG0C/5vqlloLSgabkqDgHb6I4ToAgl00av2FlXx/c+FrNxewA87CymvaUApmBFby5325xlX/iNV0RPxO/cJ/BMmtXxzbQXsWA5bPoJtn5lQnjgfTroNooZ3vRAVBY5gf8Ecwz8UakvBEmza88eeAyNP6zxIVz8JX/wZhhwH8984FPg98dHNsGEJXPAiLL3UNEXN+nPPjys6Vl1svunNWGSG2HqIHge6UmoO8B/AF3hBa/3Pdva5CLgX0ECG1vrijo4pge6ZGmx2MnJKWbm9gPTsYjJzSjihdhX3Wl4hkgreDTyP3JGXceXAPUTs+Rx2fG2aTIIGwJiz4Pib2m826arKQljzFFTkwegz4KhTTJv7kdj0Hrx7nflmcOnbR95k1FzZPvjPJJhyGZz1KLx1pfnguikNwhO6f9z+pqHW9HkMOMrVJTnkw5sg/TWP+wDtUaArpXyB7cBsIAdYByzQWm9uts9IYBlwita6WCkVq7XO7+i4EujeQWtNTnE1W3/ZQ9ya+5lYcGhNmjL/WAKSf0NA8lxTI+5PnYV7foQlC8DXH1KuNG3tUcPMY0hs10fafHEXrHka/pBuPhiKd8MT00zT0LlP9+YV9B2tzTePrZ/A6f8wHcuunmS2dx286LiNo38I3LLJeU1oXVVV5JxveK10FOhdGac1Hdihtd7lONibwFyg+dTBa4AntdbFAJ2FufAeSikGRwUxOGosTF0Mv6ykZNv3vLh/OE9sDyUs3Z8bwgayMAGs/WlloaHHw1VfwjtXwcpHTF9AI0uwCedpvzXDPQ+nqsgMC02+4FAtPzLJBN4P/zFzBAZN7sWL6IGfl6LN0/4AABIwSURBVJuO6K7MKchYYhaPGzACvviT6TOY80/XDQO120zHfOhAOPNfZqZz5jI4+vK+K8OWj8zS1nOfgskL+uy0XflfKAHY2+x5jmNbc6OAUUqpH5RSaxxNNEK0NWwmEXPuYtGVC/j4phlMHhzBg59tZdb/fssba7PJL6txdQkPiRkNv1sFd+XB79Pgkrfh14/A1IWmGeeTRWahtMNZ+wzUV8GJt7TcPmORaWL68i9N94vtV9JehcUXwMtnmCajjpRkw2d3wNAT4Ia1psls3fOwZD7UlvdNeVtb96JZefT0f5hmt7gJ5ltSX/1bl+aa5h5th2/uN81RfcRZdSI/YCRwMrAAeF4pFdF6J6XUtUqpVKVUakFBgZNOLdzV+EHhvPrb6Sy55lhiw6z8+b1Mpv/ja2Y8/A03v7me11bvJiu3lAZXr+Xu52/GuY+cDcdcC3MeNGvQDz0B3r/BDIlsrbYc1j5r+gVix7Z8zRpuxvjv/t5M+OpPtn4KH//RNIHVlsEbF5mO6/bY7eb6tR1+85SpkZ92v1lEbuc38NIc067el8rzTIgOP9kMvVXKfCPK3wy7vu3989tt8N510FBnvh2U5UDqy71/XoeutKEfB9yrtT7d8fxPAFrrB5vt8wywVmv9suP518CdWut1hzuutKGL5rTWbNhbQtqe4qaf/HJTs7FafAjy98OuNVqDXWtwPI6IC+W0cXGcNi6OEbEhqL5su60qMitfVhfD1V+17BD84XFYfjdc/Q0kTm37XluDWRnT3gA3rGm5aqarZK+B1+ZC3Hi4/EPIXm0CfcRsWLCkbR/Hmqfh8zvh7MfNt5bmdnwNb11hJn9d/CYMmtI31/DutaZT+/rVhyab1dfAYxNMGS55q3fPv+rf8NW9Zr7BlEvh1bOhYCvcnAH+wU45RU87Rf0wnaKnArmYTtGLtdabmu0zB9NRulApFQ2sByZrrQ8e7rgS6KIjWmtyS6pJ21PMxpxS6hrsKAU+SqEUKBQaTXp2CRl7SwAYFh3MaePimD0ujilDIvH16YNwP7jThHpQFFy13DzW18B/Jpqa+eUfHP69278wgTnnITj2dz0vy/6NsH+DGWcfM/rIOibzt8BLp0NwLPz2CwgeYLave8E0LU2/Ds54+ND+Bdvg2ZlmDf6Ll7Z/rrzN8MY8qCqEi14z33B60+5V8MqZZubwqXe3fO3bf8K3D8KN6yBmVO+cPzcNXjzNfCu78BXzb5K9Fl46DU69B2bc6pTTOGPY4hnAY5hhiy9prR9QSt0HpGqtP1SmWvQvYA5gAx7QWr/Z0TEl0IWzHCitYfmWPJZvzmP1zkLqbZqY0ADOTB7I2ZMGMmVwJD69Ge57VsNr55ggvew9s1TBJ7eaWu7wkw7/Pq3h9d/A/gw49zmzgmZ31pivKjI3Nkl9GTNqGAiOMU1CSSdC0oyOA740xwSR3QZXL287katxpc/GDx5bPbw426y6ecMaCI07fNnK80x7fP5mM1kr+YIjv76usNXDMzPMuj83rm07M7qiAP493kxWO+vfzj9/bQU8O8M0tVy/quW498UXwd41cPNGCGzTEn3EZGKR8BplNfWs2JrPZ5kH+GZbPnUNdhIiAjlr4kDOnjSI8YPCeqdZZuNbZnGyifNNU0VwjGmG6exceZtMW3NtmVmnZtBkE8BJM8ytBTuaCGW3Qfqr8PV9UFMG0681ywrkppva6u7voSzX7BsUDYkpkDDV8XO0CZ2qInP+8gOmXyB+QvvnWXa5ae+f/4b5APr2QbjwVRj/m87/bWpKYcnF5paJZzxi1hVytsYmrvlLYMwZ7e/zwY2Q+Q7cutn5wwnfvxE2LIYrPjHrCzW3f6MJ+5m3wSl/6fGpJNCFVyqvqWf55jw+ytjH9z8X0mDXDAj2x8dHYbdrbFpjs5lHXx/FqWNiuWDqYI4/akD3avTfPQwrHjC/dxQsrdVVQc5P8Mv3JohzU03buo8fxIw195Rt+plggnjvOvj0f0wTy9ATTXNI3PiWx9XajHvfvcqMq89Nc6xj4/h/fsAIs09pjvlm0TqIWpSx0jRnFGwzozYmnA/nP9/1f5v6GnNT822fmg7hk+448rHqWptRQzVl5kOiptR8EFYdhI9vhWEzTXv94eRtMv0Wp/7VjDRylk3vmf6C9pp6Gr11hVmR9OaMrq2Y2gEJdOH1iivr+GLTAdKzi/H1UfgohZ+PwtfHB18fKK2u5/OsA5TVNJAQEcj5Rydw/tREhg44go4sreGz2+HgDrjkne4v8FVXaTood68yteG8LDPztVFYgql5hw40o0omnN/1cGxaaTLV1OSLd5tZlGPO7Py95Xnwwqmmxn7Dj0c+nd7WYIbzZbxhvk3Meahr/0aVhWYd//TXoHBb+/tYI+C67zqf1fvaXPOh9MdMsxRzd9ntULQTclLh8ztgwEj47eeHP2bhz+bGM8dcD3P+0f3zIoEuRJfU1NtYvjmPt9Jy+P7nArSG6UlRTE2KZGhUEEMGBDEkKoiB4YF90+HaXHke5GWapYnzskxwnXBz39/XtbrYBHpwdPfeb7ebppHVT5gVMk/+k/lgat3mbbfDL9+aMfFbPzHLQCdOh1Gnm+aSgDAT4tYwMww0dKD5vTPbv4Q3LjRr9k+8sGtl1tqMx9+fYb7lNC67XFNqXg+Jh99+1vnaQ+/fCJlvwR/W92jZBwl0IY7Q/tJq3k3P5aOMfewsqKDeduj/E39fHxIjAxkWHczIuFBGxoYwKi6Uo2KDCfKXm2R0SmszvO/rvx3aFhAOYQNNMIfEQfaPZtJSYKS5veHRl7cdz98ddrupKQeEwDUrWn6zsduhush8w8rbZDpy8zZD/qZD4a18TdNWU1/EVNPh3JVlK4r3mFU3p1xilpXuJgl0IXrAZtfsK6lmb1EVe4qq2HOwiuyiSnbmV7Kr8FDYKwWJkYGMjgtl/KBwJiSEk5wQTlxYQN+Oj3cX+9ab5o+yfVC+/9Bj+QGzQNvRl5shgH4Bzj3vuhfNKKSx55jmrcp8swxzZSFo26H9AsLMh0jsOBPicRNg4KSe3Tf309vMchC/X3dkq4k2I4EuRC9psNnZfbCKHfnlbM+rYHteOVsPlLOzoKJppnl0iD/jB5lwnzYsipShkQQHSE3eZeqqzNyB2jIzGikk9tBjSBxEDIW4cRA+2PmLjJXnmdU3Jy/o9vBJCXQh+lhVXQNb9peRlVtGVm4pWfvK2J5Xjs1uRtRMSAjn2GFRHDM8ipSkKMKsPeigE+7ll+/NsNFuzhyVQBeiH6isbSA9u5i1u4pY+8tBNuwtaWquiQ7xJz7cysDwQAY2exw3KIwRMSG9OzFKuJWeLp8rhHCC4AA/ZoyMYcZIMw65pt5GenYx6XuKyS2pZn9pDdkHq1i76yBlNQ1N74sIspAyNIppSZFMGxbFhEHh+Pv1p7WGRX8hgS6Ei1gtvhx/VDTHH9V2CGBlbQP7SqrZsLeEdbuLWLe7mK+25Dne58PI2FAGhlsZFOGo0UcEMijcSmJkELGhAVKj91IS6EL0Q8EBfmZIZFwoF6YMBqCgvJbU3UX8tLuInQWV/FJYyY87D1JR29DivVaLD0kDgs1PdDDDooMYEhVMTGgAMSEBhAX6yagbDyWBLoSbiAkN4NfJA/l18sAW28tq6tlfUsO+0mpyiqvZXVjJ7sJKfs4v5+uteS3G0IMZRz8gxJ8BIf7EhAQwKj6UiQkRJCeEMzgqUMLejUmgC+HmwqwWwuItjI5vO2u0cQx9dlEVhRW1FJTXUlhRR2FFLYUVtewvrWHVjsKm0A8PtDAhIYwJCeGE+PtRWWejqq6BylrHY52taWKV+QkiMTKQwZFBUvPvByTQhfBgvj6N93Q9/GSY2gYb2w9UsDG3hKzcUjJzS3lp1S/U2zT+vj4EBfgS7O9HkL8vQf6+VNfb+HFnIVV1thbHCQ+0MCouhNHxoYyOD2NMfCij40NlSGYfkkAXwssF+PmSnBhOcmJ407Z6mx2tOexoGq01JVX15BRXk1NcRW5JNbsKK9l2oJwP1u+jvDa7ad+B4Vbiw63EhgYQG+p4DDO/x4VZGRhuJSLIIrV7J5BAF0K0YfHteFikUorIYH8ig/1bfBDAobtNbTvgmDWbX0FeeQ27CipZs6uI0ur6NscL8PMhLswEf3yYlfBAC1aLD1aLLwF+jkeLL8H+voRZLYQHWQgPtJjfHfvKB4IEuhDCyZRSjrb1IE4d2/ZuRjX1NgrKa8kvryWvrIYDpTUcaPa4YW8J5TX11NTbqWmw0ZW5j/6+PoRa/QgLtBBm9SPUaiEs0I/wQH9GxoYwblAYYweGER7o2c0/EuhCiD5ltfh22q7fSGtNvU1T02Cjpt5GZa2Nsup6ymrqKa02P2XVDZRW11NeU09ZTQNljt8PlNVwsKKWJVWHvhEkRgYydmAY4waGMW6QeUyM9JyRPRLoQoh+SymFv5/C38/HdK52Y/n3/PIaNu8rY/P+MrbsL2fzvlK+2pLXVPMPtfq1CPjBUUGEB5qmnIggC4EW3xaBX9dgb/owKa2up8FmZ3R8KBFB/k666u6TQBdCeLTYUCuxo62cPDq2aVt1nY1teeWOoC9l874y3vxpL9X1tjbvt/gqwgMt+Pn4UFpd3+4+AIOjAklOOLRs8vhB4YQHWvr0ZigS6EIIrxPo78vkwRFMHhzRtM1m1+w5WMmB0hpKmtXAS6vrKakyNfHGmntTp2ygBQVs3l/GptwyMnNL+TTzQItzWXwVAX6+WC0+BPiZTt6LjxnC1TO6tx56RyTQhRACM2Z/eEwIw2NCjvi9zWv/pVX1ZO0rZcv+MiprbdQ22Kipt7d4jA5x8k07HCTQhRDCicKDLJwwIpoTRnTzvqs9IGtwCiGEh5BAF0IIDyGBLoQQHkICXQghPIQEuhBCeAgJdCGE8BAS6EII4SEk0IUQwkMo3ZW1KXvjxEoVAHu6+fZooNCJxXEn3nrtct3eRa778IZqrWPae8Flgd4TSqlUrXWKq8vhCt567XLd3kWuu3ukyUUIITyEBLoQQngIdw3051xdABfy1muX6/Yuct3d4JZt6EIIIdpy1xq6EEKIViTQhRDCQ7hdoCul5iiltimldiil7nR1eXqLUuolpVS+Uiqr2bYopdRypdTPjsdIV5axNyilBiulViilNiulNimlbnZs9+hrV0pZlVI/KaUyHNf9N8f2YUqptY6/96VKKdffibgXKKV8lVLrlVIfO557/HUrpXYrpTKVUhuUUqmObT36O3erQFdK+QJPAr8GxgELlFLjXFuqXvMKMKfVtjuBr7XWI4GvHc89TQOwSGs9DjgWuNHx39jTr70WOEVrPQmYDMxRSh0LPAT8W2s9AigGrnJhGXvTzcCWZs+95bpnaa0nNxt73qO/c7cKdGA6sENrvUtrXQe8Ccx1cZl6hdZ6JVDUavNc4FXH768Cv+nTQvUBrfV+rXW64/dyzP/kCXj4tWujwvHU4vjRwCnA247tHnfdAEqpROBM4AXHc4UXXPdh9Ojv3N0CPQHY2+x5jmObt4jTWu93/H4AiHNlYXqbUioJmAKsxQuu3dHssAHIB5YDO4ESrXWDYxdP/Xt/DLgdsDueD8A7rlsDXyql0pRS1zq29ejvXG4S7aa01lop5bFjTpVSIcA7wB+11mWm0mZ46rVrrW3AZKVUBPAeMMbFRep1SqmzgHytdZpS6mRXl6ePnai1zlVKxQLLlVJbm7/Ynb9zd6uh5wKDmz1PdGzzFnlKqYEAjsd8F5enVyilLJgwX6y1ftex2SuuHUBrXQKsAI4DIpRSjRUvT/x7PwE4Rym1G9OEegrwHzz/utFa5zoe8zEf4NPp4d+5uwX6OmCkowfcH5gPfOjiMvWlD4GFjt8XAh+4sCy9wtF++iKwRWv9aLOXPPralVIxjpo5SqlAYDam/2AFcIFjN4+7bq31n7TWiVrrJMz/z99orS/Bw69bKRWslApt/B04Dciih3/nbjdTVCl1BqbNzRd4SWv9gIuL1CuUUkuAkzHLaeYB9wDvA8uAIZilhy/SWrfuOHVrSqkTge+BTA61qf4Z047usdeulJqI6QTzxVS0lmmt71NKDcfUXKOA9cClWuta15W09ziaXP5Ha32Wp1+34/reczz1A97QWj+glBpAD/7O3S7QhRBCtM/dmlyEEEIchgS6EEJ4CAl0IYTwEBLoQgjhISTQhRDCQ0igCyGEh5BAF0IID/H/qVocw6CoEnMAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ] + }, + { + "cell_type": "code", + "source": [ + "# label mapping\n", + " \n", + "labels = '''airplane automobile bird cat deerdog frog horseship truck'''.split()\n", + " \n", + "# select the image from our test dataset\n", + "image_number = 0\n", + " \n", + "# display the image\n", + "plt.imshow(x_test[image_number])\n", + " \n", + "# load the image in an array\n", + "n = np.array(x_test[image_number])\n", + " \n", + "# reshape it\n", + "p = n.reshape(1, 32, 32, 3)\n", + " \n", + "# pass in the network for prediction and\n", + "# save the predicted label\n", + "predicted_label = labels[model.predict(p).argmax()]\n", + " \n", + "# load the original label\n", + "original_label = labels[y_test[image_number]]\n", + " \n", + "# display the result\n", + "print(\"Original label is {} and predicted label is {}\".format(\n", + " original_label, predicted_label))" + ], + "metadata": { + "id": "RDq_RE6osSh8", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 283 + }, + "outputId": "19322411-0569-42ed-f02f-754a34d07c43" + }, + "execution_count": 11, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Original label is cat and predicted label is cat\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD5CAYAAADhukOtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAe7ElEQVR4nO2daYyc13Wm31NfLb1vbLLZXEVJlBVZiSmF1tiJRpGdcaAoCWQDgccewFAAIwqCCIiBzA/BA4w9wPxwBmMb/jHwgB5rrBgeyxrbgoREyNiWgwiGHUnURi3UQnGRSDbZJJu9d+1nflTJQ2nue7vJZlfTvu8DEKy+p+/3nbr1nfqq71vnHHN3CCF+/cmttwNCiM6gYBciERTsQiSCgl2IRFCwC5EICnYhEiG/mslmdgeArwHIAPwPd/9S7Pf7u/O+YaAYPlb8PBftW0xSdHBb9FxkWvR4/Ghxo8feh2P+h20WOxmZAwAxZfbSZFvuR+xo7hd/DbSOydaD04w+6UvzI/bsmKUZcYP5OLNQx1KlEXTykoPdzDIA/w3AxwAcB/C0mT3q7q+wORsGivjCv7s+fDxv0nMVC2E3LccDolqtUFu9UePnKobfjACg0Qz76JFXxXINastl1ASv9fJjgh+zUCwHx7PIS2057n+jWae2Wp2/Zs0mCQrjftTD1ygAoMKOh+UCN+xj7E29WuXXR6MRWcfINZyLvGZVcl0t8KXHYjV8vG//5ETEh0vnFgCH3P2wu1cBPAjgrlUcTwixhqwm2LcCePuCn4+3x4QQVyBrvkFnZveY2X4z2z+/FPlcIoRYU1YT7CcAbL/g523tsXfh7vvcfa+77+3rXtV+oBBiFawm2J8GsNvMdplZEcCnADx6edwSQlxuLvlW6+51M7sXwP9BS3q7391fjs6BoUreX9yX+ESyW1kC37HOgW915/ORHfJLULyswCdVqlVqqzcjPkaktyyyi58n06zJd5hR58pFbBe5GfG/al3B8UZW4nNix2vw9bAm99GImtAVec3yxm25fES5qEXW2PifsE7W2CM6Q5aFfYwpE6v6XO3ujwF4bDXHEEJ0Bn2DTohEULALkQgKdiESQcEuRCIo2IVIhA5/y8XhLLHCufzjjfAca3CpplnjklfWHZFxwJMZmOTVjEg/xUKB2urObc1a5LlFzlevh20WyeTKRWQ+y3hikGdheQ0Alhphie3UOS5PLVS5j/PzfF7mfD36u8LrWDT+Og/0dFNbd4lLaM0cv+ZyURkt7CO/OoAaS76KaG+6swuRCAp2IRJBwS5EIijYhUgEBbsQidDR3XhzR75Bdt2zyG4xSeIoZZH8+HxsWzKS6EASDADQRJh6rFhYjvtRKPJd381XXUdts9Nnqe3sucXwufJ8Vz2HSHJKnV8iS879P3gs7KOXRuicWsYTm6p9fOd/fmaK2k5MTgfH+0r8eTVOhecAwI4xvo4b+vk6duVj5azC13Excgk3iAIRK7elO7sQiaBgFyIRFOxCJIKCXYhEULALkQgKdiESYR3KvYalAcsP8RlETqjHOnDkuCxXrfOEhWKkRlqjQWqFRRJTEJFCipE6aP/q33yM2p75+S+o7eT0ueD4QkRCqze45HXs+BlqO3KCdx8pDY0Hx7eN7aJzvNRPbdU8f10KfRuprV6eD46fmzxJ5/QMcXnw+PxpaiuTWokAMNbP01p6CuFEmEYtLKMCAGviE+nkpTu7EKmgYBciERTsQiSCgl2IRFCwC5EICnYhEmFV0puZHQUwB6ABoO7ue2O/37QcKrmwvDKz2EPnNUh7ouE+Lq8NZFwOy0fqsTUjshyTNWhdPcSz6BYXz1PbT//+EWo7Pc3r9Z2eD5/v2Al+rmMTb1Nb1tVHbY1sgNp6B0aD44Uefrx8F8+iK0VaMnXluHR4thpuKza+bQedU15aoLYjR7j0NjVTprbM+PO+amPYVmhwKc9YXcaI1Hs5dPaPuDvPuRRCXBHoY7wQibDaYHcAPzKzZ8zsnsvhkBBibVjtx/hb3f2EmW0C8GMze9Xdn7jwF9pvAvcAwHA/r/IhhFhbVnVnd/cT7f8nATwM4JbA7+xz973uvrevex2+ii+EALCKYDezXjPrf+cxgD8A8NLlckwIcXlZza12DMDD7a3+PID/5e7/GJtQbxrOLIUzfKZqPOvtiZ//c3D8N3ZzyeUj7w9LPwAwHClu2SSZbQCQI216cjme0dRw3rYooibhyLEj1Da1xDPAvGc4OJ71ceknNzxHbd1Dg9RWLXOpqUraKw0M89dsoI/bJk+dorbZ87zgZH8xfIl3dXOZ763zXFwq9G+itjOn3qK2vtN8jTcPhH3ptkimIinCioisfMnB7u6HAXzgUucLITqLpDchEkHBLkQiKNiFSAQFuxCJoGAXIhE62+stKyE/GC44uHiOv+/UiuGCglOLYSkMABarvDfYQJFntjVJ3622MTicZTxjr1zlEs8ZnryGs3NcAowVRBzeGM7mWmjO0jmj4D5mkUy0aoGvY3khLDWV57kfO8c2UNsikdAAYJJktgGAFcIy5cwUL+aISAHRpQWeEZcV+XUwOcuzDidIttzOUX5951hCXKzFITcJIX6dULALkQgKdiESQcEuRCIo2IVIhI7uxnd19+J9v/X/ZcECAI7/y2t0Xt9geDf+lg+HjwUAPdkxaquSnWIAyOV5UosVwjvTDedJPP2btlPb8wcOUVvfEN+Z3rrz/dTmufDucyGyc96shFtGAUC1GmmxFVmrjCRxvPzCATpnoBRpkdTLk2R6I3XtTp4K14yrE2UFADKygw8Aw/1cnZhp8KSn81PcduTUTHB8y9hmOifPFKVIdpXu7EIkgoJdiERQsAuRCAp2IRJBwS5EIijYhUiEjkpvuSyPnsGwpLTz6uvovCWiWuzYdS2dM1rj0sr0ES7L1SKJMI16ONHhlts+TufsuJp3xNr1m0ep7ZnnXqC24T4uyZycDNdPyzsv410qcMkLfBkxH0kKmSF14YZ7+bkip0IjIpWNbgxLswBQqYVfz7Pnw3IXAFikZVd/pE5ePuPhVC3zxJvDbx8Pjm8c4jLf7m3hNmoeuX/rzi5EIijYhUgEBbsQiaBgFyIRFOxCJIKCXYhEWFZ6M7P7AfwxgEl3v7E9NgLgewCuAnAUwCfdnRfZeudYuRyyUjhD6eTpg3Tent/+YHC8d5DX/MrmTlBbox5pkROpdXb47XC23K3D4bp6AICebdTU38vlmK48z+TqjtQ66yqSjK1IXbWtW8ap7ZU336S2YpHX+ZudC6/VVdt20znXXX8DtU1N8curb4BnHZ48NRkctxyv7zY0zGv8zURqyWURya67h/u4NBe+Dg6R6w0Auovhc9XqkSxFavl/fAvAHe8Zuw/A4+6+G8Dj7Z+FEFcwywZ7u9/6e78hcReAB9qPHwDAv1UihLgiuNS/2cfcfaL9+BRaHV2FEFcwq96gc3dH5JuOZnaPme03s/0zM7xmuBBibbnUYD9tZuMA0P4/vAsCwN33ufted987ODhwiacTQqyWSw32RwHc3X58N4BHLo87Qoi1YiXS23cB3A5g1MyOA/gCgC8BeMjMPgvgGIBPruRkZhkKXeG7e7nMCyJWKuG0t0JEgurp5Z8ieiMtjUoZz3rry4f7NX1r3zfpnD/5t/dSW2HhFLUVS5HspRz3cdfVW4Pjk1Mn6ZzyPM9e27xplNqmZrl0WKmGX8+rr+WZitdcyzMfZ557ltoW5uapbXYh7GO9wSWqpaVwOyYAGBoapLaGc6lsYIhn+9Wr4dczy/H+YMcnwh+mqyTLD1hBsLv7p4np95ebK4S4ctA36IRIBAW7EImgYBciERTsQiSCgl2IROhowUmYwbKwBLEYkX/Ki0vB8UKkJ9fcOZ7lhYxLbwXwQoTjQ+FMqTcO8p5tJ49zGxa5HHbs+FFqu2kz73G3dWe4GOWWSf6N5oVDvADnSCnSx26Iy3KHDx8Njo9vCUuDADA9y79hWYtIZafP8F51TbfguEWKQy5GpDfL8esqfKYWvZFClWiGs+yKFr7uAaB6LizbeqRsp+7sQiSCgl2IRFCwC5EICnYhEkHBLkQiKNiFSITOSm8OgPTsypxLK+Oj4f5wPV1cevvpAV4ocThSlG/3CM9O6iqFZZdinks1ZyaPUluzwosX7riGF7HMIs+7Z2A4OD46xgtfnpviWWMzkcy2RkTd3Ej6r+UjcmmZZH8B8WyupTLPDqsTJ9k4AJQrPAOzXuf3xw2jm6jNjF9XRQtfPyWL9B30cMZnIVL0Und2IRJBwS5EIijYhUgEBbsQiaBgFyIROrobbwYU8uFkksE+npwy1B+2WZPvVs46Tzw4e56nLIz28yXpLYZ3VBu5cI08ADh68ii1jQ3zemY7r+WtkMr8dHjqmXAbrRMTfOe/vy+8gw8AhQJv8fTyobe4I+Q+0ozcXyqR3fj5BZ4UMjTC2zXVSSLMxGlaEBm9/fx1yWc80aSnh9dELLK2XABQCyfyNBam6ZSxTf3B8XyBt7XSnV2IRFCwC5EICnYhEkHBLkQiKNiFSAQFuxCJsJL2T/cD+GMAk+5+Y3vsiwD+HMCZ9q993t0fW8kJMwtLIZs3hWuntZwkMk4kAWJ8G08k2R+Rw6aNS3aehevkDY7ypIrBAZ4AUegKyycAcFVEeusbDCcGAcD/vP/bwfHFyFrNLk1R2+ISrw1YiFw9m4fDz7s8xevdLZBEIwAYHOCvy6uvvUFtp0+fCY7PRlpGDQ3xJzbQ20dtmXNNtFDl65iRWoQbe/nxBrvCcZSP3L5Xcmf/FoA7AuNfdfc97X8rCnQhxPqxbLC7+xMA+Fu/EOJXgtX8zX6vmR0ws/vNjH8FSwhxRXCpwf51ANcA2ANgAsCX2S+a2T1mtt/M9k9P86//CSHWlksKdnc/7e4Nd28C+AYA2rXA3fe5+1533zs0xBsOCCHWlksKdjMbv+DHTwB46fK4I4RYK1YivX0XwO0ARs3sOIAvALjdzPagVVXuKIC/WMnJcrkczf4ZGObSW70RdrOU55lE1+3aQW37n+GS12zhWmpr2lxwfGwrl9deOfgv1PY7v/dn1PaLn/N5CwuRNknVs8HxyVNv0zmx9/z5GrflwaWh4Vw4y25rN/d95gyX0OoZ3xYa28RtjUY4k24p0uKpvMTr7i1EaujVm1zOq5VPUNumQjijb0sfz6Kr1MNzYnfvZYPd3T8dGP7mcvOEEFcW+gadEImgYBciERTsQiSCgl2IRFCwC5EIHS04mcvl0NsXzl4aHh2l8+oWdrOcK9I5XX0D1DY0xAsKvvX2KWq79YPvD/sxz9tJ9fSHs64AYOLEcWo79Prr1FZv8PZEOVJvcGF2hs7p3zBObTMzXIYa7OPFKN933Y3B8adfeJXOefbVo9R26+1/SG2FIpeoDh86FByfmePPK1YUs7zE5bWdY1zS7e7lBVVHRsLzPM8LcNar4cKXTrJKAd3ZhUgGBbsQiaBgFyIRFOxCJIKCXYhEULALkQgdld7cm2jWw5LH4Agv5LewFC5EuNjgfbeyjL+P7di+jdpef5lnXs0shiW2vl6eYbf9GmrCsdd58cUTJyeo7cMf/iC1LS6GpaH+LVvpnJEtvDjnW1NcKluqcMmx2BvuvzawcTudc1M/f13OnAn3QwOAo8deoLaFpbBMOT3DJbSNGzdS26Dz12VnH5dENw3wHmwFC2cCVmu8v10vkdhy4DGhO7sQiaBgFyIRFOxCJIKCXYhEULALkQgd3Y1v1muYOxfezeyO1PaqlMO7nNbk7pvxXcnREd4+6fXcYWqbnAq38DmX8V3pwT5eW+/6G3lCzuFjvGZcjXdJwvRsWO3YvXs3nbN7F5cMjk3wBJqXX36R2s6dDSenFEtcdRnu44kkx1/mqsCpc7yunZFkqSzSeivWOmwnzzPBjn6eGNSV40ktlXL4+mk2eW3DWp0cj1/2urMLkQoKdiESQcEuRCIo2IVIBAW7EImgYBciEVbS/mk7gL8DMIbWxv4+d/+amY0A+B6Aq9BqAfVJdw/3/GlTqVRw+FBY2tqx+zfovK5cWHprVnmiQL4rIoNEbP39XBrqGwjXtbv++vfROT/50WPUtjjD6931jGyitkPHJ6lt+7ZwUs6u991M55SK/DK4egdP8pme4i/3KwfDCUVN57rhiWmeSDJLkqEAoNzgsu3sdFiK3LSZJ928dY7XpxvZzuXScyXuB5r8uU3Xw8/N8/w6rZDjVcETblZyZ68D+Bt3vwHAhwD8lZndAOA+AI+7+24Aj7d/FkJcoSwb7O4+4e7Pth/PATgIYCuAuwA80P61BwB8fK2cFEKsnov6m93MrgJwE4AnAYy5/zK59xRaH/OFEFcoKw52M+sD8AMAn3P3d30/0d0d5It6ZnaPme03s/1zc7xggBBibVlRsJtZAa1A/467/7A9fNrMxtv2cQDBXSN33+fue919b2zzSwixtiwb7GZmaPVjP+juX7nA9CiAu9uP7wbwyOV3TwhxuVhJ1tvvAvgMgBfN7Pn22OcBfAnAQ2b2WQDHAHxyuQMtVup4/lBYNtpx4y10XhPhbDNjmT8A0OTpP7Nzc9Q2PX2W2jaM7AmO33nHR+icPR+4ntoe+uHD1GbGJZTBwWFq27olLCn1DQzROVk9vL4AMLKZXyLju2rUNtMdlo2ee4HXi5uY5yllXuDtvAY38yzG0WvCUlkWkbUazv14zcPtywDg0CkuDxYzfsylcjk4vhi5vOvN8PUx1+DZgcsGu7v/DADz9PeXmy+EuDLQN+iESAQFuxCJoGAXIhEU7EIkgoJdiEToaMHJcsPw+kx30Ha2wQsAeiEsTeSqvBiiE2kCAHI5btsyzrPN/vXvhDPHugpcctm1k7dd+qM//RS1ff/hf6C2s6f4856YCRcvLJcP0TlFcI1naonbDh3jWXuohmU5H+UZgsObwkUqAaAZqaTY+s4XmdcVPmbTwoUoAaAWaSs20+Dn6irwY3blufS2YOEsu1qBn8ub4fVtRCRb3dmFSAQFuxCJoGAXIhEU7EIkgoJdiERQsAuRCB2V3ioNw+vT4feXR37G+4bt2TkaHN9c5BlIPYVIttZm3n9tfJRnV11zNSlS6LyY4MSZc9R2/4NcXnv2+VeojfW+AwCaCOj8fd0b/HiNEl+PRo5LQ3mEJdZ6RBqq58JzAKArdqVGstTK1fDz9hyfk49kxGVN3tfPy1ymrIPPKzTDPmbGX7NqLex/pMWh7uxCpIKCXYhEULALkQgKdiESQcEuRCJ0dDe+AcN8Lpws8Pizr9N5b7wZbhl1x2/fQOdcs4W36TlyONyaCABu++CN1NZFEhPmqnyH+aF/fJrannvlJLUt1iOthCK7xblC+P27GanJlzO+ixzbtW40eQJQheww1xp8jhmvaVdBJCnE+XPL58lOd8bvcz09PKGlCO5/g2+4o2E81BpkYr3GX5dif7imoOX4eXRnFyIRFOxCJIKCXYhEULALkQgKdiESQcEuRCIsK72Z2XYAf4dWS2YHsM/dv2ZmXwTw5wDOtH/18+7+WPRk+Tw2jG4M2qbOc/lk4vx0cPznL/BWN43azognXFrZuJkkuwCwLCyHPbX/JTrnH376C2qrNHnNNeS59JbLXfx7dKPCk108Iss1I/JaTPJiLZQKeX7JWcYlTGT8NctH5mVZ+HyxJqNZZH1zzuXBRiTZqBmRDplmt3kzl4/7B8K2N0uRdeIe/JI6gL9x92fNrB/AM2b247btq+7+X1dwDCHEOrOSXm8TACbaj+fM7CAAXjJVCHFFclGfB83sKgA3AXiyPXSvmR0ws/vNjLcWFUKsOysOdjPrA/ADAJ9z91kAXwdwDYA9aN35v0zm3WNm+81sf32Jt0oWQqwtKwp2a1Xh/wGA77j7DwHA3U+7e8PdmwC+ASDYYN3d97n7Xnffm+/mjSCEEGvLssFuZgbgmwAOuvtXLhgfv+DXPgGAb0kLIdadlezG/y6AzwB40cyeb499HsCnzWwPWnLcUQB/sdyBzIzKJIUCl5rq5bCccPT0LJ1TWThIbbfdfB21dQ+NU9tMOSyR/POT++mcsvPMpVqdyzilEs9sa0bqoC0uhlsJxcgiGVnGk94Q6ciEEpG8YllZiNisxGXK7m5euy5PpL5aJKNsbmGB2hoRmbJS56/L4HC4jiIAjI2HbX2RwntLc+E/iT1ybaxkN/5nAEIveVRTF0JcWegbdEIkgoJdiERQsAuRCAp2IRJBwS5EInS04CTc0ayTLKpYxlAWlqGq4NlOk/MVanv2NV7o8c5FLq3MeVjuOHGefzOw1Mezq+qL3P9yhfvf0xORmkjbq9jxLMf9yEXaNcUy2JzIaB65vxQicuN8jWffVetcKmOyXCxjLyahLURab/UNcXltaCNvOVath4/52qs8q7NAshFrVe6f7uxCJIKCXYhEULALkQgKdiESQcEuRCIo2IVIhA5LbwBY1pBzuSPLwsX6ms5loUaOF/g7Osmlsvsf4vk9H719b3D8yMkzwXEAWGzEihBGZKguXjgwK3JbD+lhVuzmstbSHJeuYtlhHpGoCiRjK8vz1yx2rixSVDLWx25pcf6i58TONTQ8Qm0bxnjG5NlzU9Q2ffZUePwt3pPw2l27woaIpKg7uxCJoGAXIhEU7EIkgoJdiERQsAuRCAp2IRKho9Jbls8wMjQUtJXLXA5bWApn8hQznv1Vj8hCuUhxyyeeOkBtR06Gs+VmFnjhyKn5JWojyU4AgN7eSLZcpKhgqRR+bvmIXNfVzTPKskhGXL7Aj9kg95F6RPKyiM2d+9io8fWv1sKL3N3FpcjRDRuobXiUy2vVSOZmpRgpHkn6szXzXD5eKIevq2ZEwtadXYhEULALkQgKdiESQcEuRCIo2IVIhGV3482sC8ATAErt3/++u3/BzHYBeBDABgDPAPiMu0f2lwFvOipkF7EUedupNMK7rYWM7wbX+SYyPMdPluvmu+DHSMJLLpLcUa/xHeaYYlAul6ltIdKeKEeeG9ulB4DeIt/17Y4k0ORy3P9iV/h83T18fatVnghzdoonkjTB5+UL4fUYHuilc8ZGwooRAGzezBNhphd4nb+56fPUNj8zHRwfGuHnOnvmbHC8HkkmWsmdvQLgo+7+AbTaM99hZh8C8LcAvuru1wI4D+CzKziWEGKdWDbYvcU7eYKF9j8H8FEA32+PPwDg42vioRDisrDS/uxZu4PrJIAfA3gTwLT7L1uUHgewdW1cFEJcDlYU7O7ecPc9ALYBuAXA9Ss9gZndY2b7zWx/bZG3WBZCrC0XtRvv7tMA/gnAhwEMmf2ysfc2ACfInH3uvtfd9xZ6BlblrBDi0lk22M1so5kNtR93A/gYgINoBf2ftn/tbgCPrJWTQojVs5JEmHEAD5hZhtabw0Pu/vdm9gqAB83sPwN4DsA3lztQs9lEZSksKZUyo/N6iJfNGk8yiXQtQhNcMoolEjRJu6l6NZLA0eDPK9aCKGZrRhJhmPR2/jyXfqYi6zjQxyWqwUg9tgFSC68LXMprNLl0lbdIsk6Jv9iVcviYpTx/XWLnqi/ORGzc//npc9TWJMk6XSUuiZZZnTyLPC9qaePuBwDcFBg/jNbf70KIXwH0DTohEkHBLkQiKNiFSAQFuxCJoGAXIhEsJvFc9pOZnQFwrP3jKIBw6k5nkR/vRn68m181P3a6+8aQoaPB/q4Tm+1393DzNPkhP+THZfdDH+OFSAQFuxCJsJ7Bvm8dz30h8uPdyI9382vjx7r9zS6E6Cz6GC9EIqxLsJvZHWb2mpkdMrP71sOHth9HzexFM3vezPZ38Lz3m9mkmb10wdiImf3YzN5o/z+8Tn580cxOtNfkeTO7swN+bDezfzKzV8zsZTP76/Z4R9ck4kdH18TMuszsKTN7oe3Hf2qP7zKzJ9tx8z0z4xVXQ7h7R/8ByNAqa3U1gCKAFwDc0Gk/2r4cBTC6Due9DcDNAF66YOy/ALiv/fg+AH+7Tn58EcC/7/B6jAO4uf24H8DrAG7o9JpE/OjomgAwAH3txwUATwL4EICHAHyqPf7fAfzlxRx3Pe7stwA45O6HvVV6+kEAd62DH+uGuz8B4L21ke9Cq3An0KECnsSPjuPuE+7+bPvxHFrFUbaiw2sS8aOjeIvLXuR1PYJ9K4C3L/h5PYtVOoAfmdkzZnbPOvnwDmPuPtF+fArA2Dr6cq+ZHWh/zF/zPycuxMyuQqt+wpNYxzV5jx9Ah9dkLYq8pr5Bd6u73wzgDwH8lZndtt4OAa13drTeiNaDrwO4Bq0eARMAvtypE5tZH4AfAPicu7+rOmkn1yTgR8fXxFdR5JWxHsF+AsD2C36mxSrXGnc/0f5/EsDDWN/KO6fNbBwA2v9ProcT7n66faE1AXwDHVoTMyugFWDfcfcftoc7viYhP9ZrTdrnvugir4z1CPanAexu7ywWAXwKwKOddsLMes2s/53HAP4AwEvxWWvKo2gV7gTWsYDnO8HV5hPowJqYmaFVw/Cgu3/lAlNH14T50ek1WbMir53aYXzPbuOdaO10vgngP6yTD1ejpQS8AODlTvoB4LtofRysofW312fR6pn3OIA3APwEwMg6+fFtAC8COIBWsI13wI9b0fqIfgDA8+1/d3Z6TSJ+dHRNAPwWWkVcD6D1xvIfL7hmnwJwCMD/BlC6mOPqG3RCJELqG3RCJIOCXYhEULALkQgKdiESQcEuRCIo2IVIBAW7EImgYBciEf4vt7E0CnHQV6IAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ] + } + ] +} \ No newline at end of file diff --git a/Assignment/Assignment_3/Aniket_copy_of_DL_Stamatics_Assignment_2.ipynb b/Assignment/Assignment_3/Aniket_copy_of_DL_Stamatics_Assignment_2.ipynb new file mode 100644 index 0000000..a4c5638 --- /dev/null +++ b/Assignment/Assignment_3/Aniket_copy_of_DL_Stamatics_Assignment_2.ipynb @@ -0,0 +1,1058 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "Aniket_copy_of_DL_Stamatics_Assignment_2.ipynb", + "provenance": [], + "collapsed_sections": [] + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "language_info": { + "name": "python" + }, + "accelerator": "GPU" + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "rvFM645NE-D2" + }, + "source": [ + "# Assignment 2\n", + "In this assignment, we will go through Perceptron, Linear Classifiers, Loss Functions, Gradient Descent and Back Propagation.\n", + "\n", + "\n", + "PS. this one is not from Stanford's course.\n", + "\n", + "\n", + "\n", + "\\\n", + "\n", + "## Instructions\n", + "* This notebook contain blocks of code, you are required to complete those blocks(where required)\n", + "* You are required to copy this notebook (\"copy to drive\" above) and complete the code.(DO NOT CHANGE THE NAME OF THE FUNCTIONS)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true, + "id": "QLtp15rqE-EU" + }, + "source": [ + "# Part 1: Perceptron\n", + "In this section, we will see how to implement a perceptron. Goal would be for you to delve into the mathematics.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Zao4e-DphaGA" + }, + "source": [ + "## Intro\n", + "What's a perceptron? It's an algorithm modelled on biological computational model to classify things into binary classes. It's a supervides learning algorithm, meaning that you need to provide labelled data containing features and the actual classifications. A perceptron would take these features as input and spit out a binary value (0 or 1). While training the model with training data, we try to minimise the error and learn the parameters involved." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "wDTUoAd6ixm-" + }, + "source": [ + "**How does it work?**\\\n", + "A perceptron is modelled on a biological neuron. A neuron has input dendrites and the output is carried by axons. Similarly, a perceptron takes inputs called \"features\". After processing, a perceptron gives output. For computation, it has a \"weight\" vector which is multipled with feature vector. An activation function is added to introduce some non linearities and the output is given out.\\\n", + "It can be represented as: $$ f=\\sum_{i=1}^{m} w_ix_i +b$$\n", + "\n", + "Let's implement this simple function to give an output.\n", + "\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "iXezofBIgzId" + }, + "source": [ + "import numpy as np\n", + "\n", + "class perceptron():\n", + " def __init__(self,num_input_features=8):\n", + " self.weights = np.random.randn(num_input_features)\n", + " self.bias = np.random.random()\n", + "\n", + " def activation(self,x):\n", + " '''\n", + " Implement heavside step activation function here (google ;))\n", + " '''\n", + " if x >= 0 :\n", + " return 1\n", + " else :\n", + " return 0\n", + "\n", + " def forward(self,x: np.ndarray):\n", + " '''\n", + " you have random initialized weights and bias\n", + " you can access then using `self.weights` and `self.bias`\n", + " you should use activation function before returning\n", + " \n", + " x : input features\n", + " return : a binary value as the output of the perceptron \n", + " '''\n", + " # YOUR CODE HERE\n", + " r1 = np.dot(x, self.weights)\n", + " f = r1 + self.bias\n", + "\n", + " res = perceptron.activation(self, f)\n", + " \n", + " return res\n", + " # YOUR CODE HERE" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "oSKwDFAyocVo" + }, + "source": [ + "np.random.seed(0)\n", + "perc = perceptron(8)\n", + "assert perc.forward(np.arange(8))==1" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true, + "id": "NWTTg1e9r7uM" + }, + "source": [ + "# Part 2: Linear Classifier\n", + "In this section, we will see how to implement a linear Classifier.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "DYDO4GcHr7uM" + }, + "source": [ + "## Intro\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "-HFvjH06r7uN" + }, + "source": [ + "**How does it work?**\n", + "\n", + "Linear Classifier uses the following function: $$Y = WX+b$$ Where, $W$ is a 2d array of weights with shape (#features, #classes).\n", + "\n", + "\n", + "Let's implement this classifier.\n", + "\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "9A13CEkGr7uN" + }, + "source": [ + "import numpy as np\n", + "\n", + "class LinearClassifier():\n", + " def __init__(self,num_input_features=32,num_classes=5):\n", + " self.weights = np.random.randn(num_input_features,num_classes)\n", + " self.bias = np.random.rand(num_classes, 1)\n", + "\n", + " def forward(self,x: np.ndarray):\n", + " '''\n", + " x: input features\n", + " you have random initialized weights and bias\n", + " you can access then using `self.weights` and `self.bias`\n", + " return an output vector of num_classes size\n", + " '''\n", + " # YOUR CODE HERE\n", + " row, col = x.shape\n", + " if row == 32:\n", + " res = np.dot(x.transpose(), self.weights) + self.bias\n", + " else:\n", + " res = np.dot(x, self.weights) + self.bias\n", + " return res\n", + " # YOUR CODE HERE" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "zgzPxyTsr7uN", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "5ec2b0c0-4bd6-4ecc-ac8a-d0de0487b511" + }, + "source": [ + "np.random.seed(0)\n", + "lc = LinearClassifier()\n", + "lc.forward(np.random.rand(32, 1))\n", + "# Should be close to:\n", + "# array([[ 1.30208164, 5.58136003, 0.87793013, -4.7332119 , 4.81172123]])" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array([[ 1.30208164, 5.53878912, 0.22321609, -5.16223002, 4.29982075],\n", + " [ 1.34465255, 5.58136003, 0.26578699, -5.11965911, 4.34239165],\n", + " [ 1.95679569, 6.19350317, 0.87793013, -4.50751597, 4.95453479],\n", + " [ 1.73109976, 5.96780724, 0.6522342 , -4.7332119 , 4.72883886],\n", + " [ 1.81398213, 6.0506896 , 0.73511657, -4.65032953, 4.81172123]])" + ] + }, + "metadata": {}, + "execution_count": 12 + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true, + "id": "ZVgOVzJetuqo" + }, + "source": [ + "# Part 3: Loss Functions, Gradient descent and Backpropagation\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "4pXryjpctuqy" + }, + "source": [ + "## Intro\n", + "\n", + "Loss Functions tells how \"off\" the output od our model is. Based upon the application, you can use several different loss functions. Formally, A loss function is a function $L:(z,y)\\in\\mathbb{R}\\times Y\\longmapsto L(z,y)\\in\\mathbb{R}$ that takes as inputs the predicted value $z$ corresponding to the real data value yy and outputs how different they are We'll implement L1 loss, L2 loss, Logistic loss, hinge loss and cross entropy loss functions." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "QGRb8BHotuqy" + }, + "source": [ + "### **L1 loss**\n", + "L1 loss is the linear loss function $L = \\dfrac{1}{2}|y−z| $\n", + "\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "YxVh6IL2tuqz" + }, + "source": [ + "import numpy as np\n", + "def L1Loss(z,y):\n", + " '''\n", + " y : True output.\n", + " z : Predicted output.\n", + " return : L\n", + " '''\n", + " return (abs(y - z)) / 2" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "2xy8ZS84cKtQ" + }, + "source": [ + "### **L2 loss**\n", + "L2 loss is the quadratic loss function or the least square error function $L = \\dfrac{1}{2}(y−z)^2 $\n", + "\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "JThp5P-KcKtS" + }, + "source": [ + "\n", + "import numpy as np\n", + "def L2Loss(z,y):\n", + " '''\n", + " y : True output. \n", + " z : Predicted output. \n", + " return : L\n", + " '''\n", + " return ((y - z)**2)/2" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Z2JNLnWYcLSC" + }, + "source": [ + "### **Hinge Loss**\n", + "Hinge loss is: $ L = max( 0, 1 - yz ) $" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "gQ1YM4J-cLSC" + }, + "source": [ + "import numpy as np\n", + "def hingeLoss(z,y):\n", + " '''\n", + " y : True output. \n", + " z : Predicted output. \n", + " return : L\n", + " '''\n", + " return max(0, 1 - (y * z))" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "m15_MjradMNY" + }, + "source": [ + "### **Cross Entropy Loss**\n", + "Another very famous loss function is Cross Entropy loss: $ L = −[ylog(z)+(1−y)log(1−z)] $." + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "snJLqhszdMNY" + }, + "source": [ + "import numpy as np\n", + "import math \n", + "def CELoss(z,y):\n", + " '''\n", + " y : True output. \n", + " z : Predicted output. \n", + " return : L\n", + " '''\n", + " return (-1 * ((y * math.log(z)) + ((1 - y) * math.log(1 - z))))" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "OsRPsfzxyEVL" + }, + "source": [ + "### **0-1 Loss**\n", + "Loss Function used by perceptron is: $ \\begin{cases} \n", + " 0=z-y & z=y \\\\\n", + " 1=\\dfrac{z-y}{z-y} & z\\neq y\n", + " \\end{cases} $." + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "5sA7GxLHyEVM" + }, + "source": [ + "import numpy as np\n", + "def zeroOneLoss(z,y):\n", + " '''\n", + " y : True output. \n", + " z : Predicted output. \n", + " return : L\n", + " '''\n", + " if z == y :\n", + " return 0\n", + " else:\n", + " return 1" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "CWhbibHcgRR8" + }, + "source": [ + "## Cost Function\n", + "The cost function $J$ is commonly used to assess the performance of a model, and is defined with the loss function $L$ as follows:\n", + "$$\\boxed{J(\\theta)=\\sum_{i=1}^mL(h_\\theta(x^{(i)}), y^{(i)})}$$\n", + "where $h_\\theta$ is the hypothesis function i.e. the function used to predict the output." + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "SSbmhW4og97t" + }, + "source": [ + "lossFunctions = {\n", + " \"l1\" : L1Loss,\n", + " \"l2\" : L2Loss,\n", + " \"hinge\" : hingeLoss,\n", + " \"cross-entropy\" : CELoss,\n", + " \"0-1\" : zeroOneLoss\n", + "}\n", + "\n", + "def cost(Z : np.ndarray, Y : np.ndarray, loss : str):\n", + " '''\n", + " Z : a numpy array of predictions.\n", + " Y : a numpy array of true values.\n", + " return : A numpy array of costs calculated for each example.\n", + " '''\n", + " loss_func = lossFunctions[loss]\n", + " # YOUR CODE HERE\n", + " res = np.empty(len(Z))\n", + " for i in range(len(Z)):\n", + " res[i] = loss_func(Z[i], Y[i])\n", + " # YOUR CODE HERE\n", + " return res" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "upsN7A0zjGqx" + }, + "source": [ + "## Gradient Descent and Back Propagation\n", + "Gradient Descent is an algorithm that minimizes the loss function by calculating it's gradient. By noting $\\alpha\\in\\mathbb{R}$ the learning rate, the update rule for gradient descent is expressed with the learning rate $\\alpha$ and the cost function $J$ as follows:\n", + "\n", + "$$\\boxed{ W \\longleftarrow W -\\alpha\\nabla J( W )}$$\n", + "​\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "AFCN-fYCqidi" + }, + "source": [ + "But we need to find the partial derivative of Loss function wrt every parameter to know what is the slight change that we need to apply to our parameters. This becomes particularly hard if we have more than 1 layer in our algorithm. Here's where **Back Propagation** comes in. It's a way to find gradients wrt every parameter using the chain rule. Backpropagation is a method to update the weights in the neural network by taking into account the actual output and the desired output. The derivative with respect to weight ww is computed using chain rule and is of the following form:\n", + "\n", + "$$\\boxed{\\frac{\\partial L(z,y)}{\\partial w}=\\frac{\\partial L(z,y)}{\\partial a}\\times\\frac{\\partial a}{\\partial z}\\times\\frac{\\partial z}{\\partial w}}$$\n", + "​\n", + " \n", + "As a result, the weight is updated as follows:\n", + "\n", + "$$\\boxed{w\\longleftarrow w-\\alpha\\frac{\\partial L(z,y)}{\\partial w}}$$\n", + "\n", + "So, In a neural network, weights are updated as follows:\n", + "\n", + "* Step 1: Take a batch of training data.\n", + "* Step 2: Perform forward propagation to obtain the corresponding loss.\n", + "* Step 3: Backpropagate the loss to get the gradients.\n", + "* Step 4: Use the gradients to update the weights of the network.\n", + "​\n", + "\n", + "Bonus Problem\n", + " \n", + "Now, Assuming that you know Back Propagation (read a bit about it, if you don't), we'll now implement an image classification model on CIFAR-10." + ] + }, + { + "cell_type": "markdown", + "source": [ + "# **Bonus Problem**\n", + "\n", + "Now, Assuming that you know Back Propagation (read a bit about it, if you don't), we'll now implement an image classification model on CIFAR-10." + ], + "metadata": { + "id": "sJoG5kkYopRN" + } + }, + { + "cell_type": "code", + "source": [ + "import tensorflow as tf \n", + " \n", + "# Display the version\n", + "print(tf.__version__) \n", + " \n", + "# other imports\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import tensorflow as tf\n", + "from tensorflow import keras\n", + "from tensorflow.keras import layers\n", + "from tensorflow.keras.layers import Input, Conv2D, Dense, Flatten, Dropout\n", + "from tensorflow.keras.layers import GlobalMaxPooling2D, MaxPooling2D\n", + "from tensorflow.keras.layers import BatchNormalization\n", + "from tensorflow.keras.models import Model" + ], + "metadata": { + "id": "_4-4RceVsor_", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "72ffe2ec-5492-44d8-b8bb-41a770dea5f7" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "2.8.0\n" + ] + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "yyplk5PLEUsJ", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "d8790f9a-6e9b-4af7-c401-77d18e68deed" + }, + "source": [ + "# Load in the data\n", + "cifar10 = tf.keras.datasets.cifar10\n", + " \n", + "# Distribute it to train and test set\n", + "(x_train, y_train), (x_test, y_test) = cifar10.load_data()\n", + "print(x_train.shape, y_train.shape, x_test.shape, y_test.shape)\n", + "\n", + "# Reduce pixel values\n", + "x_train, x_test = x_train / 255.0, x_test / 255.0\n", + " \n", + "# flatten the label values\n", + "y_train, y_test = y_train.flatten(), y_test.flatten()" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Downloading data from https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz\n", + "170500096/170498071 [==============================] - 2s 0us/step\n", + "170508288/170498071 [==============================] - 2s 0us/step\n", + "(50000, 32, 32, 3) (50000, 1) (10000, 32, 32, 3) (10000, 1)\n" + ] + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "qQhkATYhEkkC", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "outputId": "3737ab05-4822-4a21-afc4-3a414380c86a" + }, + "source": [ + "'''visualize data by plotting images'''\n", + "# YOUR CODE HERE\n", + "#showing the first 10 images from the training set\n", + "for i in range(10):\n", + " plt.imshow(x_train[i])\n", + " plt.show()\n", + "# YOUR CODE HERE" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD5CAYAAADhukOtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAfMklEQVR4nO2da2yc53Xn/2dunOGdFC+SKNmy5UvtNLbiqIbXyXaTBi3coKgTYJFNPgT+EFRF0QAN0P1gZIFNFtgPyWKTIB8WWSgbt+4im8vm0hiFsW1qpDDaFK7l2PG9tizLkSiKokRS5HCGcz37YcZb2fv8H9IiOVTy/H+AoOF7+LzvmWfe877zPn+ec8zdIYT41Sez2w4IIXqDgl2IRFCwC5EICnYhEkHBLkQiKNiFSITcVgab2X0AvgogC+B/uPsXYr+fz+e9r1gM2lqtFh2XQVgezBo/ViHHr2P5iC2XzVKbWfiAZpFrZsTHZpO/55ggmo35SKTUtrf5sdr8aJaJvIEI7Xb4vcV8j+4v4r9FJpnZMhE/shn+ebJzAADaERnbYycCGxPdX5jF5VWUK+vBg111sJtZFsB/A/DbAM4CeNLMHnH3F9mYvmIRR+56b9C2vLxIj9WXCX/Q4wU+Gdft6ae2yfEBapsYHaS2QjYf3J7rK9ExyPIpXlxaprZ6k7+3sdERasu0GsHttVqNjllfX6e2Yil8cQaAFvjFqlItB7ePjA7TMXC+v3qtTm1ZhD8XgF9chgb55zwwwM+PfJ7PRzXio8duCJnwORJ7z00PXzy++I3v88NwDzbkbgAn3f2Uu9cBfBvA/VvYnxBiB9lKsM8AOHPFz2e724QQ1yBbembfDGZ2DMAxAOjr69vpwwkhCFu5s88COHjFzwe6296Cux9396PufjSX589WQoidZSvB/iSAm83sBjMrAPg4gEe2xy0hxHZz1V/j3b1pZp8G8NfoSG8PufsLsTHr6+t44cXwryxfvEjHjZMFUNvDV0YnWkPUZqUpaltrc1Wg3AqvkLsV6JjKOl9RrVT5CnmjxaWmixHNsZgL+9hs8v1lyWowEH/0qqyvUVuzHX7ftr6HjslEVLlGRE0o5fh5UCYr2outJh3T389X4y3Dv50aUWsAABE5r7IeVlCajfB2AMjmwp9LY71Kx2zpmd3dHwXw6Fb2IYToDfoLOiESQcEuRCIo2IVIBAW7EImgYBciEXb8L+iuJAOglCOyUeSP664nEtuhaZ4QMjU5Tm2lmLQSyWqq1sIJI+sNLgt5ZH+FUiSBJpII421+vJHxcAJQs8H3V8hzPyLJiMgW+IdWq4fnqtHk89Ef2V9ugPtYjIxrWlgezESy6JqRDLVYpuXgAE++Kq9VqK3RDEtssYTD1ZXLwe3taPaoECIJFOxCJIKCXYhEULALkQgKdiESoaer8WaOooUTEIaGuCu3zIwFt+8p8cyJfJuXWiov8uSUVptf/6qVsO8ZngeD4UiZq1xkFXn58iofF/nUxofCK8KrKzxppR5JaKmSJA0gXldtkJR2atR5okamxd9YPpKQ0yKluAAgR5bPazU+ppDnH2imzRNoauUlagNJogKAPnIaN9tcMbi8FlZkWpF6grqzC5EICnYhEkHBLkQiKNiFSAQFuxCJoGAXIhF6Kr3lzDDWFz5kKSKtjJAkiMlhXvOrRdoPAYj0MQGyuUghNFJHrNaOSD8RnSwXScZo1bhE5Vl+jb5wIdxlptXg73q1wpM0Ki0uUw6WIt1daqT9E/h7zhiXjbJ9kU4sa1xm7c+HfcxFWiutR+oGVhtcemtHmnYtl7mPy5Xw+VMmUi8ArDfC50A9UmtQd3YhEkHBLkQiKNiFSAQFuxCJoGAXIhEU7EIkwpakNzM7DWAVHTWr6e5HowfLGiZHwxLKUJ5LXsVi2JbJcqmjFKnv1mhyGaodyeTqtKH//6lH6sW16lyWa3skoywieXmOZ2Wt1sMZbK0Wn99KpNVUM2JbXeP+zy6G/chn+P6Gy3zuG+d5e7DqZS4dXjdxU3D71NQBOsaGwvXdAKC2dInaymWePXh5lUtvFy+HZdbTZ7gfrWw4dGt1Ltdth87+QXfnn4QQ4ppAX+OFSIStBrsD+Bsze8rMjm2HQ0KInWGrX+Pf7+6zZjYF4Mdm9rK7P37lL3QvAscAoBh5LhdC7CxburO7+2z3/wsAfgjg7sDvHHf3o+5+tJDTU4MQu8VVR5+ZDZjZ0JuvAfwOgOe3yzEhxPayla/x0wB+2G2XlAPwv9z9/8QG5HNZ7J8MFyIcLnDJYLA/LDVZRLpCJAPJItlmtSqXcTJEltszxNtQDQzwbK2Vy1zEGBnmGWWrkSKQb8yG91mu8UeoAp8OzPRHsvbyPDPv9KVw9l3NI0VCI1lvI8ND1Hbv7VzxXZkLy6xeiRxrgmdT1ip8Psplfu/sy/N9Htwbfm9TU9N0zPxKWMq79Mp5Ouaqg93dTwG482rHCyF6ix6ihUgEBbsQiaBgFyIRFOxCJIKCXYhE6G3ByaxhfCicjZarh6UaAOjLh93s7wv3NQOAWpXLU41Iv67R0XBfOQBwUqSw3uLXzEYjUgxxkPeBO7cQ7uUFAK+9wbOhFlbD7y1SuxDXR3rmfeRfH6G2A/u4/9976lRw+z+e5NJQs80z/XIZLpWtLi9QW6UcnsehIS6FocWz74pFPq5AsjMBoN/4uGYr/OFcd3A/HTO0GO4F+OzrfC50ZxciERTsQiSCgl2IRFCwC5EICnYhEqG3q/G5HKbG9wRt1UW+ap2xsJtl0jYHAKqxWlwWqccWaZPErozVBl9FHh3jCS31Fl9hPnX2HLUtrnAfWX26bKRl1HCR728qF171BYDiIlcMbh7eG9w+N879mF++QG21Cp/jp195hdoypB1SYyDSumqEJ6Agw0NmZISrQ0PtSLspUqfQ6yt0zCGSUNaX5/OrO7sQiaBgFyIRFOxCJIKCXYhEULALkQgKdiESocfSWx5jE5NB29ggb9eUyYSTCJZXluiYxlqZ768Va//EC7I5ScgZHOR15hrgtpdOcclorcZbCRWLfdxWCPtYGuCy0FiWy5RPnZyntmadnz61kbD0NjnG58PA5bBGk0uzlTqvhbdGas3Vm/w9W0RKjXQHQz4TaR2WidTey4XnsVnj0qYT2ZbkagHQnV2IZFCwC5EICnYhEkHBLkQiKNiFSAQFuxCJsKH0ZmYPAfg9ABfc/de728YBfAfAIQCnAXzM3bkO9i97A4iMZpH2OIy+SD2wfoSzggAgF7nGZTKRenJElusr8fZPF8/zrLHKRT5lN45ziarGVSgUicR26+EZOiYT2WEzy+d4JSJ95rLhOnlDBf657Bk7TG2Hb76O2l7/xZPU9vIrs8HthVxE1nIu2zabPGQyJOMQAPIFPo/tdvi8akd0PrPweRpRBjd1Z/9zAPe9bduDAB5z95sBPNb9WQhxDbNhsHf7rS++bfP9AB7uvn4YwEe22S8hxDZztc/s0+4+1319Hp2OrkKIa5gtL9B5p5g6/SM9MztmZifM7MRqJfKwKYTYUa422OfNbB8AdP+n9YTc/bi7H3X3o0P9fNFJCLGzXG2wPwLgge7rBwD8aHvcEULsFJuR3r4F4AMAJszsLIDPAfgCgO+a2acAvAHgY5s5WNsd1fVwcT1r8MwlIJyhtLbGC/LVG/w61szwbxjlCpfKVoht5iCfRm/y/V0/wYWSw/u5VFNZ5+NmbrkzuL3g/BFq6TIv3FkaDRcIBQBc4plcB/fuC25fXuPZfDf+2s3UNjzGs/aGx26jtqWF8PwvXeYttPIReTDjPOOw0Y5kU/JkSrQa4fM7kkRHW5FFkt42DnZ3/wQxfWijsUKIawf9BZ0QiaBgFyIRFOxCJIKCXYhEULALkQg9LTjpcLQsLE94ixcAZDJDqciLVA4Ocanm3AKX+V4/u0BtuXzYj8I878u2Ps/3d/MUl9c+9AEuQ702+/ZUhX9haCZc0HNiT7gAJABcWOBFJUdHIzJUm/tfIAUWLyyEs9AAIFdcpraF5Tlqm53jWWr5fPg8GB3mWli1ygUsz/H7o0W0snZElstYeJxFMjAjbQL5cd75ECHELyMKdiESQcEuRCIo2IVIBAW7EImgYBciEXoqvWWzGYyODgZtzRyX3srlcMaWN7iccXmVZzW98QsuNZXLXMYpFcPXxrnXefbddJEXIZyZuZ7aRvffQG351UgKFSnCeeDOu/mQ81wOKzW5dNgCz6RbWwvb9vWHpUEAqLf4+7KB8HkDAAcG9lPb0GhYcly9dJ6OuTB/idoaxuXG9TovYokM18oG+sJZmPVqRFIkBSyNyHiA7uxCJIOCXYhEULALkQgKdiESQcEuRCL0dDW+3WpidTm80pmr81ptedLqBrwEGnJZbqyU+Ur92BBP/BgdCK+aVpf4avzUfl7DbeaOf0Ntz5+tU9srJ7nt3n3jwe3Ly3zM9OFw3ToAyKBCbfUaX6kf9fDK+soFvtJdqvNaePvGw+8LAJZbvC5c/o6x4PZqJLHmHx59hNrOnuHvORtp8RRrzMTybhqxNmWN8FyxpDFAd3YhkkHBLkQiKNiFSAQFuxCJoGAXIhEU7EIkwmbaPz0E4PcAXHD3X+9u+zyAPwDwpg7xWXd/dDMHzBIFohX5o38nskWGtIUCgJZx6W2JKzxYWYnUH6uF5at9I1yu+40PfpDaDtx6D7X94M8eora9kaSQbD1cX2/21Gt8fzfeTm3FPTdR24BzubSyGO71WWqHpTAAqFe5zHdxldtGJ3nS0J69h4Lbq+VhOibDTWgVePJPrAZdo8GlT2uGE7rMeaJXsxkO3a1Kb38O4L7A9q+4+5Huv00FuhBi99gw2N39cQC8nKkQ4peCrTyzf9rMnjWzh8yMfzcTQlwTXG2wfw3AYQBHAMwB+BL7RTM7ZmYnzOxEucKfW4QQO8tVBbu7z7t7y93bAL4OgJZBcffj7n7U3Y8O9vOqLUKIneWqgt3M9l3x40cBPL897gghdorNSG/fAvABABNmdhbA5wB8wMyOAHAApwH84WYOZgCMKAMtksUD8DY4kU488Gpkf5ESbuN7eNuovf1hqe+uo7fQMbfdy+W1pQtcbuxr8sy8Gw8coLY2eXN7p3jtt+Y6lzArkWy5epOPa1TDp1YLXDZ8bfYstT33/Alqu/ce7uOeveGsw5XVsDQIAKRjFABg4hCXWduxdk31iIxGJN3LC7wdVm017GSbZBsCmwh2d/9EYPM3NhonhLi20F/QCZEICnYhEkHBLkQiKNiFSAQFuxCJ0NOCk+5Am2T4VGtcMiiQLK9cjhf4y2a4HHPTXv7XvcUSv/4duv5gcPud7+eZbftuvYPanvnHP6O26w5yH/e+693UVpg8HNye6x+hYyrrXAKsrvDMtvlzZ6htaT4so7UaPHutNBQu6AkAExP8sz5z7mlqm943E9zerESyLKu8jZOtLVFby8MZhwDgTHMGUOoLv7fCXv6eV/pIJmgkonVnFyIRFOxCJIKCXYhEULALkQgKdiESQcEuRCL0VHozM+Sz4UMuRQoKttbDMkOpv0THZDNc6piKZLadmeOZRofvCpXiAw68O7y9A5fQGqtr1DYyxKWyyVuOUNtaLtwT7YWnn6RjalXux8oKn4+Ls7+gtmwrLH0Wi/yUm7khLJMBwB238MKXzSzPRMtnR8PbCzwrMrfOi0pW3pilNiYrA0Azclstk76E/Xv4+5omPQTz+Uh/OO6CEOJXCQW7EImgYBciERTsQiSCgl2IROhtIky7jVo1vNLZ38ddsWJ4tTKf4TXQvMVtpUHeGur3/93vU9u9v/uh4PbhiWk6Zv7US9SWjfi/vMpr0C2c/mdqO7caXhH+u7/8SzpmsMQTLtZrPGFk7zRXDIaHwivJr5/lyTP1yHyM7z9Ebbe8+73UhlZfcPPiMq93VyHqDwAsVbmP5vwcXq/yRK8yadnkZa4K3BYWGdDmIpTu7EKkgoJdiERQsAuRCAp2IRJBwS5EIijYhUiEzbR/OgjgLwBMo9Pu6bi7f9XMxgF8B8AhdFpAfczdeYEuAA5H20ltuDZPIrBmWLZoeqTFU6TmV7FvmNqOvJfLOH35sET14jO8BtrSudeorVbj0srq0iK1nTn5IrWVPZwclG/xYw3muBQ5XOTJGJNjXHqbmz8f3N6MtPmqrHKZ78zrPOkGeIFayuVwDb1ijp8fzb4parvU5OdOqcRr6PUP8aStUi4sD65WVuiYZjssAUaUt03d2ZsA/tTdbwdwD4A/NrPbATwI4DF3vxnAY92fhRDXKBsGu7vPufvPuq9XAbwEYAbA/QAe7v7awwA+slNOCiG2zjt6ZjezQwDeA+AJANPuPtc1nUfna74Q4hpl08FuZoMAvg/gM+7+locJd3eQxwUzO2ZmJ8zsxFqV13IXQuwsmwp2M8ujE+jfdPcfdDfPm9m+rn0fgGDDa3c/7u5H3f3oQKmwHT4LIa6CDYPdzAydfuwvufuXrzA9AuCB7usHAPxo+90TQmwXm8l6ex+ATwJ4zsye6W77LIAvAPiumX0KwBsAPrbxrhxAWEZrN/lX/Fw+XDOuFan5VQfPTpoe4XXh/vqRv6K28emwxDO1L9wWCgDqFZ69ls+HJRcAGBzgEk8uw6WyASIP7p0K1ywDgOoqV0xLWe7jpYWL1Naohz+boSKXoOplLr29+vQJapt7+RVqqzVJS6Y8n8NWbH4PcCkSA/wczvRx6bNIZLQx8Lm67V03BLeXiqfomA2D3d3/HgDL+QvnfAohrjn0F3RCJIKCXYhEULALkQgKdiESQcEuRCL0tOAk3NBuhxf2C5HMq2KOFOvL8MKAHmkJ1K7zzKuLF8PZWgBQXgjbSg2endQGf1/jY1wOG90/SW3NVo3aZs+FffRIPlQmw0+DepNLmFnjhSoHimG5lCQwdvYXM0ayGFt1Lm9myPm2UuFyY72PyHUAhvbzuV8r8VZZq20uy62vhe+5e4ZvpGMmiJSay/PPUnd2IRJBwS5EIijYhUgEBbsQiaBgFyIRFOxCJEJvpTcYMhbOoir28QwfJxlsA6WwvAMAA0MT1FZp8AykPUM85z5H/Khfnqdj2hm+v0qeS03T0+GsJgBo17mMc+sdB4Lbf/qTx+iYuleoLW9c3qyW+bjhoXDWXiHHT7msRfqhrfPP7PU5LqMtL4c/s5qt0TGTt/B74MxoJGvP+We9dJHPVWE9LGEOzEQyFSvhrMJ2RL3UnV2IRFCwC5EICnYhEkHBLkQiKNiFSISersZnDCjkwteXSo0nGGRJC6J2pD5apcGTGbJ5nlTRV+Crrfl82I9CP2+DNDLME3LOL/BV/MpMeFUdAKYO3kRtsxfCdeHe9Rvvo2PKC+eo7dQrvLXSWpknfuSy4fkfGeG19YzUJwSAuVnu4y/eiCTC9IXnf3iaKzmT4xEfI6qALfLPemyJh9rM1Hhw+4FRfg6cfDGc8FSr8iQv3dmFSAQFuxCJoGAXIhEU7EIkgoJdiERQsAuRCBtKb2Z2EMBfoNOS2QEcd/evmtnnAfwBgIXur37W3R+NHixnmJ4MX18aly7RcdVWWJJZ47kM8AxvDZWLJGMMD/PkgwJprVRd4zXoSpGaYKhz24mf/pTabryVS3Znz4YlmUykXl9/H68ll43Im6USl5rWymHprVrlkmgz0gJssMT9uPc9t1BbkSTkNLO8tl6rwZNWqme49JZZLVLbVP8Qtb3nlneFx4zyLuhPzb0e3N5s8Pe1GZ29CeBP3f1nZjYE4Ckz+3HX9hV3/6+b2IcQYpfZTK+3OQBz3derZvYSgJmddkwIsb28o2d2MzsE4D0Anuhu+rSZPWtmD5kZb40qhNh1Nh3sZjYI4PsAPuPuKwC+BuAwgCPo3Pm/RMYdM7MTZnZipcKfyYQQO8umgt3M8ugE+jfd/QcA4O7z7t5y9zaArwO4OzTW3Y+7+1F3Pzrczyt5CCF2lg2D3cwMwDcAvOTuX75i+74rfu2jAJ7ffveEENvFZlbj3wfgkwCeM7Nnuts+C+ATZnYEHTnuNIA/3GhHhYLhuoPhu/uIcdni5JmwFDK/wLPX6i0u1QwO8re9VuEZVK12Obg9G7lmLi5wSXG1zGWS9Qb3I+vcNjQYXjqZP79Ix5xd43JS27lkNz3JZUprh7OvlpZ5vbi+Af6ZjY5w6aqQ5fNfqxMJNsflxrUa31+9HGl51ebjbjq4l9r27w3P45mzXGK9tBCOiWakhdZmVuP/HkDoE49q6kKIawv9BZ0QiaBgFyIRFOxCJIKCXYhEULALkQg9LTiZzRmGx0jmGJESAGBsKhs2DPCigRfneQHL9Uj7pFyBFxtkw9oNnmHXaHE/Lle5DDUQyfJar3CprLoeLjhZj/jYitjcydwDKK9E2j8Nhwt3Dg/z4pzVKt/fxUt8rgYHefadZcL3M2ty2baQ40VH+7hCjEKBz9Whmw5RW7US9uXxx1+kY5595UJ4X+tcztWdXYhEULALkQgKdiESQcEuRCIo2IVIBAW7EInQU+nNzJArhg9ZHOa57uOD4WtSrsplrXyJZ/+sRPpuocWvf6XiVHhInh+rVeP90Ar93I98js9HNsslx5qHfak3uNzokcw24woVvM4lwBYx5SPZZihwuXF5iUtv1TrvbzYyGpZSc0SSA4BMZO4r4NLW/MVValuKZDiuroWzGP/2717mxyIq5Xpd0psQyaNgFyIRFOxCJIKCXYhEULALkQgKdiESoafSW7ttKLOCfdlBOm5wIKzj5EtcFxqIpCeNjHCprLzCe5GVV8IFAMuVSNbbOrcNFXjBxiLpKwcAzRqXHHO58PW7ELms5/t4tpYZH9gfKdyZIaZmi0tDhVKkB98olxsXF7nktUqkyOFxPveVSM+5V0/zAqIvP3eG2qbHeTbl9AHy3jL8PJ0gBTjnV7kMqTu7EImgYBciERTsQiSCgl2IRFCwC5EIG67Gm1kRwOMA+rq//z13/5yZ3QDg2wD2AHgKwCfdPdqmtV4Hzr4RttWW+er50GR4BbdYiiRA8MV9jI/zt11e43XQlpfDtqVLPHFiiS/eItvmq+Bt50pDq8VX+NEO22JXdcvwRJhsjs9VNZI05GTRPU/aQgFAs8JbVLUi9elakeSa5XJ4HOsKBQCLEUXm9En+gS5fWqO2+ho/4N6RcGuo266foWOYi6+eX6FjNnNnrwH4LXe/E532zPeZ2T0AvgjgK+5+E4AlAJ/axL6EELvEhsHuHd7saJjv/nMAvwXge93tDwP4yI54KITYFjbbnz3b7eB6AcCPAbwGYNn9/31ZOwuAf+cQQuw6mwp2d2+5+xEABwDcDeDXNnsAMztmZifM7MTlMi92IITYWd7Rary7LwP4CYB/BWDUzN5cvTkAYJaMOe7uR9396MhgpMK+EGJH2TDYzWzSzEa7r0sAfhvAS+gE/b/t/toDAH60U04KIbbOZhJh9gF42Myy6Fwcvuvuf2VmLwL4tpn9ZwBPA/jGRjtyy6GVnwjaGoWjdFytHU78yDTDrY4AoDjC5aTRSf4NYyzDEzXGK+HEhOVF3i5o+SKX16prfPpbTS7nwfk1ut0M+7he5Y9QhUKk3l2O+7+6zhM1quSRLR9RZ4cy4eQOAGhnuKTUaPB57BsIS5jFPK93N1rgPt6IUWp79528DdWtd9xJbYduuim4/e57uNx49lw5uP0fXuMxsWGwu/uzAN4T2H4Kned3IcQvAfoLOiESQcEuRCIo2IVIBAW7EImgYBciEcwj2VXbfjCzBQBv5r1NAOA6Qe+QH29FfryVXzY/rnf3yZChp8H+lgObnXB3Lq7LD/khP7bVD32NFyIRFOxCJMJuBvvxXTz2lciPtyI/3sqvjB+79swuhOgt+hovRCLsSrCb2X1m9s9mdtLMHtwNH7p+nDaz58zsGTM70cPjPmRmF8zs+Su2jZvZj83s1e7/Y7vkx+fNbLY7J8+Y2Yd74MdBM/uJmb1oZi+Y2Z90t/d0TiJ+9HROzKxoZv9kZj/v+vGfuttvMLMnunHzHTOLpEYGcPee/gOQRaes1Y0ACgB+DuD2XvvR9eU0gIldOO5vArgLwPNXbPsvAB7svn4QwBd3yY/PA/j3PZ6PfQDu6r4eAvAKgNt7PScRP3o6JwAMwGD3dR7AEwDuAfBdAB/vbv/vAP7onex3N+7sdwM46e6nvFN6+tsA7t8FP3YNd38cwNvrJt+PTuFOoEcFPIkfPcfd59z9Z93Xq+gUR5lBj+ck4kdP8Q7bXuR1N4J9BsCV7S53s1ilA/gbM3vKzI7tkg9vMu3uc93X5wFM76IvnzazZ7tf83f8ceJKzOwQOvUTnsAuzsnb/AB6PCc7UeQ19QW697v7XQB+F8Afm9lv7rZDQOfKjs6FaDf4GoDD6PQImAPwpV4d2MwGAXwfwGfc/S2laXo5JwE/ej4nvoUir4zdCPZZAAev+JkWq9xp3H22+/8FAD/E7lbemTezfQDQ/f/Cbjjh7vPdE60N4Ovo0ZyYWR6dAPumu/+gu7nncxLyY7fmpHvsd1zklbEbwf4kgJu7K4sFAB8H8EivnTCzATMbevM1gN8B8Hx81I7yCDqFO4FdLOD5ZnB1+Sh6MCdmZujUMHzJ3b98hamnc8L86PWc7FiR116tML5ttfHD6Kx0vgbgP+ySDzeiowT8HMALvfQDwLfQ+TrYQOfZ61Po9Mx7DMCrAP4WwPgu+fE/ATwH4Fl0gm1fD/x4Pzpf0Z8F8Ez334d7PScRP3o6JwDuQKeI67PoXFj+4xXn7D8BOAngfwPoeyf71V/QCZEIqS/QCZEMCnYhEkHBLkQiKNiFSAQFuxCJoGAXIhEU7EIkgoJdiET4vyrWWZ/xQ9u6AAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD5CAYAAADhukOtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAf8ElEQVR4nO2dW5BdZ5Xf/+vc+n5vdasltdSSLAkZ+YpQbOwAGQI2hJShZuKCB8IDNZ5KQSVUJg8upiqQqjwwqQDFQ0LKBNeYCcGQAQaXYTJ4jAfDGNvIN1mybFnWXepuXVunL+d+Vh7OcZXsfP+v25L6tJj9/1WpdPpb/e29zt577X36+5+1lrk7hBD/+EmttANCiNagYBciISjYhUgICnYhEoKCXYiEoGAXIiFkrmSymd0N4JsA0gD+p7t/Nfb7Pb19PjQyGrSViwt0XrVcDI67G52TzbVTW66N29LZHLWlUuH9FQtzdE65VKA2r9WozcDfWyqd5vNS4ft3V3cPndMWOR5eq1JbocDPGRCWdOtepzOKBX6sahE/YvIxM1Wr3I96PbY9Pi+T4eGUyfBz5ghfBzFVvE7cKCwUUCqVgxfPZQe7maUB/DcAHwZwAsDvzOwRd3+FzRkaGcWfff2/B20nXn2O7uvM4f3B8VqNuz+6/l3Utn7zdmobWL2e2to7wvs7sO8pOufowT3UVpnlN4l05L31DvRRW6a9Mzi+64730znXbeXHqnjxPLXt2/sCtdXr5eB4uRK+cQPAK/teprb8zFlqK5VL1FYph4Ps/Dl+o5pb4D5Wa3xfq1YNUtvAYDe11Xw2vK8KnYJiIXwn+PsnnqZzruRj/C4AB939kLuXATwM4J4r2J4QYhm5kmBfC+D4JT+faI4JIa5Bln2BzszuM7PdZrZ7Nn9xuXcnhCBcSbCfBDB+yc/rmmNvwd0fcPed7r6zp5f/rSmEWF6uJNh/B2CLmW00sxyATwF45Oq4JYS42lz2ary7V83sCwD+Fg3p7UF33xebU6vVkL8QXt0d6ucrmb4qLNd5ppfOGVu/iftR58ucqTpfpa0vhOWf4oVzdI4X+Mru2uERals/fh21jV+3gdrWrF0XHB8hkicAZLNt1FbtD6/uA8D4utV8XjW8Gl8scnlt5gJXJ86e5apAJiKzwsKr8QND/D23d3EfL+YvUFtbOw+nunPpMJsJ+5K/OEPnlEvh1XhnmhyuUGd3958D+PmVbEMI0Rr0DTohEoKCXYiEoGAXIiEo2IVICAp2IRLCFa3Gv2PcgUpY9iqXuBy2sBCWcSa28m/nzs3PU1ssGWNwOJJkkg3fG7ds2UrnvO+2ndS2djQskwFAX98qaqtkeLZcZ3tYxslEMqisGslsm+dyWImcSwDo7AhLdgP9XG7cvOl6atu//zVqg3E/SqWwlNrXO0DnRBIfcTE/TW2O8HUKxDPpLlwIX6uFBZ50wzLiYhmAerILkRAU7EIkBAW7EAlBwS5EQlCwC5EQWroa7/U6qiQRwqp8hbkt1xEcv3iWlyoaWs1Xute/myeZjIyvobYsW6aN1A+qVPnK/6uTPIFm4dAZvs0UX/V97eWXguPv3c5Xut+/673UFlvdzUfqExw7eio4nstGagPmeGLT8CquvBw7/jrfJinTNVfgak0+z6+rTJbXBuzt5UlDsXp9rLxerE5eW1v4WjTunp7sQiQFBbsQCUHBLkRCULALkRAU7EIkBAW7EAmh5dJbaSEseXR3cEmmdzCcFHLrTTfTOeObtlDbbCTx47VDx6ktvxCWT+ZmeK2wczNcXpuc4vXMeiOJMEjxBIlHf/Cj4Hj2Xn5f/8Dtd1JbNstlxdWruUwJD8tXMxfC3U8A4PkXePecTKROXlcPl+yqtbB0WJ7j5ywdeQTGur7UalwSPXeey3kphCW7WDup/v5wwlY60mZKT3YhEoKCXYiEoGAXIiEo2IVICAp2IRKCgl2IhHBF0puZHQEwC6AGoOruvOAaAEsZ2tqyQVsl3UPnFTrCjewP53mbnhd/8yy1nT/H66qdPMVrjGXT4ZSibIpnJ5VIGyQAKBa5bWwVPzWnp45SWy/JhpqdydM5Bw4f5n6MDVNbNst9HBsPt4ZaQ8YB4NgUlz1fe5nbRsa4THnkGJG8Kvyc1cvcVovU/2vPcXmwLRO+7gGgUAxvs7eXS4oZ0jLKIs/vq6Gz/zN3IqoKIa4Z9DFeiIRwpcHuAH5hZs+Z2X1XwyEhxPJwpR/j73T3k2Y2AuAxM3vV3Z+89BeaN4H7AKB/gH/VUAixvFzRk93dTzb/Pw3gJwB2BX7nAXff6e47u7rDC21CiOXnsoPdzLrMrOfN1wA+AmDv1XJMCHF1uZKP8aMAfmKNCncZAP/b3f9vbEIqlUFn52jQdnqGZ6IdPB6WXV7Zx+8tqYgsVIu0mirM8kKEaSKxFUpc1pqZ5bbZSGulIyf2U1tXB5cpt23eFjZEJMB/+PXfU9uGjRupbes23vZqaCicldXWzs9LXy+XrlJVXtxyvsSfWayFUmGGZ9/VarxIaHsHl9Dm8nybvZHMvLb2cKZauRxriRbOwKzXuWx42cHu7ocA3HS584UQrUXSmxAJQcEuREJQsAuREBTsQiQEBbsQCaGlBSfT6Qz6B8NZVAePH6DzJo+Es7I6s7zw4sV5XsxxLn+a2iwiXczMhqWymQKXajIkyw8AhkdHqK2jJyxdAcDaCS6CjBMZ5/BLv6Vz0sZluUqNZ3mdOcuLad5ww/bg+HVbNtE545Hste7bbqG2Pa8eo7ZSMVzItJSNZL2By2R15xLx1FS4vx0A5Nq4rNg3wK4DLgMXCuGMz7rz96UnuxAJQcEuREJQsAuREBTsQiQEBbsQCaGlq/Gl0jzeeCNcG+7VNw7Seacm3wiO1yJJKz19XdS2bcsEte3YvoPaJs+EV0CPnuF+rFodTvwBgA2beZJJzxBfqZ++wPfnZ8PKxbGjfMX6TKRF1fbrqQkf3hpecQeA+TmyWswX9+Flrgrse5qrCVu28TZgo2v7g+NPP/tkcBwApqZ58lKlwlfjiwXu/4VI26uO7rCPsZX1edJGLZYIoye7EAlBwS5EQlCwC5EQFOxCJAQFuxAJQcEuREJoqfQ2P5fH008+FnZklNROA7B5+w3B8Y5Im57t12+htm1b11FbrRhOJAEAT4XlpHnwhjiZbDgRAwDS6bDkAgCVKk+cmJ89T2195bA0VK05nXPsNE8aau8+yffVO0BtmzZPBMc98nwpzITrqgHAq8+8SG1e4NfBjrvuDo7fcCNPyCns5tLbGwePUFtnJ6+e3Nc/RG2N7mn/P/k8Py+lUvhYuaQ3IYSCXYiEoGAXIiEo2IVICAp2IRKCgl2IhLCo9GZmDwL4OIDT7r6jOTYI4AcAJgAcAXCvu3OdoEmlXMXp42GZ6pab/gWd19YWrk02yFUyjK3hdcTOR1r/HD/IZa1yPSyHpYyncqUzXAqpOa+hh2qsfVVYAgQAr4X3190Xrv0HAOfmeBZdKsezB+vO5bxGN+/QJD6ju52fs4k149TWnuZ+pBCuG3jDDp5x2N/PJdFHCr+gtqlJHgJrR9ZQW83CNQyzkRZm+XxYHtyfDbdKA5b2ZP8LAG8XK+8H8Li7bwHwePNnIcQ1zKLB3uy3/vbH3T0AHmq+fgjAJ66yX0KIq8zl/s0+6u6TzddTaHR0FUJcw1zx12Xd3c2M/tFkZvcBuA8AslleQ10Isbxc7pN92szGAKD5P+264O4PuPtOd9+ZybT0q/hCiEu43GB/BMBnm68/C+CnV8cdIcRysRTp7fsAPghg2MxOAPgygK8C+KGZfQ7AUQD3LmVnqVQGnd2DQVs2ouLMzIQ/OLQNcolkoco1niLv1oSOgR5qa6sb2SCX3jxyhIsVnuXV3sEnpiLtmuqp8LzuIS795JzLjekOntnmOa591i383qzGpbxUmr/nbFeO2jq6ua1aCsus505O0zlDXbwN1T0fu4vadr90hNrmIsUoi6UzwfESafEEAP094Ws/k+bnZNFgd/dPE9OHFpsrhLh20DfohEgICnYhEoKCXYiEoGAXIiEo2IVICC39lksu14ax9eFsI0vx+06xGM7wmc5z93P9PMurUuVSjUW+5VeYC2dQVZz7nsnwwpHVNLd19vIMsJGhGWrz82G5phzpUWZ17n9HRwe1pSJZh3UP769W4zJlKhsp9pnmPs7N8yxGIwUY2yLXW/4Ml+U6OsPSMQC8//Ybqe21N45S295XpoLjc3mejZgjhUzr9VgGoBAiESjYhUgICnYhEoKCXYiEoGAXIiEo2IVICC2V3twAt7C8UolIQwuzYWmlLSILzeYjhSOLvNDjQp7LOFmS9NbTxSW0VQNcqukd5Blgq/r5e6tl+qit0BY+juc38Ky3Um2S2hDJzKtVI9l3JEOwluLZiBaR3voHefZdvRbxkVxXfX38+OZ4LRbMzEZkz0pYmgWAm7evprb+nvD18+ijvLjlmelw4dZqJI70ZBciISjYhUgICnYhEoKCXYiEoGAXIiG0ttyrO0BWcDN1vrLbF/7OP8b7yPI4gHdt4vXputv5Smza+P1vPh9eiS0uXKRzOroq1LZtC1+pH9+wjtpS2Q3UNjcT9nF8bIz7cZgWB0bvIDn4AAYHeLJOJhNONorkacAjiTXtXZ3UVi1GVqDJ/rKxxCtwtWZouJva5ha4KjA/E052AYC1q8I17z7xLz9C5/z1z/4uOJ7J8IOoJ7sQCUHBLkRCULALkRAU7EIkBAW7EAlBwS5EQlhK+6cHAXwcwGl339Ec+wqAPwbwZt+aL7n7zxfbVk9XJz5w+3uCtk3X30TnnTp5Mji+dg2XrrZu2Uxtq1eNUFvauZw3S5IgSpFkEUvx7XV38USY7m4ueaVzXDrMEgmzMB9uMQQAt+7gUt7E1glqq9S5rOjkOVKtc5nM0/xYpbP8Uq0UuZ5XJ4khqQx/zlk79wOReaUKPx6ZNK9tWCuHr6tVEZnvzn/63uD4b599mc5ZypP9LwDcHRj/hrvf3Py3aKALIVaWRYPd3Z8EwPNFhRC/F1zJ3+xfMLM9ZvagmfFkYyHENcHlBvu3AGwGcDOASQBfY79oZveZ2W4z2z03z5P7hRDLy2UFu7tPu3vN3esAvg1gV+R3H3D3ne6+s7uLLzgIIZaXywp2M7s0q+KTAPZeHXeEEMvFUqS37wP4IIBhMzsB4MsAPmhmNwNwAEcA/MlSdtbZ2YH33PiuoO3dt3DprbAjLKN19fGsK17pDHDj0koqIpEMdoXriEW6P0XvpnXSmgiI1xJDROIplcLtnzZft57O6chxCbAwzzP6PBW5fCxs80h9t7pzWy1yzmItj8qF8PGo1fl7TmUi10fkjM6e4xLs0cPHqe2OO28Jji9UeD3ETiIPRpTexYPd3T8dGP7OYvOEENcW+gadEAlBwS5EQlCwC5EQFOxCJAQFuxAJoaUFJ1OpFDpIpld3O2+h1NVJ3IwU14sVNrSY9BaTeDwsldUrXEKLyUkWKXpYjYiHMXnFScHM7n6eIVit8X3V6pEqkKTFEwA4asHxVMz5GrfVMlwSdURONilwavWwfwDQFnnP2Ro/Z11FPs+nwxIgAJw5NB0cX7eNFx09mwp/GzV2ePVkFyIhKNiFSAgKdiESgoJdiISgYBciISjYhUgILZXe0uk0evrCEpBHss0WSmH5xEu8J1eJzAGA+bl5aitX+LxSKZxtVq1y6aoSyVCrRPa1EOkbtjDPs6GqJJOuZ7CPzunp433x+nuGqa09F+7nBgA11rvPIn3ZwG09PbwA57nT/DgWC2GJql7nxZUM/H3Va/ya6+3h8vGG9aPUVlgIX48eKc7Z1xOWsNMROVdPdiESgoJdiISgYBciISjYhUgICnYhEkJLV+NnZvL460f+JmirZX9N5124EE4UmLt4ls5JRXIjYiv109PhfQFAjWTXDEbaSQ0MD1FbW5of/vnz4ZZAAHDg9f3Ulp8Lrz6Pb+QtntJZroT09nD/N27kde3WjYfr9W3ctJbOGWzjWRw97dzHeqQWIdLh5JRKja90pyMtntIRH0cnIspFL1+pr3g4KSfNRQEMDobfcyaSHKYnuxAJQcEuREJQsAuREBTsQiQEBbsQCUHBLkRCWEr7p3EA3wUwika7pwfc/ZtmNgjgBwAm0GgBda+7X4htKz87h8eeeCpo61+3jc7zWlhOeuGpJ+icDet4/a7hIS4nnTwxRW1VUresc5AnkpRTPElm+gRvCfShXbdT2803vpvaFkrF4Hgqy0/14WNHqe3A629Q28t7X6C2/r5wE88//KNP0jl3vHsrteUiPbbWjY1TW5lIbxYp1harG1ghtfUAIJWJ1LXr54k8HSR5pZ7mEjETIiMlFJf0ZK8C+FN3vx7AbQA+b2bXA7gfwOPuvgXA482fhRDXKIsGu7tPuvvzzdezAPYDWAvgHgAPNX/tIQCfWC4nhRBXzjv6m93MJgDcAuAZAKPuPtk0TaHxMV8IcY2y5GA3s24APwLwRXfPX2pzdwfCxbvN7D4z221mu8tlnvgvhFhelhTsZpZFI9C/5+4/bg5Pm9lY0z4G4HRorrs/4O473X1nLse/HyyEWF4WDXZrtE/5DoD97v71S0yPAPhs8/VnAfz06rsnhLhaLCXr7Q4AnwHwspm92Bz7EoCvAvihmX0OwFEA9y62oYHBIfyrT//roK1tZAudtzAblsNef/klOmdsNZdjUpE6XR3tPIOqXA+38Nm6g/s+MMYz4haGeR20j3/0n1NbZ08Htc0T6S3SqQlV0tYKAIrV8PYA4PTp89R29PCp4HhnJz++UyfOUduRfa9TW6rIfTw0FfzAiV0f2UnnbJhYQ22xbLlUeyRNLctlOWO15ozPyVn4nMWkt0WD3d1/A4Bt4kOLzRdCXBvoG3RCJAQFuxAJQcEuREJQsAuREBTsQiSElhacNAPacuH7y4FX99J5+Yth6c1j2UllnjE0F2n/ZBHtor0tnGtUWeDtmC6e4T5OH+NZb3/zt+HCnABwYTayv7mLwfGeXi559Q2EW3IBQFekUOKJE2F5DQBGhsOFJdt7uRT565/x93z+9T3UVivzFlsHp8IFRE9EWmht2c6l1L7eTm4b4C22Ojp51ltfV/i6yrbz4pGdneHz4s6vXz3ZhUgICnYhEoKCXYiEoGAXIiEo2IVICAp2IRJCS6W3erWC2XNhGe2XP/0ZnXd86kRwPFUJZ6EBwJ49eWqLpQZVqzyrCSTT6LFHf0mn5LJcurr5lluprZzrobZ8aYHaDh0LZ3mdO8f7w5WLPOvt1NQRajt8hG9z5y3vCY7/28//ezrn2ad/S23VizwjLl/iRVEK4ZoqOLSby56/fm6S2royXObL5rhUlm7j10EPkd7WbZigc+75w08Fx8tV/vzWk12IhKBgFyIhKNiFSAgKdiESgoJdiITQ0tX4bDaHsdGxoG3LxEY6zxFeLc5EWiulIyvuqTS/x3mdJ67k2rvChixPclizJpwQAgAfvOsuauvpjCRctPPada/sDdflO3CQt3FavXaC2oqRtkvpDu7j3gOvBsdfOXCAzumc2E5tp07x9zzQz20juXBduM5uXsfv/BRvh3Xu5EFqO3M2nHQDAMVaJGmLFAicnOHh+b4PhedUedk6PdmFSAoKdiESgoJdiISgYBciISjYhUgICnYhEsKi0puZjQP4LhotmR3AA+7+TTP7CoA/BnCm+atfcvefx7ZVrVZx/ky4ZdBt/+R9dN77PvCB4HhbG088yETktVj7p3qkFVIa4f1VylzvKJR50sq5E4ep7XyRJ1ycP8vbLh0iEtup0+EEJADoHuHtjtDGZUXLcemtXA0npzz2q9/QORs230Bt44NcwmxP8cu4kyQilYq8Bt2h/D5q6+7htfxqzpOopi7MUdvw8ERwfKHCr8Vf/urZ4PjsLK+vuBSdvQrgT939eTPrAfCcmT3WtH3D3f/rErYhhFhhltLrbRLAZPP1rJntB8Bvs0KIa5J39De7mU0AuAXAM82hL5jZHjN70Mz415iEECvOkoPdzLoB/AjAF909D+BbADYDuBmNJ//XyLz7zGy3me2eneN/JwkhlpclBbuZZdEI9O+5+48BwN2n3b3m7nUA3wawKzTX3R9w953uvrOnm1dfEUIsL4sGuzVapHwHwH53//ol45dmtHwSAG/pIoRYcZayGn8HgM8AeNnMXmyOfQnAp83sZjTkuCMA/mSxDaVShi7StuZcvkjnvbDnueD4yAhfJhgdGaa2SoXLWhcuzFAbimEfM3W+vbUbuaw1PsA/6Zw8wOugzc/xmmsjo6uD451D/XROup3LSQsFfl7GxtZT29SpcN3As+fC7akAYGxNpC1XpNXXXIkff2TC11ulzuXStg6S3QigLZJNWT53htqQCteZA4BRknVYLvEWZuxw8KO0tNX43wAIvcOopi6EuLbQN+iESAgKdiESgoJdiISgYBciISjYhUgILS04mTKgLRvO5CkVueT11FOPB8e9wmWh3k5eULBS4dlJxQJvKZUh98YNE+N0zo7brqe2zeu5LDdzPCxdAcDUhbPUlusIS02bh8KSHACcOcMzsm7YtoPa3n3DNmp7+H99NzieQbgAJABU5vn5LJe5zWNVFtvD5zrWjmli4yZqO338Nb6vFM/C7Oji+9u+fWtwvLjAz8v42Ehw/Fc5LvHpyS5EQlCwC5EQFOxCJAQFuxAJQcEuREJQsAuREFoqvdXrdSwUSAHGSBHIuz768fD2yjxLKh2R1+o1XsjP01w+SWfCslF7Fy+8ODXDpbzZGd737HyB+2/tvAjkay8eCo6f+y3PyNq0kUto771uC7WVIxlxHbmw1OSRjMNYhl0qzS9V0ioNAFCokz6BNX58N6zj0ltx7hy1Xd/Ls+Wefe4Fajt1NCznFeb59e0LF4Lj5RLPiNSTXYiEoGAXIiEo2IVICAp2IRKCgl2IhKBgFyIhtDbrLWXo6g7LV32RSnk9q8JZQaWIzNAeuY/ljGdeeQfPlmvrDM+rF3l20uxsntrSnbzQ48hmXiBycyfPenv9cLjXG4xLillSBBQATk4eo7ahYV7wk9nKBS4nlUq8GOV8JCOuFMkOq5TCUm+mnculo2tWUdvRyWlqmz5Gjj2A4hx/b2/sezE4PjTE/fCBwfB4pDCnnuxCJAQFuxAJQcEuREJQsAuREBTsQiSERVfjzawdwJMA2pq//1fu/mUz2wjgYQBDAJ4D8Bl35/1qANTrRSzMkuSPOr/vZK07OD49zVc4X3/lCLW1Z/iKe66Pr4IPk3ZTa4b76JxMJMFnqG+I2iK5OigWwkkQADAyEl7hX7smvHoLAJNTU9R24MB+apsob6Q2ppTMzvJztrDAV7rzF7mqEVuNr5XDiUjpNp60sm8vbx0Wa8k0MjJKbWtv5LX8RlaF5w2v4nUD24n/j//DE3TOUp7sJQB/4O43odGe+W4zuw3AnwP4hrtfB+ACgM8tYVtCiBVi0WD3Bm/eOrPNfw7gDwD8VXP8IQCfWBYPhRBXhaX2Z083O7ieBvAYgDcAzLj7m0nBJwCsXR4XhRBXgyUFu7vX3P1mAOsA7ALwrqXuwMzuM7PdZrZ7dpYUrhBCLDvvaDXe3WcAPAHgdgD9ZvbmAt86ACfJnAfcfae77+zp4V9RFEIsL4sGu5mtMrP+5usOAB8GsB+NoP+j5q99FsBPl8tJIcSVs5REmDEAD5lZGo2bww/d/VEzewXAw2b2nwG8AOA7i26p7qiTNj6pyH0nUwkncfSSVlIA8NzTv6K2qWmeSGJZnhSya9d7guN33r6Tzrl4kUtNe55/htrmizzx48Cx49R26MiR4Hhhgf8J5c6LuLX38mSMfH6W2mZJi6r5PJcNI6XkkElza1/kE+OajWF5cGBojM4ZWcMlrzW33EBtg5EadLlYbUNmiyQvwcPxkoq0oFo02N19D4BbAuOH0Pj7XQjxe4C+QSdEQlCwC5EQFOxCJAQFuxAJQcEuREKwWM2qq74zszMAjjZ/HAbANbDWIT/eivx4K79vfmxw96Be2tJgf8uOzXa7Oxeo5Yf8kB9X1Q99jBciISjYhUgIKxnsD6zgvi9FfrwV+fFW/tH4sWJ/swshWos+xguREFYk2M3sbjN7zcwOmtn9K+FD048jZvaymb1oZrtbuN8Hzey0me29ZGzQzB4zs9eb//PeSsvrx1fM7GTzmLxoZh9rgR/jZvaEmb1iZvvM7N81x1t6TCJ+tPSYmFm7mT1rZi81/fhPzfGNZvZMM25+YBbpYxbC3Vv6D0AajbJWmwDkALwE4PpW+9H05QiA4RXY7/sB3Apg7yVj/wXA/c3X9wP48xXy4ysA/kOLj8cYgFubr3sAHABwfauPScSPlh4TNLJ9u5uvswCeAXAbgB8C+FRz/H8A+DfvZLsr8WTfBeCgux/yRunphwHcswJ+rBju/iSA828bvgeNwp1Aiwp4Ej9ajrtPuvvzzdezaBRHWYsWH5OIHy3FG1z1Iq8rEexrAVxafWEli1U6gF+Y2XNmdt8K+fAmo+4+2Xw9BYAXIV9+vmBme5of85f9z4lLMbMJNOonPIMVPCZv8wNo8TFZjiKvSV+gu9PdbwXwUQCfN7P3r7RDQOPOjsaNaCX4FoDNaPQImATwtVbt2My6AfwIwBfd/S1dIVp5TAJ+tPyY+BUUeWWsRLCfBDB+yc+0WOVy4+4nm/+fBvATrGzlnWkzGwOA5v+nV8IJd59uXmh1AN9Gi46JmWXRCLDvufuPm8MtPyYhP1bqmDT3/Y6LvDJWIth/B2BLc2UxB+BTAB5ptRNm1mVmPW++BvARAHvjs5aVR9Ao3AmsYAHPN4OrySfRgmNiZoZGDcP97v71S0wtPSbMj1Yfk2Ur8tqqFca3rTZ+DI2VzjcA/NkK+bAJDSXgJQD7WukHgO+j8XGwgsbfXp9Do2fe4wBeB/B3AAZXyI+/BPAygD1oBNtYC/y4E42P6HsAvNj897FWH5OIHy09JgBuRKOI6x40biz/8ZJr9lkABwH8HwBt72S7+gadEAkh6Qt0QiQGBbsQCUHBLkRCULALkRAU7EIkBAW7EAlBwS5EQlCwC5EQ/h+CqIklWmKmUgAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD5CAYAAADhukOtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAbNklEQVR4nO2de2yc13nmn3eGd5GURN0sS3KZuN4m2bRxDFZN62zWcZDCG3jhpF0YCdDABYKoWDTABuj+YaRAkwL9I11sEuSPIoUSG3WLNJc2ycZbeNM43iaOm9Y27diSbNmWbFE3UxQpieJlyLm++8eMu7Jznpc0L0PZ5/kBgobn5fm+M2e+Z76Z8/B9j7k7hBBvfgobPQAhRHuQ2IXIBIldiEyQ2IXIBIldiEyQ2IXIhI7VdDaz2wB8GUARwNfc/fPR72/fvt2Hh4dXc0rRZhqNBo3VajUa6+goJtu9wa3eQoHfe6xgNAbwGDtbdLQ3MmNjY5iamko+vRWL3cyKAP4CwAcBnAHwuJnd7+7Psj7Dw8MYHR1NxqKLSqwBwZ9TmPFLf2G+RGMXLk7R2NDQ1mR7vbJI+/T29dFYsaubxtz4m0SDyDr9VvTGZ//+/TS2mo/x+wEcd/eX3L0C4JsA7ljF8YQQ68hqxL4HwOkrfj7TahNCXIWs+wKdmR0ws1EzG52cnFzv0wkhCKsR+1kA+674eW+r7VW4+0F3H3H3kR07dqzidEKI1bAasT8O4AYze4uZdQH4KID712ZYQoi1ZsWr8e5eM7NPAfhHNBc373X3Z1Z6vMh2ERtHuXSZxi6eeYnGTh9N97s8M0/73HzrB2hssLeHxqJ7lpHV+ByvtlX57O7+AIAH1mgsQoh1JMc3OCGyRGIXIhMkdiEyQWIXIhMkdiEyYVWr8WuJCl+uL9H8FozHzp0+QWOH/uVhGqsupBNoOvvTCTIAsDDDbb7BoSEaY8kuAE+SyfFq051diEyQ2IXIBIldiEyQ2IXIBIldiEy4albjo9JIYvU4eNmvapmXnnr59EkaG+zrpbG+LQPJ9vOXZmmfC+O/kCH9b+zadx2NocCLTNEadGFNuzcnurMLkQkSuxCZILELkQkSuxCZILELkQkSuxCZcNVYb2JtYAkvUbLL5MULNDY2dorGykG/gZ6uZHtpbob2ee7pn9PYNcPX09iWa4LtCsh8RHlXb1YbWHd2ITJBYhciEyR2ITJBYhciEyR2ITJBYhciE1ZlvZnZGIBZAHUANXcfWYtBidXArKY67XH2zBkaO3GKx04f59s/bR/oT7bv3b6J9hk/xTPsDo8+TmMjt2yhsb7BzenAm9NdC1kLn/397j61BscRQqwj+hgvRCasVuwO4Idm9oSZHViLAQkh1ofVfox/r7ufNbOdAB40s+fc/VXFxFtvAgcA4LrrgmojQoh1ZVV3dnc/2/r/PIDvAdif+J2D7j7i7iM7duxYzemEEKtgxWI3s01mNvDKYwC/DeDIWg1MCLG2rOZj/C4A32tlCHUA+Ft3/8HKD8cLIq7MJ1kHb4VkSnm0mZAHzyvIrrIVvw+nj9lo1GiPaq1KY7OlRRo7M3GRxiZIrF7fSfvs3cmf83OPP0ZjO6/ZTWP/7td/4cNmC37pFzx4XaJ9o4KXLDgkLLpG1pAVi93dXwLwrjUcixBiHZH1JkQmSOxCZILELkQmSOxCZILELkQmXEUFJyNPYyVHW6H1Fg2DFi/knRzc8grttdCWi2KvP3Ld8DCN9Q0M0tjM/AKNwdLP7cjp87RLb0c3jXUsVmjsmZ/9hMa27dmVbN+69620j9X462mBhxZdc40CP2YQWlN0ZxciEyR2ITJBYhciEyR2ITJBYhciE66i1fi1fd8JExYCopV1NNKxRlDfrVrjq8hdXektkgDAwicQrQizLkXaZ+vW7TT23vfdQmOHn3qOxsZOpOvJ1Wt8ro4Xz9FYz/C1NFZ//hiNHf7JPyfbf+M/83Tr3r50/TwAqEcJLVGMh1BbgRPFHJkV5ukIId5MSOxCZILELkQmSOxCZILELkQmSOxCZMLVY72FRbpWcrwoOSVIdAgOWfN0Usux49z6WViYp7G3vf3tNNbdza2yQuTxEBrOj9cILoPfuvk/0NipE2dp7Gt/+bVke22BW5GnJqdprLuPJ8ncMMTvWc//dDTZviNIhHnbzaxuHVAKEps6G3wcXcFrdrF0OdlerpRpH2ZhVqq8j+7sQmSCxC5EJkjsQmSCxC5EJkjsQmSCxC5EJixpvZnZvQBuB3De3d/ZahsC8C0AwwDGANzp7pdWM5BGYJWxBLCw9ls9qP0WvcUFFsnps6eS7f/7gX+gfWZm0rYKAPzWFK/H9v7/eCuNdXdzG4rNY7TBUK3Oo/0DAzR2+x2309jx519Itv/o/zxI+8xU+Wv23FmeEbfVemmsZzH9Yv/rD35I+3Rs41lvhV1baGx+mr/WnQ2e7Tc+cybZfnmWH29xMb0t11xphvZZzp39rwDc9pq2uwE85O43AHio9bMQ4ipmSbG39lt/7S59dwC4r/X4PgAfXuNxCSHWmJV+Z9/l7uOtx+fQ3NFVCHEVs+oFOm9+ceYFUswOmNmomY1OTk6u9nRCiBWyUrFPmNluAGj9T1ea3P2gu4+4+8iOHbwUkBBifVmp2O8HcFfr8V0Avr82wxFCrBfLsd6+AeAWANvN7AyAzwL4PIBvm9knAJwEcOfqh8KtCeaVXbp0gXa5fOm1a4pXHK7I7bVzk9wO+5fRx5LtTzzzNO0zc5FncpWrPAPs3//qO2ls5w5eILJYTL+kM7Ml2md6mo9xeO9eGrt2704a+/1P/l6y/fTZF2mfR58+RGPleZ61d+wMt+X6rkn3u3DkCO1T+i4N4fqbb6KxS3Oz/JiBJVa29PxHGWwNUvw0KnC6pNjd/WMk9IGl+gohrh70F3RCZILELkQmSOxCZILELkQmSOxCZEKbC046gLSd0AiyglgVyMszU7TLT3/2CI2dfDmdZQQAUzPchro0n7ZWCpv4nm095U00dv5CNP6f0tjw8D4aYxlxZ8/wv16sVrhds1Di8zE3y2Od5Mp6+6/zQo9PHT9MY5VZnuF4ZprbWn1d6fnYu7mH9jkx+iSNFbv5/bFw7RCNXa5x65Oais6vq3I5rSMP0ht1ZxciEyR2ITJBYhciEyR2ITJBYhciEyR2ITKhrdbbwmIJzxxNZ4h1dHTSfswauhRka03P8WJ9p8b5HmWbd26jsaHN6cKG27bzPP3JF8dp7OgRbjU9+CNemHHzIC+wWOxIGznlCreuKuV08UIA+ME/8lhncKtgGXF92/nr/K4b30ZjP3/keRorBeU0X7gwkWzvrXNLdGuNF9k8/q9P0Nj0Dm7nXSzwMXZW0v1qQQHOUilt5c3OLNA+urMLkQkSuxCZILELkQkSuxCZILELkQltXY2fn5/Dzx77WTK2MDNP+23qSa+c3n77HbRPzfkWSU8cfo7GNg9spbGFRnpl+tqdvGx+dYKvjl6e58kRpWN89XlrkIyxaXN6rvq3csegZxNfKd68hdd+2zw4SGODg+ktlHr7+2ifW279DRq7PMXdlSNHXqKxejWdRXVqOnAZOrlj0HGOr5DPXuKx2gB3UAq96ZqCZ09zJ2eG6KWyyJOadGcXIhMkdiEyQWIXIhMkdiEyQWIXIhMkdiEyYTnbP90L4HYA5939na22zwH4JIBXCpt9xt0fWOpY5XIFL42lbZLL5y/Rfje85YZke28vT2Z4+WW+jdPJE6dorH8Tt0jK1bRVZkHywcI0t2NQ4NtQ/fL1vFbb9Ts209jA1rQddv48t662DvH3/N37+BzPznDrsIu4eT0NbuUNBs/rg7e9n8YuXuI16CbOpK+DqTK3G/su8+PtDOzGDuPJRnsGeH26TbuuSbafHRujfSqldD1ED2o5LufO/lcAbku0f8ndb2z9W1LoQoiNZUmxu/vDAPguiUKINwSr+c7+KTM7ZGb3mhn/szMhxFXBSsX+FQDXA7gRwDiAL7BfNLMDZjZqZqOlEv9uK4RYX1YkdnefcPe6uzcAfBXA/uB3D7r7iLuP9PXxxS8hxPqyIrGb2e4rfvwIAL6zvRDiqmA51ts3ANwCYLuZnQHwWQC3mNmNaO7nNAbgD5Zzska9jvnLaQuotMg/4nf3pWt0XZ7ldtLJ02M0tmUzt0/q8zwbyhbTW+6MnztO+4y/zLd4skL6eABw5+/+Do015vh66f995MfJ9pOHeN29bZv5NkPnjnF7cM+119HY5Wq69hs6uSU6tI1nD/7qr7yTxiof5pfxvff8TbJ9YZa/zi9Pz9EYOoItmSrczpubukBj15LrsauXZ99t37kl2T51nsw7liF2d/9YovmepfoJIa4u9Bd0QmSCxC5EJkjsQmSCxC5EJkjsQmRCWwtONryBSjltsZXKvODk8RNpa+t7/+s7tM8jP/kJjZlzO2lihtsukydPJ9s7ueOCapCF1HUNz/L654d/SmPlGW7nPXvshWT7/ATPvpue5GPcso1vaTQZFF+cuZx+Pbdu4X9YVamnxw4AP/7xkzTWO8i37Nq6Pb0N1VSVW2GlMn9eZwPLzrv5ddVH5gMAipNpO3LLNn59FItp6b54jBff1J1diEyQ2IXIBIldiEyQ2IXIBIldiEyQ2IXIhLZab8WOIjYPpe2EavC2MzOXLgD47FNP0T4TJ07QWCF42n0dPNOoq5DOePJKtL8Wt2P27t5DY0PBnnOXgiIgbx3+lWT7yTov6Dl9kdtQ9e50dhUATAQZgqVS2s6bvsizsqzIi1EuWjD+0os0VuhKW32NIs9e8y4+jhK4z1qv8dgmMg4A6N+cfq2LRS6KhqfntxjMoe7sQmSCxC5EJkjsQmSCxC5EJkjsQmRCe1fji0X0k9X4jgG+zVDlQjqJYOqFdGIKAOzr50kERlbVAWB2ga8wLxbSCRLWy5NFuo2vjk5O8FpyTzz6NI3tGhigsQuXppPtlxf4Cv5ckMizMMW3QkLgNHSQ1e7eTr5F0mLgakxOp58XANQLfI77OtKr4Fbg97lCDz8egtV4eJWG5uf5/M+Q7cO2buNOCBps7vlroju7EJkgsQuRCRK7EJkgsQuRCRK7EJkgsQuRCcvZ/mkfgL8GsAvN7Z4OuvuXzWwIwLcADKO5BdSd7s6zFQC4AY2u9PuL17ll0EUSAjqrvHbadYNDNFYLrJrZwKIqDvYn2wtd3HpbmOBbVJWnS3wcF2ZpbKrB36Ony+ljDt/0a7TPuUmeCDN9iY+/v5/bpYultF1a7eRztRjUfluocsurUODXTg95bdy4TVYP7LViB5dMocZtxUaDH/P8ZNpWrPHLGx1d6edcqwfzxA/3//sD+CN3fweA9wD4QzN7B4C7ATzk7jcAeKj1sxDiKmVJsbv7uLs/2Xo8C+AogD0A7gBwX+vX7gPw4fUapBBi9byu7+xmNgzg3QAeBbDL3cdboXNofswXQlylLFvsZtYP4DsAPu3ur/obSnd3NL/Pp/odMLNRMxstzfHvw0KI9WVZYjezTjSF/nV3/26recLMdrfiuwEkK927+0F3H3H3kb5+Xq1DCLG+LCl2MzM092M/6u5fvCJ0P4C7Wo/vAvD9tR+eEGKtWE7W280APg7gsJm9UvTtMwA+D+DbZvYJACcB3LnUger1Bqan05ZSucQznjZV0lbZjmuupX0unExvqQMAx8dO0thklWe9DQ2l7bxCD//EMt/gbmS9yi2jWqlMY4tl7snULG3/TJ7jW0bNz3EL0KvcTurr7qOxCsketO5u2qe2yJ9z1yZu83lgNy2W09dVo8CfV6XGr8XuTp4x2dXDn1t/X9q2BYBeEqsGc19gWXu8y9Jid/dHwPPmPrBUfyHE1YH+gk6ITJDYhcgEiV2ITJDYhcgEiV2ITGhrwUk0DFgg2ytx1wU1S9sd80FdwPGg0ON4sE3PXCUoKHghnQFW7OTWVSnIdnJaNBBYqPEMMCdb/wBAF7GGzk5y6y3KlLKggOHkpSDJ0dL9vM7H3tnLLczBLm551YP0sOYfd/4ixQ5+n+sF3wKsEGzJ1BnYchaM38k1YsG5CkakS+Yd0J1diGyQ2IXIBIldiEyQ2IXIBIldiEyQ2IXIhLZab2aGDkvbGlVikQDA3ELal7s4w/chu1jhXl6tkz9tr3HLbpFlcpHMKgCoelQokZ9r0+ZBGisWeT9WENGDt3VmTy15riDGikAGW6yhEe2/Fj5nPsf1RtqW86BIZXQumm2G5vXNg7xfg4wxcF9RY8HgtdSdXYhMkNiFyASJXYhMkNiFyASJXYhMaOtqfKNex9zsXDI2M5PeLggA5kkJ6vl5Xi8uWhgd3MJXurt7eR0xeq5ghba3gydAdHbxc0Ur3Z2Bm8BW4+tRQk6wghsVNYu6FdmckBp5AFAPkmTo6jPi8VdJv3rwvIodfO47gu2fonH09PBtr7rJ6+lklR4Aukktv8gR0J1diEyQ2IXIBIldiEyQ2IXIBIldiEyQ2IXIhCWtNzPbB+Cv0dyS2QEcdPcvm9nnAHwSwGTrVz/j7g9Ex6rVapi6cCEZq1a4zbC4mE40qVR4AkpnD68j1tnD7bCFBb7TLKs/FiW0IIi5B9s/1bnVVIjqp/URSybKQAkso8iyi2AWUFTTLqJU4nX+Isuug9laQSJMNFeRtRVbmMHzJt16gm3FmPUWJeosx2evAfgjd3/SzAYAPGFmD7ZiX3L3/7mMYwghNpjl7PU2DmC89XjWzI4C2LPeAxNCrC2v6zu7mQ0DeDeAR1tNnzKzQ2Z2r5ltXeOxCSHWkGWL3cz6AXwHwKfdfQbAVwBcD+BGNO/8XyD9DpjZqJmNlstBcXghxLqyLLGbWSeaQv+6u38XANx9wt3r7t4A8FUA+1N93f2gu4+4+whbVBBCrD9Lit2ay4/3ADjq7l+8on33Fb/2EQBH1n54Qoi1Yjmr8TcD+DiAw2b2VKvtMwA+ZmY3omkcjAH4g6UO1HBHtUrssqBIWkdH2kaLPih0B1sJRS4I21UH4JlojcBxqQf2WmQZFQPLrtgV1EjrTM9jF5lDILaMojHGVlOaIJErtI22bNlCY9VqlcbKxJ6tB9l3K7XXosy8Wo2PEXUWe/2vSz3Yyms5q/GPIC2P0FMXQlxd6C/ohMgEiV2ITJDYhcgEiV2ITJDYhciEthac7OjowLZt25KxArg1VK+nLYhqLdj2J7BWFhd5ZpsVg2wosoVPI8gMqwRWSLERZMsFRMUoG562ZKK5WmkmWlTUs0H8yFqNe28N8joDcRHIyPJiBSerjSCrMJjfldpy4VZZxGKLbE92zXm03RiNCCHeVEjsQmSCxC5EJkjsQmSCxC5EJkjsQmRCW623YrGIwcH0PmuNelSQL/2eVK7wTKKZUnpPOQDo6AwyyoIYtUKCTK7OIJOrFlh2jch2IfYaAIDYgxZk34VpewGNwGpqEMvRg/tLI7CNKgu8uGiU9dZgmWNBwcloNiKb1YOefcFeb13EViwENh/bcy7KHNSdXYhMkNiFyASJXYhMkNiFyASJXYhMkNiFyIS2Wm8AYOT9xYIstUo1XW9+scyz12hhS8RZTR2BdeHETqoEWVflIMvLVrjfWGTJMOulUePzu8IdyhDtAudkjNHecW5BxlYHH0lnkWdM8nMFsbAAZ2A3RhMZZaMRuzTqU6umrytlvQkhJHYhckFiFyITJHYhMkFiFyITllyNN7MeAA8D6G79/t+7+2fN7C0AvglgG4AnAHzc3fkSOAA4TyQol6NEh3SsUlmkfSrB8SpVvnoeJWOwWm1RfbGeYI+qQlBXrR6s8EerxWx+LdhOKqpBFyVWdAXPm7G4yF+zqJZcMRhHNP9srqIdhUuloEZh4IT0BMku0fhrlfRY6Co9gJ6e9HUVjW85d/YygFvd/V1obs98m5m9B8CfA/iSu/8ygEsAPrGMYwkhNoglxe5NXskX7Wz9cwC3Avj7Vvt9AD68LiMUQqwJy92fvdjawfU8gAcBvAhg2t1f+dx1BsCe9RmiEGItWJbY3b3u7jcC2AtgP4C3LfcEZnbAzEbNbHRhgX8XEkKsL69rNd7dpwH8E4DfBLDF7N92M98L4Czpc9DdR9x9pDfaM10Isa4sKXYz22FmW1qPewF8EMBRNEX/X1q/dheA76/XIIUQq2c5iTC7AdxnZkU03xy+7e7/YGbPAvimmf0ZgJ8DuGepA7k7rRcWJa5QSyawoFiNLgBAaENxmMUT2VMeJLuwrYmAePzRtkBG0lqKQbJIIZqPFW535MQC7OrqCsbB53Glll1nZ/p5h9sxBeOI5j4aRxexygCgr7sv2R5di+x1iWzUJcXu7ocAvDvR/hKa39+FEG8A9Bd0QmSCxC5EJkjsQmSCxC5EJkjsQmSCRfbJmp/MbBLAydaP2wFMte3kHI3j1Wgcr+aNNo5fcvcdqUBbxf6qE5uNuvvIhpxc49A4MhyHPsYLkQkSuxCZsJFiP7iB574SjePVaByv5k0zjg37zi6EaC/6GC9EJmyI2M3sNjN73syOm9ndGzGG1jjGzOywmT1lZqNtPO+9ZnbezI5c0TZkZg+a2bHW/1s3aByfM7OzrTl5ysw+1IZx7DOzfzKzZ83sGTP7b632ts5JMI62zomZ9ZjZY2b2dGscf9pqf4uZPdrSzbfMjKcQpnD3tv4DUESzrNVbAXQBeBrAO9o9jtZYxgBs34Dzvg/ATQCOXNH2PwDc3Xp8N4A/36BxfA7Af2/zfOwGcFPr8QCAFwC8o91zEoyjrXOCZnZrf+txJ4BHAbwHwLcBfLTV/pcA/uvrOe5G3Nn3Azju7i95s/T0NwHcsQHj2DDc/WEAF1/TfAeahTuBNhXwJONoO+4+7u5Pth7PolkcZQ/aPCfBONqKN1nzIq8bIfY9AE5f8fNGFqt0AD80syfM7MAGjeEVdrn7eOvxOQC7NnAsnzKzQ62P+ev+deJKzGwYzfoJj2ID5+Q14wDaPCfrUeQ19wW697r7TQD+E4A/NLP3bfSAgOY7O+KdlNeTrwC4Hs09AsYBfKFdJzazfgDfAfBpd5+5MtbOOUmMo+1z4qso8srYCLGfBbDvip9pscr1xt3Ptv4/D+B72NjKOxNmthsAWv+f34hBuPtE60JrAPgq2jQnZtaJpsC+7u7fbTW3fU5S49ioOWmd+3UXeWVshNgfB3BDa2WxC8BHAdzf7kGY2SYzG3jlMYDfBnAk7rWu3I9m4U5gAwt4viKuFh9BG+bEmgXV7gFw1N2/eEWorXPCxtHuOVm3Iq/tWmF8zWrjh9Bc6XwRwB9v0BjeiqYT8DSAZ9o5DgDfQPPjYBXN716fQHPPvIcAHAPwIwBDGzSOvwFwGMAhNMW2uw3jeC+aH9EPAXiq9e9D7Z6TYBxtnRMAv4ZmEddDaL6x/MkV1+xjAI4D+DsA3a/nuPoLOiEyIfcFOiGyQWIXIhMkdiEyQWIXIhMkdiEyQWIXIhMkdiEyQWIXIhP+H2bIhEK3l+KSAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD5CAYAAADhukOtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAeoklEQVR4nO2dW4xk13We/1Wn7l1d3dPTPT09F94ZW4RhU8KAkWPBUGzYYBQjlIBAkB4EPggew7CACHAeCBmIFCAPchBJ0JOCUUSYDhRdYkkQYQiJZUKI4hdaQ4UiKY5EjnjRcNgzPdPT97pXrTxUDdAk9r+7Od1dPdb+P2Aw1XvXPmedfc46p2r/tdYyd4cQ4lef3GEbIIQYD3J2IRJBzi5EIsjZhUgEObsQiSBnFyIR8nsZbGYPA/gigAzAf3P3z8ben8uZ5/Ph+0vOLLajcHPcukjfrcmNvX4/2J4zfs+M3U0HMdkzx+2PzVUuF95jlvFT3e/3aN9gcGtz5Wxc7DRHtmeRY84y3lfIh4+72+3SMf3IeYnNY+x0DgbhawcAioXwOYsdM+vbanTQ7vSCnXarOruZZQBeAvAHAN4A8CMAH3X3F9mYYjHz+dlysK9SqcT2FWzP5zI6hl30ANCLTDy7sQDA6tp6sL2cK9IxEzl+cWy0m7QvVy3Rvkopsr+JiWD71NQ0HbOycoP2dbbatC925XQ7xJkiHp3l+flkDgEAUxPhawoAFuaOBNsvX71Kx2x1+PVRr4e3BwC9Lp+Rra012nfqZD3YXijwaydPbmJ//39fwo3VRnCW9/Ix/iEAF939FXfvAPg6gEf2sD0hxAGyF2c/CeDStr/fGLUJIW5D9vSdfTeY2VkAZ4H4dyshxMGylyf7ZQCnt/19atT2Ftz9nLufcfczuciikxDiYNmLs/8IwP1mdreZFQF8BMCT+2OWEGK/ueWP8e7eM7NPAPjfGEpvj7v7T2NjDEAhC6+49ntcChn0B+HtFfmqdLvH5aTYqm9sNX56shpsr5MVcADobGzRvkGzQ/uqBa5OTFV5X7USXpmuFQt0zPUmX3EfOO8rl7liMDc3G2xfWVnh2yO2A8CJhWO0L4voAseOzQTbC5F9vXrpTdpXLESuj2l+HdR4F45OTQXbLSJdbDXIdRWRSPb0nd3dvwfge3vZhhBiPOgXdEIkgpxdiESQswuRCHJ2IRJBzi5EIhz4L+i2Y2Yokqg3i0SOHZk9GmzfajbomEKfy2u9iCxnkcCgheNh+ef4XNg+AHj14i9o32w+LLkAwPETx2lfrheJsiPSYT0iNR2dmqR9nkUkQCIZAUB1IixTZjk+93PzYbkOAMoR6XBjnQeZ9Dws6U5Nc9tP9iJRbxGPyRf4uFLGZcoBCbypT4YDZADAu2E5OhoRSXuEEL9SyNmFSAQ5uxCJIGcXIhHk7EIkwlhX47Msh6l6eOU3FgRx7Fh4FXxpeZmOKZf46ufayirtm5+do32lUniFv1LhK8UnT/NVdZZCCgC6Hb5qXQQPACoVw8fdaPIUWKdP8CATL4RXfQGgGEmP1emEg3xmj/JV8HyO76vd5gFFk/Xwyj8ANEnqr401HpDTbvO0VEdnuXJRmYikkTK+zXwnPI+tLX7Oeu2wyhBLM6cnuxCJIGcXIhHk7EIkgpxdiESQswuRCHJ2IRJhrNJbPp/HLAlqGQy47NJptYLt8yQwBQCqZR7AUSJ58ABgYY5Lb91uOPBm+foSHTNJpEYAyEeqnAw6fD4K+Vj5p7D00myEq9kAiFZpyZX5XLU7XBpqd8K560oRSXRzfYP2TdS4vNYnZbkAYPlGWGIrFbjsGatE1iHHBQAbm5u0LxeZ5M562P4Oq6oDoEZkW1p2C3qyC5EMcnYhEkHOLkQiyNmFSAQ5uxCJIGcXIhH2JL2Z2WsANgD0AfTc/Uz0/QByCEtKnXZYXgOAPpE7erEoqRbPT5fP+D1uffUG7TOEJRKPSD+XFxdp31SNy3LVPI8oW2/znGss6qlY5qe6Gym91Y1ITZaLSIe98JwMMj5XpUieuVhZo0akfFWxFJbsigUuAVbLXCYrRSL91lZ5NOXaKj9ntTIp/xSRiKv18JhcZMx+6Oz/0t2v78N2hBAHiD7GC5EIe3V2B/B3ZvaMmZ3dD4OEEAfDXj/Gv8/dL5vZMQDfN7OfufsPt79hdBM4CwCVUuQ7mRDiQNnTk93dL4/+XwLwHQAPBd5zzt3PuPuZYnGsP8UXQmzjlp3dzCbMbPLmawB/COCF/TJMCLG/7OVROw/gOzYMEcoD+B/u/r/iQxxGNJTYU5/JSb0+l4zaLR6RdaTCI54KOS675HPhryGtDpc7iiWeSLPTDidlBIDOOk+wWKzxiL5iMSwNWYHb2O9x6aoSiR7sRqKyJuvTwfZymc+HRZIyxiLKuqR8EgAYkdhidqAbua4afK76Hf7sLOZrtK8+M0PM4ElH17fC0nI/Ej16y87u7q8A+K1bHS+EGC+S3oRIBDm7EIkgZxciEeTsQiSCnF2IRBjzr1wMORIpFUuUV5kIyz8ti9Qhi9RR629x+QTGp+T4/HywvbccCcnqcXltgtRlA4D2Bpeapo6HpRoAaDR4tB9jdp4n2Wxvcvsz47+ILDDJq8SlvFaTH3OpyMflilzWWiPnutvlcl3W55JXq8VlOQy4vFmJSH15Ipe2unzur12/Fmzv9rjterILkQhydiESQc4uRCLI2YVIBDm7EIkw1tX4bq+Py9fCubhYsAsATLTDq+61Kb7i3ooER9QyvjJ6cuEI7StVw0EyWbjCEADgSJXnLJuucjsmj8/SvjYp8QQAL115M7yv6Trf3hY/gFaDr+4WIvPYXQ+Pa7W5EjIwvpqdRQJ5Njd52ageiYfq9Pkczk3zUlMzdX59vLzxCu07eoSPY4ddJyoUAAy64fyF+WyZjtGTXYhEkLMLkQhydiESQc4uRCLI2YVIBDm7EIkwVunN3dHuhWW0Gzd42aVqI1waaiYSKFCIHFq5FpHsGuu0b5PJUDxtHbJIYEJ7g8tQc5M8uOPnL79K+2rlsGxUq3AZp92O5Otb4EE31ueBMD2Sqy1ShQobrUhpqEguvytXw3IjAGAQPu7aVDhHHgC0mjyYqBfJT1cpc3lwcoJLsDdI0FMrUhJtsha+PmLln/RkFyIR5OxCJIKcXYhEkLMLkQhydiESQc4uRCLsKL2Z2eMA/gjAkrv/xqhtBsA3ANwF4DUAH3b3SOzXaGf5DMdmwtE6vRbPPzZZC+cz80h+tyzP72OVCpdBIsF3aDTD++v0+L5KEa3pXb92H+27cuUq7Wu3uZGzc+F8crFSWQNwCa0akSk7DZ4DMKuQCMEcl9e2boQjIgFgrcH7puo8om+zEZ6r/oDPR6nA5yOW4+3kHadp3yCiz66sh6/9QaSU0/RM+DyzHI/A7p7sfwXg4be1PQbgKXe/H8BTo7+FELcxOzr7qN7623/x8giAJ0avnwDwwX22Swixz9zqd/Z5d18cvb6CYUVXIcRtzJ4X6HyYYoZ+iTSzs2Z23szOx3J1CyEOllt19qtmtgAAo/+X2Bvd/Zy7n3H3M4VIaiEhxMFyq87+JIBHR68fBfDd/TFHCHFQ7EZ6+xqA9wOYNbM3AHwawGcBfNPMPg7gdQAf3s3OcmaolcJP93fdewcdV6mGI7lyGTf/yqVF2tfr8Wizidox2re6GY5CyoxLeRaRXDbWeKLEa0vXaV8k8AogMtrmJpc2B8432Ghs0b7NdR6VVa+GJdYO+L7cuKyVRSSl+mR4XwBQqYavkXw+EqE2ySPsshwfF5PKXv3lJdpn+fD1U4xEsG2QSNB+pIzajs7u7h8lXb+/01ghxO2DfkEnRCLI2YVIBDm7EIkgZxciEeTsQiTCWBNOZgbUimE5YaLKo6sKxbCcNDXNkyGSoCsAwMoyr4f10wsv0b7eIHxvLBV5csiZCV7j683Ll2nf8nUuvbV6XBpaZ3Ke8fu6c8UIq6s8mDGS7xOddrizWuVy0szRKdpnEfvbPf7LTCdSVLPFk2w6uDTbiyUQjdSx6w+4jZXItc/IF8JynRm/8PVkFyIR5OxCJIKcXYhEkLMLkQhydiESQc4uRCKMVXorFgo4dTwcVRaTJo5Mh+WrzLiMU5jlktfxuaO076kf/B/aNxiE9zc9yeWOK4s8Mmz+CJfQpqe4nLe6xGWj60tXwts7wpMyTkTqkE1Fxk1OcOlzcioso03UIvXhmvy4Xrn4Ou3LSNQYADSIBNjpcN2w0+bXYpbx56OBa5iVcjhpKgD0LTwn3Uh4Y5fUgfNI5J2e7EIkgpxdiESQswuRCHJ2IRJBzi5EIox1Nd7hcBJ1USLBLgBfAe1u8fxopYyvkHuB9/VJsAsA5HJhG6N3zEiZoTvvvJv2sTJOAHBqkeeTK5XCNtaneLBFFpmrpSUerPMv/vlDtO/4iRPB9p5zdWJ9+RrtW7nOA3KWV/l1kM/CgTBzszzoZhDJ4zbo85X6qRpXUFYi+QY9F57/TpPPVb8bDshh/gXoyS5EMsjZhUgEObsQiSBnFyIR5OxCJIKcXYhE2E35p8cB/BGAJXf/jVHbZwD8MYCbWsmn3P17O22r0+nil5feCPbVJrg0tLERllamSzwAIlZmqJ/nMl81Ukqo0wzLHcfmeNBNKceDO+695yQfFzm2XKFC+4pEeqtU+DHniPQDAN7kklF7nUuA3anwcR9d4JJXrsfn6s7Tp2hfqbxO+9a3VoPtxSK/9PPG+3qR4JQsUlKqTwJyACArh699j5Qpq5EgpFKBBwzt5sn+VwAeDrR/wd0fHP3b0dGFEIfLjs7u7j8EcGMMtgghDpC9fGf/hJk9Z2aPmxn/HCuEuC24VWf/EoB7ATwIYBHA59gbzeysmZ03s/Nt8hM/IcTBc0vO7u5X3b3vwx/ifhkA/ZG0u59z9zPufqZUGOtP8YUQ27glZzezhW1/fgjAC/tjjhDioNiN9PY1AO8HMGtmbwD4NID3m9mDABzAawD+ZDc7GwwGaDTDcsIAXP7pkPI+M3M8B9pgwL8ytFpcPjl9+jTte/GFnwfbC3lu+8JxHr02F5HsMuPRSwWuoqFYCp/SapXnu4tFvaF5nHetc8nrxrWlYLvneCRXpcztiNlfn+RRauuN8Nqy9/k1UClzadMi+e66kXpY9UqV9vXJ9VOv8n0ViMoXqf60s7O7+0cDzV/ZaZwQ4vZCv6ATIhHk7EIkgpxdiESQswuRCHJ2IRJhrL9yMTPksrBu1G5x2aJE5I52h0cFlcqRxJFdLmv1OzzyamMlHEHV2OQS1N133Ev7KiWuk9SqPPpu6giXhrq9sKTU70eiriIljWZnuR1LkTJUi9fCktczLzxHx9x33x18X9f4HL+5yBNV9hC+Rqbr/LgKkTJOpRKXAHuRqLd2i0uOA3IZVGem6Zj1zXDEYUR505NdiFSQswuRCHJ2IRJBzi5EIsjZhUgEObsQiTBW6a2QL+D4bDiKqlTg950qSb5YqXKhoReRmgqRWl71Mo+Wu/fkfLB9usqlsBPHuHxSK3Gppj7BJZ5WLpJwchCeq/U1flzlCb69QpWH2F25xhNOXrrRCLb//OJVvr2lSB24tUhyyy7ve+BdC8H2WpkfV7/BJV0M+Dlz59dVOVLLsE+iOi2LJL7sk1pv4DboyS5EIsjZhUgEObsQiSBnFyIR5OxCJMJYV+PdAM+F7y/lSI6uQj48plDi96rWBl9R7XbDq58AMDVZp30PPjgbbK8U+ApoocDziOUj+cz6Ax6MgUgetxIpa1Sr8dXgYiQgxwf8EimQcwkAL/4snK9vq8Fzv6EfLvMFAO02H1ckwVUAkMuVgu0eSdY2yPHrY70ZCZRq8POSzyKlyjrhlfVem2+v0w5f3x65bvRkFyIR5OxCJIKcXYhEkLMLkQhydiESQc4uRCLspvzTaQB/DWAew3JP59z9i2Y2A+AbAO7CsATUh919JbYtHwAdUsl1YyscOAEAucmwLNdc3aBjWC42AKhWeP6xLMclktXltWB7OyK9rW1yqabb5+WfvM0DV2Llpgq5cKBGox8J7uBKEzqkXBcAVEmpKQC4cmUx2N52HuDTziLyWkSmzMo8OKXRCB9crxPJeVjk+1pr8fN5ZZlf/g5uIzx8Ps34iamwuY9Iirt5svcA/Lm7PwDgvQD+zMweAPAYgKfc/X4AT43+FkLcpuzo7O6+6O4/Hr3eAHABwEkAjwB4YvS2JwB88KCMFELsnXf0nd3M7gLwbgBPA5h395uf1a5g+DFfCHGbsmtnN7MagG8B+KS7vyWJtw+j9oNfXM3srJmdN7PzrU7kp5JCiANlV85uZgUMHf2r7v7tUfNVM1sY9S8ACBbkdvdz7n7G3c/EsnUIIQ6WHZ3dzAzDeuwX3P3z27qeBPDo6PWjAL67/+YJIfaL3US9/Q6AjwF43syeHbV9CsBnAXzTzD4O4HUAH95pQ71+D9dJCaUTx47ScUyW6w14VNDM0Rm+vXUu8/V6vK9N5JpISjv87OKrtC9nPEKpGCnJdMddJ/g2a+Eor9YWl3H6ERmqFymHVYrYuLoSlilfuvw6HXP3XDhfHADMTE7RvvwMj1Tc2gp/dVzphe0DgDyJHASAjSa/5lYifQPnc2XEDQvG5dctkievR/LZAbtwdnf/B/ASUr+/03ghxO2BfkEnRCLI2YVIBDm7EIkgZxciEeTsQiTCWBNOdrpdXHrzzWBfocCjgpj8c/p0uJQUwKUJAFjfjElvXEfLWERZj0tXFy6+QvvyZHsA8OalcNQYAMzO8Gi5qalwuamXX75Ix8RKBv2bf/3btK/kXPI6Mh2OLKys819RLq+GZVkAGHS4TBm7dtY3wxGTW22e3LIRkRtzxbC0CQCtLrcxVsppQJJErmxyeXB2kpfsYujJLkQiyNmFSAQ5uxCJIGcXIhHk7EIkgpxdiEQYb603AD0PyzzLa1xmqFfDSQpjElqWj0gdkeR/W81I4ktya/QBl2omK3xfSzf4vp59nkeHTVSu0b52i0lbkQi7SMLGCy9zO+ar4dp3ADA5Ec5dcPw4H7P8+hXaZ5Ekm0vX+HycOhWOpuwP+PbaEfm1scWTnPYi2+zHrpF6LdjeiYRTbhEpsh+JwNSTXYhEkLMLkQhydiESQc4uRCLI2YVIhLGuxuezPI4cDa/G1usTdFy5EDbzxjpfGa1UwgEQANDt8DxdnVgOr0L43lgs8XJBnT4P/Fi6we1v9fh9eGYyHOwCAKfuCc9vl5TdAoD1DR6A8tobfKW7OMezBec8vL9alc+VHeMBPvUKD7rZXF2nfa+9/lqw/d5/dgcd0yHlmACg0+d55iKCR3QV/w6SQ69S5nPVbrLgq72VfxJC/AogZxciEeTsQiSCnF2IRJCzC5EIcnYhEmFH6c3MTgP4awxLMjuAc+7+RTP7DIA/BnBTm/mUu38vtq3+YICNRjj4YzDgEtWJ+WPB9mJEXmu0eV64iSqXcSzPpTfLwlEGhWIk91hEQms0+b6KlXDwDwDUjoYDJwCgmwtLXr08l97K03weB3kur21EApHuv+fOsB1XNumY3hYPFlnbvMH3dd/9tO+NSy8H27sRiZWVYwKAzUjpsEHk2Vmr8jlmcuQWKXsGAFk1nOMPkbyGu9HZewD+3N1/bGaTAJ4xs++P+r7g7v9lF9sQQhwyu6n1tghgcfR6w8wuADh50IYJIfaXd/Sd3czuAvBuAE+Pmj5hZs+Z2eNmxn/+JIQ4dHbt7GZWA/AtAJ9093UAXwJwL4AHMXzyf46MO2tm583sfK8f+T2hEOJA2ZWzm1kBQ0f/qrt/GwDc/aq79919AODLAB4KjXX3c+5+xt3P5CP1vIUQB8uO3mdmBuArAC64++e3tS9se9uHALyw/+YJIfaL3azG/w6AjwF43syeHbV9CsBHzexBDOW41wD8yU4bymU5VCfCEkQ/UkKp3Q3LcvlI2Z9CgUcMZRkfF7v/5YgKlS/c2teTdkRutDy3sTrFj21jIxxdVanwckHXrnFZK58nEg+AIxU+V9XpsLxZK3N5bX5uivZd9xW+ryqXB48dC+eg21jnkXKRoEjkeFAZ6qT0FgBM1vn8r6+Fow6vX79Ox3guLL/2elxi3c1q/D8gHDcX1dSFELcX+hItRCLI2YVIBDm7EIkgZxciEeTsQiTCWBNO5sxQroRlo5xxOanZaQfbSwMuT1UiSSANXJ4oRuQ8ZGHdpT41Q4e01nlZq06ey435Epfzmh2e9DDLwsfdDU/h0I4mrxm02OLyz8xJHiLRXVwKtleM76s8yed+bioc+QgA15d/SftmpkiEI9NRAWz2+GT92sIJ2jdwbn+jwWXWxla4byYi5bH8oVlEG9STXYhEkLMLkQhydiESQc4uRCLI2YVIBDm7EIkwVunNzFAkMe3VSEK+fj8chpSBhydlRCYbbo/LIL1I9J0T2zc2uOTSjERXxewvl/mp6UTqtnWb4b7GGpeTinkekTU5w+UfFEvcjkY4ui0rcuktVjPPSb0/IB5RViLRg9Mzc3xf6zwK0HL8nLU2tmhfsxE51+TaH0aXEzw8j1kkZ4Se7EIkgpxdiESQswuRCHJ2IRJBzi5EIsjZhUiEsUe9TRC5Jh9MczcaR9rLZV4PbXOT1xSLJZwslricVCHJMqNjIrfTJkk0CADzx+6gfa2IZDc9EZ6TwlxE1orky+yCS3a9PpcAK7WJsB2krhmAcKbDm3ZEZKjZOV77rjgIX+JZpIZdqcSvK3c+H9Uqt6MSO25yPTabPDkn63MiyQF6sguRDHJ2IRJBzi5EIsjZhUgEObsQibDjaryZlQH8EEBp9P6/cfdPm9ndAL4O4CiAZwB8zN15FAmGi60FslqYi6zsFrOwmRZbwc/x+9hgwJefiwW+SstK6wwG3PZyxI6pSb56GyszVC7yoKEBqV1UrfEx3TY/ba1mg/a1e1wVqBbD56wQCZ7ZavB9lSdJLjkAzQ6f/yY5toLz85zluFqTy/hKfT/y6Gw0+TW3uhoubRUr5VQsstX9veWgawP4PXf/LQzLMz9sZu8F8JcAvuDu9wFYAfDxXWxLCHFI7OjsPuSmaF0Y/XMAvwfgb0btTwD44IFYKITYF3Zbnz0bVXBdAvB9AL8AsOruNz9nvAGA5xUWQhw6u3J2d++7+4MATgF4CMCv73YHZnbWzM6b2fl25LuVEOJgeUer8e6+CuAHAH4bwLSZ3VyFOQXgMhlzzt3PuPuZElm0EUIcPDs6u5nNmdn06HUFwB8AuICh0//b0dseBfDdgzJSCLF3dvOoXQDwhJllGN4cvunuf2tmLwL4upn9JwD/D8BXdtpQzgyVYljyYHnmAMAHJAddxuWTep1LNTHpLZb3i0kkHpHepio8P1ot8knHI6Wtmm0+VzYIS5uDLi/jNDnBJcBIXEUkHAfYIiW7Cl1+zprNSNBNjgeFXF/boH2by+EcgNPTs3TM8lb4PANAORLZ5M7P58oNLituEMmxErl2WF/s2t7R2d39OQDvDrS/guH3dyHEPwH0CzohEkHOLkQiyNmFSAQ5uxCJIGcXIhEslrNq33dmdg3A66M/ZwFwPWh8yI63Ijveyj81O+5092Btq7E6+1t2bHbe3c8cys5lh+xI0A59jBciEeTsQiTCYTr7uUPc93Zkx1uRHW/lV8aOQ/vOLoQYL/oYL0QiHIqzm9nDZvZzM7toZo8dhg0jO14zs+fN7FkzOz/G/T5uZktm9sK2thkz+76ZvTz6/8gh2fEZM7s8mpNnzewDY7DjtJn9wMxeNLOfmtm/G7WPdU4idox1TsysbGb/aGY/GdnxH0ftd5vZ0yO/+YaZRWpKBXD3sf4DkGGY1uoeAEUAPwHwwLjtGNnyGoDZQ9jv7wJ4D4AXtrX9ZwCPjV4/BuAvD8mOzwD492OejwUA7xm9ngTwEoAHxj0nETvGOicYpoitjV4XADwN4L0AvgngI6P2/wrgT9/Jdg/jyf4QgIvu/ooPU09/HcAjh2DHoeHuPwRw423Nj2CYuBMYUwJPYsfYcfdFd//x6PUGhslRTmLMcxKxY6z4kH1P8noYzn4SwKVtfx9mskoH8Hdm9oyZnT0kG24y7+6Lo9dXAMwfoi2fMLPnRh/zD/zrxHbM7C4M8yc8jUOck7fZAYx5Tg4iyWvqC3Tvc/f3APhXAP7MzH73sA0Chnd2DG9Eh8GXANyLYY2ARQCfG9eOzawG4FsAPunub0kxM845Cdgx9jnxPSR5ZRyGs18GcHrb3zRZ5UHj7pdH/y8B+A4ON/POVTNbAIDR/0uHYYS7Xx1daAMAX8aY5sTMChg62Ffd/duj5rHPSciOw5qT0b7fcZJXxmE4+48A3D9aWSwC+AiAJ8dthJlNmNnkzdcA/hDAC/FRB8qTGCbuBA4xgedN5xrxIYxhTmyY+O8rAC64++e3dY11Tpgd456TA0vyOq4VxretNn4Aw5XOXwD4i0Oy4R4MlYCfAPjpOO0A8DUMPw52Mfzu9XEMa+Y9BeBlAH8PYOaQ7PjvAJ4H8ByGzrYwBjveh+FH9OcAPDv694Fxz0nEjrHOCYDfxDCJ63MY3lj+w7Zr9h8BXATwPwGU3sl29Qs6IRIh9QU6IZJBzi5EIsjZhUgEObsQiSBnFyIR5OxCJIKcXYhEkLMLkQj/HxyX73FdLOfSAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD5CAYAAADhukOtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAd6ElEQVR4nO2dWYzk13Xev1Nrr7NvPYtmhhRDg1pI0Q2akiiaFC2DFhRQDBJCehD4IJhGYAER4jwQdBApQR5kJ5Is2ImMkcWYDhQttkRonCiJaMIAYUuhONyGy1DiNsPZetbu6b3Wk4eqCYbM/U73dE9Xj3W/HzCY6nvq/v+nbtWpf9X96pxj7g4hxC8/hdV2QAjRGxTsQmSCgl2ITFCwC5EJCnYhMkHBLkQmlJYz2czuBvA1AEUAf+buX4ruv2btOt+8ZYRYuQRoln5PKhSMzvHgfSwSGw38mEYm8hkLnM0i/5d0RBiVUoNzBQcMhdn4gV/+yVaAK3222P2lnY3Nik+Vtp47fQJTk+PJZ2bJwW5mRQD/CcDHABwD8JSZ7Xf3l9mczVtG8KU/ejhpa7fb9Fz91WpyvNLXR+e0i+k5ANB0/kZQQpHaiq30eJm7Hr46vMT9aLB3FsQvgkKLWL1M5zQb/IitAnnQwJKCPfpdR/ibj+Bc7XbgP5kYvpkGfkSv01YrWKvofGS8Ga5V2o9/9y/vo3OW8zH+FgCvufsb7l4H8B0A9yzjeEKIFWQ5wb4DwNFL/j7WHRNCXIWs+AadmT1gZgfM7MDkhfGVPp0QgrCcYD8OYNclf+/sjr0Nd9/n7qPuPrpm7fplnE4IsRyWE+xPAbjOzPaaWQXApwDsvzJuCSGuNEvejXf3ppl9DsD/Rkd6e9jdX1poXpvsqpaqfLe43k7vcs5cmKJzyoN8+7ZY7qc2OJ/XJju7zWDnvDXfoLb5C3PUVunjakILfEd4em46OV4wfryhwbXU5sG52sHusxFZcam74MESh7vx7DmLNv6jHffIx2g3nq0HALTJqrSXqAowlqWzu/uPAPxoOccQQvQG/YJOiExQsAuRCQp2ITJBwS5EJijYhciEZe3GXy6tdguTM2lpqNHgEtXZM+eS48eOn6Zzin2D1DY0zH/cUy1wiYqpcvUm973daFLb7FR6LQCgv8z9QIHLLlP1tBxZr3Pp55q911Hbu6/dTW39USISkYZCyShIdvHA2I50OZYXtNSEnCUSSW8F8tjagey5FHRlFyITFOxCZIKCXYhMULALkQkKdiEyoae78dMzM/jJ//kpsfGd6QLSSTJzNb5rOt9K7+ADQLnCbcU2f/9rkQ3Veec77q1gp3iwwnez+40/NX1VXjqrVagnx2dmuGJw4OCz1Hb67Alqu2bvXmrbtGlTcrx/YIDO8ai8VJBk0iYlmgDA2PPZ61p4UXINSxpaQiJMNEdXdiEyQcEuRCYo2IXIBAW7EJmgYBciExTsQmRCbxNhWm1MTKfrrnlQ+81INkOpwuvWDQTSVbHAbRVUqG0eafmnGbxnTs3OUNvcDLdVjctrQ86TZIrkoZWrvO7e/PQ8tb1+9P8rGPz/OHJyjNrWrUnXtdu1cyeds3nTRn689Tx5qVQIuvgQWW6pyS6s4Q7A690tdD7W3SWuQXf5/uvKLkQmKNiFyAQFuxCZoGAXIhMU7EJkgoJdiExYlvRmZocBTAFoAWi6+2h0/7Y75uppmaFcjlwhWUEtnsnl4DYrBm16AkWj3khLVI3A9eGBIWqbmpyltsk6bw1VCzKoKpW0dDhc4Q+sWORy40yzxucFGYK1sxeS4xMTPLtxcIjLgyMj26nt2r3XUNtQJS1TVsk6AXE9xEZQFs7BJcAoM4/JcpE6yCTAqFbfldDZ73T3s1fgOEKIFUQf44XIhOUGuwP4sZk9bWYPXAmHhBArw3I/xt/m7sfNbAuAx8zsFXd/4tI7dN8EHgCAvsE1yzydEGKpLOvK7u7Hu/+fBvAogFsS99nn7qPuPlrpC/qiCyFWlCUHu5kNmtnwxdsAfhPAi1fKMSHElWU5H+O3Ani029amBOC/ufv/iia03TFXS8tXtQZ/32Gtc/qC9kNRTlCQYBe2EmK2maBYZl8/P1m1HBSObPB58zUuyzWNZHkFj6sSZI3FlwN+zFIpfczIj6lZvo4XXj1EbWfPcTFouC+dfbdzB8++Wx9k2FWC7MGof1W7yYuSNokqF2VTtjwtH6+I9ObubwC4canzhRC9RdKbEJmgYBciExTsQmSCgl2ITFCwC5EJPS046e6ok+wfa/GsINbXql0INLSIalAYsMjf/9qFtHxSClaxEWSvVUpcOhzq51lZs3VeILKJtI9BWzzUmtxYDYpzFoMsLyfXkUY7kKBIQU8AKBT48zJ2/jS1nail+/q9duQtOmfz5nSfOgDYvn0XtQ0NDVNbXzWQiYn02fBAeiO971pBIUpd2YXIBAW7EJmgYBciExTsQmSCgl2ITOjtbjyAZlCLi9EiO7jz01N0TinYIm8Fm/ilQp3aWAJNuRwlHwRLHNSSi4rhDQVtr5rk7TsoF4dG4EezxdejYPygTrI7WsGOe6sYFV3jpqhWm1l6rZpBMbnJE+PUduTkYWqrVviO+8DAALWxhK6oTl65nH5c9Rqva6gruxCZoGAXIhMU7EJkgoJdiExQsAuRCQp2ITKh54kwtUZaymF15gCgTX7cz9rmAEAzqNM2F8gT5UDWKhKpqVric5zUhAMA86BdUCCHeZvrUCwPYrbFE1Dq4OcqBPXp6sFzViY6pRf4uRoF/rgiea1QDGroWTppKMirCesXtgMNsz7Ha+hNzgTaIZM3a/x4LF7mZifpHF3ZhcgEBbsQmaBgFyITFOxCZIKCXYhMULALkQkLSm9m9jCATwA47e7v7Y5tAPBdAHsAHAZwn7vzVKEu7XYbs/NpKaQUaSFt4mYgT83NnKK2SoWLKxu28rZA/UQ9KQSyVjGoJeeFBrVdGE/XTgOAuWkur+zee31yfKoxSOeMj1+gtmqVZ2s1iIwKAEbS1NqRhsaXMZzXCg5ZQXqNC8WgFl7QeqsVpQ9GWYC1GWprTxxNjp87/gY/F6lP1wjkv8Vc2f8cwN3vGHsQwOPufh2Ax7t/CyGuYhYM9m6/9fPvGL4HwCPd248A+OQV9ksIcYVZ6nf2re5+snt7DJ2OrkKIq5hlb9B55zer9FuTmT1gZgfM7ECrXlvu6YQQS2SpwX7KzEYAoPs/rdLv7vvcfdTdR4uV6hJPJ4RYLksN9v0A7u/evh/AD6+MO0KIlWIx0tu3AdwBYJOZHQPwBQBfAvA9M/ssgCMA7lvMyRyOVpNIHoF8sr7anxxfM8hlobmB4KEZl4zK0zxbro9Uc9yyZQudM9/PixDWm1x66+/jj604kF4PABhYsyY5vm5whM7Ztol/vYqy7+YDOWyWzBs7wyXRxswEtZWdr1WpydthFdvp57rRCIqVFvnat8Gfz3bQKgtz/HyTJw4nx2vjfK2mp9PPWZMU+gQWEezu/mliumuhuUKIqwf9gk6ITFCwC5EJCnYhMkHBLkQmKNiFyISeFpyEO9BMSyFrB4bptHVERjt+8i06Zy74AU8tyFKzsSPUtndjWmLbsmsHnfPKiRPU5m2eXTUwwyXAtYNc/nnh6PPJ8aFtPOtqqMoLZr75i5eprTW4ntrWXff+9Lm2v5vOmTlyiNqKQabfGueZXrPTaTlvdor+DgyV8hC1Tc7z4pb96zZT28Z+/lxPk8w8BD0JjWWJBgVOdWUXIhMU7EJkgoJdiExQsAuRCQp2ITJBwS5EJvRceiu00jLDtiEud5waT8skjWGuTZSGuZRXMC6fNBu8bubum9+THB8PeqXV1wfZa8aXv7CGy2sTkzyDamo+Ldm1Z3lGWW2eS5FrAz+OTnPJa+ZMumDm7nXr6Jzt16flOgCYeJlnts0c53Lp+Km0bXKGF/RskexGALgwx19z/eu59Da8i9uapD/b/BzPRmQ9+CzQ63RlFyITFOxCZIKCXYhMULALkQkKdiEyoae78aViERvWpHfJNw3x3fOJ8+laXBv6eAJHtcx3JZsNvvu85dp0+yQAuGZkV3L8pbd4m551Vd7+qRm0T9qyje9aFzZx5WKmlH7/LgxzP8bPjFHb7i28HdZshfs/3kon3pwfP0PnFEbeRW07b7iV2o4fe4Xa5udmk+PlIn99eNBPqtjmtfBqEzy55gy4gtKcTftYKPJrcYu0IovQlV2ITFCwC5EJCnYhMkHBLkQmKNiFyAQFuxCZsJj2Tw8D+ASA0+7+3u7YFwH8NoCLOspD7v6jhY5VKRexe9uGpO2f/NZH6bwjb+xJjk/N80SM2jyXhZo1Lr3t2c7lH2+nJRnftI3OuRDIazOz3P+dm3hLqabzxJvpmXTCiPfxmnxDzmvJFdtc49m6lrehmjmdltimj6dlJgBo1PjjGtzKJcDt7/kItbUbF5Ljp0+8TufMTnOZDMF6rBnkCVYl8JqCTqKwMcvP5SThxYOWXIu5sv85gLsT419195u6/xYMdCHE6rJgsLv7EwDO98AXIcQKspzv7J8zs4Nm9rCZ8c+BQoirgqUG+9cBXAvgJgAnAXyZ3dHMHjCzA2Z2oEYKKwghVp4lBbu7n3L3lru3AXwDwC3Bffe5+6i7j1b7+IaOEGJlWVKwm9nIJX/eC+DFK+OOEGKlWIz09m0AdwDYZGbHAHwBwB1mdhMAB3AYwO8s5mRFc6wppqWhD97MJa9b3pNurzQ1y2t0NZy/jzWaXJ5ozvKvGnPz6fPtrfP2T7M1Lp9MBy2eymX+1IxP8lZIfXvT2W1zNb5Wvm4TtR0fO0ltr77J22/dsD4tHb51JtjrbXPpqtXHsyKHdt9MbR+5dk9y/PxRLr39/Jmnqe302M+pbdB4/ULUePut+RapJ9fmUmSpnJ5TJzUegUUEu7t/OjH8zYXmCSGuLvQLOiEyQcEuRCYo2IXIBAW7EJmgYBciE3pacLLdbGL6fFqeOPYml+p37tibHN8xspXOKQ1wqaYdtF2aPHuW2iYm0r5v3LCRzpmZ41LI7FyQETfNpZqp6bXUdv2116SPNxNIP3NcAtzcz7PlyjX+2H711z6UHD8/y+ccHktnqAFAvcDbULXmeGsokJZM29+ffk0BwOb3f4zamuPp4qcAcP7Qk9T25otPUdvZ13+RHC9U+HNWKKVlOQuKqerKLkQmKNiFyAQFuxCZoGAXIhMU7EJkgoJdiEzoqfRWLBSxrn8waZs6x/uNnSTZP5u28X5da4v8oQ0O8z5qWMslu6KlZaPhIE1/bdDDzgtL6wN36GXe22zz5rTUNDDAswpnA5nvxj08o+/XR3m22RzJLJzlyhCu28UzBE+d4/LgiTGeSTf25tHk+FtBP7f5QLbtX8cLX657b6pUY4ebrv8gte1482By/OBPeGnHM2NvJsfdeEFPXdmFyAQFuxCZoGAXIhMU7EJkgoJdiEzo6W58uVjEyIZ0EofVeYLE+VOnk+PPH3yNznn2RV4rbOuOXdT2kV+/ndp2bE77Pj/Od0CLpWCrPtiNL5X4U/Ou7bxMf39fOTlerfD39TWVAWrDMPex0eJ+TJEEoLkWV1AOvXqY2sZr6XZSAHDzNWkFAgCmt6TX8c2TXP05dISrHc+/wV9zU1Wu8mxaw9f4hq1pxWP0dp6Q8+xPH0uOH3ktSJ6hFiHELxUKdiEyQcEuRCYo2IXIBAW7EJmgYBciE8ydJwQAgJntAvAXALai0+5pn7t/zcw2APgugD3otIC6z92D/jfA+uEhv2P0fUnb+96VbhcEAGs3pqWVp1/iEskrgYzz4TvvorYm+Hr847tuS46v7+Nz+vp5UkWpzOWYuXku523eyNdqoJpONKoH7Z8irBi00QquFVZO14x79cgxOucP/8NXqe3saZ7s8mu3pp8XAPjEP/tMctxrvG7di0/9jNpONLl0+NIEb9fULvJafj43kRy/LoiJ468+kxz/yeP7ceH82aSTi7myNwH8nrvfAOBWAL9rZjcAeBDA4+5+HYDHu38LIa5SFgx2dz/p7s90b08BOARgB4B7ADzSvdsjAD65Uk4KIZbPZX1nN7M9AD4A4EkAW939YovPMXQ+5gshrlIWHexmNgTg+wA+7+5v6xnsnS/+yS+uZvaAmR0wswO1Bv9JrBBiZVlUsJtZGZ1A/5a7/6A7fMrMRrr2EQDJH7C7+z53H3X30Wo5/bttIcTKs2Cwm5mh04/9kLt/5RLTfgD3d2/fD+CHV949IcSVYjFZbx8G8BkAL5jZc92xhwB8CcD3zOyzAI4AuG+hAzVabZyZSEtKr5R5VlPx9Lnk+FsnTybHAeD2u+6gtof+9e9T2x//yX+mtv/x1/uT47+yg7d/KleK1DY4vIbaWi1ej23D2g3UtnlDeuskyqKrVHhmWyFolTXd4gXl6qX0deTrf/pf6JyXX3mB2qpl7uOj+/+S2nZeT6Te6/4RndNf5a2m1jh/zNuHqAlNsh4AMEMyAb3O5dLdO9I1BQ8E67RgsLv73wFg4iIXrIUQVxX6BZ0QmaBgFyITFOxCZIKCXYhMULALkQk9LThZqVaxY8+7k7YWpui8RiOdoVQZ5FrHyC7etsiNZ6nt2s7b+/zND7+fHJ8a44UXB/p5tlO1PyhGSQUQoFriP04aGkivyUA/z7CrBHJNX4X76H38sZ2ZSz+fLx16mc75jd/g4s6NN91Ibd/4My7n/fSJ/5kcv2YbLw5ZGeBy6dkxXqjy+Vd/QW3lQb6OW9ekfWnNcfm1nxQQ5a8aXdmFyAYFuxCZoGAXIhMU7EJkgoJdiExQsAuRCT2V3hyOJtJyQqvN5bBKNS0bDfKkMUxO84KNp07zDLuz53nNzGNj6ew7b/KiHH1VLrk0GlxaicqAVsv8aRuspmW5YonLSf19PMurr49Ldu0iF3reOnMqbXA+55P33kttH/rQh6jt6FFexPLR/X+dHH/2+d10Tmu+Tm3jpy5QW/3ccWortXjh0dnmdHL8jfGjdM5ANS2X1mpzdI6u7EJkgoJdiExQsAuRCQp2ITJBwS5EJvR0N77ZbOHsRHpHu9Hk7XhKhfR7kjf5bvazB1+ktvfd+KvBPF4HjbU7qpf4jnu9wXfBT548S23zQXuiSlBPrkxOFyVIlCs8saYc7Py3nLc7mp5P7wpv2MTbC2zayGv5TU1OUtu2kW3Udn48rbz8+Mc/onPmp2eo7dy59M45AMwYv3aWgoSoIlEo1m9Ntz0DgC1b04+5GdQu1JVdiExQsAuRCQp2ITJBwS5EJijYhcgEBbsQmbCg9GZmuwD8BTotmR3APnf/mpl9EcBvA7iobTzk7lzPQKf2W8vSco0VeR206dl0UsvcNJdBxs6kJT4A+KM//hNqO/LaEe5HPS1rvHacJ9Z4kOATtXhqtLisZS3eFqhI3r8tEN8sqHXmxtsdRXIePP24+we57+fO8eesGrSomrzAZblaLe3/4cM8ecYCSbfBnxZ4kDQUJTaxGoCDVV5jcXYm7WM7eL0tRmdvAvg9d3/GzIYBPG1mj3VtX3X3/7iIYwghVpnF9Ho7CeBk9/aUmR0CwEu3CiGuSi7rO7uZ7QHwAQBPdoc+Z2YHzexhM+P1lIUQq86ig93MhgB8H8Dn3X0SwNcBXAvgJnSu/F8m8x4wswNmdqBZ50UehBAry6KC3czK6AT6t9z9BwDg7qfcveXubQDfAHBLaq6773P3UXcfLQW/wRZCrCwLBruZGYBvAjjk7l+5ZHzkkrvdC4BnngghVp3F7MZ/GMBnALxgZs91xx4C8GkzuwkdVeEwgN9Z8GSlEjZs3ECsPDtsjmQh1YL2T4UgA2lifILaNm7eQm1rN6SzkJqB3NF2Xs+s2eAyVKvJJa+odl27kfYlkvlqNe5jm0hoAIAg661AriMTQfba3//k76ntzjvvpLaXXj5Ebexh14PnrBi8FtvB6yqSS1u14CtsPe3L0SO8Bl2xmq5p1wi+Ki9mN/7vkJZUQ01dCHF1oV/QCZEJCnYhMkHBLkQmKNiFyAQFuxCZYB5JK1eYtRvW+m133Za0tYNsItIxCsVATCgFRRkteshBxhPLKCoUuVTTrPM2VO0Wl7xagYzTDhaLPZ3NBpfypmd49mCtxuXBRiPwn6xjdLyBfl64c8/evdR24OlnqG1iMl24M8oCjGKiFdiCzlaAhTmCSQoF/rrqG0hn2M1PT6DVaiZPpiu7EJmgYBciExTsQmSCgl2ITFCwC5EJCnYhMqGnvd4MBrO0nFAu8/cdKxLZosXljHI5yJ2PErkCiaTKJLZgTiVYYUMftUVSWSvSKYk0FMmDGzexTESgEfjhQdYbkw7bbS5tzsxwmXLs1Clq27OHy3JTM+kssNm5dC+6DvwF0gxluUASDZ4z9twUSI/Dji39mjs9P8XnUIsQ4pcKBbsQmaBgFyITFOxCZIKCXYhMULALkQk9ld4cBve0zODtoBcZyVCKEomizLBQlitxicrICQuRI8HxioG0Ug4KIjYavKggLSwZuBj1oysaX6tmi8tyTOkrB4+5f3gdte14F+/1FvU3myP9+SJJMXrtWJH7H2XLRccsksWKi4SmswcvnD9L5+jKLkQmKNiFyAQFuxCZoGAXIhMU7EJkwoK78WbWB+AJANXu/f/K3b9gZnsBfAfARgBPA/iMe9DrCJ1d3/p8eoeR7XQDANsAjXZ2w93PqD5dsHvuJEGiHSROWNAuqBDsdJf7uc2LfDe+GuwWc5ZWj60Ztaiqp18K7SBZJDrebD1KuuG71vPN9FpFrzewxCsAHpwrSnapVLiaENVLZAyQGnRh8swijlsD8FF3vxGd9sx3m9mtAP4AwFfd/d0AxgF89nIdFkL0jgWD3TtcLD9a7v5zAB8F8Ffd8UcAfHJFPBRCXBEW25+92O3gehrAYwBeBzDh7hc/dx0DsGNlXBRCXAkWFezu3nL3mwDsBHALgF9Z7AnM7AEzO2BmB9j3OCHEynNZuznuPgHgbwF8EMA6M7u4s7ATwHEyZ5+7j7r7aDnYpBBCrCwLBruZbTazdd3b/QA+BuAQOkH/T7t3ux/AD1fKSSHE8lnMnv8IgEesUzyuAOB77v7fzexlAN8xs38P4FkA31zMCZ32yOFyB2slBOMySLVapbY4kYTbypW0HBbJfCVwCa0VJGM0ozp5UcIFkQFZzTIglqEsStapBkk+5fSnuOhckYQWrXGDyGsAUGin17gdnKsZ2IpBj6d2IB1Gz9lSWrBxiY37t2Cwu/tBAB9IjL+Bzvd3IcQ/APQLOiEyQcEuRCYo2IXIBAW7EJmgYBciE2wp2/5LPpnZGQBHun9uAsALZvUO+fF25Mfb+Yfmx25335wy9DTY33ZiswPuProqJ5cf8iNDP/QxXohMULALkQmrGez7VvHclyI/3o78eDu/NH6s2nd2IURv0cd4ITJhVYLdzO42s5+b2Wtm9uBq+ND147CZvWBmz5nZgR6e92EzO21mL14ytsHMHjOzV7v/r18lP75oZse7a/KcmX28B37sMrO/NbOXzewlM/sX3fGerkngR0/XxMz6zOxnZvZ8149/2x3fa2ZPduPmu2Z2eQUi3L2n/wAU0SlrdQ2ACoDnAdzQaz+6vhwGsGkVzns7gJsBvHjJ2B8CeLB7+0EAf7BKfnwRwL/q8XqMALi5e3sYwC8A3NDrNQn86OmaoJOnOtS9XQbwJIBbAXwPwKe6438K4J9fznFX48p+C4DX3P0N75Se/g6Ae1bBj1XD3Z8AcP4dw/egU7gT6FEBT+JHz3H3k+7+TPf2FDrFUXagx2sS+NFTvMMVL/K6GsG+A8DRS/5ezWKVDuDHZva0mT2wSj5cZKu7n+zeHgOwdRV9+ZyZHex+zF/xrxOXYmZ70Kmf8CRWcU3e4QfQ4zVZiSKvuW/Q3ebuNwP4LQC/a2a3r7ZDQOedHQg6T6wsXwdwLTo9Ak4C+HKvTmxmQwC+D+Dz7j55qa2Xa5Lwo+dr4sso8spYjWA/DmDXJX/TYpUrjbsf7/5/GsCjWN3KO6fMbAQAuv+fXg0n3P1U94XWBvAN9GhNzKyMToB9y91/0B3u+Zqk/FitNeme+7KLvDJWI9ifAnBdd2exAuBTAPb32gkzGzSz4Yu3AfwmgBfjWSvKfnQKdwKrWMDzYnB1uRc9WBPrFKb7JoBD7v6VS0w9XRPmR6/XZMWKvPZqh/Edu40fR2en83UAv79KPlyDjhLwPICXeukHgG+j83Gwgc53r8+i0zPvcQCvAvgbABtWyY//CuAFAAfRCbaRHvhxGzof0Q8CeK777+O9XpPAj56uCYD3o1PE9SA6byz/5pLX7M8AvAbgLwFUL+e4+gWdEJmQ+wadENmgYBciExTsQmSCgl2ITFCwC5EJCnYhMkHBLkQmKNiFyIT/Cw67s5At/GQ5AAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD5CAYAAADhukOtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAfTElEQVR4nO2dbWyc15Xf/2feOBySEilRL5RMvVi27Miu36I6Tm24qYMN3CCAk+0iSD4EBhqsF8UGbYDtByMFmhToh2zRJEiBIoWyMdZbZPPSTdJ4F8Z6vd5N0mxS25JjS45lx7Isy6IkUiLFt+G8z+mHGady9v4vaYkcevf+f4Cg4T28z3PmznPm4dz/nHPM3SGE+MdPZr0dEEL0BgW7EImgYBciERTsQiSCgl2IRFCwC5EIuauZbGb3A/gqgCyAP3L3L8Z+f6hY9NGhoaCt3Y5IgEaGC3k6pZnh72OlLDkggPrSErXNlivB8dYV+L6MCRbxP5vjL1uWTCtG1mposERtMWm22WpTm2WywfFKrU7nLCyUqS26jhFblhgzkTntmBwdU6pjl0HEyTaZ2OTLCyPnWqrVUG80gie74mA3syyA/w7gtwCcAfCsmT3m7i+xOaNDQ/j8b38saKuU+UWQzYWvYBsfo3NmS/3UdsvGArWdPvoLavvznz8fPletQedkWfQhfgHk+4rUtmnLKLVt6A+f7/pdW+icD9x9J7U1G/y5XZxbpLb80Ehw/PiJN+icp370c2oDuQYAoC/PbRvz4Te5Qq5F59Qjz7kZjqMOzqOzL9tHbUsevvYvVfm7R4a4+H9eeJHPoZbluRPACXc/6e51AN8G8MBVHE8IsYZcTbDvBPDmZT+f6Y4JId6FrPkGnZk9ZGaHzezwQrW61qcTQhCuJtgnAIxf9vM13bG34e6H3P2gux8cKvLPoUKIteVqgv1ZANeb2V4zKwD4BIDHVsctIcRqc8W78e7eNLPPAHgCHentEXf/ZWxOs1HDpYnXw45EZJx8LrwrOeE1OufVCt9RveU911Jbu86PuW00vAveHzlXTI+J7cYv1bgfczOXqG3RwrvMtWpYNgSAW+94H7U1lvhHr4vT3I9txbAa0q7P0zn9fXyt2uDXx9ahQWq7+drrguMXpv7eH6G/plJZoLbFRa5AIMPlzb5ck9p2bN8YHG8UttI5J146FXYhoilelc7u7o8DePxqjiGE6A36Bp0QiaBgFyIRFOxCJIKCXYhEULALkQhXtRv/Tqm3M3i9Gk4IWKrM0XkFI/JPKyxZAEDGeLLLxTcmqe3I2TPU9vJUWGryGpdVYvJaMfIlo0aTJ2ogkhFX7A+v72yFS1fPHHuV2sY28zWuNWN5e2EZrS9yxeXzsVQ0brph3z5q27Nrd3B8eIhn+p0/d4q70eBS5OAIT8xq5XliVqkvLOftGOWS4pvZsP9m/NrQnV2IRFCwC5EICnYhEkHBLkQiKNiFSISe7sa3DaiQ+m8zGb77bK1wUsjmSC22wQ3hskgAUC3znf/ZBZ6AMl8NJ7x4xPdWi9uy5HgAkIu9Dzd4wkiZJPIMRuqqPfPCUWrbf104kQQAbty3i9pyhfBu8Z49fOe83OaJJJPnLlDb/AJP8kFxIDh88N5b6JTnn/0xtVWaXHlZaPAd/ukyvx43VcI7/DuzPCGnuhiOo0hlLN3ZhUgFBbsQiaBgFyIRFOxCJIKCXYhEULALkQg9ld4MTfTZTNA2VuKSxjDCksymEZ5c8Lpz2WKgP9K5g/XVAVCy8HI1Bni3j0aTy2vVSJ25VuR9uL/EJZ5CX3ittke65+y4ZpzaLi7yxI/z81zyet/7wl1mZibP0zm//a/uprbH/+IJavv5z/4vte26+Y7g+H23vJfOeW3iJLW9/nfPUttcPdzaDAAWI72c3vNPwz5WGrzG3+hoOIkql+MJYLqzC5EICnYhEkHBLkQiKNiFSAQFuxCJoGAXIhGuSnozs1MAFgC0ADTd/WD09zOGwkD4lNcO8VY3ez08Z2Mh0ihyjteSKw1zqaxcWKK2dj6cwXbwtrB0AgDbtvLndfLECWp78zRvT5TJ8uwwb4alsmIkM+/97+P+X+DLgWd+/CNqe+WVcEZcqxI54ADPDJstc5lyscHvWSfOTQfHy+0snVNu8uNNzXI/akVeM+763bzl2PC2HcHxC9Nh3wHgvvtuCo4/ceSv6ZzV0Nn/hbtfXIXjCCHWEP0ZL0QiXG2wO4C/MrMjZvbQajgkhFgbrvbP+HvcfcLMtgJ40sxedvefXP4L3TeBhwBgiNQ0F0KsPVd1Z3f3ie7/UwB+AODvfSHa3Q+5+0F3P9hPvrcthFh7rjjYzWzAzIbeegzgQwBeXC3HhBCry9X8Gb8NwA+67Y1yAP7U3f8yNqHthsV6+O6+MRsuDAgAjYvh7J83Z7k8dc+tN1JbpV6mtp2Rgn3FUjgj7q5h7vuBLaPUttTmGXYX+/hHnqU5ng3VqofHc3WeBbj79OvU1j/LsxE3bRmmtsaLvwiOx2TDn790nNpeOXuW2qpNLodNnA5LsFPTvIDlnbffRW27h3mG4H/70/9NbfUKz/Y78mxYzJqcfI3OueOD4es72+ZrccXB7u4nAdx6pfOFEL1F0psQiaBgFyIRFOxCJIKCXYhEULALkQg9LTiZQwZbsuFMtZ3gWUgbNoQL+T1/iWe2Xarxfm67t/Pii78ztZfa8vNhyW7zq9yPvtfOUVurzYtR7gm38ur40eLGTC68vi3jklftmeeobWNE1mqPcsmxxQoszvPsuw1ZnjVWK3O5dBO/dFDycFHM+fNv0Dk737Of2oYGeKblnft2UtvUHNFEAZxfDGcCLi2Fi7MCwMlXXw2O1yJFTHVnFyIRFOxCJIKCXYhEULALkQgKdiESoae78cVsBjcOhVsXDUzzylbZTHhnd/8119A5C5M80QHOd7N3xto/FcLzspFdU4sku/D9WaCWibwPF3iSTN7D58tF2g/lM1wVaAzxrW5f4ju/zVrYjxb42m/L8BW5r5/v/NeNtzxq7dgWHC+eOkXnLPHDAUQZAoCbbryO2saW+HMba4STjfbvC9emA4DrRsPKRfGJn9I5urMLkQgKdiESQcEuRCIo2IVIBAW7EImgYBciEXoqvbUaNcycPRm01Zpckqlkw7LR0kaeONG/xOWk6nFe26uV5YkaTdK6KpPlskpfRPIy8KSKZkQebLX5MT0fTnjhAmDcltvK2xYNzfJ7RZU8tfpu3uJppLlIbQNVvsbNSJ28xalwQtTS2b+jc84dfoHaNtzEk2Smz3O5t17aRG3NcK4OlqZ5rcH5fHg9Wi2+FrqzC5EICnYhEkHBLkQiKNiFSAQFuxCJoGAXIhGWld7M7BEAHwEw5e43d8c2AfgOgD0ATgH4uLtznaBLs9XC9OJs0PZmucrntcNyQsG20zmlEd52abrCWyFtz/KMsv5q+L2xNc9lvlqd2zDKfRzYzzOoqhGJavHifHC8r82lvGykblntAl8r9HEZzYbDsmguklXYnufXQP9NXAJEgUuwpamwrlWe4K3DZl8+QW3t05PUNrSJZ8TNDHO5dPp8+PU8N8VrG+4thOsotpr8elvJnf2PAdz/G2MPA3jK3a8H8FT3ZyHEu5hlg73bb/03E7YfAPBo9/GjAD66yn4JIVaZK/3Mvs3d36qRfB6djq5CiHcxV71B5+6OyDcuzewhMztsZoeXmvyrqEKIteVKg33SzMYAoPv/FPtFdz/k7gfd/WApF6nmL4RYU6402B8D8GD38YMAfrg67ggh1oqVSG/fAvABAKNmdgbA5wF8EcB3zezTAN4A8PGVnKzpbVyqhuWV80tcTmqQtkuj27bQOT6+ldr6RrhE0jfPs4ZyZ8NZTXXSvgcAFsEll9ZgP7Xld+/ifhj/ODQwHPal8avTdE4jIg9WI8Uoh+49QG1Ls6SA6Csv0zloRu4953hB0lo7LOcCQH57uGjj9n9+F53T18//Ap35Fc+YHF7i8zbu5pLu6fNhOa8/y2XKfD5cFdOMS6zLBru7f5KYPrjcXCHEuwd9g06IRFCwC5EICnYhEkHBLkQiKNiFSISeFpwsFAoYHw/3Z8u8zrOQ+klBvladSxN9Fi68CACXyuHMMAD42Zs802hHNZwBdiOIg4hnvVUimVf1517i8yIlIm3nzuB4dT/PEFxqhvvvAcAt+7i8Vs7wbLPK2VPB8cJcJLtxA2+yVj8dkQ4nw9IsAOS3hr/vtbSNS7P5TRupbeSDd1Db7JvnqG14lMtydwzuDo4/+VOeSNo3HJadM1ke0rqzC5EICnYhEkHBLkQiKNiFSAQFuxCJoGAXIhF6Kr3l8zls3xEuarMwwbOaSiMkk8d4JlE+w7N/zl2cprY/euGX1HbD5rDU9G+LA3ROKfJ26mWe6TdzjEtvM1u4NHSyFpah6hG5bsf+cGYYAOwa4eeqn+PFFweJDGVt3rMNC/w168vwDMH5Cs86bJ0M9xb0s+fpnEtD/LoauCEsHQPAjr37qK1KMtsAYEspfP3cfjMvOjq+N+xHvo/Ll7qzC5EICnYhEkHBLkQiKNiFSAQFuxCJ0NPd+Ja3MNcKf7k/53N0Xj4XdrMeqdE12+TJKTMVPq/pfEnm8+Ed4Yk8TyQZdl7Trp7hNnfekmmuzXefz0yFd+M3ZIp0ziW+0Y3HJh6jthtI0g0A7NsUPt/mPp6QUz7FE4NaFZ7s4i2+jpcuhesGeotfA/Ui341vzHHVqH70VWorRdSQWjGctLX7wE3cj7NvBMe9wdUO3dmFSAQFuxCJoGAXIhEU7EIkgoJdiERQsAuRCCtp//QIgI8AmHL3m7tjXwDwuwDe0jU+5+6PL3ssOAoeboeUa/NabaOZsDRRz0ZaNUUkiKUqb8m0cwtvKXXN3vHg+MQil/ngXHIpEMkFAKzJX5p6m8tyY5tHg+M5vlSYv8CTQnyGy3xnp7kcNlcKJ2TsqvHXOXORS2+o8CeQibSNqjTDPi61+PXhEZmyVIkkWE3w+oWlSFumcjP83IZr/DmP3rI/bGhE1pda/j9/DOD+wPhX3P227r9lA10Isb4sG+zu/hMAMz3wRQixhlzNZ/bPmNlRM3vEzEZWzSMhxJpwpcH+NQD7ANwG4ByAL7FfNLOHzOywmR1erEY+OAoh1pQrCnZ3n3T3lru3AXwdwJ2R3z3k7gfd/eBgsadfxRdCXMYVBbuZjV3248cAvLg67ggh1oqVSG/fAvABAKNmdgbA5wF8wMxuA+AATgH4vZWcLNPOoL8SzhA72+S1zrZmwi2DRiqzdE5uirfiaS7wtjrvObCX2nbdcH1wfOaFV+icMeNtf5Dnslze+ftw/yKXvHIku6pU4qltv3rtFLWNlrkf1+7ZRG1nCmEJaPIEf136F/g+sDUjLa9afI2rRJ6tZ/jzqpf5x82ZVrgFGACUShuobaHO5dJyLfzcZiZ43brcrnD2YKvV4nOopYu7fzIw/I3l5gkh3l3oG3RCJIKCXYhEULALkQgKdiESQcEuRCL0tuBk2zFXDksyP5rjckdzc3j87kgrof4pnslVbPBMrtvfex+17RgPt+P582eO0TlztbBsCACtHM9QakQku37nGVTVM+Hnnd3EZbJrR8KZcgBQbfFCoLkB3mrolnvC37Oa4QoUZo5MUVutzaW3do4XiKyQtRoYIBcVAPTzdl6VAn9d2pv5t8ar4PPOXwhLjnOzvLjlpZfDxS3LVX696c4uRCIo2IVIBAW7EImgYBciERTsQiSCgl2IROip9OatBurzZ4O2E9M8w6fSCEs8w9dwyejWPJe1hiLVF/eOh4tKAsCGwbB8VYsUL6wtcVshzzOUqh6Zl+GSV6Eefm6VGZ5RliG99ACgHemnNznN5c1Lx18KjpeKXIJaKA5yWz/vp1cbHKK2cjmcIVga5VLkTJ3LVwtN/pplGrzw6Lnzi3xeMSz1zUeKpg7MhyXRZiTrTXd2IRJBwS5EIijYhUgEBbsQiaBgFyIRerobv6Evgw/tDu88XpjhO7HPvh5OXHnyFE/S6L+WJzOUBnnixFCW7/o2FsK7tC3jO6DlSCJMMcuXv5WNvA8bt7VJbbWZMt8N9kiJ70KZ+9+YjbRQeu10cLwUub/UIzXcjjV5Bs2pizyBpkg6fRXafOc8H6mCbI1IEtIsVzzKzhWD3GC4DVgrz8+1e2Q4OF7I8hZUurMLkQgKdiESQcEuRCIo2IVIBAW7EImgYBciEVbS/mkcwJ8A2IZOu6dD7v5VM9sE4DsA9qDTAurj7s77KgEo5g37d4RP+a9Lu+i88b6J4PjfvMLlpKdO8USY23bvoLbF116ntlny3phtE30HwGyd17vbUuJyTMt5wkijzZ/bBQ/7crHEpc1qJDFoyPglMrCR+98mCTmYnqdz+vq4XHqmyqWy6RZP1tmeD8tapQG+HkMD3A+vcCnyYp37mMvy6yA7E7bd7DzhaXAhfA1kIrX6VnJnbwL4A3c/AOAuAL9vZgcAPAzgKXe/HsBT3Z+FEO9Slg12dz/n7s91Hy8AOA5gJ4AHADza/bVHAXx0rZwUQlw97+gzu5ntAXA7gKcBbHP3t1pynkfnz3whxLuUFQe7mQ0C+B6Az7r72z54ubsD4V7BZvaQmR02s8MXlvhnQyHE2rKiYDezPDqB/k13/353eNLMxrr2MQDBLyi7+yF3P+juB7eUevpVfCHEZSwb7GZm6PRjP+7uX77M9BiAB7uPHwTww9V3TwixWqzkVns3gE8BOGZmz3fHPgfgiwC+a2afBvAGgI8vd6C2t1EjUtSmIs/wef/+cK25i2UueR2Z4Blxxye5Qnh9ROKpF8LL5W3+nrlQ5dlaXuPSSizzyiPyCoitv69Ipyw4l5Pmd/GtmM033UhtWfLSHHvix3TOeGStrhnZQm2o8ey7Yi7syFykXlx5mstk2yMS5o5R3lKqkOGvZ34mfK3uXuDS8vgwy3rjcbRssLv7TwGwI3xwuflCiHcH+gadEImgYBciERTsQiSCgl2IRFCwC5EIPf2Wi8FgpMiiRQoKjg2HZaN/tncjnTMfaeFzapZLK0sR6WIraQ2VLfAildUml8mqCwvUlmvwIpaFfD+1sRVpTl6gcza0+Dcba/N8rWYaXPocHhkJj0eKZear/Fw7I5lohcg9ywbCxUUtz4+XWeRS3rYcf60j6jEyNf56LpHrYGMkU27frnBM9B3ha6E7uxCJoGAXIhEU7EIkgoJdiERQsAuRCAp2IRKhp9KbA3AP6xPejkhN7bAsd2ATd//CGM9OKte4zNeMFBQc3RzOvCoOcglwNpKh1qjzwpHNiK2W5T5mLFyockPkbZ3nwwH1eZ49iCr3w8+H+69dQ3OqgHw2Uviywv3YmuVS5CUis/YNhaVBAGg3+GI1l2apbb7GpbKI8oZ2rRwcHzuwlc7Zuyt8LfaRzExAd3YhkkHBLkQiKNiFSAQFuxCJoGAXIhF6XO7V0CaJEC3wdkdohnemN+b4zu7t4+G6dQAwvTBDbfXJc9TWKId3TQsDfDe4Gkn8aHgkaSHS4qkVSZKxVnhNmhE/6vlIBgf4Drk1uR+tLKmvl+HnajX5uTyy819shVs8AYA3wkkt54t8V73Rx2sDtsN5NQCA/AD3Y2mJJ9cUSMuuLbu20znFXNjHjPH11Z1diERQsAuRCAp2IRJBwS5EIijYhUgEBbsQibCs9GZm4wD+BJ2WzA7gkLt/1cy+AOB3AbxV3Oxz7v549FiZDAr94dpf2SKv7VWfDbfBiUlQO4b58f7JHJdxjs9OUtv5s6eD4/OV+eA4ACy2eZ22aiZSjy2SQNN0/rwzHn5JyxFJZokkJwFALnI/aNf4c2vXwmtsEemNta4CgGqOP+d2RLIrk2NW+3gyFDL8XMU8197aLS6vDZBkLgC4bttQcHykwNdjaTosHbYjcuhKdPYmgD9w9+fMbAjAETN7smv7irv/1xUcQwixzqyk19s5AOe6jxfM7DiAnWvtmBBidXlHn9nNbA+A2wE83R36jJkdNbNHzIwnCAsh1p0VB7uZDQL4HoDPuvs8gK8B2AfgNnTu/F8i8x4ys8NmdvjiEv8KqBBibVlRsJtZHp1A/6a7fx8A3H3S3Vvu3gbwdQB3hua6+yF3P+juB0dL/LvDQoi1ZdlgNzMD8A0Ax939y5eNj132ax8D8OLquyeEWC1Wsht/N4BPAThmZs93xz4H4JNmdhs6ctwpAL+3ojNmwtltnT8eiJMkqaya4R8L8hHZYtcYl+VeP8PlkzqpFdZq8zmzTW67aHz5h7I8C9CcPzcjEtscV8lwvh6R8iLZctmIZEePF7HlI5mPk5EswDlw/xfJ894ZkQCHI5Judoa37NqW49X83jvOM9j2jYcv8FIlLDkDQI3IfO3WVUhv7v5TIFglMKqpCyHeXegbdEIkgoJdiERQsAuRCAp2IRJBwS5EIvS84CTa4feXWoW3zmESTyyDyiPtkwYHwpl3ADC6gUtlMxfCLY0WSKsjAJjL8vfTn0XkpBGurmFDRKYcINJbI8MPON+MZJtFZK2Y8JYlGX2FiKRYih+RWnLGdcUSed7tBs+Uq5OinQDQH1mPjYP8mGhEMiMvhf2f38BfZyNFWFuRzEHd2YVIBAW7EImgYBciERTsQiSCgl2IRFCwC5EIPZbeuDTgEcnAiHxVIP2uAMArkUIZEVlr6wA/5nPHwlm802cvBMcBoBnJbLsQkZrmI9lypVZEaiKH7ItIgF7gzzkTKYrJMuwAIJcLy0Yt0tcMAOZb/DVrRgopeuSYBeZ+RHprR9Yqk+MXTxvc/9lF3lsu62Ff+jLhQpQAYO3wddWKFDjVnV2IRFCwC5EICnYhEkHBLkQiKNiFSAQFuxCJ0FvpzQyZfFiSyUfkMCM2y0bcjxTea5V5Ib+xIV6McnM+fMx8tULnbGhzeaoaKeYYK/TYzHF5pUykl0pkfRGRvLKRjDiLSIcZIh16pFimR7LXYvlweeMZcXlyjfRH1ncwcgscMH5dkcujCzfWKuFCppHLFKVM+DqNSdi6swuRCAp2IRJBwS5EIijYhUgEBbsQibDsbryZFQH8BEBf9/f/zN0/b2Z7AXwbwGYARwB8yt159kaXTC58yqxH3ndYokN0Nz7STipSu27Q+FO496YdwfG5JT7nF6cvUtvFGk/GqEZ2VWuRvek2WZN25H09WreMSSEAInkwyERq3jGykR3ySP4J+jP8OihlwtfBUI47P5ThqsDmyCVXiixIHvy1LpC18lbk+iAKUDuSFLSSO3sNwH3ufis67ZnvN7O7APwhgK+4+3UALgH49AqOJYRYJ5YNdu/wluKX7/5zAPcB+LPu+KMAPromHgohVoWV9mfPdju4TgF4EsBrAGbdf52IewbAzrVxUQixGqwo2N295e63AbgGwJ0AblzpCczsITM7bGaHL5aX/UgvhFgj3tFuvLvPAvhbAO8HMGz26zIs1wCYIHMOuftBdz84GqkCI4RYW5YNdjPbYmbD3cf9AH4LwHF0gv53ur/2IIAfrpWTQoirZyWJMGMAHjWzLDpvDt91978ws5cAfNvM/jOAXwD4xrJHymSAQpEYucxgLHmCyHgA0CTtcQCgHXnaMbljjOTIfORWvl2xLc+lkBOTvCXQZJn7f6kZSa5ph5NCahHpqmn8OXssWSfSyilLbNGElogEGMn9wUBEgu0j/vdFkm42ZHnSykhEshuI1K4r5rmPObKMjQa/BpZIQk47UoNu2WB396MAbg+Mn0Tn87sQ4h8A+gadEImgYBciERTsQiSCgl2IRFCwC5EIFqsJtuonM7sA4I3uj6MAeEpY75Afb0d+vJ1/aH7sdvctIUNPg/1tJzY77O4H1+Xk8kN+JOiH/owXIhEU7EIkwnoG+6F1PPflyI+3Iz/ezj8aP9btM7sQorfoz3ghEmFdgt3M7jezV8zshJk9vB4+dP04ZWbHzOx5Mzvcw/M+YmZTZvbiZWObzOxJM3u1+//IOvnxBTOb6K7J82b24R74MW5mf2tmL5nZL83s33XHe7omET96uiZmVjSzZ8zsha4f/6k7vtfMnu7GzXfM7J0ViHD3nv4DkEWnrNW1AAoAXgBwoNd+dH05BWB0Hc57L4A7ALx42dh/AfBw9/HDAP5wnfz4AoB/3+P1GANwR/fxEIBfATjQ6zWJ+NHTNUEnE3iw+zgP4GkAdwH4LoBPdMf/B4B/806Oux539jsBnHD3k94pPf1tAA+sgx/rhrv/BMDMbww/gE7hTqBHBTyJHz3H3c+5+3PdxwvoFEfZiR6vScSPnuIdVr3I63oE+04Ab17283oWq3QAf2VmR8zsoXXy4S22ufu57uPzALatoy+fMbOj3T/z1/zjxOWY2R506ic8jXVck9/wA+jxmqxFkdfUN+jucfc7APxLAL9vZveut0NA550dnTei9eBrAPah0yPgHIAv9erEZjYI4HsAPuvubyvj08s1CfjR8zXxqyjyyliPYJ8AMH7Zz7RY5Vrj7hPd/6cA/ADrW3ln0szGAKD7/9R6OOHuk90LrQ3g6+jRmphZHp0A+6a7f7873PM1CfmxXmvSPfc7LvLKWI9gfxbA9d2dxQKATwB4rNdOmNmAmQ299RjAhwC8GJ+1pjyGTuFOYB0LeL4VXF0+hh6siZkZOjUMj7v7ly8z9XRNmB+9XpM1K/Laqx3G39ht/DA6O52vAfgP6+TDtegoAS8A+GUv/QDwLXT+HGyg89nr0+j0zHsKwKsA/hrApnXy438COAbgKDrBNtYDP+5B50/0owCe7/77cK/XJOJHT9cEwC3oFHE9is4by3+87Jp9BsAJAP8LQN87Oa6+QSdEIqS+QSdEMijYhUgEBbsQiaBgFyIRFOxCJIKCXYhEULALkQgKdiES4f8Bjj+JdOtlST4AAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD5CAYAAADhukOtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAf3klEQVR4nO2da2yc55Xf/2fuw5nhVSRFinJEy3biy9qOV3G92HTrTZDUGyzgBCiC5EPgD8F6UWyABth+MFKgSdF+yBZNgnwo0jqNsd4izWU3CWIUbrup92KkCziWs458kS3LsiyR4kW8c8i5z+mHGS1k4/m/pEVxqM37/wGChs/h875nnnkP35nnP+ccc3cIIX79SRy0A0KI3qBgFyImKNiFiAkKdiFigoJdiJigYBciJqT2MtnMHgLwTQBJAP/N3b8a9fulwayPThaCtvJmg85LWC44nkwko3zjx0twWyqZ5rZEJuxHkvvRaNaprdbcprZkus39yLSozSw8r92OmsPXwyziEomQbd3D50smw2sIAIkEv/cYuP+tFvej2Qg/t3abv2bt9rXdA5stfg232/z1bLfCz83Bn1erFT7e1loN1a3wk77mYDezJID/DOBjAGYAPG9mT7n7q2zO6GQB//67Hw3a/t9fLdBzlXIfCI4X+vrpnHTERVos8IA+NDBJbUN9U8HxwYEBOmdu6QK1nbv8K2rrP1KmtpEjW9SWzob/gFS21uicXI4HYNIGqa3dalJbq7UZHB/qD68hAGSzfdSWQvh4ALC+UaO25YXwdVAt89dsu1aktqgAXF2Z48fc5j5ulNfJufj6rq6Er4//9V9P0Tl7eRt/P4Cz7n7O3esAvg/g4T0cTwixj+wl2I8AuHjVzzPdMSHEDci+b9CZ2aNmdtLMTm6s8rcyQoj9ZS/BPgvg6FU/T3XH3oG7P+7uJ9z9RP9Qdg+nE0Lshb0E+/MAbjWzaTPLAPgMgKeuj1tCiOvNNe/Gu3vTzL4A4P+gI7094e6vRE5KAElycy8c4rvPp174u+D40cP30TmlQp7aqnUuu1Q2+W5rZTAs4zSNS2hDk3yJbz3KbZUcVyc223xnvb0R3lnPtsKSJwB4lj/nRos/t1SS71oP9x8KjvdlIs61VaK2ja0Jattc3qC2C2feDo4ns1wKQ5pLaDOz89RWKnJVo7zJpcNmk83ja0WVvIgk1j3p7O7+NICn93IMIURv0DfohIgJCnYhYoKCXYiYoGAXIiYo2IWICXvajX+vNBpNzC4uB22T00N0XjIZlmSGizdHnY1aZt86R21vzfJkhiOTYRlqy7lkNJRapbZm/2vUliiG1wkAag2eyLO5Fk6eGE7xJJNMhBzWP8DltVKeJ7XUGuH1rze5TIYml8PWF0apbfUcv4zPnHwxOF44ypNMjtwyRm25iCSqjU3+3GpVfj5Y+JhLy5fplHqjGhxvRWTX6c4uRExQsAsRExTsQsQEBbsQMUHBLkRM6OlufLXawpkz4fJCx27mu63T778pOH7ujbN0ztY2T6wplPjO9GYlXCIIAF5+/aXgeHHyVjpnpMRr0DUTfOd05hzfjYdz/4cy4bJaUSWOchm+9sMD49RWXueJH6+dDp9vqHCYzin183tPY4QnL23N8mPOL4TLak1P8eP1FbkfzTZf+3qVX3OpDD/m6ko4Jra3wjvuAGDM/YhEGN3ZhYgJCnYhYoKCXYiYoGAXIiYo2IWICQp2IWJCT6W3et1x8QJrdVOh8zZGLgbH6wkuk7VSPBFmcGiY2m59/zS1LSyGz7dFkhIA4NQrXEJrJnhdssFDXM6D8+4o6WzYl6Fh/pyLfeF6cQCwucFbQy0t8NLg7Xr40sr1R9SZq/NkqJeqPOmpNjxCbYmxcA26vhx/XVbXVqht7hJf+2aNy5uNGr9GylvhBJpmM0ouJcUco9qeUYsQ4tcKBbsQMUHBLkRMULALERMU7ELEBAW7EDFhT9KbmZ0HsAmgBaDp7ieift/d0KyF622tLfLssMZ2uI5btsBTfIYOc6nJs1zSGLuF11zbaIezmsoV7nse3I/lZS7HlDID1DY5Fc7kAoAGFoPj621+rq2VJWrLJbkfZa6WotQfloaaGV6Tb3GL1357+id8jdt+idqOZ8LHTDrPelu6xGvJ1av8mkumuOxVJTX5AMCJXFYs8bU3D8+xiPv39dDZf9fd+dUihLgh0Nt4IWLCXoPdAfylmb1gZo9eD4eEEPvDXt/Gf9jdZ81sDMDPzOw1d3/26l/o/hF4FAByJV7ZRAixv+zpzu7us93/FwH8BMD9gd953N1PuPuJdF9Pv4ovhLiKaw52MyuYWenKYwAfB/Dy9XJMCHF92cutdhzAT6wjG6QA/A93/99RExIwZEmrm0aFS0NDh8MFBWcXFuicjeostXniDLXdc9dt1PZb/zzsRyHDM7ka29x25kxEpt8qb/2Tz5OMJwCtTDiTbmbjAp0zUuKy0OQQ/+hVGs5TW4bcR7aaXLp6cyacoQYA537OMxzrm29Smx0Nz9te5PLaxPt4Ucn8YMRH0QS/hhNJPq+vLxwT9QhJN50I+2i2D9Kbu58DcM+1zhdC9BZJb0LEBAW7EDFBwS5ETFCwCxETFOxCxISefsul1WpjczWcOdZ/iEsyyxtzwfFckWcZlbciiv81eaHH1159i9rmZsPyVamUo3PGx49S29gxLsdsv71FbRcvc6kpXwr3jxsZ7adzhvojJKPEDLWlMvx5ZxLhjK1mnRe3bDf464k2z5a7/Te4LPeB6bCt1MeLZQ6N8h5829sFaqvX+eu5ucxl4lY9fL58hkuAaJF4Ua83IYSCXYiYoGAXIiYo2IWICQp2IWJCb3NOHbB2eMc1EVG/q1xZC46Pj/OaZUnw+l2XLvHEjw3nO8wbq+HEhFSOJ60sb3HbQIm3O8oVeZJJ/8gUteWz4Zd0fGgiYg6vxwbwtWo0uKrRaITbK3ma3182VkeprZ+LCXjwY7z9U5bU5Js4zGsNZiLW48xLfKd+ZXWb2qobPOnJiTo0cIj72GKKknbjhRAKdiFigoJdiJigYBciJijYhYgJCnYhYkJPpbd2u43y5mbQltzif3dK6bCbjW0udSTAbfksT4JIGJfeSkPhtkutJE+6qdS59La9wGuMTR+5k9oG8lyiQiOsvTTWuYwzVIhIuEhzH7erPFkHqfCatJP8kjt3NlyLDQCGxnndvft+k0tvedwaHG+0wglZAFDd4jJws8ETWuqV8LUNANkk9z9fCNuSEYqoJcISoBnX3nRnFyImKNiFiAkKdiFigoJdiJigYBciJijYhYgJO0pvZvYEgN8HsOjud3XHhgH8AMAxAOcBfNrdeZGwfzgWkMyG/75Uqjy7qvx2WNKoLfFMorFJLkEUItonrZMMOwAopcKS3fA410guX+bnSrYisppq/JjVMpcVsxaukZZIhmVDAFhZ4sdLFXhm2/ImlzArZSJtpbgfF2f55TgxxevM5Yq8lVOqGpYOKxUuN3qN+zh1hEuRAxES5nxETcFCMTzPE/xcpIsaUhFZhbu5s/8pgIfeNfYYgGfc/VYAz3R/FkLcwOwY7N1+6yvvGn4YwJPdx08C+OR19ksIcZ251s/s4+5+pb7zPDodXYUQNzB73qBzd0dEfQwze9TMTprZyUaNf/4TQuwv1xrsC2Y2AQDd/8O1fwC4++PufsLdT6Qjyx8JIfaTaw32pwA80n38CICfXh93hBD7xW6kt+8BeBDAITObAfBlAF8F8EMz+zyAtwF8enenc5iHs6G8yt/ij/aHWwYlKzzbrLnJM6japCgjANSrPHNpaSksn3iaZ0kV0rxd0OjYJLWNjfA2SaODvNAmGuF3T+kkb03USPIMsI2IgpkzC7xV1vxMODtshSeNoVm7m9pKg9yP+aVXqW3AwrJWX+YOOmds8jZqmzxSojZr8ozJzdt5AdF6M7z+LeOS6HYtLDvn8s/ROTsGu7t/lpg+utNcIcSNg75BJ0RMULALERMU7ELEBAW7EDFBwS5ETOhxrzcHGtWgKZPiUlkxE84cS7e4+806l/IsG/YBAPpyPEtteTGcmdfih8PtNx+ltiMj09SWSnGprLrF1yqNsMRjyYheenWeIfj6WxeobW6N2xKkD1x7jfs+7DyL8bYhfl9qbvMXoJ4Ky2HJxhKdYwl+rkyen2v8ULi4JQAc6r+J2ja2wgmjtQbPKiykwkU285kf0Dm6swsRExTsQsQEBbsQMUHBLkRMULALERMU7ELEhJ5Kb8lkAv0D4SykXIFnBXkqLBsVBnnBxmaLyxbNJi/+V17nmUbJcliiyqa476hwqQkVntlmKd7PrdXkzzubDtsaLV7Qcz2iVKhv3E5t+cYwt3n4eWeTR+ic+bWT1HYsxTP9pnJ3UVsjEX7elW2e6bden6O29govfGltXvhysMBt7URY7t3c4PJxpjAUHHeuourOLkRcULALERMU7ELEBAW7EDFBwS5ETOh5IkyyFt4ubBmvJ9fw8I7qdsTO43aZ77inM3xiP6lZBgDZRLi+W6bZT+cUku+jtmTtOLW1K7wUfz7N2xOhFf77bS2+sztR4j4eHnyA2iotXq9vayWc1PLW4tt0zlDqFWobcP663DTG1/H0/JvB8YSFd7MBIG1cuahHlEOvVritUuS14VqZsJqzUY2oabcWVgxqDa4y6M4uRExQsAsRExTsQsQEBbsQMUHBLkRMULALERN20/7pCQC/D2DR3e/qjn0FwB8AuNKT50vu/vSOZ2sA7cWw7NXOt+m0eoLUrcvzOm2ZdLhGFwAk6vxc3qxTW7sZXq6xyXvpnHTr/dR2+RJPoEmnIurr5blM2aqHE4AqFf68cnku8SQirpCBwQlqy/SHZcqVUb72mQKX1zaqPFtnofIytRUPh+9nuRaX3mpVnmiUbPGWXQ5e529+5e+pLZsOt5QaHubtsBKNsI+pFG+eups7+58CeCgw/g13v7f7b+dAF0IcKDsGu7s/C2ClB74IIfaRvXxm/4KZnTKzJ8wivo4khLghuNZg/xaA4wDuBTAH4GvsF83sUTM7aWYn6xG13IUQ+8s1Bbu7L7h7y93bAL4N4P6I333c3U+4+4lMhm8eCCH2l2sKdjO7ehv2UwD4dqgQ4oZgN9Lb9wA8COCQmc0A+DKAB83sXgAO4DyAP9zNyXKZAu6Y+s2grdXH2y610uF6ZhODvIZbboBnolmbSySXL/OWRitbYckrmbuFzqlWeYZahbTCAoBcntc6q9f5vMpWuIbe1hbPAmxFZMS1Wlzm6y+FJSMAyBfDsuLsZb7XW01y6W1u6zK1FZd5FmNyKOxHY+M8ndOX4JLuUP4YtaUy/Lpq1vgxC9mwTDx1mLeTSiNcyy+b4TLqjsHu7p8NDH9np3lCiBsLfYNOiJigYBciJijYhYgJCnYhYoKCXYiY0NOCk335Iu6+58GgLTHAZZxEsRAcH8xxqSaZ5VJeErwl0yuv8xZEyxcWguNvzfOWUekUl8nyRf4lo0yDF3P0BpdxttbDhR6bztthZTJ8PbbL3I9z58PFHAGgmAv72GrzS67c4Jl5lzeXqe144xi1rcyGi0deOH+azknX+esyWAxfAwAweWyA2tabXHJsD4av4+F0hNyYDcdL53tuYXRnFyImKNiFiAkKdiFigoJdiJigYBciJijYhYgJPZXesn0F3HL3h4I2T/NsnVYqLJ+kkjyTK9nix7M8l1a2X+YZYLMXw/LPSpXLQqUiL17YnOc9xfqyfN7Y8Bi1jfSH5Z/yNl+rqCy6RpXLYeW1DWqrtsPZcol2xPGqF7mNHA8ANtpcHrREOCMubbyX3qtnuaQ4cIifazXF5eN0gb/WZSKzLq/yvm3T4yeC47Umf511ZxciJijYhYgJCnYhYoKCXYiYoGAXIib0dDc+kUyibyC8W9xs8787LVbaK813aNvOk1NyEQkojYhaZwtvvBocd5KoAwCjh++ktrOvX6K2ivHWULbFk1pSR8K7zwZep23uwnlq29rmO+7b23y3OEnq2pnz3WLk1qjJSR1CALg4z3fxhwbCr83Rm6bonFqNr32lzp9zvcZtpWHuf7UWTl6pb/A6hFmEFYNGk18burMLERMU7ELEBAW7EDFBwS5ETFCwCxETFOxCxITdtH86CuDPAIyj0+7pcXf/ppkNA/gBgGPotID6tLuv7nS8BFG9PKLNUIPUJmu2eAJHO8MliPYmT0qwMk9qaZbD9ceGRqfpnNplXrNsa5FLRs2IFlWNMpfDlsn5klkuN1YqPLmjUuHn2tzma5VMkEsryV+zqWl+OY5N8HZeEZ3D4B6WHLca83TO9LGbqC3VCrddAoDt+ivUlkjNUFu9FZb6CkUuD7bJJUyebscHbvoHmgD+2N3vAPAAgD8yszsAPAbgGXe/FcAz3Z+FEDcoOwa7u8+5+y+7jzcBnAZwBMDDAJ7s/tqTAD65X04KIfbOe/rMbmbHAHwQwHMAxt19rmuaR+dtvhDiBmXXwW5mRQA/AvBFd3/HBznvfDAKflows0fN7KSZnVxb3fEjvRBin9hVsJtZGp1A/667/7g7vGBmE137BIDF0Fx3f9zdT7j7icGhoevhsxDiGtgx2M3M0OnHftrdv36V6SkAj3QfPwLgp9ffPSHE9WI3WW+/DeBzAF4ysxe7Y18C8FUAPzSzzwN4G8CndzqQu6NC6p3VK7z2W7UebmnU8vA4ADQj2u00weugba9zGSqRDcthqQJfxrUlLl0tzUXIMc4lqmaLZ/QVByfCc6pcemvX+fG2KzwLsNoKvpkDABhpKZVKc23o0FTYdwC45TYub84vc3kzQxQ7S/A59S1+7Rwe+g1qQ2KSmrzIr4PXXwt/vJ0Y5dtghWy4ZVQq8Qs6Z8dgd/efA2Ci70d3mi+EuDHQN+iEiAkKdiFigoJdiJigYBciJijYhYgJPS046QBaJJurHZGtk8uE2+o0ahEtjdbmqG2lwQsb9o0MUts/+/g/DY5f2ubfDLy4Mktto8d5ulbbIgpwNrhUVke46GGhn8tCixf5WlXrXHq79d5hakM+/IIur/NMucExXugRxgs2Vso8Q3B4NFxwshmRoHloPFwUFQBGR/nrkkgcora1SlgqA4DRwfAxs0k+Z/FSWHZuNsLFKwHd2YWIDQp2IWKCgl2ImKBgFyImKNiFiAkKdiFiQm+lt7ajXg9LAxbhirE+cC0+J53jslZuMCzlAUBxi9s2z4ULRJ64c5TOOX4nzzZDgmc11Sv87/Dzz/JClUtLYYkqX+LPa7vCe5QNRPQou/tD76O2txZfDxtKXCabvOkwtQ0N8Yy4YoHLipVmOLttczuiIKnz5zyz9DK1DQ9y6a22zeW8gXy4zkMjIhO0Vg37346oOKk7uxAxQcEuRExQsAsRExTsQsQEBbsQMaG3u/EOtOrhHcZWlddcS6XCO4yW4jXoSv08qaJV4YkwsxdOU9sbL58Nnyv3ATqnOszbDFVIWysAGMnzFkSJNl+r0aHbguPZfDghBABqEckTA4d4YlCjyf3f3FwKjh+Z4sqFRbTz+tu/eo7a0n3c/7GbwtdbJsnVmvlLPPmn3uKJPCtlrgoM53jbqIFiuFBeM8Xvxc12+DknI+bozi5ETFCwCxETFOxCxAQFuxAxQcEuRExQsAsRE3aU3szsKIA/Q6clswN43N2/aWZfAfAHAK7oFF9y96ejj+VIpxtBW6PM66qlMuFkkmorLO8AwKWFU9T22smXqK2ULFJboZELjp/+mxeD4wCQPcYTP5Yj5Ma+41zyOjbFa5PNLIQTJFr1Jp2TymSobZxIVwDQdp5A094OH7MvwSWvt15/g9r+7jneKmvqDn4Zt0vh+1m6OULnNDf4egyP8nOdf+tNanttnbeU+vjvhmsbHp7i8vFWMywBWoLLkLvR2ZsA/tjdf2lmJQAvmNnPurZvuPt/2sUxhBAHzG56vc0BmOs+3jSz0wD4NwSEEDck7+kzu5kdA/BBAFe+zvQFMztlZk+YmZqvC3EDs+tgN7MigB8B+KK7bwD4FoDjAO5F587/NTLvUTM7aWYn19f411SFEPvLroLdzNLoBPp33f3HAODuC+7ecvc2gG8DuD80190fd/cT7n5iYJBvOgkh9pcdg93MDMB3AJx2969fNX51naBPAeD1eoQQB85uduN/G8DnALxkZlc0pi8B+KyZ3YuOHHcewB/udKCW17HaCNdPq9d4BtsWUeUW1riEdmn1b6ltaZ5/nDicvpPaRiwsAW5EZNGl58MZTQCQqXA5bKZ1htre/xFe+225HfZl9RJ/qUcnuLx294f4/SBXCEuRALC0FM7au3yZS1CFIq+Td/vtU9TWP8VlW2+Fr6tWg6/H/CxvK7a1wufVa1xKXSuvU9vs7eHadYXSGJ0ztxSWlhtNHke72Y3/OYCQWBypqQshbiz0DTohYoKCXYiYoGAXIiYo2IWICQp2IWJCTwtONtsNrJbngratDV6YsVUJSyFrZZ5l1K5yCWKgj7fI2V4PF5UEgMJwWHpLkIKBAJDO8Sy6/gZvCZQY55ltQ6Nc8uofCGfZXXidy4MG3qJqZYHfD2pNnnU4fjgslV2c5TLZ8hKXvDzNi1uO8eVANhtej87XR8LUajxzbO7MBrUV0tyR2+6dprYykeWWVvl1ms6G5VIztX8SIvYo2IWICQp2IWKCgl2ImKBgFyImKNiFiAk9ld7arQYqm2GJzZK8v1a6FM4mGuiLkE/OcemqNBouegkAjUM8K8vSw8HxyeG76JyZWS4prr/BM6HuOHIHtRWLXF45OhWWqJYv8ed17lV+vMoGl+WSfVxGy+TD0uf4ZHgNAWB+hkt5tTaX5eDcf0NYRusf5IUvp4/zokuXz4azNgGgSQqSAsDGSrgQKADMz4XlvFqLy6UjpAefJfjrpTu7EDFBwS5ETFCwCxETFOxCxAQFuxAxQcEuREzoqfTmzSoqK68FbckslyZqFpZPMiUudUzcOUltjQYvsNjM8r9/7fVwdtvGIpegymvcVpnjmXkvPc8LTo7085ctkQ5n2T3wIJcij02PU9vwKH9d+se4fJUfCb82icRhOmdplmeGLa7wbMR29gK1oZEmk3g/t0wftxl/yigVebZcu71JbeVyuPBoM8ELkuZy4T5w7Rb3QXd2IWKCgl2ImKBgFyImKNiFiAkKdiFiwo678WaWA/AsgGz39//C3b9sZtMAvg9gBMALAD7n7rxQGIB0wnA4Hz7lNqkV1nEyvLPrKf63KjPEd7rrq7zN0PYiNWH19HL4XOWIOnO1EWprpiPqu0UsZbvFd9ZXF8JJQ5sNfrybp8PthwCg1uA7wisXw+sBAIlyeCFzRf6cp6fvobbxI+HdZwBYrfIt8suXw7vg7TpXcpIZfi3e80+O8XmtVWprI0KVIS2bjFz3AGAJkvzDXd/Vnb0G4CPufg867ZkfMrMHAPwJgG+4+y0AVgF8fhfHEkIcEDsGu3cod39Md/85gI8A+Ivu+JMAPrkvHgohrgu77c+e7HZwXQTwMwBvAlhz9yvv8WYAHNkfF4UQ14NdBbu7t9z9XgBTAO4H8IHdnsDMHjWzk2Z2cqPMv40lhNhf3tNuvLuvAfhrAL8FYNDMruy2TQGYJXMed/cT7n6ivxjxXUMhxL6yY7Cb2aiZDXYf5wF8DMBpdIL+X3R/7REAP90vJ4UQe2c3iTATAJ40syQ6fxx+6O7/08xeBfB9M/sPAP4ewHd2PJkncagZru9Vm+AtlBZnwrW4FmcW6JxmH//IkKpHtF2a5UkyuRUiQyUi3rE0+fMq3MIltJHjvK5aMsJ/LIbXav4cX6vWKpeFxqYj1qrN653laxPB8ZV1Xksu3eIJLSPjPFnn8DCv19eqBt9w4uIsX498Mar1Fn+tm1UulaXSEZrYUvi1rq3za7FRDV+L3ubXzY7B7u6nAHwwMH4Onc/vQoh/BOgbdELEBAW7EDFBwS5ETFCwCxETFOxCxATziNY51/1kZpcBvN398RAA3u+nd8iPdyI/3sk/Nj/e5+6jIUNPg/0dJzY76e4nDuTk8kN+xNAPvY0XIiYo2IWICQcZ7I8f4LmvRn68E/nxTn5t/Diwz+xCiN6it/FCxIQDCXYze8jMXjezs2b22EH40PXjvJm9ZGYvmtnJHp73CTNbNLOXrxobNrOfmdkb3f/D6YH778dXzGy2uyYvmtkneuDHUTP7azN71cxeMbN/1R3v6ZpE+NHTNTGznJn9wsx+1fXj33XHp83suW7c/MDMeJ+qEO7e038AkuiUtboZQAbArwDc0Ws/ur6cB3DoAM77OwDuA/DyVWP/EcBj3cePAfiTA/LjKwD+dY/XYwLAfd3HJQBnANzR6zWJ8KOna4JOjdhi93EawHMAHgDwQwCf6Y7/FwD/8r0c9yDu7PcDOOvu57xTevr7AB4+AD8ODHd/FsDKu4YfRqdwJ9CjAp7Ej57j7nPu/svu4010iqMcQY/XJMKPnuIdrnuR14MI9iMALl7180EWq3QAf2lmL5jZowfkwxXG3X2u+3geAK/WsP98wcxOdd/m7/vHiasxs2Po1E94Dge4Ju/yA+jxmuxHkde4b9B92N3vA/B7AP7IzH7noB0COn/Z0flDdBB8C8BxdHoEzAH4Wq9ObGZFAD8C8EV337ja1ss1CfjR8zXxPRR5ZRxEsM8COHrVz7RY5X7j7rPd/xcB/AQHW3lnwcwmAKD7f0Rvmv3D3Re6F1obwLfRozUxszQ6AfZdd/9xd7jnaxLy46DWpHvu91zklXEQwf48gFu7O4sZAJ8B8FSvnTCzgpmVrjwG8HEAL0fP2leeQqdwJ3CABTyvBFeXT6EHa2Jmhk4Nw9Pu/vWrTD1dE+ZHr9dk34q89mqH8V27jZ9AZ6fzTQD/5oB8uBkdJeBXAF7ppR8AvofO28EGOp+9Po9Oz7xnALwB4P8CGD4gP/47gJcAnEIn2CZ64MeH0XmLfgrAi91/n+j1mkT40dM1AXA3OkVcT6Hzh+XfXnXN/gLAWQB/DiD7Xo6rb9AJERPivkEnRGxQsAsRExTsQsQEBbsQMUHBLkRMULALERMU7ELEBAW7EDHh/wNXl6noJsZxCAAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD5CAYAAADhukOtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAfP0lEQVR4nO2da4xlV5Xf/+s+6/3q6kf1224b242N26bGD/B4PMNgGWeIYZI4oAg5EpkeRYMUoskHi0iBSPnARAHEh4ioPVh4Rgw2GXDwMM5kwIOwmAFD27RfeLDbdrf7Xf2ox626dV/nrHy411Hb2f9d5a6uWw3n/5NafWuvu8/ZZ5+zzrl3/+9ay9wdQohff3JrPQAhRHeQswuREeTsQmQEObsQGUHOLkRGkLMLkREKK+lsZncB+DKAPIA/dffPx96fy+e9UCyGt+UW6Ri2lXrC22pvkJsatSa1eaRjPh++N7J2gA4dAFAkcwEASZpSWytpUVuhED6laYtvL20m1BY7tmKpxLeJ8P6SFh97kvAxWuS8xOTjJAkfWy5yXA6+vdi+LlTGNgsfW460x/bVqDfQaraCHW0FA8wDeBnABwEcBfAzAB9391+wPqWeHt+4dWfQlnN+4ef78sH2bVdNRMZHTTj06nFqS1N+/xscHiTtPbTPQCk8dgCYmNhEbTPzFWo7OzNNbWPrxoPtjelF2mf+1FlqGx0MHzMAbNqxhW+zVQu2z57l+5qvLFBbPvJcatb5zWp2bjbY3jvay7eX8IdBs8ltScrH4RFbqRg+tt4efl01Go1g+yvPvozqfDV49a/kY/xNAA66+2vu3gDwMIB7VrA9IcQqshJn3wLgyHl/H+20CSEuQVb0nX05mNleAHsBIE++TwohVp+VPNmPAdh23t9bO21vwd33ufuku0/m8vz7qxBidVmJs/8MwJVmdpmZlQB8DMBjF2dYQoiLzQV/rnb3lpl9CsD/QVt6e9DdX4x3ArwZXv2PrWQuktXRkyf4qvSG8X5q6ynEpDK+SltMw59M6tNV2md0fR+1bd24jtr6e/mpqc6dozbU54PN11zDl1M2ve9qahvoLVNbeYDb6ml4tbhe30r7zM1wBaJofD5OHz9Nba8fDst5pbEh2iffwz+BJhY+LgDoHeKr5z1lLlMO9oSv1WLka2+ahv3o1OH/78P1/2NFX6Ld/XEAj69kG0KI7qBf0AmREeTsQmQEObsQGUHOLkRGkLMLkRG6+pM2M0O5FN6lJzxyJUlIsE6LSyQbRsMBIQBQO8elssV5HpXVkw/Lcn19XF675qorqO3Kd+2kttlIIEyxJ3KPzoXnavd1fF+X7dxMbY06D07xHJ+rHDk1LOoRANIGl1+bC1zyaizwgKJbatcE263IZbIcCbwCgKTEA2Fy/DJArsiv75KF5+RCot7+19f+ho+BWoQQv1bI2YXICHJ2ITKCnF2IjCBnFyIjdHU1Pp839I+Ed1lI+X1nMAmvnPaW+YpqJF4BfQXer1abo7bq/Jlgu/fxsU8d5/v6ecJVgVqjTm3rNmygtomt4ZXpic1cnegd4WPk4RtAJLYDPSQdlzNlBUBzgR8zevnO6qVIPrl6OBAml0Qu/TJfBe/dMExtrV5+bPXIBekW7pdG8hCmTo4rz8euJ7sQGUHOLkRGkLMLkRHk7EJkBDm7EBlBzi5ERuiq9FbqLWDnuzcGbeVapNxRJSxNHDs2Q/v88jleeSTn/LDrc1wOs1a4qkqOyDsA8Pr+cEUSAHiDBAUBQItIKwAwvpFLb9NEeutP30P7bBgKB4sAwKZI1Zq+MpeaykROalQilWkaPLCmMcelq/lDPAfd3FQ4T2GjEq5YAwCL4MEu4+/aRm25SJWZng0D1GYjYZnSIrXDiiTSKFIISU92IbKCnF2IjCBnFyIjyNmFyAhydiEygpxdiIywIunNzA4BqABIALTcfTL2/uGRQdz1kd8M2hYOTdF+P/7fPwm25yP50apzPJ9ZkvB7XC+4nDTcF84V1l/k+1qX54nJRvp4BBUKkSKYTW7LHQtH7R347t/TPocP/ILa7rjzfdR27dU7qa2/GB5jaZbLa3aGz+PZN3jJq9o/nqC2hZNhWa5W5xLg8Tku6R5+5Qi1Fdbx89m3fZTadn/wumB7sY+X12omYWk2otheFJ39t909HPsphLhk0Md4ITLCSp3dAfytmT1tZnsvxoCEEKvDSj/G3+bux8xsA4Dvmdk/uvuT57+hcxPYCwBj6yPfUYUQq8qKnuzufqzz/xSARwHcFHjPPnefdPfJgSFeM10IsbpcsLObWb+ZDb75GsCdAF64WAMTQlxcVvIxfiOAR61doqYA4C/cndeeAdDbV8S1e7YEbQcXebLB2elwJNq6vkHap9XkkUtnKlzGmRjhiQ2vGAnvrwAuGRWNT/HoUCTRYy//FJRE7tE9PeHIq/5+Hg81O8Xn45ff/QG1jZyMRNKNDgXbWzUevZY2IlFei5EIu5TbqjNEKIpIVMksj3ycOcPLcvWd5lJwc4b3q99webA9v5NfOwm/vCkX7Ozu/hqA6y+0vxCiu0h6EyIjyNmFyAhydiEygpxdiIwgZxciI3S91tvwcDhy7MwZniCymAvLUAN5Ll1NpzyqCc6TDZacyz/bB8Pj6C3zKLRG5HZab/AxViLyT6mXS45eDI+/z/hcbRjndeBKhYisdeQktZ2YCkebtRIuveVyPGEjnM9xIVKbbXAsvM36HJd6+yI1BM/N8wSi1VNcwhwe5Mc2YOHotiQXScBJTotHojb1ZBciI8jZhcgIcnYhMoKcXYiMIGcXIiN0dTXeLIfeUnjl0Vo8mKQyHc4JlousxheMRwp4i9/jWi1epqfZJDno+nhURTHP91Wp8MCJEgloAYDBAX7cxVJ41XphYZ72QcIvg7ERHpBTq/MV7YSczmadqwy1Bb6aXanwfn39PHhpdCB8Pqci5aR6enjeQE95QEutwa+5I29w5eKyI2HlYsPOrbRPkobn3l2r8UJkHjm7EBlBzi5ERpCzC5ER5OxCZAQ5uxAZoavSG9yBZvjH/ZEKSiiSe9LIMA8I6Uu5PHVkjkte9YgMVamFB1ksclmoUOYlfFpNLv9s3cZll+F1Y9R25mw4oKgZ2VcrchU0G7xfucglrxrJKZgs8rmqRoJT5s6Fy1oBgLciQSbrw2WXmuQ6BID5BS6hVev8Qm22uOxVi+Sue/3lcEmp8Vs30z4FUl6rkxMyiJ7sQmQEObsQGUHOLkRGkLMLkRHk7EJkBDm7EBlhSenNzB4E8HsAptz92k7bGIBHAOwEcAjAve4+vdS20lYLc2fDb1sg7QAwSso89ZAIOgBo1Ll8kha4fFI1nhduuh6+Nw4OhaPhAKAYkUKG+rlkNDLMI68GB7jkNTsTPrazczx3Wh480m/9GJc3Y9RqREZjydMANBo8enB+nucNnI9E9JXL4blKcvy8nKlwmWyaHReAWpOPv9bk/Y4fC5eoil/D4XlcaQ66rwG4621t9wN4wt2vBPBE528hxCXMks7eqbf+9kDjewA81Hn9EICPXORxCSEuMhf6nX2ju5/ovD6JdkVXIcQlzIoX6LydGoN+UTCzvWa238z2T5+LZEsRQqwqF+rsp8xsAgA6/0+xN7r7PnefdPfJ0TG+ECSEWF0u1NkfA3Bf5/V9AL5zcYYjhFgtliO9fQPAHQDGzewogM8C+DyAb5rZJwEcBnDvcnbm7khJUr5mJKHg2EBY/pmd4ZFQpxe51DS+IxwJBQCj/VxGO3k0nDRwqDZB+5QLfHvrxkaobaAvkkwzzyWeoaFwv+NvcOlqYYHLUGkak8MiySOrYVvKg+gwPcfHOFPhHVPntsLJsKxVIqW8AGA+5RFxsy1uq0dKh9VTbqul4Qi2VspltIRFMUYSTi7p7O7+cWL6wFJ9hRCXDvoFnRAZQc4uREaQswuREeTsQmQEObsQGaG7td5gKJD7S9H4UBokeeFchf8ib9F5xNBtH3wftb17N5fRfvT1x4PtZ47xSLmJ4SFqGx7kPzJqNLgMVY/IP2kSPu56PaJ5JVxeO3uO118DqTcGAJ6Go+8W5vm+Zmb5MSfGIxxzEXnz5NmwPDsxws8L+ng0YiVS662eRmoIWlheA4B8X/g6SLhaBzMusTH0ZBciI8jZhcgIcnYhMoKcXYiMIGcXIiPI2YXICF2W3nIoeziR4qb1u2i/p5NTwfZp8Kirze/eQG3vu2M3tV19Da+vta4vPF1/840naJ+5GS4PVhd45NW5MzyirxFJXuiF8P27Uuc6zjyJRASAUSJ7AkAZPHFnQuTBmUh0YyNSK61Y4lGAtSYf/3QtLPUVI4kvF/NcEl0ErxPYAJcVqy1+HeQHw7JiXz8/5oREt1kkkaae7EJkBDm7EBlBzi5ERpCzC5ER5OxCZISursaniaM6F145zZV5YEKdxCVs3rGN9rnrX95CbVdcNU5tpV6+Svvu28Kr+K3ILP7ogb+itgOvvkZtVucbTVp81RelcMDFuciq+thoJN9dLy81tTjHg0Iqs+HV54VIPE4+z4+53uIdZ2s8gKaaC8/HS8dO0z5vnOH7qkSChtJI/rc6ImXAxoeD7QP9vATYuXmmCqys/JMQ4tcAObsQGUHOLkRGkLMLkRHk7EJkBDm7EBlhOeWfHgTwewCm3P3aTtvnAPwBgDf1i8+4ezhB23k0W00cPRsuofQPz/8D7bd+V1iauHfv79M+l+/m8poVeM64ej0S6NAIB35c+95raJ/Dz7xKbd9/5O+ordTgQTLNOg9AST0cgDLcw6WfbRNbqA2RXGfzDS7nsQCUmXoklxwfBYpFPo5KkY+jOBKWr44cPUv7nKzw7Y1v5wFWx49yOa/V5DnochaWN+emubRZa4XHmEZKRi3nyf41AHcF2r/k7ns6/5Z0dCHE2rKks7v7kwAiKUaFEL8KrOQ7+6fM7Dkze9DMeFlUIcQlwYU6+1cA7AKwB8AJAF9gbzSzvWa238z2z83yxAVCiNXlgpzd3U+5e+LuKYAHANwUee8+d59098mhYf5bXyHE6nJBzm5m55dN+SiAFy7OcIQQq8VypLdvALgDwLiZHQXwWQB3mNketENsDgH4w+XsrFguYdOurUFba4BHGu2ZvD7YfsX1m2ifxHnOr2bCo6QapHwSACAflq9KA3wat193JbXNP/oDais0uYQyt8CloRLJQbfn6stpn52XcdvsAp/HhSkuYZ6shufxVJVHjeXzXFLMF7gMNbCJy1rvvztc6uvUX/2U9jnePE5t9/yr36W2J//ux9T2kx8eprZjRLJr1rfTPkbLSXGJdUlnd/ePB5q/ulQ/IcSlhX5BJ0RGkLMLkRHk7EJkBDm7EBlBzi5ERuhqwsl8MY+RibGg7d/8+39N+5V6w/ekZo7LMblIaaJc5LB7ewepzT28zVbKpbDNO7g8+K5ruCx39HkeQeUJ31++GM7O2SjwpJIHXuWy0NTMLLWdPM1ludOzYSl1jkpGQC7PpbyBHi6J3vzbv0ltN33o5mD7j599nfapHjxCbf0jPAHnh3//dmp7+cVHqe3A/vDPVO74ML8+Nu0M/0I9n+PPbz3ZhcgIcnYhMoKcXYiMIGcXIiPI2YXICHJ2ITJCd2u9eYqFelgu6x/j0lCKsOzCpDAAsDy/j7XqPPLKPXb/C0eiNZo8im5kI5fyPvzPPkRtD598jNqqM5FabwhLW2dzPKpwfEM4oScAzLe49FaPJFEskDplvflwQkwA2LB+I7XdfGu4zh4A3PK776U2Gwmfz82XhSVgAEjTIrUdPMgluw//E5rWAVddNUFtTz/zy2D70UMnaJ8dV2wOtptJehMi88jZhcgIcnYhMoKcXYiMIGcXIiN0dTXePUWrFV4VTqOL4OFV90JkNbjlPIebRw7bnduarfCqu+f46ngrUppo23t2UlvvpiFqm33pGLVZIbySvO3my2iff3rvndR24hRfEZ6amqG2ykJYQWkZX43fMsFLdm2PlF1qFHiQzPRiuMzT1h18Nb6Q46W3XnuZz33/v+DXweSNV1Dbz595Jdi+uMAVlKRJ9sUvez3ZhcgKcnYhMoKcXYiMIGcXIiPI2YXICHJ2ITLCcso/bQPwZwA2or2wv8/dv2xmYwAeAbAT7RJQ97r79BJbg5HyNK0ml08KhbDElkbiQapVLnnF5DWAbzRphcdY7OGBE43I7bR3hEuHA5tHqO3kAs+9Nzwcluw27OJVtYd3DlBbz+Yd1HaFcVtzMSwbzdf4eUkTLsvlcpGgJ+fnrJwvB9vH16+jfQaHeFBWqchlub5BHlB0/U08n9zooz8MtqeRSmS95fA1bMbLPy3nyd4C8MfuvhvALQD+yMx2A7gfwBPufiWAJzp/CyEuUZZ0dnc/4e7PdF5XALwEYAuAewA81HnbQwA+slqDFEKsnHf0nd3MdgK4AcBTADa6+5s/rzqJ9sd8IcQlyrKd3cwGAHwLwKfdfe58m7s7yA/1zGyvme03s/0zZ/l3TSHE6rIsZzezItqO/nV3/3an+ZSZTXTsEwCmQn3dfZ+7T7r75Mg6nrVFCLG6LOns1l7e+yqAl9z9i+eZHgNwX+f1fQC+c/GHJ4S4WCwn6u39AD4B4HkzO9Bp+wyAzwP4ppl9EsBhAPcutaHUHYuNcFhOPpIzrlQID7MVCfGp1nnE0GItUjYqUj6HhRT157l0lcRyguUiuesmuFTWynOpL1cMS01jY3x7zYjk1SD5/wAg1+IymrF+EQmt0eTnzJxLSh65Dkr5cLmmgSEuvY2O8/md2BLO/QYASSRabt12Psbtu8Jj8YQfc4FIbLzHMpzd3X8U2cYHluovhLg00C/ohMgIcnYhMoKcXYiMIGcXIiPI2YXICF1OOAnUmCITCWFrIizJNJsR6ccickw5LMcAQNLi0lCahrdZi8h8tUbkuCKzPzjM5bx8iUfLFXt6g+3lIk/mWK9GEmbmIlFq9Sq1FVISqcinFx4RjlpNLg9WF/k46rnwuT53boH2WWzw7fX1h+cXAM6c46WyWk1+4P0kWm5hgfepVsOOxK5RQE92ITKDnF2IjCBnFyIjyNmFyAhydiEygpxdiIzQVektSYGFRlhCaUUingrF8D2pUuG1xgb7edLA9et4xJMXIzXiSP24xVokwq66SG1JPpLcMo0kXyxxiWpmfi7Yfvh1ngt0dILnGcj3zlObJzwiLiV1+Co1Ph+1RixJKD8vzUiy0hY5n28c4TXsZivhOQSAHLkWAWBuns9Vzrncu1gLj/GVg7yu3Oxc+JgTSW9CCDm7EBlBzi5ERpCzC5ER5OxCZISursanaYIKWbEsFflqZbkQzglWKoXzrQFAzvihWcTWaPC8cNVqOECiGQlyiKRHi5nQdL4an+/h9+iZmfCq+18//n3aZ2jd3dS28/JIfr1IfroWyWtXXeQr7uzaAIBWi89HsRTJyZeGbSdOnaV9GpFgqAIpu7RUvySiNLRIENjxN47TPmfPhueqFRmDnuxCZAQ5uxAZQc4uREaQswuREeTsQmQEObsQGWFJ6c3MtgH4M7RLMjuAfe7+ZTP7HIA/AHC689bPuPvjsW3lzNBL8r/19HDprUSCD3pGw7m7AKBciAQeLHJ5bXaG5xFbJLnOBgaGaB+PJF1jUh6A6G24f7iP2m74jRuD7YeOvEL7PPDf/5zafuv2m6jt6vdso7bhjWFZ1J3nzyvkefCSgc9jiwRXAcDp2XCw1MFXD9E+sblPIpJokvIApcUGD5bqHQjvsFjh7rmwGN5eLAfdcnT2FoA/dvdnzGwQwNNm9r2O7Uvu/t+WsQ0hxBqznFpvJwCc6LyumNlLALas9sCEEBeXd/Sd3cx2ArgBwFOdpk+Z2XNm9qCZ8TKhQog1Z9nObmYDAL4F4NPuPgfgKwB2AdiD9pP/C6TfXjPbb2b752Z4rm4hxOqyLGc3syLajv51d/82ALj7KXdP3D0F8ACA4EqOu+9z90l3nxwa4fWrhRCry5LObmYG4KsAXnL3L57XPnHe2z4K4IWLPzwhxMViOavx7wfwCQDPm9mBTttnAHzczPagLccdAvCHS23IABSJhJJLuDTRkw+X3PFI3JhHykmlCe9XLnP5p1QKy3m9vfwTS6XCI7mShEtvPX18HC1w+WfXVTuC7e+6biPt89eP/JDaHv2Lv6e2OxfCMh8ATH4gPI40xy+5WIkkM/5ccueS19RUOLqtMs/l1207tlNbZb5CbSenTlNbIXLcw+vCtlxxA+0zvxD+SpxGrvvlrMb/CAgW4Ypq6kKISwv9gk6IjCBnFyIjyNmFyAhydiEygpxdiIzQ1YST7ilaJKFjqxGJ1iGBUn19YUkOAIqRBJb5iAwSS3zJShDVazyZYNqIJABMeKLEVp33azb5/s5Nh6WmW2+/hva5+bZJavvJD1+kttcPH6W2TUfCUW/lAZ7Acnh4jNoakfJgc3P8l5mV+bC8eeXuXbTPyMgmahsa5VF7M7O8bFQ+x/ttvzIcalKr8mdxtfHOpTc92YXICHJ2ITKCnF2IjCBnFyIjyNmFyAhydiEyQleltyR1LFTD9cGaLV43rNkK35MaDR7t1NfLpbwkidVm49vM58PTlUTkteYiP67qPI9eO3WM1yLbuH6c2kaHR8L7ish1O65bT23TNW4rFfizYp6oUM0cP+ZSbySZYysizZZ5As6NW7YG23dezusENiIJLCPBd2g0ubw2O8cTmfYPhCXk3p7IMfcR2TbPr1892YXICHJ2ITKCnF2IjCBnFyIjyNmFyAhydiEyQneltyTFzOziBfQLRzxVFyMJClMun9RrfAxMXgOAck84CWSpxGWc+SpPbNiMyEmDY4PUdutvvZfatu+cCLbninw+Bsd4wsw9v7Gb2vpKXPIaGgrXv6sjMveRaESLyHzlSEQZy0laI9GXANBscrm0p5dHWg4O8nNWKvNrJF8KH3ejzuVStr1cRBvUk12IjCBnFyIjyNmFyAhydiEygpxdiIyw5Gq8mfUAeBJAufP+v3T3z5rZZQAeBrAOwNMAPuHuPFEYACCHFOEcb8UCz8eGXNg2v8BXdpMGX8lcmOc5y/KRVd/RkfCqb77ASzUhsgrbw4IZAGwiK7QA0D/OS0r1DobHn6T8uAopH2NhlI+xv8xX8YuF8Pibi/y85BIexBErDTVX4UEmdXIdxFb3C5G5d57iDeWeyDwW+TwuVMNjzOUiKk8lrCYkycpy0NUB/I67X492eea7zOwWAH8C4EvufgWAaQCfXMa2hBBrxJLO7m3efJQUO/8cwO8A+MtO+0MAPrIqIxRCXBSWW58936ngOgXgewBeBTDj7m/+UuMogHA+XCHEJcGynN3dE3ffA2ArgJsAXL3cHZjZXjPbb2b7FyL5vYUQq8s7Wo139xkAPwBwK4ARM3tzJWMrgGOkzz53n3T3yf4hvqAjhFhdlnR2M1tvZiOd170APgjgJbSd/p933nYfgO+s1iCFECtnOYEwEwAeMrM82jeHb7r7d83sFwAeNrP/AuDnAL661IbcHY1mODKhFQk+WCR53BYWwqV9AKAcK/9U4J8wInEwcAtLb/UWl4XqESmkSUr4AICDb7M8xAfZsrAk06jx7SV1Psb6ApfKGnmutDIp9cy5KdpnbDScPw8AUlJ6CwDOnDhNbbVGeIzjE7zEU2JcAjw3N01tNOoGQC5yYZ04Ht5mmkbyKKbh89mKXItLOru7PwfghkD7a2h/fxdC/AqgX9AJkRHk7EJkBDm7EBlBzi5ERpCzC5ERzCOSxkXfmdlpAIc7f44DONO1nXM0jreicbyVX7Vx7HD3YM2urjr7W3Zstt/dJ9dk5xqHxpHBcehjvBAZQc4uREZYS2fft4b7Ph+N461oHG/l12Yca/adXQjRXfQxXoiMsCbObmZ3mdkvzeygmd2/FmPojOOQmT1vZgfMbH8X9/ugmU2Z2QvntY2Z2ffM7JXO/6NrNI7PmdmxzpwcMLO7uzCObWb2AzP7hZm9aGb/rtPe1TmJjKOrc2JmPWb2UzN7tjOO/9xpv8zMnur4zSNmxkM7Q7h7V/8ByKOd1upyACUAzwLY3e1xdMZyCMD4Guz3dgA3AnjhvLb/CuD+zuv7AfzJGo3jcwD+Q5fnYwLAjZ3XgwBeBrC723MSGUdX5wSAARjovC4CeArALQC+CeBjnfb/AeDfvpPtrsWT/SYAB939NW+nnn4YwD1rMI41w92fBHDubc33oJ24E+hSAk8yjq7j7ifc/ZnO6wrayVG2oMtzEhlHV/E2Fz3J61o4+xYAR877ey2TVTqAvzWzp81s7xqN4U02uvuJzuuTADau4Vg+ZWbPdT7mr/rXifMxs51o5094Cms4J28bB9DlOVmNJK9ZX6C7zd1vBPAhAH9kZrev9YCA9p0dsbQnq8tXAOxCu0bACQBf6NaOzWwAwLcAfNrd5863dXNOAuPo+pz4CpK8MtbC2Y8B2Hbe3zRZ5Wrj7sc6/08BeBRrm3nnlJlNAEDnf56/aRVx91OdCy0F8AC6NCdmVkTbwb7u7t/uNHd9TkLjWKs56ez7HSd5ZayFs/8MwJWdlcUSgI8BeKzbgzCzfjMbfPM1gDsBvBDvtao8hnbiTmANE3i+6VwdPoouzImZGdo5DF9y9y+eZ+rqnLBxdHtOVi3Ja7dWGN+22ng32iudrwL4j2s0hsvRVgKeBfBiN8cB4Btofxxsov3d65No18x7AsArAL4PYGyNxvHnAJ4H8BzazjbRhXHchvZH9OcAHOj8u7vbcxIZR1fnBMB70E7i+hzaN5b/dN41+1MABwH8TwDld7Jd/YJOiIyQ9QU6ITKDnF2IjCBnFyIjyNmFyAhydiEygpxdiIwgZxciI8jZhcgI/xcFuLl3GEY9xQAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD5CAYAAADhukOtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAcKUlEQVR4nO2da4xdZ3WG33Vuc/fY41sG2+ROIAQSYAhQwl2gFKEmVFUEQig/EEYVqEWiPyIqFSr1B1QFxA9Ea0hEaCmBchERRQWaAgFSQiYhCbkSOzjEzjgTe+yxxzNz5lxWf5zjyom+d834zMw5Jt/7SJbP7DXf3ut8e6+9z3zvWWuZu0MI8fyn0GsHhBDdQcEuRCYo2IXIBAW7EJmgYBciExTsQmRCaTWDzexqAJ8HUATwZXf/VPT7Q6Njvmn7zqTNwSVApg5acKxCZAxGRkJkgzgSHsqb1FQInCwW+H04UkubHSipEl+fy5lfi90nfe0cmz6A+dmZpLHjYDezIoAvAHg7gAMA7jKzW939ITZm0/ad+PAXbk3aGs0GPVajmQ6YcuBfJQgWK1aobanJA/DE0kJyezH6fLQ4T00bBvu4bbif2up1frgTtWJye8H4+6qBz33T+TgLbGcL7HskDn4TjiK6GUZ7h/PRwQ3EyPn8l7/6MzpmNR/jrwSw190fd/clALcAuGYV+xNCrCOrCfYdAJ487ecD7W1CiLOQdV+gM7PdZjZpZpMnZ4+s9+GEEITVBPtBALtO+3lne9uzcPc97j7h7hNDo5tXcTghxGpYTbDfBeBiMzvfzCoA3gMgvfomhOg5Ha/Gu3vdzD4C4IdoSW83ufuD4RgzeDG9ht6MVjLJLWmhypelFxt8f5VAn7JADisV0tNlzWB5PLifRivdJxcXqa1oXE2wQnp+C4E6UYjmPli0tk5Xn9eYaDGbveticJ4LgTpRqwW2YK4iOhI1mLoS7GtVOru7/wDAD1azDyFEd9A36ITIBAW7EJmgYBciExTsQmSCgl2ITFjVavyZ4u6o1dP6hDcCOYxsLxTSSR8A6HEAoNmsUVshEnJYxkuDH6tS4cku9SK3zde4nDdQDmS0EpnfUF7j/scFSSPNiNg6zRoLEnmagf8sYaRgUVZhkPW2DhlxnRR9pWOCfenJLkQmKNiFyAQFuxCZoGAXIhMU7EJkQldX44GgTNAaF/cy63CFuchX+Nk4tuILALVqupQVAFSwxG0lXpYqKsdF/QgyWsL19k5zXdhOO95hZ7CV+lpwDUQeNj16PnaWCRNdP4xOokVPdiEyQcEuRCYo2IXIBAW7EJmgYBciExTsQmRCdxNhANSIaGAdSCFx+6dADguSTIqB9GakjlsjqFkWdYsZLHMfhwb4uPo87zJTLQymt4O/r4hojj1obYUOj9ct4mSXzsZ1lzOPCj3ZhcgEBbsQmaBgFyITFOxCZIKCXYhMULALkQmrkt7MbD+AEwAaAOruPrHcGNbqJujGgyKRE6K2OWGNsWBcVGOsVE5PV9Q+qVjk+6s1gvZVcyeobe6pKWrb8qLL0scK7utBuT40g1ZZ0Txak5yzQLnqoKLdsrDDhdJbx8XkOhvW0Q6pj8H1uzpnAABvcffDa7AfIcQ6oo/xQmTCaoPdAfzIzO42s91r4ZAQYn1Y7cf4q9z9oJltA/BjM3vE3W8//RfaN4HdALBh245VHk4I0SmrerK7+8H2/9MAvgvgysTv7HH3CXefGBwdW83hhBCroONgN7MhMxs59RrAOwA8sFaOCSHWltV8jN8O4LvtYnklAP/u7v8VDahVl3Dw939I2opBgchyKZ1BZRVeetGCdLO+coXaCk2ewVaupvfZLPFp7C8GolGdH6vu3Me+c86jtqPz1eT2k4EUWSryY7lxKacZZL0ZeY4USOZge4fc1mEbKtb2KsxsC2wRFunHkXhIilhGMnDT0i3MIt87DnZ3fxzA5Z2OF0J0F0lvQmSCgl2ITFCwC5EJCnYhMkHBLkQmdLXg5MmlGu75A8nYci5DMbmmHMlJgdRRKnHJrhxITWVSQ3ExUFW2jW6gtvPGuO2cfn5qhgeHqG1hcTG53Zq8AOTR47N8f0vp/QFAox4U7iTyZqXSR8dEUlMxkDeri2m5EQCMXAdRQdLqEu/BF73nUplfVwP9vIJowdLvLZLR6uTSj4qA6skuRCYo2IXIBAW7EJmgYBciExTsQmRCV1fjrVCEDW1MGztox1MNliv5eirQCGt78dXWQZKoUWukkxIAYGier2b7MF+Z3jjGT834SFDzbuNwcvvh2ZN0zL5p3k5q7xE+zoJWWUB6nxaoHX3FQCUp8GMtVfkcs0X3KGUlWo2v1fi5jpJ8+sPV+PR7i1bWK2Q6qtXAP2oRQjyvULALkQkKdiEyQcEuRCYo2IXIBAW7EJnQVenN3eHVdNKCB/XHjOgnzTBVIOpNFAkvXO6okzp5/VEST5NLeYdmF7gXwbj9x7hUViUJL8dOcklmdp4fa77B5/h4jY8rkOdIdJ5Lheh8RpISf2YZka/CknZB/b9mk4eMB3MV1Rt0dv0ETrJLuBr4oCe7EJmgYBciExTsQmSCgl2ITFCwC5EJCnYhMmFZ6c3MbgLwLgDT7n5Ze9sYgG8AOA/AfgDXufvRZY/mHtTwCmQG0lan2eQyWShbBNlJrGYZANRJxtZIgcsq/cHt9PAcl9AWazwDrHCM73R+Ke1j1IaqGUiRQ8F7W6pxW6ORzugrB88XB99fM/I/yA5zIpcGQwAP2kkF6loz1PMCaCZgkAlK/I/q+K3kyf4VAFc/Z9sNAG5z94sB3Nb+WQhxFrNssLf7rc88Z/M1AG5uv74ZwLVr7JcQYo3p9G/27e5+qib0IbQ6ugohzmJWvUDn7o7gjwsz221mk2Y2WZ8/vtrDCSE6pNNgf9rMxgGg/f80+0V33+PuE+4+URrkTRGEEOtLp8F+K4Dr26+vB/C9tXFHCLFerER6+zqANwPYYmYHAHwCwKcAfNPMPgDgCQDXrehoBhSIjMYy29rGMx7jYcZQdKzIlL43NpzfM/sKXOOZK/EihMdrfNzQQNDaqpJ+331lfqpnF4KCmaznFYDhCt/n/qPpoo3zwfOlHMhrbO4BIOgCxrWyKPGxw2TK2I1IRuOS41qybLC7+3uJ6W1r7IsQYh3RN+iEyAQFuxCZoGAXIhMU7EJkgoJdiEzoasHJFmntIuprxYjkjI7HBQURG0SyW2wERSrnDnM/bJTayn3pnm0AsH0DL4g4UEzfv8/dsoWOOX/bILUNBWl7xeCU/XzvoeT2nz7G52NmKehhF2VFBlJqvZ4eF10CoTQbSWhBtlxEcMlRwpqpBD3ZhcgEBbsQmaBgFyITFOxCZIKCXYhMULALkQld7/VWa6QzrKK7ToGkNXUqvYW6RSStECcbwSyWMUdtExvTRRkB4PJXTVDbtg38gE3iZKXAs9d2bQ2KWwYZWfU632fpknTxouMLfH8/3HeM2mg/NAAWSJ8lS/voQdFRD6+PQG9s8N53jWAemSdR8UhaFDMYoie7EJmgYBciExTsQmSCgl2ITFCwC5EJ3U2EccDJymm0AuqFM191j2t+8RXVqP2TIz2uWOqnY4oj5/FjDfJ7bfXkLLXNlIaobWQw7ctjz/Ay3nc9wlfBTx55itoGzzmf2gqN9DzW5nm9u+GgXt9iMzgvxi9jugbu3I9Gh23FmnW+z6hVWYnU3gvL5Dl7z6tr/ySEeB6gYBciExTsQmSCgl2ITFCwC5EJCnYhMmEl7Z9uAvAuANPufll72ycBfBDAM+1f+7i7/2DZfQEo0hp0gaRBZItQXuvQ1kn9MWvyRJIn57ntkVku1Tx05ElqGx0bobZmI+3jsdkFOqZ24CFqKx3dT23Xvo9Lb88cTEt2F45y2bDQz9/XHU8cpbZioMyOkhZVI308iaevwmv8WZGPqy7x87kwz+d/djEtED5T7UQZ59fvSp7sXwFwdWL759z9iva/ZQNdCNFblg12d78dwEwXfBFCrCOr+Zv9I2Z2v5ndZGab1swjIcS60GmwfxHAhQCuADAF4DPsF81st5lNmtlkfYF/ZVMIsb50FOzu/rS7N7zV2eFLAK4MfnePu0+4+0RpYEOnfgohVklHwW5m46f9+G4AD6yNO0KI9WIl0tvXAbwZwBYzOwDgEwDebGZXoJVisx/Ah1Z6wCKRr5pBtk6lmHazHtQDq9Z5PbC4dl1U9yt9bzSeW4VqkK11ZJH7XyGZUAAwsniS2lgZtOFF3nZp0fmfV7VgjutHp6jt0JOPpsc4Py+ve0tK9GmxZYBnFm4b5vLmrs1pOW+gzM9zfx+X3kqlIMMuyGyrV6vU9vtD6azDL/9iPx0zReS66NpeNtjd/b2JzTcuN04IcXahb9AJkQkKdiEyQcEuRCYo2IXIBAW7EJnQ1YKTZoZKOX1IK3D5anQg3SZpvs5lhoXjJ6gtusN10lGqUgxaCQVZSKVA1nrhBt4a6tLtG6lt5mhaxpk9MU/H1ILWRNPHefuqn/7sZ9R22cTrktv7+vglt2l4kNp2bd9KbVsD6W3jYHoeC8bnfrCfS2+F4FwvBVlvx+b4/D/6ZDpDsFFbpGOsybLvVHBSiOxRsAuRCQp2ITJBwS5EJijYhcgEBbsQmdBV6a1YKGBoKC2vFIOqgTOz6WKD80t8TIMUXgQAFPg9Li44mZZrCoF01WjyLK9X7uQS2hsvHqO2ZpXvc5ac0UZ9iY6ZP8H7yg1vGKW2y181QW0Tr70qvT8ihQHAUpX7WAgbnwVGYqr0cT9qNS6hHdh/gNpun7yP2ianuBT88LH09TO7FBTnLJ15fzg92YXIBAW7EJmgYBciExTsQmSCgl2ITOjqanyj2cDx4+l6Z40aT0xYYi2jglV10vVnWbyDRIKi8TEXbecrqu9700upbfYkT4I4OptOdgGATSTR5OAcX3F/+WWXUttrrnorP9YYbxcwUEonp/Q5X+netIHXmesPTmilwNWJI4efSW5/8JF0jTwA+Pn//orafvnzX1Lb0RJXV8b+5F3UNl9Pz1XTuMoDovJEeVx6sguRCQp2ITJBwS5EJijYhcgEBbsQmaBgFyITVtL+aReArwLYjtbK/h53/7yZjQH4BoDz0GoBdZ27pzNW2rg7lhqsbQ2X3krsS/9BiyQPVIt6cI+rBIkwXk/vdPswr1n27isvoLadG/m4+aD22/aN6ZZGALCpL12bbMtQuiYcALzkkpdQ24ZRnpCztMRbGvUV03NVCKS3mWneTuqJ/fuo7deT91DbXfekk1P27nucjjkxx9thNcBqvwGbXnMttS00uKxoJEmpHNS7463IOCt5stcBfMzdLwXwWgAfNrNLAdwA4DZ3vxjAbe2fhRBnKcsGu7tPufs97dcnADwMYAeAawDc3P61mwHw25oQouec0d/sZnYegFcAuBPAdnc/9bnrEFof84UQZykrDnYzGwbwbQAfdX92j19v9YlNflPPzHab2aSZTdbneQK/EGJ9WVGwm1kZrUD/mrt/p735aTMbb9vHAUynxrr7HnefcPeJ0iBfWBJCrC/LBru16jTdCOBhd//saaZbAVzffn09gO+tvXtCiLViJblhrwfwfgC/NbN729s+DuBTAL5pZh8A8ASA61ZyQKN5OTxzyTztZqXA3R8d5LJWNRAo6nXuR7GWlpN2DvN75iXjPDNsYZHXXLMGl7WG+nkm3bnnn5vcXrhgBx3TV+H12BpLC9R24vAhart7797k9gcffJCO+c19vIbbvscDqexEIJWR89kkEjAABOUQ0b+ZL02NbOVz7MF11aQZbFzmA9JStQf9y5YNdnf/Bbh897blxgshzg70DTohMkHBLkQmKNiFyAQFuxCZoGAXIhO6WnDSzNBXTBfXi1SGF71gW3L7heNb6Zhzx3iW0bG5k9Q2G9gq9XQRyJEaT/ZbWuQSTzVo4zQykm6TBQCDfdxmJHlwaIjPx9Gjye9DAQB+8pOfU9sdd9xJbQ8/ks5SO3wkmKs6lxsbTZ4ViajVF5F6i0V+6RcrfH7Lm19IbRaMKzQDmZX4EmWCurNr58wLpgohnmco2IXIBAW7EJmgYBciExTsQmSCgl2ITOiq9DYy0Ic3vfzipG3jIJcMLty6Ibl9KMhcGi1xWatW4jrfwhCRBgHUT6Zluep8cM8M+tEh6BE3WOHjygU+bu7wU+ntT/HMsNvu/A21/du3/pPaDk+n+6gBAFPKmsHzpWn8vESFKp1kgAGAldMZfZVAvqxU+DVQ2sYz21Di8iaa/FptIi05WlD8lFdUlfQmRPYo2IXIBAW7EJmgYBciExTsQmRCV1fjNw314bpXn5+0Vfr4KuITU+lV3zt+xpM0XrptgNqszOvTLQUr5PsefSC5/aKLX0THFILaescO8pZGJ4/OUtuhKZ648ti+9D6fPHyEjqkPnkNtYzvS5wsAvBjVrku/73rweKnWeLJIVIZ8oMxXrQtk1Xpxnic8Nfq38GNtSidlAYA3uGJQD1bjHWlbtBrfaJC6dU2txguRPQp2ITJBwS5EJijYhcgEBbsQmaBgFyITlpXezGwXgK+i1ZLZAexx98+b2ScBfBDAKV3s4+7+g2hf7oYF0spp5mS6vhsAPDKVll1++cBDdMyBQZ4csXmYy3KjZS6VbRhJN6YcGBnlfkwdprbHnuBy2N333sPHHUgnuwDAiUXyvktcJnvrKy6ltne+5AJq6w8eFf2kpdTBaS4bHpjmc3V8jreh+t2DaUkUAB69+47k9qj9U2U8nawFAM1IbpyfoTZEST5ECo6ltzNPhFmJzl4H8DF3v8fMRgDcbWY/bts+5+7/tIJ9CCF6zEp6vU0BmGq/PmFmDwMI8vyEEGcjZ/Q3u5mdB+AVAE7VEP6Imd1vZjeZGW9XKoToOSsOdjMbBvBtAB919+MAvgjgQgBXoPXk/wwZt9vMJs1s8thR/jeZEGJ9WVGwm1kZrUD/mrt/BwDc/Wl3b3irkv2XAFyZGuvue9x9wt0nNm7i3zkWQqwvywa7tZYEbwTwsLt/9rTt46f92rsB8CVRIUTPWclq/OsBvB/Ab83s3va2jwN4r5ldgdZa/34AH1puR3O1On71VLr9T3WRt/6ZejotvQ3yMmKYCbKkfn+Iyz8vGBmmtj+/9g3J7Ze+7HI6pjKQlusAYPP4Lmrb9uJLqO0tJKMMALaNpWXAjQP8VI8O8Ins6+d11YYCW5nU3pur8vM8M8+z3qaOcWn29q38E+MCyQJ76giXPb3I5av5GS57NoKScQOD/LryQlqWi6Q396jlVZqVrMb/AkDqqKGmLoQ4u9A36ITIBAW7EJmgYBciExTsQmSCgl2ITOhqwclGo4GjM2nprc7VJBgp5FexoHBkgWcnnTPGZYudF11BbRdc/urk9pGNXF4rBO2fNgxzaWX7Zi69VQKJp+DprDcLsqEsKba0aEQST4PLaEv1tB+FIPtrMGi7tH2UX6qvmZigtr7hjcnt3/+f2+iYPzz1BLU1mjz7rl7mUmShGLSUQvo6LhBJDuCyXHS69GQXIhMU7EJkgoJdiExQsAuRCQp2ITJBwS5EJnRVeisXCxgfHUraakEBwJql5ZO+ofR2APgDV4VQGeVZUm9446uobYxkxNWIzAQATdJrDADm+DBUSvw+PMIVR0rJg35oRX6sYiHQ+Sx4VpDeZt7sMJMrMG3cwKXPSy5M96p76NHx5HYAOHiQS29Rz7ZiIJV5MP/svXmTXyB8OtTrTYjsUbALkQkKdiEyQcEuRCYo2IXIBAW7EJnQVemtr1TEBVs2JG2NJi82eKyUliDmR7n0dvEm3rPiwlfxApE7dryQ2pZq6ey7YjGQk6glNjZJoUQAcOcST4nIaMXgvm6RvBaJPB1KZYxmIDVF89FX4vOxYTCdiXbRC/l53vf449R2YOY4tXkpyHoznvXGMtgKwXnxYD6oD2c8QgjxR4mCXYhMULALkQkKdiEyQcEuRCYsuxpvZv0AbgfQ1/79b7n7J8zsfAC3ANgM4G4A73d3vqQOoFQoYMvIQNJWW+KuzM2nC9QNXsaTVnaRVX8AuOSCrdRWCe5/hXLax3KwmF3mC8UIFpHDunAlC5IdyLCgk1BYJ6/TFWEHSYQJag3WAqMHfhTBJ3JoIF2L8OUvewkdUw2khB/9YpLapmd5i6pCcAKKNKGIj2Er+NF1s5InexXAW939crTaM19tZq8F8GkAn3P3iwAcBfCBFexLCNEjlg12bzHX/rHc/ucA3grgW+3tNwO4dl08FEKsCSvtz15sd3CdBvBjAPsAHHP//89dBwDsWB8XhRBrwYqC3d0b7n4FgJ0ArgTw4pUewMx2m9mkmU0emzncoZtCiNVyRqvx7n4MwE8AvA7ARjM7tWK1E8BBMmaPu0+4+8TGMV4hRgixviwb7Ga21axVF8rMBgC8HcDDaAX9X7R/7XoA31svJ4UQq2cliTDjAG42syJaN4dvuvv3zewhALeY2T8A+A2AG5fdkzfh9XRxuMUqLxo3UE7fk156EU9meMEmnpQwUOB1xApBUkuRSV5Ry50gWSRQ0EKpxoJ9spJ3zUJnCS31Bn8eNKK6gY30Pk8u8WSXuUV+DSxU+biG88t4oZ72sRG0YxrfeS61bd60n9qOHH+S2ui1A8BYy66obh2V2Phxlg12d78fwCsS2x9H6+93IcQfAfoGnRCZoGAXIhMU7EJkgoJdiExQsAuRCRbWEVvrg5k9A+BUb50tAM6Gr9TJj2cjP57NH5sf57p7Mq2zq8H+rAObTbr7RE8OLj/kR4Z+6GO8EJmgYBciE3oZ7Ht6eOzTkR/PRn48m+eNHz37m10I0V30MV6ITOhJsJvZ1Wb2qJntNbMbeuFD24/9ZvZbM7vXzHglwbU/7k1mNm1mD5y2bczMfmxmj7X/5/2r1tePT5rZwfac3Gtm7+yCH7vM7Cdm9pCZPWhmf93e3tU5Cfzo6pyYWb+Z/drM7mv78fft7eeb2Z3tuPmGmVXOaMfu3tV/AIpolbW6AEAFwH0ALu22H21f9gPY0oPjvhHAKwE8cNq2fwRwQ/v1DQA+3SM/Pgngb7o8H+MAXtl+PQLgdwAu7facBH50dU7Qyl8dbr8uA7gTwGsBfBPAe9rb/xnAX57JfnvxZL8SwF53f9xbpadvAXBND/zoGe5+O4CZ52y+Bq3CnUCXCngSP7qOu0+5+z3t1yfQKo6yA12ek8CPruIt1rzIay+CfQeA07P8e1ms0gH8yMzuNrPdPfLhFNvdfar9+hCA7T305SNmdn/7Y/66/zlxOmZ2Hlr1E+5ED+fkOX4AXZ6T9SjymvsC3VXu/koAfwrgw2b2xl47BLTu7Oio6fGa8EUAF6LVI2AKwGe6dWAzGwbwbQAfdfdn9Ubu5pwk/Oj6nPgqirwyehHsBwHsOu1nWqxyvXH3g+3/pwF8F72tvPO0mY0DQPv/6V444e5Pty+0JoAvoUtzYmZltALsa+7+nfbmrs9Jyo9ezUn72Gdc5JXRi2C/C8DF7ZXFCoD3ALi1206Y2ZCZjZx6DeAdAB6IR60rt6JVuBPoYQHPU8HV5t3owpxYq5fRjQAedvfPnmbq6pwwP7o9J+tW5LVbK4zPWW18J1ornfsA/G2PfLgALSXgPgAPdtMPAF9H6+NgDa2/vT6AVs+82wA8BuC/AYz1yI9/BfBbAPejFWzjXfDjKrQ+ot8P4N72v3d2e04CP7o6JwBejlYR1/vRurH83WnX7K8B7AXwHwD6zmS/+gadEJmQ+wKdENmgYBciExTsQmSCgl2ITFCwC5EJCnYhMkHBLkQmKNiFyIT/A9rvniPKTWIqAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD5CAYAAADhukOtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAcIklEQVR4nO2dbWyk1XXH/2eembFnbK9fds3ifYGFDU1K04REFkoUGlGiRDSKRCK1KKlE+UCyURukRko/ICo1VGqkpGoS5UOValNQSJUm0CQoqKItlCahSVNYQ2FZ2LALu17wsut9sb322jMezzynH2ZoDbnn2Duel4X7/0mWx/f4Pvc+d54zz8z9zzlHVBWEkLc+mW5PgBDSGejshEQCnZ2QSKCzExIJdHZCIoHOTkgkZDfSWURuBPANAAmAv1fVL3v/XywWdGhoMGirrayY/dI0NcZPnMnZpp6enqZsFpVKxbSVFxdN2/Lysn1QZ/4Q25jJhF+/k4y9VknSpC1rXz5Wv0zmwvsAQCax70tinDMAZMSwOX2apWkR2+zoHNG4Bk68ehxzs7NBY9POLnVP+1sAHwYwBWCfiDyoqs9bfYaGBvHpT98StJ07ecIcq7xYDrZne/rsCTpP5u637TZtV+62bTC+k3B86hWzy/P79pm2ySNHTFvNuRYzOftp6ykUg+1DA5vMPpsGwy/Aa9mGR4ZN2+DgSLC92G/3GRiwxyr0h88LAHqLjq0QvkaSfMHskzqvtOHbTh1t9vWjFr6urJscYL/4/dEf/oHd58Jm9TquBfCiqh5R1QqA7wO4aQPHI4S0kY04+3YAq29pU402QshFSNs36ERkj4hMiMjE0tJSu4cjhBhsxNmPA9i56u8djbbXoap7VXVcVceLzmcrQkh72Yiz7wNwlYhcISJ5AJ8E8GBrpkUIaTVN78aralVEbgfwb6hLb/eo6nNenySbw/DotqBtdPNWs99lOy4Ptg+PbDH7VCRn2iSbN21eFGC5XAq2v/3SXWaf3e94l2k7cuiQaTs3O2Pa5mZs28vHjgbbX3k53A4AWUfmK+TtdaxV7I9luWxYRuvttXfjsz29pq13wFZeCgP9pm1o82i4fSR8HQLA4JA9x/5BW9UYcGyF/gHTlvSE3/F60mbWkCk9xXZDOruqPgTgoY0cgxDSGfgNOkIigc5OSCTQ2QmJBDo7IZFAZyckEja0G3+h9PYW8Btv/82g7fALh81+Z84tBNuLTuBET8GWjMrl86Ytn7dlubQSlt4Wl20JavSSMdP2/u27TNvxlydN29K5OfuYH7gu2H5i+te+7/R/5HN2pN+QIxkd2G8H+fzs0bBIUztlB/9kMrZwpE6kX9JjP2fW85mk9vFyzjWQdaIii312cM2gIy0PjOwItg8Ph4OJAGDz5s3B9qWFsK8AvLMTEg10dkIigc5OSCTQ2QmJBDo7IZHQ0d34JMlgeCC8u3vl264y+029cizYPjMzbfbZ5O3U99q7pvnEDoTpy4dfG0tlOwed1uxd32rVNGFw0A7GqCyHVQEAqNbCc9nppNsq9A6Ztv6ibduy8wrTtmQEFD38wH1mn6Rqr30+sdWVXGqvf1oK2zI1O+dh2VEFUkcVOO0krdIXbbUJiREI4+QNtHIlzp49bfbhnZ2QSKCzExIJdHZCIoHOTkgk0NkJiQQ6OyGR0FHprbxUwsFnnwnaNm2+xOxXyIZfk2bPnjL7lAzJBQAuudRJb5+pmaYVo+RHxZGMJLVtGceWc6q+DA/buc5+8YufBNsHCnYAx9W/da1pWzZkIQCo2EuFTaOXBttXsrbsOTs7a9qKWVvWKjqyXI+Rx02y9np4ZZycpwzqJIBTdWrJVMLBK14+xIWlsK1atSVF3tkJiQQ6OyGRQGcnJBLo7IREAp2dkEigsxMSCRuS3kRkEsACgBqAqqqOe/9fra1gZi4clXPg6cfNfrlqWLa49IpwWSgAqBh9AKDYb5cSKhbtnHFqvDY6Q2Gp5OQEs4OasFJZNm2/euZJ0/bUTx8Otvf12ec8Nmqf89adToSgIw/+9tXvDrZnb/kTs89xI7oRAM7NnTFtC/N2Oazz8+F8fYuLi2afUsmOKlxZsaUtdUQ7Efu+mjfkyHzOlhStIqnJtH1erdDZf1dV7WeCEHJRwLfxhETCRp1dATwsIk+KyJ5WTIgQ0h42+jb+OlU9LiKXAHhERH6lqo+t/ofGi8AeABgasrPHEELay4bu7Kp6vPH7FIAHAPzal6xVda+qjqvqeF+f/T1rQkh7adrZRaRPRAZeewzgIwAOtGpihJDWspG38VsBPCD1BHxZAP+oqv/qdUiSBJsGw2/ljy7ZJZnOnAwnliyltgwysMWOohMnaWCht9e0bR7dFmzPZm2JZLlkl4YqFOwyQ4cPHTRtv/z5f5q2TC0cijZ3xhZMXp16xbT1DITLDAFAvthv2oaMhJm/c/0NZh+v/FOpbEtKS0u2vLm4cC7YPj1ly3yTR4+atsMvvmjaPHlzx46dpm2zURqqULBlz5GRcGmoI1/6ktmnaWdX1SMAwmIqIeSig9IbIZFAZyckEujshEQCnZ2QSKCzExIJHU04CckARqK/oeGwlAAA00cmg+29jqw1P/Wyfbxpu0bck089ZdquNiK5in12AsjKctm0OUoT9j/1hGk7Z0RyAUC1Gpbe0podmudMw016uFKxpc/zGpbKjGAtAEBPzpaaCs4aDw7bMmtvPiyL5jO2XDp/zr6ubrjBrpm3dWtYQgOA/gF7/tne8KKkqf2c9RoScd6oAQfwzk5INNDZCYkEOjshkUBnJyQS6OyEREJHd+NVFWUjYVve2JEEgMQo4VNdsUs8adZO8HbyVbts1EtH7aCQX/7yv4PtGaf8UDaxl3h0ZMi0YcXexTeqYQEAFubDQSGbB+yglXyPHZAjGXuwWmrXf0qN2lC5nD3W4FA4eAbw1YRy2V6rQy+EA4p+8dP/MPtMTh4xbdu22aXDzsyeNW3qaB7Z3nAATdbJQVc1cuEtnLcDynhnJyQS6OyERAKdnZBIoLMTEgl0dkIigc5OSCR0VHpLsjkMGbnhpg/bOdeySVhGKzuBMMjbp5bLOjnoeux+55fCJZksGQQA0qwtNc07JY1qTs61wSFbsquk4cCV8rJdTuq8I9d40uH5sn3MTUbgR7piS2hWrkEAWFy088y94OTrm9gXLit25MgL9ljOehw99pJpyznlsFK1r7lMEr5GEuO6B4BqtRpsn5ubtccxLYSQtxR0dkIigc5OSCTQ2QmJBDo7IZFAZyckEtaU3kTkHgAfA3BKVd/ZaBsBcB+AXQAmAdysqvaef4N8Po+dO3cFbYf2/ZfZ7+y5cAmf0qwt/ezYdZlpyzjlnzJOlJfVTdWWk1INSyQAUDUiwwCgr2CXoZpfsGWohcXwmhSc8/Ly7k2eCq89AAwYJZ4AoK8YjuTKix3JdejQr0zb7Nxp0zY5edjpF45Eq6m99mrIlwDchH01o/RW/Zh2P03DB/Xy/1nX6YojA6/nzv5tADe+oe0OAI+q6lUAHm38TQi5iFnT2Rv11mfe0HwTgHsbj+8F8PEWz4sQ0mKa/cy+VVVPNB6fRL2iKyHkImbDG3Ra/2BhfrgQkT0iMiEiE3Nzdr5zQkh7adbZp0VkDAAav808T6q6V1XHVXV8yPlONyGkvTTr7A8CuLXx+FYAP27NdAgh7WI90tv3AFwPYIuITAH4IoAvA7hfRG4DcAzAzesZLCMZFJOwpDRmSHIAsFIIl7SpLtsyw3LFli3m5u0EhStOdFLOkMPESYZYcyLDqk4JIk3sMj7ZHifB5XJY/llW+3X9wGFbujr75NOmrVhwklgaSULVWd+SE8WYelKZo2slZjJQO6IMGfvaceUwJ0IQiaPZGcf0xrI0QPESWzpHe23ATxmmD63VlxBy8cBv0BESCXR2QiKBzk5IJNDZCYkEOjshkdDRhJNpLUV5ISyvbN+20+zXPzQSbC9Nl8w+M7N2tNaikTgSsBP5AQAyYVkjrTkJJ2v28Sr2Fw8xOz9v2vJ5W3oTY46lZbsu3vllW4pcXvHWypbDEuM+4ihvbl05L1IxTb2oQ+t4nqxlU3NkVp8LH8+T3swITGcc3tkJiQQ6OyGRQGcnJBLo7IREAp2dkEigsxMSCR2V3lRTLJfDcplXU2x4UzixYdU4Vn0w27RUsvvls3Y0VKkclqhSJ8lf1ol2ctQkZJzIq3LZjg7LiPH67QxWqdiynIcnDVlRauqdtCOh2SKfjzXH1JOoDPkSAMSbf5OY6+isbzPCIe/shEQCnZ2QSKCzExIJdHZCIoHOTkgkdDYQJq1haSlcJeqYU8Kn0JsPtg9tGjD7LHtlcJyM1qObw0E3gL1rXVqyd8crzjwqFWcX31EFksR+jV5ZCQfeeEErNWcX3N8RdnbjrUN6ASjOTrcfFOL0MyZiBQx1A+vc3B13Nz9dGN7ZCYkEOjshkUBnJyQS6OyERAKdnZBIoLMTEgnrKf90D4CPATilqu9stN0F4DMATjf+7U5VfWitYy0uLuCJfT8L2o6/fNTsl8uGZYbF87aGlu0tmLb+frts0Y6xMdN2biY83mzNlrUKRukqAJh1qto66dhQdfKglUqLwfYEYfkSQFMyzlqYapgXSNKk9ObR6jNzZT5PpmzxGjdzvPXc2b8N4MZA+9dV9ZrGz5qOTgjpLms6u6o+BmCmA3MhhLSRjXxmv11E9ovIPSISDjgnhFw0NOvs3wSwG8A1AE4A+Kr1jyKyR0QmRGRiaclJNkEIaStNObuqTqtqTeuFsb8F4Frnf/eq6riqjheL9qYZIaS9NOXsIrJ6y/oTAA60ZjqEkHaxHuntewCuB7BFRKYAfBHA9SJyDerKxiSAz65nsOVyCS+9EH5dmDlzxux35ZWXB9t7Cr1mn3LFKbtUscsd5bL2658YmdASR45ZcD66aMaObOtxpMPq4oJ9TEMGrKT2elglkuo0Fx1mHdKTrpq1vRlotfSW8bRZgzWdXVU/FWi++4JHIoR0FX6DjpBIoLMTEgl0dkIigc5OSCTQ2QmJhI4mnKxWVnBm6njQlta8skDhaRaKQ2aXU6enTFt/wY56WzgfTogJALl8eI5loywUAJScykqF4ibTdu6cPQ+t2okqi4W+YPt8yY7MS6tOKSRX8nIiwAzxzT1aJ0srOWQcSbSTkW2tliJ5ZyckEujshEQCnZ2QSKCzExIJdHZCIoHOTkgkdFR6q6Up5kthmaqYsyPY5o3EjFkn6q3o2HLOWS+Xl01bfzEsa5XLTmTbsi2Traity2nVsTkKT80wekkqPUFMxL4fXAxJFNsxVuJElKVOv5qTeLTVpF59PgPe2QmJBDo7IZFAZyckEujshEQCnZ2QSOjobnyqilIlvDudwM6RNnPm1WD76NZLzT7bt11i2np77FJIM2ftXHhnTp8Ntqc1JzAlY9vyTsDFJdvsczt55pxpm50/H2xvfje+ueAUq1+z5ZNajTdWzdnp9nK/eefm7dQ3k0+OgTCEEBM6OyGRQGcnJBLo7IREAp2dkEigsxMSCesp/7QTwHcAbEW9qs9eVf2GiIwAuA/ALtRLQN2sqnbiNACa1lAthWWj1HvdqYVtorZcl83a8smlY7asdcmWrabtX156KNi+bWyb2aeQM01YKtvBLosrtlRTdeo1WeuYyXi500yTS6tzpHnBHZ5U5o8V7uedsjePZmSytfpZtlbnu1vPzKsAvqCqVwN4H4DPicjVAO4A8KiqXgXg0cbfhJCLlDWdXVVPqOpTjccLAA4C2A7gJgD3Nv7tXgAfb9ckCSEb54Lek4jILgDvAfA4gK2qeqJhOon623xCyEXKup1dRPoB/BDA51V1frVN6x8ggh8iRGSPiEyIyETNrw1MCGkj63J2Ecmh7ujfVdUfNZqnRWSsYR8DcCrUV1X3quq4qo4nmTd3jW1C3sys6exS3+q8G8BBVf3aKtODAG5tPL4VwI9bPz1CSKtYT9TbBwDcAuBZEXm60XYngC8DuF9EbgNwDMDNax0on83gsi3FoG3zSLgdAIaGw9sBOad8Urlmy1qnzwTfhAAALt++27Tt3H5ZsH10i12GqupExL363EHTdmZuwbRVnAA2MWQcEe8jVOs/XjUjDfkSmifzuUc1WjsbBehJb0kSjn6sVm1puRnWdHZV/Tnss/9QS2dDCGkb/AYdIZFAZyckEujshEQCnZ2QSKCzExIJHU042ZPPYvfOLUFbcaDf7JfrC0tbx161k0OeXZg3bUuLjix32Yxpu3T7WLjP6ZNmnyOTr5i24ydPmzaInYxSPZvxLcVmJaNW40lyGedLV+rJg06Umnnaznqkakccqnr3R09udNa/maemiT68sxMSCXR2QiKBzk5IJNDZCYkEOjshkUBnJyQSOiq9JUkGfYN9QVumx44cWzISTqaJ/VqVFbueW6HHlq4WFu06aosrS8H2I5NHzT4zM7YE6CWOdCOvHJstbdlr1Wxiw6bkPCf6Tp3DZR1ZLnUkLzVkudSNbLPXaqVmR6LV1ElU6ZxbxnBD77yaiVTknZ2QSKCzExIJdHZCIoHOTkgk0NkJiYTO7sZncxjcEi699PIJO+fasRPhgJGasxtcKdm7puWSHQgzt1g2bZILL9eyU6rJ23DPZu3lT2vO7rMT+GGaxMu5ZtP8Tn24PesoKKmzm63OpSq5HrtfLXzMxAuEqTmlt2reejg7/E4AjUj43MR7zsSYo7vrTwiJAjo7IZFAZyckEujshEQCnZ2QSKCzExIJa0pvIrITwHdQL8msAPaq6jdE5C4AnwHwmi52p6o+5B0rBbBsKGJTr9olmaaMXG0VT9dK7dexasWW5Yp94UAdAMhWw1JIbcULxHByruWc4BRHdfGkN2s0cV7XvdJEHqlzbpayJV4AhyPl1Rw5LMnYgU1WOay8FxiUNBNotIYkakiAAJBWloPtGS+wJjFyDZo91qezVwF8QVWfEpEBAE+KyCMN29dV9W/WcQxCSJdZT623EwBONB4viMhBANvbPTFCSGu5oPdvIrILwHsAPN5oul1E9ovIPSIy3OK5EUJayLqdXUT6AfwQwOdVdR7ANwHsBnAN6nf+rxr99ojIhIhMLDlfUyWEtJd1ObuI5FB39O+q6o8AQFWnVbWmqimAbwG4NtRXVfeq6riqjhcLdvYYQkh7WdPZpZ576G4AB1X1a6vaV5dH+QSAA62fHiGkVaxnN/4DAG4B8KyIPN1ouxPAp0TkGtTVnkkAn13rQGktRWkxnMdtZWXF7JcxcoLVVryPBbZs4UVeJY60kjVMeUfwSHvsiKxK1ZaTfBHFk6+Mo3nRUF5+t+aC5cxjivO8JLDXI+Occ6ZmRyomxjwKTsRhNutIeU7prapzDVcd6Q2w+jlrZciDZ708fs4MAACq+nOErzxXUyeEXFzwG3SERAKdnZBIoLMTEgl0dkIigc5OSCR0NOGkpjWUz4cTS1ZLJbOfWEkDHTmm5pTp8eQTXQlHIAFOCSJH7tCeXtNWVXusStWev7qyXJiaF5HlJpW84KEa/cJz9MoueXeeYtaefzFnH3NTMSx9Fov285JJ7OvDSxLqRQ+qE8HWTHLOXD5sm56dNPvwzk5IJNDZCYkEOjshkUBnJyQS6OyERAKdnZBI6Kz0poq0Go5QGtmUM/tlDdnFSl4JAJrasfO5xB4rn3VsRmLDWmr3OedIaL1G7TgAqPY6dewqtoxTNZJfetFrnizn1nNzZLTESIiYz9qRbYN9thy2dWTQ7lew17E3H37OMlmv9pp3Xl60nH0deMeUTHitEkcCTAxZLp+fMvvwzk5IJNDZCYkEOjshkUBnJyQS6OyERAKdnZBI6Kj0JlCIkVxvdMSWykY3hyWNNPUSFNqJHpNMc6dt1fLyanxtWrKTYuZ67LpyXhLI5bJ93kbZsKblNc+WcWqs5Y06doW8nZSx34hQA4BioWjaLBkKABIjEi3j1HPzro9MxpbXvHuneklCzW5eLcDw8azkrP7RCCFvKejshEQCnZ2QSKCzExIJdHZCImHNbWkR6QXwGICexv//QFW/KCJXAPg+gM0AngRwi6quXabV2N3NOoEJli2XswMncom9s+sljfN2n2u18C54pWIHu3g7uwOb7B3m1FlKgb0LDsMmGXsHX8RLNOcEcDjBHRnD5t1dvBJVbiCJswNt9UucYKjEURm83XgRbxffC4QJ29RbLSPHn6eQrOfOvgzgBlV9N+rlmW8UkfcB+AqAr6vq2wDMArhtHccihHSJNZ1d65xv/Jlr/CiAGwD8oNF+L4CPt2WGhJCWsN767EmjguspAI8AeAnAnKq+9v51CsD29kyRENIK1uXsqlpT1WsA7ABwLYB3rHcAEdkjIhMiMlHysk0QQtrKBe3Gq+ocgJ8AeD+AIfn/HYkdAI4bffaq6riqjhd6OvrtXELIKtZ0dhEZFZGhxuMCgA8DOIi60/9+499uBfDjdk2SELJx1nOrHQNwr9RrJmUA3K+q/ywizwP4voj8FYD/AXD3egYUIzDBy7eVz4fljt5eJ2+dI614udO8oBZLelOnTzFXMG05JxijaowFAJKxx7NiQnzpx5GuvFJTXhUqQ83zykl50psrKbmanbUgnrzmjdVkP2eNE+s6UO95MQJ8nLVY09lVdT+A9wTaj6D++Z0Q8iaA36AjJBLo7IREAp2dkEigsxMSCXR2QiJBvCivlg8mchrAscafWwCc6djgNpzH6+E8Xs+bbR6Xq+poyNBRZ3/dwCITqjrelcE5D84jwnnwbTwhkUBnJyQSuunse7s49mo4j9fDebyet8w8uvaZnRDSWfg2npBI6Iqzi8iNIvKCiLwoInd0Yw6NeUyKyLMi8rSITHRw3HtE5JSIHFjVNiIij4jI4cbv4S7N4y4ROd5Yk6dF5KMdmMdOEfmJiDwvIs+JyJ822ju6Js48OromItIrIk+IyDONefxlo/0KEXm84Tf3iYhdMy2Eqnb0B/X0py8BuBJAHsAzAK7u9Dwac5kEsKUL434QwHsBHFjV9tcA7mg8vgPAV7o0j7sA/FmH12MMwHsbjwcAHAJwdafXxJlHR9cE9eDh/sbjHIDHAbwPwP0APtlo/zsAf3whx+3Gnf1aAC+q6hGtp57+PoCbujCPrqGqjwGYeUPzTagn7gQ6lMDTmEfHUdUTqvpU4/EC6slRtqPDa+LMo6NonZYnee2Gs28H8Mqqv7uZrFIBPCwiT4rIni7N4TW2quqJxuOTALZ2cS63i8j+xtv8tn+cWI2I7EI9f8Lj6OKavGEeQIfXpB1JXmPfoLtOVd8L4PcAfE5EPtjtCQH1V3aYuV7azjcB7Ea9RsAJAF/t1MAi0g/ghwA+r6rzq22dXJPAPDq+JrqBJK8W3XD24wB2rvrbTFbZblT1eOP3KQAPoLuZd6ZFZAwAGr9PdWMSqjrduNBSAN9Ch9ZERHKoO9h3VfVHjeaOr0loHt1ak8bYF5zk1aIbzr4PwFWNncU8gE8CeLDTkxCRPhEZeO0xgI8AOOD3aisPop64E+hiAs/XnKvBJ9CBNZF6jaa7ARxU1a+tMnV0Tax5dHpN2pbktVM7jG/Ybfwo6judLwH48y7N4UrUlYBnADzXyXkA+B7qbwdXUP/sdRvqNfMeBXAYwL8DGOnSPP4BwLMA9qPubGMdmMd1qL9F3w/g6cbPRzu9Js48OromAN6FehLX/ai/sPzFqmv2CQAvAvgnAD0Xclx+g46QSIh9g46QaKCzExIJdHZCIoHOTkgk0NkJiQQ6OyGRQGcnJBLo7IREwv8CCap0jnvfVBUAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "yJgho2AEBFbx", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "ab9a7e1d-cdf8-4b8d-9a91-58c353b8205d" + }, + "source": [ + "# number of classes\n", + "K = len(set(y_train))\n", + "'''\n", + " calculate total number of classes\n", + " for output layer\n", + "'''\n", + "print(\"number of classes:\", K)\n", + "''' \n", + " Build the model using the functional API\n", + " input layer\n", + "'''\n", + "#YOUR CODE HERE\n", + "inp_layer = Input(shape = x_train[0].shape)\n", + "#YOUR CODE HERE\n", + "'''Hidden layer'''\n", + "# YOUR CODE HERE\n", + "r = Conv2D(32, (3,3), padding=\"same\", activation=\"relu\")(inp_layer)#This is the first concolutional layer in first hidden layer with 32 filters, size 3*3 pixels, with padding to maintain size same as of input layer given and activation function as rectified linear activation function.\n", + "r = Conv2D(32, (3,3), activation=\"relu\")(r)#This is the second concolutional layer in first hidden layer with 32 filters, size 3*3 pixels, with no padding leading and activation function as rectified linear activation function.\n", + "r = MaxPooling2D(pool_size=(2,2))(r)#It takes all possible 2*2 matrices in the Input it gets and continously takes out max value to form a new matrix of reduced size\n", + "r = Dropout(0.30)(r)#We drop out the 0.7 fraction of the nodes in the before layer, to prevent the model's weight and other parameters overfitting to the training dataset rather be more generalized.\n", + "# YOUR CODE HERE\n", + "\n", + "\"\"\"last hidden layer i.e.. output layer\"\"\"\n", + "# YOUR CODE HERE\n", + "r = Conv2D(64, (3,3), padding=\"same\", activation=\"relu\")(r)#Same as in the first layer just filters are increased to 64 \n", + "r = Conv2D(64, (3,3), activation=\"relu\")(r)#Same as in the first layer just filters are increased to 64 \n", + "r = MaxPooling2D(pool_size=(2,2))(r)#Same as in above layer \n", + "r = Dropout(0.30)(r)#Same as in above layer\n", + "\n", + "r = BatchNormalization()(r)#\n", + "r = Flatten()(r)#\n", + "r = Dense(512, activation=\"relu\")(r)#This is a dense layer \n", + "r = Dropout(0.5)(r)#Same as above just the difference is the rate of the rate is different \n", + "r = Dense(10, activation=\"softmax\")(r)#This is the final Output layer, with 10 outlets for the 10 classes of the y_train and y_test\n", + "\n", + "model = tf.keras.Model(inp_layer, r)\n", + "# YOUR CODE HERE\n", + " \n", + "'''model description'''\n", + "model.summary()" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "number of classes: 10\n", + "Model: \"model_1\"\n", + "_________________________________________________________________\n", + " Layer (type) Output Shape Param # \n", + "=================================================================\n", + " input_2 (InputLayer) [(None, 32, 32, 3)] 0 \n", + " \n", + " conv2d_4 (Conv2D) (None, 32, 32, 32) 896 \n", + " \n", + " conv2d_5 (Conv2D) (None, 30, 30, 32) 9248 \n", + " \n", + " max_pooling2d_2 (MaxPooling (None, 15, 15, 32) 0 \n", + " 2D) \n", + " \n", + " dropout_3 (Dropout) (None, 15, 15, 32) 0 \n", + " \n", + " conv2d_6 (Conv2D) (None, 15, 15, 64) 18496 \n", + " \n", + " conv2d_7 (Conv2D) (None, 13, 13, 64) 36928 \n", + " \n", + " max_pooling2d_3 (MaxPooling (None, 6, 6, 64) 0 \n", + " 2D) \n", + " \n", + " dropout_4 (Dropout) (None, 6, 6, 64) 0 \n", + " \n", + " batch_normalization_1 (Batc (None, 6, 6, 64) 256 \n", + " hNormalization) \n", + " \n", + " flatten_1 (Flatten) (None, 2304) 0 \n", + " \n", + " dense_2 (Dense) (None, 512) 1180160 \n", + " \n", + " dropout_5 (Dropout) (None, 512) 0 \n", + " \n", + " dense_3 (Dense) (None, 10) 5130 \n", + " \n", + "=================================================================\n", + "Total params: 1,251,114\n", + "Trainable params: 1,250,986\n", + "Non-trainable params: 128\n", + "_________________________________________________________________\n" + ] + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "PLc4Bay65TyA" + }, + "source": [ + "# Compile\n", + "model.compile('adam', 'sparse_categorical_crossentropy')" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "# Fit\n", + "result = model.fit(x_train, y_train, validation_data=(x_test, y_test), epochs= 50)" + ], + "metadata": { + "id": "U0fGsDCRsQrn", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "e9d27e24-d86b-4098-9aa6-fde3bcc71df5" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Epoch 1/50\n", + "1563/1563 [==============================] - 20s 6ms/step - loss: 1.4996 - val_loss: 1.4793\n", + "Epoch 2/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 1.1772 - val_loss: 1.0125\n", + "Epoch 3/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 1.0536 - val_loss: 0.9653\n", + "Epoch 4/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.9724 - val_loss: 0.8178\n", + "Epoch 5/50\n", + "1563/1563 [==============================] - 9s 6ms/step - loss: 0.9151 - val_loss: 0.7910\n", + "Epoch 6/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.8703 - val_loss: 0.7622\n", + "Epoch 7/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.8350 - val_loss: 0.7503\n", + "Epoch 8/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.7977 - val_loss: 0.7286\n", + "Epoch 9/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.7766 - val_loss: 0.7439\n", + "Epoch 10/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.7535 - val_loss: 0.7926\n", + "Epoch 11/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.7359 - val_loss: 0.7032\n", + "Epoch 12/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.7147 - val_loss: 0.7417\n", + "Epoch 13/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.6999 - val_loss: 0.6490\n", + "Epoch 14/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.6876 - val_loss: 0.6867\n", + "Epoch 15/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.6719 - val_loss: 0.6451\n", + "Epoch 16/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.6562 - val_loss: 0.6558\n", + "Epoch 17/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.6546 - val_loss: 0.6570\n", + "Epoch 18/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.6320 - val_loss: 0.6479\n", + "Epoch 19/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.6266 - val_loss: 0.6541\n", + "Epoch 20/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.6232 - val_loss: 0.6045\n", + "Epoch 21/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.6081 - val_loss: 0.6016\n", + "Epoch 22/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.6039 - val_loss: 0.6075\n", + "Epoch 23/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.5939 - val_loss: 0.6202\n", + "Epoch 24/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.5862 - val_loss: 0.5830\n", + "Epoch 25/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.5760 - val_loss: 0.6227\n", + "Epoch 26/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.5787 - val_loss: 0.6310\n", + "Epoch 27/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.5658 - val_loss: 0.5804\n", + "Epoch 28/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.5586 - val_loss: 0.6180\n", + "Epoch 29/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.5543 - val_loss: 0.5746\n", + "Epoch 30/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.5501 - val_loss: 0.5795\n", + "Epoch 31/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.5417 - val_loss: 0.5625\n", + "Epoch 32/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.5375 - val_loss: 0.5893\n", + "Epoch 33/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.5361 - val_loss: 0.6275\n", + "Epoch 34/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.5229 - val_loss: 0.5925\n", + "Epoch 35/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.5276 - val_loss: 0.5766\n", + "Epoch 36/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.5201 - val_loss: 0.5837\n", + "Epoch 37/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.5221 - val_loss: 0.5760\n", + "Epoch 38/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.5149 - val_loss: 0.5833\n", + "Epoch 39/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.5016 - val_loss: 0.5788\n", + "Epoch 40/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.5099 - val_loss: 0.5667\n", + "Epoch 41/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.5016 - val_loss: 0.5894\n", + "Epoch 42/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.5002 - val_loss: 0.5634\n", + "Epoch 43/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.4923 - val_loss: 0.5574\n", + "Epoch 44/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.4910 - val_loss: 0.5878\n", + "Epoch 45/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.4958 - val_loss: 0.5760\n", + "Epoch 46/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.4884 - val_loss: 0.5547\n", + "Epoch 47/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.4868 - val_loss: 0.6037\n", + "Epoch 48/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.4795 - val_loss: 0.5462\n", + "Epoch 49/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.4730 - val_loss: 0.5518\n", + "Epoch 50/50\n", + "1563/1563 [==============================] - 8s 5ms/step - loss: 0.4828 - val_loss: 0.5795\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "plt.plot(result.history['loss'], label='loss')\n", + "plt.plot(result.history['val_loss'], label='val_loss')\n", + "plt.legend()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 282 + }, + "id": "8WXLvf_xRUNw", + "outputId": "9d9738e9-ba72-445f-ef2e-24c518708287" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 10 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3dd3xUVd7H8c9JMsmkF9IgAQLSIRQJWEHRRVkbawVs6NpWXddVHsuu6+q6uq76rOv62HtZRLD3gooiCkgSCAlVQAgJkEJ6T2bO88eZhDSSkEwymZnf+/XKazJ37tx7LsbvnDntKq01Qggh3J+PqwsghBDCOSTQhRDCQ0igCyGEh5BAF0IIDyGBLoQQHsLPVSeOjo7WSUlJrjq9EEK4pbS0tEKtdUx7r7ks0JOSkkhNTXXV6YUQwi0ppfYc7jVpchFCCA8hgS6EEB5CAl0IITyEy9rQhRDeqb6+npycHGpqalxdlH7NarWSmJiIxWLp8nsk0IUQfSonJ4fQ0FCSkpJQSrm6OP2S1pqDBw+Sk5PDsGHDuvw+aXIRQvSpmpoaBgwYIGHeAaUUAwYMOOJvMRLoQog+J2Heue78G7ldoG87UM4jX2ylpKrO1UURQoh+xe0CfffBSp5csZOc4mpXF0UI4aZCQkJcXYRe4XaBHhdmBSCvTHrIhRCiOTcM9AAA8spqXVwSIYS701pz2223MWHCBJKTk1m6dCkA+/fvZ+bMmUyePJkJEybw/fffY7PZuOKKK5r2/fe//+3i0rfldsMWo0MCUEpq6EJ4gr99tInN+8qcesxxg8K45+zxXdr33XffZcOGDWRkZFBYWMi0adOYOXMmb7zxBqeffjp33XUXNpuNqqoqNmzYQG5uLllZWQCUlJQ4tdzO4HY1dIuvDwOCA8gvl0AXQvTMqlWrWLBgAb6+vsTFxXHSSSexbt06pk2bxssvv8y9995LZmYmoaGhDB8+nF27dnHTTTfx+eefExYW5urit+F2NXQwzS7S5CKE++tqTbqvzZw5k5UrV/LJJ59wxRVXcOutt3L55ZeTkZHBF198wTPPPMOyZct46aWXXF3UFtyuhg6mY1SaXIQQPTVjxgyWLl2KzWajoKCAlStXMn36dPbs2UNcXBzXXHMNV199Nenp6RQWFmK32zn//PO5//77SU9Pd3Xx23DbGvrGnFJXF0MI4ebOPfdcVq9ezaRJk1BK8fDDDxMfH8+rr77KI488gsViISQkhNdee43c3FyuvPJK7HY7AA8++KCLS9+WWwZ6bKiVg5W11NvsWHzd8kuGEMKFKioqADMb85FHHuGRRx5p8frChQtZuHBhm/f1x1p5c26ZhnFhVrSGwgppRxdCiEZuGeixoTIWXQghWnPLQG+cLZovHaNCCNHETQPdUUMvlxq6EEI0cstAHxASgI+SGroQQjTnloHu66OICQ2QsehCCNGMWwY6NE4ukiYXIYRo5LaBHhsqs0WFEL2vo7XTd+/ezYQJE/qwNB1z20CPCwsgXzpFhRCiiVvOFAXT5FJUWUdtg40AP19XF0cI0R2f3QkHMp17zPhk+PU/D/vynXfeyeDBg7nxxhsBuPfee/Hz82PFihUUFxdTX1/P/fffz9y5c4/otDU1NVx//fWkpqbi5+fHo48+yqxZs9i0aRNXXnkldXV12O123nnnHQYNGsRFF11ETk4ONpuNu+++m3nz5vXosqELNXSl1EtKqXylVFYn+01TSjUopS7ocam6oHHoYoHU0oUQR2DevHksW7as6fmyZctYuHAh7733Hunp6axYsYJFixahtT6i4z755JMopcjMzGTJkiUsXLiQmpoannnmGW6++WY2bNhAamoqiYmJfP755wwaNIiMjAyysrKYM2eOU66tKzX0V4AngNcOt4NSyhd4CPjSKaXqgtimW9HVkhgZ1FenFUI4Uwc16d4yZcoU8vPz2bdvHwUFBURGRhIfH88tt9zCypUr8fHxITc3l7y8POLj47t83FWrVnHTTTcBMGbMGIYOHcr27ds57rjjeOCBB8jJyeG8885j5MiRJCcns2jRIu644w7OOussZsyY4ZRr67SGrrVeCRR1sttNwDtAvjMK1RWN0/9lLLoQ4khdeOGFvP322yxdupR58+axePFiCgoKSEtLY8OGDcTFxVFT45xsufjii/nwww8JDAzkjDPO4JtvvmHUqFGkp6eTnJzMX/7yF+677z6nnKvHbehKqQTgXGAWMK2Tfa8FrgUYMmRIj87bNP1fmlyEEEdo3rx5XHPNNRQWFvLdd9+xbNkyYmNjsVgsrFixgj179hzxMWfMmMHixYs55ZRT2L59O9nZ2YwePZpdu3YxfPhw/vCHP5Cdnc3GjRsZM2YMUVFRXHrppURERPDCCy845bqc0Sn6GHCH1tqulOpwR631c8BzACkpKUfWQNVKVJA/fj5Khi4KIY7Y+PHjKS8vJyEhgYEDB3LJJZdw9tlnk5ycTEpKCmPGjDniY95www1cf/31JCcn4+fnxyuvvEJAQADLli3j9ddfx2KxEB8fz5///GfWrVvHbbfdho+PDxaLhaefftop16W60vCvlEoCPtZatxlwqZT6BWhM8migCrhWa/1+R8dMSUnRqampR1reFo5/8GuOOyqaf100qUfHEUL0nS1btjB27FhXF8MttPdvpZRK01qntLd/j2voWuthzU70Cib4OwxzZ4kNs8rNooUQwqHTQFdKLQFOBqKVUjnAPYAFQGv9TK+WrhNxYQH8UljpyiIIIbxAZmYml112WYttAQEBrF271kUlal+nga61XtDVg2mtr+hRaY5QXJiVNbs6G4AjhOhvtNZ01ufWnyQnJ7Nhw4Y+PeeRjoMHN576DybQS6vrqam3ubooQoguslqtHDx4sFuB5S201hw8eBCr1XpE73Pbqf/QfCx6LUMGyOQiIdxBYmIiOTk5FBQUuLoo/ZrVaiUxMfGI3uPWgd44Fj2vvEYCXQg3YbFYGDZsWOc7iiPm9k0ugIxFF0II3DzQG5tc5EYXQgjh5oEeEWTB39dHxqILIQRuHuhKKWLDAsiXGroQQrh3oEPjvUWlhi6EEB4Q6AES6EIIgQcEemyoVZpchBACDwj0uDAr5bUNVNY2uLooQgjhUh4Q6I7ZonKjCyGEl/OAQJfJRUIIAR4R6I2TiyTQhRDeze0DPSbUcW9R6RgVQng5tw/0MKsfVouP1NCFEF7P7QNdKUVcmFU6RYUQXs/tAx0gLlRmiwohhEcEemxYgNTQhRBezyMCvXE9F7mllRDCm3lIoAdQVWejQmaLCiG8mIcEeuPkIml2EUJ4L48I9NimsejSMSqE8F7uF+j11bA/A2z1TZuaZovKnYuEEF7M/QJ984fw7Ew4uLNpU6w0uQghhBsGeswo81i4rWlTSIAfwf6+MhZdCOHV3C/QB4w0j4XbW2yOC5MbXQghvJv7BXpACIQlQkHLQDeTi6SGLoTwXp0GulLqJaVUvlIq6zCvX6KU2qiUylRK/aiUmuT8YrYSM6pFkws0Ti6SGroQwnt1pYb+CjCng9d/AU7SWicDfweec0K5OhY9Cgp/Bru9aZPMFhVCeLtOA11rvRIo6uD1H7XWxY6na4BEJ5Xt8KJHQX0VlOU2bYoNDaC2wU5ZtcwWFUJ4J2e3oV8FfObkY7YVM9o8NusYbZotKu3oQggv5bRAV0rNwgT6HR3sc61SKlUplVpQUND9k0U3Dl1sJ9Bl6KIQwks5JdCVUhOBF4C5WuuDh9tPa/2c1jpFa50SExPT/RMGx4A1AgoOdYzGOwI9t7i6+8cVQgg31uNAV0oNAd4FLtNab+9sf6dQ6lDHqENiZCBhVj827C3pkyIIIUR/49fZDkqpJcDJQLRSKge4B7AAaK2fAf4KDACeUkoBNGitU3qrwE1iRsH2L5qe+vgopg6NJHVPcQdvEkIIz9VpoGutF3Ty+tXA1U4rUVdFj4b1/4WqIgiKAiAlKYoV27ZRXFlHZLB/nxdJCCFcyf1mijZq6hg91OySMjQSgDSppQshvJD7Bno7i3RNGhyBxVdJs4sQwiu5b6BHDAXfgBZDF60WX8YPCidtz2HnQQkhhMdy30D38YUBI9os0pUyNJKMnFJqG2wuKpgQQriG+wY6OBbpahXoSZHUNdjJyi1zUaGEEMI13DvQo0dByR6oPzQ7dOpQM+Ildbc0uwghvIv7B7q2Q9Gh29HFhAaQNCBIOkaFEF7HvQO9cZGugpZro08dGkX6nmJZSlcI4VXcO9AHjABUu+3oByvr+KWw0jXlEkIIF3DvQLcEQsSQtoHumGAkzS5CCG/i3oEOptml1dDFo2JCiAiykLZbAl0I4T3cP9CjR8HBlrej8/FRTB0SybrGCUYbl8GBTBcVUAgh+oZnBHpDDZRmt9g8NSmSXQWVlOT+DO9eCz887qICCiFE33D/QG8a6dK6Hd2MRy9Z+TSgoXh335ZLCCH6mPsHeju3owOYmBhOqG8dcTveMhtK9vRxwYQQom+5f6AHRUFQdItVF8Es1HV9VDqBtjIY8SuoyIO6KhcVUgghep/7Bzq0uR0dAFpzQcMnbNFDqZswz2yTWroQwoN5RqDHjGozW5Tdq4it3snLDaexs36A2Sbt6EIID+YZgR49GqqLoLLw0LafnsVujeQD2wmsLQk324qlhi6E8FweEuitOkZL9sLWT/CZupBB0ZGsytVgCZYauhDCo3lGoDfejq6x2SX1RfM47SpShkaSll2MjhwqgS6E8GieEehhiWAJMh2j9dWQ9gqMPgMihpCSFElxVT2VwYOlU1QI4dE8I9B9fMzKi4XbIPNtqC6GY64DDt3wIpcYU0OXJXWFEB7KMwIdDi3S9dOzEDsOkmYAcFRMMAOC/cmoiIT6KqgscHFBhRCid3hOoEePMuu5HMiE6deAUgAopTh70iC+2h9o9pN2dCGEh/KsQAewhsPEeS1euihlMDttMeaJDF0UQngozwn0mDHmccpl4B/c4qVxg8IIHzjcPJEauhDCQ3lQoI+Gc5+Fk25v9+XfTBtBno6gOHd7u68LIYS785xAVwomzTdNLu2YOymBHOIo2fdzu68LIYS76zTQlVIvKaXylVJZh3ldKaUeV0rtUEptVEod7fxi9lx4kAV7+BACKvZSU29zdXGEEMLpulJDfwWY08HrvwZGOn6uBZ7uebF6R9zQMcTrg3yVtdfVRRFCCKfrNNC11iuBog52mQu8po01QIRSaqCzCuhMicPH4qM0K9amu7ooQgjhdM5oQ08Amld5cxzb2lBKXauUSlVKpRYU9P0EH5/IJAAKsreRUyw3uxBCeJY+7RTVWj+ntU7RWqfExMT05akNR6APVvm8k5bb9+cXQohe5IxAzwUGN3ue6NjW/4QOBF9/joss5620vdjtsq6LEMJzOCPQPwQud4x2ORYo1Vrvd8Jxnc/HByKGMiWslJzialbvOujqEgkhhNP4dbaDUmoJcDIQrZTKAe4BLABa62eAT4EzgB1AFXBlbxXWKSKHMrAijzCrH8tS93LCiGhXl0gIIZyi00DXWi/o5HUN3Oi0EvW2yCR8ctYxd3ICS1P3cl9VPeFBFleXSgghesxzZop2VWQS1JQyPzmUugY7H2b0z+Z+IYQ4Ut4X6BFDARgXWMTYgWG8/ONumTkqhPAI3hfojqGLqngPt88Zza6CSh5dLgt2CSHcnxcGuqmhU7ybWaNjufiYITz//S7WyogXIYSb875At4ZDYGTTDaPvOmMsgyODWPRWBhW1DS4unBBCdJ/3BTqYZhfHjS6CA/x49KJJ5JZUc//Hm11aLCGE6AmvD3SAlKQorpt5FG+u28vXW/JcViwhhOgJ7w30kr1gPzS65ZbZIxkTH8od72RSVFnnurIJIUQ3eWegRwwFez2U7WvaFODny6MXTaa0uo6/vJ+JmS8lhBDuwzsD3TF0sfUNo8cNCuOW2aP4NPMAH2bsa/M2IYTozyTQW7lu5lFMHRrJ3e9nUVBe26fFEkKInvDOQA9PBOXTNHSxOV8fxcMXTKS63saDn25xQeGEEKJ7vDPQfS0m1NupoQMcFRPCtTOH8+76XJlwJIRwG94Z6NBm6GJrv581koSIQO7+IIt6m73PiiWEEN3lvYEeMRSK2za5NAr09+Xec8azPa+Cl3/4pQ8LJoQQ3eO9gR6ZBJX5UFd52F1mj4vj1DGxPPbVz+wvre67sgkhRDd4d6BDh7V0gHvPGY/Nrvm7LAsghOjnvDjQh5nHDtrRAQZHBfH7WSP4NPMAK7cX9H65hBCim7w40B3L6LYzdLG1a08azrDoYP76QZbcDEMI0W95b6AHDQD/kE5r6GCWBfjbOePZfbCK51bu6v2yCSFEN3hvoCvV6dDF5maOiuHM5IE8uWIHaXuKe7VoQgjRHd4b6ADRoyA3DWz1Xdr9r2ePIz7cyoLn1/CRrPUihOhnvDvQJ86DygLY9mmXdo8Ls/LeDScwKTGcm5as5/++/llWZRRC9BveHegjZ0NYIqS+3OW3RAX789+rj+HcKQn8a/l2Fr2VQW2DdJQKIVzPuwPdxxeOvhx2rYCirs8GNWunT+KWX43i3fRcLnvxJ4rlphhCCBfz7kAHmHKpWXkx/dUjeptSipt/NZL/zJ/MhuwSznv6R3YXHn7WqRBC9DYJ9PAEGDUH1v8XGo68lj13cgJvXHMMJVV1XPjsarYeKOuFQgohROck0AGmXnFEnaOtpSRF8dbvjsNHwbxn17Bhb4lzyyeEEF3QpUBXSs1RSm1TSu1QSt3ZzutDlFIrlFLrlVIblVJnOL+ovWjEryB8MKS90v1DxIby9u+OJzzQwiXPr+HHnYXOK58QQnRBp4GulPIFngR+DYwDFiilxrXa7S/AMq31FGA+8JSzC9qrWnSOdn8m6OCoIN763XEkRAZyxcvr+GpznhMLKYQQHetKDX06sENrvUtrXQe8CcxttY8Gwhy/hwPuN+tmyqWgfCHtyDpHW4sLs7L02uMYEx/K7/6bxgcbcp1UQCGE6FhXAj0B2NvseY5jW3P3ApcqpXKAT4Gb2juQUupapVSqUiq1oKCfrVwYNsh0jm5Y3K3O0eYig/1ZfPUxTB0ayR+XbmDx2s4XABNCiJ5yVqfoAuAVrXUicAbwulKqzbG11s9prVO01ikxMTFOOrUTNXWOftL+6wXb4Iu74Nt/mvb2bZ/Dvg1Qngf2lpOLQq0WXv3tdGaNjuWu97J4+tudvV58IYR38+vCPrnA4GbPEx3bmrsKmAOgtV6tlLIC0UC+MwrZZ0aceqhzdPy5h7bXlMF3D8HaZ8xze0Pb9ypfiB0LCVMhMQUSpmKNGcOzl01l0bIMHvp8K2U19dx++miUUn1yOUII79KVQF8HjFRKDcME+Xzg4lb7ZAOnAq8opcYCVqCftal0gY8vHL0QVtwPB3dC1HDYuBSW/xUq8uHoy+DUeyAgzNy+rvwAlO83j2W5sD8DNr9/aJKSfwiWQVN4bOqVhFpH8fS3Oymrrue+uRPw9ZFQF0I4V6eBrrVuUEr9HvgC8AVe0lpvUkrdB6RqrT8EFgHPK6VuwXSQXqHdddWqKZfCtw/CN/dD2T7Yu8bUuhcsMY+NwhPNT2tamw+D3FSzkuOu7/B557fcP/N2wk86j6e+20VZTQOPXjQJi69MAxBCOI9yVe6mpKTo1NRUl5y7U29eAls/hqBomP03mHQx+HQzfBvq4OM/ms7WifN5NuIWHvxyJ7NGx/DUJVMJ9Pd1btmFEB5NKZWmtU5p77WuNLl4n9n3mXbwqVdCYETPjuXnD3OfhKhh8M39XJeUS9RZD3L7J9nMe241f587gUmDe3gOIYRAauh9a+Nb8MENEJnEd9OeYtHyEgor6jj/6ERunzOauDAr2O2m09XP39WlFUL0Q1JD7y8mXmjGu795MSetXMCq2XfxY9YO9mduY/umfPyDiomoy0P5WeHmDRAU5eoSCyHciPTK9bWkE+Dqr8A/GOtnf+SUvU8wP2gdQwKqWF0Rz8fMgNpS2P6Fq0sqhHAzUkN3heiRcP2P5qYaEYPxtYYzFMjdWcjfP8xiWkkaBV8vZsS4i6TTVAjRZVJDdxX/YIifANbwpk3HHxXNR3+YyYGBpzKibC3zn/yanQUVLiykEMKdSKD3M36+PkyefSmBqo7hZes45/9W8VGG+611JoToexLo/VHSiWAN54ExuxkdH8pNS9bz1w+y5GbUQogOSaD3R74WGDWHoN3LWXrNNK4+cRivrd7Dhc+sJjOn1NWlE0L0UxLo/dWYM6G6GEvOGv5y1jieuXQq2UVVnP3EKm5YnMaO/HJXl1AI0c9IoPdXI34FflbYapbynTMhnpW3z+IPp47ku20FnPbvlSxalsHeoioXF1QI0V9IoPdX/sEwfJYJdMds3jCrhVtnj2Ll7bO46sRhfLRxH6f861vufj+LgxW1Li6wEMLVJND7s7FnQelesyxvMwNCArjrzHF8d9vJXJgymCU/ZXP6Yyv5eovcw1QIbyaB3p+NmgPKx6z82I6B4YH849xkPr9qFHEhFq56NZU/vZtJZW07N+AQQng8CfT+LDgahhzf1I7err0/MWLxsXw47B2uO2k4b67L5szHvyc9u7jvyimE6Bck0Pu7MWdC/mZz04zWyvNg2eWg7fiuf40/TajgzWuOpd6mueDpH3n0y23U2+x9X2YhhEtIoPd3Y840j61r6bZ6ePtKqC6BKz+F0EHwya0ckxTB53+cwblTEnn8mx3MeWwl76TlSLAL4QUk0Pu7yKEQn9y2HX35PbDnBzjncRhyLJz+ABzYCKkvEWq18K+LJvH85Sn4+/my6K0MTn7kW15fvZuaepltKoSnkkB3B2POhr0/mSYWgMy3Yc2TMP06mHiR2Tb+XBh2Enzzd6gw9+eePS6OT/9wIi9dkUJcWAB3f7CJEx9awbPf7aRCOk6F8DhyxyJ3cCALnjkBznoMBk+HF34F8RNh4Uct72xUsB2ePh4mzoPfPNniEFpr1uwq4qlvd/D9z4X4+ShGxYUyISGM5IRwxieEM25gGFZLO8v11lZA6ovgGwARQ8y3hoghEBDayxcuhGitozsWSaC7A63h8cmmnbziANRVwnUrITS+7b7L74EfHoPffglDjmn3cBl7S/hi0wGy9pWRlVtKUWUdAL4+ijHxoVx8zBDOPzrRhHvRL/DmxaZjtrXASIgYClOvMD9KOe+ahRDtkkD3BF/cBaufAB8/WPgxDD2u/f1qK+DJ6RAYBdd+C76t7mFSUWBq2xX5cNyN6Kjh7C+tITO3lE25pXyzLZ+s3DKigv3585h8ztt5Fz5ouPBl862gZA8U74GSbPOzbz3sS4dJC+DMR8E/qLf/JYTwahLoniAnDV44BX79MBxzXcf7bnof3lrYct/Cn80HQsab0FBjmk/sDTDlEjjpDghPBEzTzNpdB9n5yaPMO/g0vzCID8b+L+eeOoOjYkLanstuh5UPw7f/hLgJMO91iBrm5IsXQjSSQPcUFQUQEtP5flrD6+dCbhqc+wys/y9s+9SE+KT5cNzvzZ2SVj0KqS+Z90y7Gk68Faxh8MkiWP86FUmn8b/Bt/JGRgl1DXZOHBHN/OmDmT0ujgC/Vm3t27+Ed682v5/3Aow6zXnXXVdpPnz8As3Swr3RtGNraPttRoh+SALdGxX+DE8dB/Z60/wy/RqYdk3bD4SSbPjuIdjwhgnMiCFQsAVm3g4n/wl8fCisqGXxmmyWpe4lt6SayCAL5x2dyPxpgxkZ16xjtOgXWHaZ6cQ96Q7z49ODgVSlObDyf2H96ybQAZQvWALNSpSWIHPT7Rn/A9Ejun7cmlLYt8F84O1Lh9z1UJkPs++DY6/vfnk7vJZcyHrbfJj6yH1iRfdJoHurzR9AVZEZ9dJZ23bhz7DiH7Dzazj7P2YYZCs2u+aHHYUsXbeXLzcfoN6mOXpIBGdNHMTMUdEcFROCqq+GT26FjCUw/GRzrMikIyt3+QH4/l+Q9or5tjHlUhgwAhqqob4a6mvM7zWlsPVTsNVC8oUw8zZzA+7W7DbIXgNbPoSd30Dh9kOvRQ6DhKPNBK2dX8OxN8Jp9/fsg6g9b19lAv2cJ+Doy5x7bOFVJNBF12ndpSaNgxW1vJuey7LUvfycb25kPSjcyoyRMcwcGc2syk8J+vYe0HaYdRcc87vOmzQqCswInXUvmJmwUy4xIR0xpIP35MOPj8O6F03fwIQL4KTbzYfILytNiG/9BCoLTJPT8JMgcTokTIFBR0NQlDmO3WY6ntc+DeN+A+c+CxZrF//ROlG0C/5vqlloLSgabkqDgHb6I4ToAgl00av2FlXx/c+FrNxewA87CymvaUApmBFby5325xlX/iNV0RPxO/cJ/BMmtXxzbQXsWA5bPoJtn5lQnjgfTroNooZ3vRAVBY5gf8Ecwz8UakvBEmza88eeAyNP6zxIVz8JX/wZhhwH8984FPg98dHNsGEJXPAiLL3UNEXN+nPPjys6Vl1svunNWGSG2HqIHge6UmoO8B/AF3hBa/3Pdva5CLgX0ECG1vrijo4pge6ZGmx2MnJKWbm9gPTsYjJzSjihdhX3Wl4hkgreDTyP3JGXceXAPUTs+Rx2fG2aTIIGwJiz4Pib2m826arKQljzFFTkwegz4KhTTJv7kdj0Hrx7nflmcOnbR95k1FzZPvjPJJhyGZz1KLx1pfnguikNwhO6f9z+pqHW9HkMOMrVJTnkw5sg/TWP+wDtUaArpXyB7cBsIAdYByzQWm9uts9IYBlwita6WCkVq7XO7+i4EujeQWtNTnE1W3/ZQ9ya+5lYcGhNmjL/WAKSf0NA8lxTI+5PnYV7foQlC8DXH1KuNG3tUcPMY0hs10fafHEXrHka/pBuPhiKd8MT00zT0LlP9+YV9B2tzTePrZ/A6f8wHcuunmS2dx286LiNo38I3LLJeU1oXVVV5JxveK10FOhdGac1Hdihtd7lONibwFyg+dTBa4AntdbFAJ2FufAeSikGRwUxOGosTF0Mv6ykZNv3vLh/OE9sDyUs3Z8bwgayMAGs/WlloaHHw1VfwjtXwcpHTF9AI0uwCedpvzXDPQ+nqsgMC02+4FAtPzLJBN4P/zFzBAZN7sWL6IGfl6LN0/4AABIwSURBVJuO6K7MKchYYhaPGzACvviT6TOY80/XDQO120zHfOhAOPNfZqZz5jI4+vK+K8OWj8zS1nOfgskL+uy0XflfKAHY2+x5jmNbc6OAUUqpH5RSaxxNNEK0NWwmEXPuYtGVC/j4phlMHhzBg59tZdb/fssba7PJL6txdQkPiRkNv1sFd+XB79Pgkrfh14/A1IWmGeeTRWahtMNZ+wzUV8GJt7TcPmORaWL68i9N94vtV9JehcUXwMtnmCajjpRkw2d3wNAT4Ia1psls3fOwZD7UlvdNeVtb96JZefT0f5hmt7gJ5ltSX/1bl+aa5h5th2/uN81RfcRZdSI/YCRwMrAAeF4pFdF6J6XUtUqpVKVUakFBgZNOLdzV+EHhvPrb6Sy55lhiw6z8+b1Mpv/ja2Y8/A03v7me11bvJiu3lAZXr+Xu52/GuY+cDcdcC3MeNGvQDz0B3r/BDIlsrbYc1j5r+gVix7Z8zRpuxvjv/t5M+OpPtn4KH//RNIHVlsEbF5mO6/bY7eb6tR1+85SpkZ92v1lEbuc38NIc067el8rzTIgOP9kMvVXKfCPK3wy7vu3989tt8N510FBnvh2U5UDqy71/XoeutKEfB9yrtT7d8fxPAFrrB5vt8wywVmv9suP518CdWut1hzuutKGL5rTWbNhbQtqe4qaf/HJTs7FafAjy98OuNVqDXWtwPI6IC+W0cXGcNi6OEbEhqL5su60qMitfVhfD1V+17BD84XFYfjdc/Q0kTm37XluDWRnT3gA3rGm5aqarZK+B1+ZC3Hi4/EPIXm0CfcRsWLCkbR/Hmqfh8zvh7MfNt5bmdnwNb11hJn9d/CYMmtI31/DutaZT+/rVhyab1dfAYxNMGS55q3fPv+rf8NW9Zr7BlEvh1bOhYCvcnAH+wU45RU87Rf0wnaKnArmYTtGLtdabmu0zB9NRulApFQ2sByZrrQ8e7rgS6KIjWmtyS6pJ21PMxpxS6hrsKAU+SqEUKBQaTXp2CRl7SwAYFh3MaePimD0ujilDIvH16YNwP7jThHpQFFy13DzW18B/Jpqa+eUfHP69278wgTnnITj2dz0vy/6NsH+DGWcfM/rIOibzt8BLp0NwLPz2CwgeYLave8E0LU2/Ds54+ND+Bdvg2ZlmDf6Ll7Z/rrzN8MY8qCqEi14z33B60+5V8MqZZubwqXe3fO3bf8K3D8KN6yBmVO+cPzcNXjzNfCu78BXzb5K9Fl46DU69B2bc6pTTOGPY4hnAY5hhiy9prR9QSt0HpGqtP1SmWvQvYA5gAx7QWr/Z0TEl0IWzHCitYfmWPJZvzmP1zkLqbZqY0ADOTB7I2ZMGMmVwJD69Ge57VsNr55ggvew9s1TBJ7eaWu7wkw7/Pq3h9d/A/gw49zmzgmZ31pivKjI3Nkl9GTNqGAiOMU1CSSdC0oyOA740xwSR3QZXL287katxpc/GDx5bPbw426y6ecMaCI07fNnK80x7fP5mM1kr+YIjv76usNXDMzPMuj83rm07M7qiAP493kxWO+vfzj9/bQU8O8M0tVy/quW498UXwd41cPNGCGzTEn3EZGKR8BplNfWs2JrPZ5kH+GZbPnUNdhIiAjlr4kDOnjSI8YPCeqdZZuNbZnGyifNNU0VwjGmG6exceZtMW3NtmVmnZtBkE8BJM8ytBTuaCGW3Qfqr8PV9UFMG0681ywrkppva6u7voSzX7BsUDYkpkDDV8XO0CZ2qInP+8gOmXyB+QvvnWXa5ae+f/4b5APr2QbjwVRj/m87/bWpKYcnF5paJZzxi1hVytsYmrvlLYMwZ7e/zwY2Q+Q7cutn5wwnfvxE2LIYrPjHrCzW3f6MJ+5m3wSl/6fGpJNCFVyqvqWf55jw+ytjH9z8X0mDXDAj2x8dHYbdrbFpjs5lHXx/FqWNiuWDqYI4/akD3avTfPQwrHjC/dxQsrdVVQc5P8Mv3JohzU03buo8fxIw195Rt+plggnjvOvj0f0wTy9ATTXNI3PiWx9XajHvfvcqMq89Nc6xj4/h/fsAIs09pjvlm0TqIWpSx0jRnFGwzozYmnA/nP9/1f5v6GnNT822fmg7hk+448rHqWptRQzVl5kOiptR8EFYdhI9vhWEzTXv94eRtMv0Wp/7VjDRylk3vmf6C9pp6Gr11hVmR9OaMrq2Y2gEJdOH1iivr+GLTAdKzi/H1UfgohZ+PwtfHB18fKK2u5/OsA5TVNJAQEcj5Rydw/tREhg44go4sreGz2+HgDrjkne4v8FVXaTood68yteG8LDPztVFYgql5hw40o0omnN/1cGxaaTLV1OSLd5tZlGPO7Py95Xnwwqmmxn7Dj0c+nd7WYIbzZbxhvk3Meahr/0aVhWYd//TXoHBb+/tYI+C67zqf1fvaXPOh9MdMsxRzd9ntULQTclLh8ztgwEj47eeHP2bhz+bGM8dcD3P+0f3zIoEuRJfU1NtYvjmPt9Jy+P7nArSG6UlRTE2KZGhUEEMGBDEkKoiB4YF90+HaXHke5GWapYnzskxwnXBz39/XtbrYBHpwdPfeb7ebppHVT5gVMk/+k/lgat3mbbfDL9+aMfFbPzHLQCdOh1Gnm+aSgDAT4tYwMww0dKD5vTPbv4Q3LjRr9k+8sGtl1tqMx9+fYb7lNC67XFNqXg+Jh99+1vnaQ+/fCJlvwR/W92jZBwl0IY7Q/tJq3k3P5aOMfewsqKDeduj/E39fHxIjAxkWHczIuFBGxoYwKi6Uo2KDCfKXm2R0SmszvO/rvx3aFhAOYQNNMIfEQfaPZtJSYKS5veHRl7cdz98ddrupKQeEwDUrWn6zsduhush8w8rbZDpy8zZD/qZD4a18TdNWU1/EVNPh3JVlK4r3mFU3p1xilpXuJgl0IXrAZtfsK6lmb1EVe4qq2HOwiuyiSnbmV7Kr8FDYKwWJkYGMjgtl/KBwJiSEk5wQTlxYQN+Oj3cX+9ab5o+yfVC+/9Bj+QGzQNvRl5shgH4Bzj3vuhfNKKSx55jmrcp8swxzZSFo26H9AsLMh0jsOBPicRNg4KSe3Tf309vMchC/X3dkq4k2I4EuRC9psNnZfbCKHfnlbM+rYHteOVsPlLOzoKJppnl0iD/jB5lwnzYsipShkQQHSE3eZeqqzNyB2jIzGikk9tBjSBxEDIW4cRA+2PmLjJXnmdU3Jy/o9vBJCXQh+lhVXQNb9peRlVtGVm4pWfvK2J5Xjs1uRtRMSAjn2GFRHDM8ipSkKMKsPeigE+7ll+/NsNFuzhyVQBeiH6isbSA9u5i1u4pY+8tBNuwtaWquiQ7xJz7cysDwQAY2exw3KIwRMSG9OzFKuJWeLp8rhHCC4AA/ZoyMYcZIMw65pt5GenYx6XuKyS2pZn9pDdkHq1i76yBlNQ1N74sIspAyNIppSZFMGxbFhEHh+Pv1p7WGRX8hgS6Ei1gtvhx/VDTHH9V2CGBlbQP7SqrZsLeEdbuLWLe7mK+25Dne58PI2FAGhlsZFOGo0UcEMijcSmJkELGhAVKj91IS6EL0Q8EBfmZIZFwoF6YMBqCgvJbU3UX8tLuInQWV/FJYyY87D1JR29DivVaLD0kDgs1PdDDDooMYEhVMTGgAMSEBhAX6yagbDyWBLoSbiAkN4NfJA/l18sAW28tq6tlfUsO+0mpyiqvZXVjJ7sJKfs4v5+uteS3G0IMZRz8gxJ8BIf7EhAQwKj6UiQkRJCeEMzgqUMLejUmgC+HmwqwWwuItjI5vO2u0cQx9dlEVhRW1FJTXUlhRR2FFLYUVtewvrWHVjsKm0A8PtDAhIYwJCeGE+PtRWWejqq6BylrHY52taWKV+QkiMTKQwZFBUvPvByTQhfBgvj6N93Q9/GSY2gYb2w9UsDG3hKzcUjJzS3lp1S/U2zT+vj4EBfgS7O9HkL8vQf6+VNfb+HFnIVV1thbHCQ+0MCouhNHxoYyOD2NMfCij40NlSGYfkkAXwssF+PmSnBhOcmJ407Z6mx2tOexoGq01JVX15BRXk1NcRW5JNbsKK9l2oJwP1u+jvDa7ad+B4Vbiw63EhgYQG+p4DDO/x4VZGRhuJSLIIrV7J5BAF0K0YfHteFikUorIYH8ig/1bfBDAobtNbTvgmDWbX0FeeQ27CipZs6uI0ur6NscL8PMhLswEf3yYlfBAC1aLD1aLLwF+jkeLL8H+voRZLYQHWQgPtJjfHfvKB4IEuhDCyZRSjrb1IE4d2/ZuRjX1NgrKa8kvryWvrIYDpTUcaPa4YW8J5TX11NTbqWmw0ZW5j/6+PoRa/QgLtBBm9SPUaiEs0I/wQH9GxoYwblAYYweGER7o2c0/EuhCiD5ltfh22q7fSGtNvU1T02Cjpt5GZa2Nsup6ymrqKa02P2XVDZRW11NeU09ZTQNljt8PlNVwsKKWJVWHvhEkRgYydmAY4waGMW6QeUyM9JyRPRLoQoh+SymFv5/C38/HdK52Y/n3/PIaNu8rY/P+MrbsL2fzvlK+2pLXVPMPtfq1CPjBUUGEB5qmnIggC4EW3xaBX9dgb/owKa2up8FmZ3R8KBFB/k666u6TQBdCeLTYUCuxo62cPDq2aVt1nY1teeWOoC9l874y3vxpL9X1tjbvt/gqwgMt+Pn4UFpd3+4+AIOjAklOOLRs8vhB4YQHWvr0ZigS6EIIrxPo78vkwRFMHhzRtM1m1+w5WMmB0hpKmtXAS6vrKakyNfHGmntTp2ygBQVs3l/GptwyMnNL+TTzQItzWXwVAX6+WC0+BPiZTt6LjxnC1TO6tx56RyTQhRACM2Z/eEwIw2NCjvi9zWv/pVX1ZO0rZcv+MiprbdQ22Kipt7d4jA5x8k07HCTQhRDCicKDLJwwIpoTRnTzvqs9IGtwCiGEh5BAF0IIDyGBLoQQHkICXQghPIQEuhBCeAgJdCGE8BAS6EII4SEk0IUQwkMo3ZW1KXvjxEoVAHu6+fZooNCJxXEn3nrtct3eRa778IZqrWPae8Flgd4TSqlUrXWKq8vhCt567XLd3kWuu3ukyUUIITyEBLoQQngIdw3051xdABfy1muX6/Yuct3d4JZt6EIIIdpy1xq6EEKIViTQhRDCQ7hdoCul5iiltimldiil7nR1eXqLUuolpVS+Uiqr2bYopdRypdTPjsdIV5axNyilBiulViilNiulNimlbnZs9+hrV0pZlVI/KaUyHNf9N8f2YUqptY6/96VKKdffibgXKKV8lVLrlVIfO557/HUrpXYrpTKVUhuUUqmObT36O3erQFdK+QJPAr8GxgELlFLjXFuqXvMKMKfVtjuBr7XWI4GvHc89TQOwSGs9DjgWuNHx39jTr70WOEVrPQmYDMxRSh0LPAT8W2s9AigGrnJhGXvTzcCWZs+95bpnaa0nNxt73qO/c7cKdGA6sENrvUtrXQe8Ccx1cZl6hdZ6JVDUavNc4FXH768Cv+nTQvUBrfV+rXW64/dyzP/kCXj4tWujwvHU4vjRwCnA247tHnfdAEqpROBM4AXHc4UXXPdh9Ojv3N0CPQHY2+x5jmObt4jTWu93/H4AiHNlYXqbUioJmAKsxQuu3dHssAHIB5YDO4ESrXWDYxdP/Xt/DLgdsDueD8A7rlsDXyql0pRS1zq29ejvXG4S7aa01lop5bFjTpVSIcA7wB+11mWm0mZ46rVrrW3AZKVUBPAeMMbFRep1SqmzgHytdZpS6mRXl6ePnai1zlVKxQLLlVJbm7/Ynb9zd6uh5wKDmz1PdGzzFnlKqYEAjsd8F5enVyilLJgwX6y1ftex2SuuHUBrXQKsAI4DIpRSjRUvT/x7PwE4Rym1G9OEegrwHzz/utFa5zoe8zEf4NPp4d+5uwX6OmCkowfcH5gPfOjiMvWlD4GFjt8XAh+4sCy9wtF++iKwRWv9aLOXPPralVIxjpo5SqlAYDam/2AFcIFjN4+7bq31n7TWiVrrJMz/z99orS/Bw69bKRWslApt/B04Dciih3/nbjdTVCl1BqbNzRd4SWv9gIuL1CuUUkuAkzHLaeYB9wDvA8uAIZilhy/SWrfuOHVrSqkTge+BTA61qf4Z047usdeulJqI6QTzxVS0lmmt71NKDcfUXKOA9cClWuta15W09ziaXP5Ha32Wp1+34/reczz1A97QWj+glBpAD/7O3S7QhRBCtM/dmlyEEEIchgS6EEJ4CAl0IYTwEBLoQgjhISTQhRDCQ0igCyGEh5BAF0IID/H/qVocw6CoEnMAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ] + }, + { + "cell_type": "code", + "source": [ + "# label mapping\n", + " \n", + "labels = '''airplane automobile bird cat deerdog frog horseship truck'''.split()\n", + " \n", + "# select the image from our test dataset\n", + "image_number = 0\n", + " \n", + "# display the image\n", + "plt.imshow(x_test[image_number])\n", + " \n", + "# load the image in an array\n", + "n = np.array(x_test[image_number])\n", + " \n", + "# reshape it\n", + "p = n.reshape(1, 32, 32, 3)\n", + " \n", + "# pass in the network for prediction and\n", + "# save the predicted label\n", + "predicted_label = labels[model.predict(p).argmax()]\n", + " \n", + "# load the original label\n", + "original_label = labels[y_test[image_number]]\n", + " \n", + "# display the result\n", + "print(\"Original label is {} and predicted label is {}\".format(\n", + " original_label, predicted_label))" + ], + "metadata": { + "id": "RDq_RE6osSh8", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 283 + }, + "outputId": "19322411-0569-42ed-f02f-754a34d07c43" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Original label is cat and predicted label is cat\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD5CAYAAADhukOtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAe7ElEQVR4nO2daYyc13Wm31NfLb1vbLLZXEVJlBVZiSmF1tiJRpGdcaAoCWQDgccewFAAIwqCCIiBzA/BA4w9wPxwBmMb/jHwgB5rrBgeyxrbgoREyNiWgwiGHUnURi3UQnGRSDbZJJu9d+1nflTJQ2nue7vJZlfTvu8DEKy+p+/3nbr1nfqq71vnHHN3CCF+/cmttwNCiM6gYBciERTsQiSCgl2IRFCwC5EICnYhEiG/mslmdgeArwHIAPwPd/9S7Pf7u/O+YaAYPlb8PBftW0xSdHBb9FxkWvR4/Ghxo8feh2P+h20WOxmZAwAxZfbSZFvuR+xo7hd/DbSOydaD04w+6UvzI/bsmKUZcYP5OLNQx1KlEXTykoPdzDIA/w3AxwAcB/C0mT3q7q+wORsGivjCv7s+fDxv0nMVC2E3LccDolqtUFu9UePnKobfjACg0Qz76JFXxXINastl1ASv9fJjgh+zUCwHx7PIS2057n+jWae2Wp2/Zs0mCQrjftTD1ygAoMKOh+UCN+xj7E29WuXXR6MRWcfINZyLvGZVcl0t8KXHYjV8vG//5ETEh0vnFgCH3P2wu1cBPAjgrlUcTwixhqwm2LcCePuCn4+3x4QQVyBrvkFnZveY2X4z2z+/FPlcIoRYU1YT7CcAbL/g523tsXfh7vvcfa+77+3rXtV+oBBiFawm2J8GsNvMdplZEcCnADx6edwSQlxuLvlW6+51M7sXwP9BS3q7391fjs6BoUreX9yX+ESyW1kC37HOgW915/ORHfJLULyswCdVqlVqqzcjPkaktyyyi58n06zJd5hR58pFbBe5GfG/al3B8UZW4nNix2vw9bAm99GImtAVec3yxm25fES5qEXW2PifsE7W2CM6Q5aFfYwpE6v6XO3ujwF4bDXHEEJ0Bn2DTohEULALkQgKdiESQcEuRCIo2IVIhA5/y8XhLLHCufzjjfAca3CpplnjklfWHZFxwJMZmOTVjEg/xUKB2urObc1a5LlFzlevh20WyeTKRWQ+y3hikGdheQ0Alhphie3UOS5PLVS5j/PzfF7mfD36u8LrWDT+Og/0dFNbd4lLaM0cv+ZyURkt7CO/OoAaS76KaG+6swuRCAp2IRJBwS5EIijYhUgEBbsQidDR3XhzR75Bdt2zyG4xSeIoZZH8+HxsWzKS6EASDADQRJh6rFhYjvtRKPJd381XXUdts9Nnqe3sucXwufJ8Vz2HSHJKnV8iS879P3gs7KOXRuicWsYTm6p9fOd/fmaK2k5MTgfH+0r8eTVOhecAwI4xvo4b+vk6duVj5azC13Excgk3iAIRK7elO7sQiaBgFyIRFOxCJIKCXYhEULALkQgKdiESYR3KvYalAcsP8RlETqjHOnDkuCxXrfOEhWKkRlqjQWqFRRJTEJFCipE6aP/q33yM2p75+S+o7eT0ueD4QkRCqze45HXs+BlqO3KCdx8pDY0Hx7eN7aJzvNRPbdU8f10KfRuprV6eD46fmzxJ5/QMcXnw+PxpaiuTWokAMNbP01p6CuFEmEYtLKMCAGviE+nkpTu7EKmgYBciERTsQiSCgl2IRFCwC5EICnYhEmFV0puZHQUwB6ABoO7ue2O/37QcKrmwvDKz2EPnNUh7ouE+Lq8NZFwOy0fqsTUjshyTNWhdPcSz6BYXz1PbT//+EWo7Pc3r9Z2eD5/v2Al+rmMTb1Nb1tVHbY1sgNp6B0aD44Uefrx8F8+iK0VaMnXluHR4thpuKza+bQedU15aoLYjR7j0NjVTprbM+PO+amPYVmhwKc9YXcaI1Hs5dPaPuDvPuRRCXBHoY7wQibDaYHcAPzKzZ8zsnsvhkBBibVjtx/hb3f2EmW0C8GMze9Xdn7jwF9pvAvcAwHA/r/IhhFhbVnVnd/cT7f8nATwM4JbA7+xz973uvrevex2+ii+EALCKYDezXjPrf+cxgD8A8NLlckwIcXlZza12DMDD7a3+PID/5e7/GJtQbxrOLIUzfKZqPOvtiZ//c3D8N3ZzyeUj7w9LPwAwHClu2SSZbQCQI216cjme0dRw3rYooibhyLEj1Da1xDPAvGc4OJ71ceknNzxHbd1Dg9RWLXOpqUraKw0M89dsoI/bJk+dorbZ87zgZH8xfIl3dXOZ763zXFwq9G+itjOn3qK2vtN8jTcPhH3ptkimIinCioisfMnB7u6HAXzgUucLITqLpDchEkHBLkQiKNiFSAQFuxCJoGAXIhE62+stKyE/GC44uHiOv+/UiuGCglOLYSkMABarvDfYQJFntjVJ3622MTicZTxjr1zlEs8ZnryGs3NcAowVRBzeGM7mWmjO0jmj4D5mkUy0aoGvY3khLDWV57kfO8c2UNsikdAAYJJktgGAFcIy5cwUL+aISAHRpQWeEZcV+XUwOcuzDidIttzOUX5951hCXKzFITcJIX6dULALkQgKdiESQcEuRCIo2IVIhI7uxnd19+J9v/X/ZcECAI7/y2t0Xt9geDf+lg+HjwUAPdkxaquSnWIAyOV5UosVwjvTDedJPP2btlPb8wcOUVvfEN+Z3rrz/dTmufDucyGyc96shFtGAUC1GmmxFVmrjCRxvPzCATpnoBRpkdTLk2R6I3XtTp4K14yrE2UFADKygw8Aw/1cnZhp8KSn81PcduTUTHB8y9hmOifPFKVIdpXu7EIkgoJdiERQsAuRCAp2IRJBwS5EIijYhUiEjkpvuSyPnsGwpLTz6uvovCWiWuzYdS2dM1rj0sr0ES7L1SKJMI16ONHhlts+TufsuJp3xNr1m0ep7ZnnXqC24T4uyZycDNdPyzsv410qcMkLfBkxH0kKmSF14YZ7+bkip0IjIpWNbgxLswBQqYVfz7Pnw3IXAFikZVd/pE5ePuPhVC3zxJvDbx8Pjm8c4jLf7m3hNmoeuX/rzi5EIijYhUgEBbsQiaBgFyIRFOxCJIKCXYhEWFZ6M7P7AfwxgEl3v7E9NgLgewCuAnAUwCfdnRfZeudYuRyyUjhD6eTpg3Tent/+YHC8d5DX/MrmTlBbox5pkROpdXb47XC23K3D4bp6AICebdTU38vlmK48z+TqjtQ66yqSjK1IXbWtW8ap7ZU336S2YpHX+ZudC6/VVdt20znXXX8DtU1N8curb4BnHZ48NRkctxyv7zY0zGv8zURqyWURya67h/u4NBe+Dg6R6w0Auovhc9XqkSxFavl/fAvAHe8Zuw/A4+6+G8Dj7Z+FEFcwywZ7u9/6e78hcReAB9qPHwDAv1UihLgiuNS/2cfcfaL9+BRaHV2FEFcwq96gc3dH5JuOZnaPme03s/0zM7xmuBBibbnUYD9tZuMA0P4/vAsCwN33ufted987ODhwiacTQqyWSw32RwHc3X58N4BHLo87Qoi1YiXS23cB3A5g1MyOA/gCgC8BeMjMPgvgGIBPruRkZhkKXeG7e7nMCyJWKuG0t0JEgurp5Z8ieiMtjUoZz3rry4f7NX1r3zfpnD/5t/dSW2HhFLUVS5HspRz3cdfVW4Pjk1Mn6ZzyPM9e27xplNqmZrl0WKmGX8+rr+WZitdcyzMfZ557ltoW5uapbXYh7GO9wSWqpaVwOyYAGBoapLaGc6lsYIhn+9Wr4dczy/H+YMcnwh+mqyTLD1hBsLv7p4np95ebK4S4ctA36IRIBAW7EImgYBciERTsQiSCgl2IROhowUmYwbKwBLEYkX/Ki0vB8UKkJ9fcOZ7lhYxLbwXwQoTjQ+FMqTcO8p5tJ49zGxa5HHbs+FFqu2kz73G3dWe4GOWWSf6N5oVDvADnSCnSx26Iy3KHDx8Njo9vCUuDADA9y79hWYtIZafP8F51TbfguEWKQy5GpDfL8esqfKYWvZFClWiGs+yKFr7uAaB6LizbeqRsp+7sQiSCgl2IRFCwC5EICnYhEkHBLkQiKNiFSITOSm8OgPTsypxLK+Oj4f5wPV1cevvpAV4ocThSlG/3CM9O6iqFZZdinks1ZyaPUluzwosX7riGF7HMIs+7Z2A4OD46xgtfnpviWWMzkcy2RkTd3Ej6r+UjcmmZZH8B8WyupTLPDqsTJ9k4AJQrPAOzXuf3xw2jm6jNjF9XRQtfPyWL9B30cMZnIVL0Und2IRJBwS5EIijYhUgEBbsQiaBgFyIROrobbwYU8uFkksE+npwy1B+2WZPvVs46Tzw4e56nLIz28yXpLYZ3VBu5cI08ADh68ii1jQ3zemY7r+WtkMr8dHjqmXAbrRMTfOe/vy+8gw8AhQJv8fTyobe4I+Q+0ozcXyqR3fj5BZ4UMjTC2zXVSSLMxGlaEBm9/fx1yWc80aSnh9dELLK2XABQCyfyNBam6ZSxTf3B8XyBt7XSnV2IRFCwC5EICnYhEkHBLkQiKNiFSAQFuxCJsJL2T/cD+GMAk+5+Y3vsiwD+HMCZ9q993t0fW8kJMwtLIZs3hWuntZwkMk4kAWJ8G08k2R+Rw6aNS3aehevkDY7ypIrBAZ4AUegKyycAcFVEeusbDCcGAcD/vP/bwfHFyFrNLk1R2+ISrw1YiFw9m4fDz7s8xevdLZBEIwAYHOCvy6uvvUFtp0+fCY7PRlpGDQ3xJzbQ20dtmXNNtFDl65iRWoQbe/nxBrvCcZSP3L5Xcmf/FoA7AuNfdfc97X8rCnQhxPqxbLC7+xMA+Fu/EOJXgtX8zX6vmR0ws/vNjH8FSwhxRXCpwf51ANcA2ANgAsCX2S+a2T1mtt/M9k9P86//CSHWlksKdnc/7e4Nd28C+AYA2rXA3fe5+1533zs0xBsOCCHWlksKdjMbv+DHTwB46fK4I4RYK1YivX0XwO0ARs3sOIAvALjdzPagVVXuKIC/WMnJcrkczf4ZGObSW70RdrOU55lE1+3aQW37n+GS12zhWmpr2lxwfGwrl9deOfgv1PY7v/dn1PaLn/N5CwuRNknVs8HxyVNv0zmx9/z5GrflwaWh4Vw4y25rN/d95gyX0OoZ3xYa28RtjUY4k24p0uKpvMTr7i1EaujVm1zOq5VPUNumQjijb0sfz6Kr1MNzYnfvZYPd3T8dGP7mcvOEEFcW+gadEImgYBciERTsQiSCgl2IRFCwC5EIHS04mcvl0NsXzl4aHh2l8+oWdrOcK9I5XX0D1DY0xAsKvvX2KWq79YPvD/sxz9tJ9fSHs64AYOLEcWo79Prr1FZv8PZEOVJvcGF2hs7p3zBObTMzXIYa7OPFKN933Y3B8adfeJXOefbVo9R26+1/SG2FIpeoDh86FByfmePPK1YUs7zE5bWdY1zS7e7lBVVHRsLzPM8LcNar4cKXTrJKAd3ZhUgGBbsQiaBgFyIRFOxCJIKCXYhEULALkQgdld7cm2jWw5LH4Agv5LewFC5EuNjgfbeyjL+P7di+jdpef5lnXs0shiW2vl6eYbf9GmrCsdd58cUTJyeo7cMf/iC1LS6GpaH+LVvpnJEtvDjnW1NcKluqcMmx2BvuvzawcTudc1M/f13OnAn3QwOAo8deoLaFpbBMOT3DJbSNGzdS26Dz12VnH5dENw3wHmwFC2cCVmu8v10vkdhy4DGhO7sQiaBgFyIRFOxCJIKCXYhEULALkQgd3Y1v1muYOxfezeyO1PaqlMO7nNbk7pvxXcnREd4+6fXcYWqbnAq38DmX8V3pwT5eW+/6G3lCzuFjvGZcjXdJwvRsWO3YvXs3nbN7F5cMjk3wBJqXX36R2s6dDSenFEtcdRnu44kkx1/mqsCpc7yunZFkqSzSeivWOmwnzzPBjn6eGNSV40ktlXL4+mk2eW3DWp0cj1/2urMLkQoKdiESQcEuRCIo2IVIBAW7EImgYBciEVbS/mk7gL8DMIbWxv4+d/+amY0A+B6Aq9BqAfVJdw/3/GlTqVRw+FBY2tqx+zfovK5cWHprVnmiQL4rIoNEbP39XBrqGwjXtbv++vfROT/50WPUtjjD6931jGyitkPHJ6lt+7ZwUs6u991M55SK/DK4egdP8pme4i/3KwfDCUVN57rhiWmeSDJLkqEAoNzgsu3sdFiK3LSZJ928dY7XpxvZzuXScyXuB5r8uU3Xw8/N8/w6rZDjVcETblZyZ68D+Bt3vwHAhwD8lZndAOA+AI+7+24Aj7d/FkJcoSwb7O4+4e7Pth/PATgIYCuAuwA80P61BwB8fK2cFEKsnov6m93MrgJwE4AnAYy5/zK59xRaH/OFEFcoKw52M+sD8AMAn3P3d30/0d0d5It6ZnaPme03s/1zc7xggBBibVlRsJtZAa1A/467/7A9fNrMxtv2cQDBXSN33+fue919b2zzSwixtiwb7GZmaPVjP+juX7nA9CiAu9uP7wbwyOV3TwhxuVhJ1tvvAvgMgBfN7Pn22OcBfAnAQ2b2WQDHAHxyuQMtVup4/lBYNtpx4y10XhPhbDNjmT8A0OTpP7Nzc9Q2PX2W2jaM7AmO33nHR+icPR+4ntoe+uHD1GbGJZTBwWFq27olLCn1DQzROVk9vL4AMLKZXyLju2rUNtMdlo2ee4HXi5uY5yllXuDtvAY38yzG0WvCUlkWkbUazv14zcPtywDg0CkuDxYzfsylcjk4vhi5vOvN8PUx1+DZgcsGu7v/DADz9PeXmy+EuDLQN+iESAQFuxCJoGAXIhEU7EIkgoJdiEToaMHJcsPw+kx30Ha2wQsAeiEsTeSqvBiiE2kCAHI5btsyzrPN/vXvhDPHugpcctm1k7dd+qM//RS1ff/hf6C2s6f4856YCRcvLJcP0TlFcI1naonbDh3jWXuohmU5H+UZgsObwkUqAaAZqaTY+s4XmdcVPmbTwoUoAaAWaSs20+Dn6irwY3blufS2YOEsu1qBn8ub4fVtRCRb3dmFSAQFuxCJoGAXIhEU7EIkgoJdiERQsAuRCB2V3ioNw+vT4feXR37G+4bt2TkaHN9c5BlIPYVIttZm3n9tfJRnV11zNSlS6LyY4MSZc9R2/4NcXnv2+VeojfW+AwCaCOj8fd0b/HiNEl+PRo5LQ3mEJdZ6RBqq58JzAKArdqVGstTK1fDz9hyfk49kxGVN3tfPy1ymrIPPKzTDPmbGX7NqLex/pMWh7uxCpIKCXYhEULALkQgKdiESQcEuRCJ0dDe+AcN8Lpws8Pizr9N5b7wZbhl1x2/fQOdcs4W36TlyONyaCABu++CN1NZFEhPmqnyH+aF/fJrannvlJLUt1iOthCK7xblC+P27GanJlzO+ixzbtW40eQJQheww1xp8jhmvaVdBJCnE+XPL58lOd8bvcz09PKGlCO5/g2+4o2E81BpkYr3GX5dif7imoOX4eXRnFyIRFOxCJIKCXYhEULALkQgKdiESQcEuRCIsK72Z2XYAf4dWS2YHsM/dv2ZmXwTw5wDOtH/18+7+WPRk+Tw2jG4M2qbOc/lk4vx0cPznL/BWN43azognXFrZuJkkuwCwLCyHPbX/JTrnH376C2qrNHnNNeS59JbLXfx7dKPCk108Iss1I/JaTPJiLZQKeX7JWcYlTGT8NctH5mVZ+HyxJqNZZH1zzuXBRiTZqBmRDplmt3kzl4/7B8K2N0uRdeIe/JI6gL9x92fNrB/AM2b247btq+7+X1dwDCHEOrOSXm8TACbaj+fM7CAAXjJVCHFFclGfB83sKgA3AXiyPXSvmR0ws/vNjLcWFUKsOysOdjPrA/ADAJ9z91kAXwdwDYA9aN35v0zm3WNm+81sf32Jt0oWQqwtKwp2a1Xh/wGA77j7DwHA3U+7e8PdmwC+ASDYYN3d97n7Xnffm+/mjSCEEGvLssFuZgbgmwAOuvtXLhgfv+DXPgGAb0kLIdadlezG/y6AzwB40cyeb499HsCnzWwPWnLcUQB/sdyBzIzKJIUCl5rq5bCccPT0LJ1TWThIbbfdfB21dQ+NU9tMOSyR/POT++mcsvPMpVqdyzilEs9sa0bqoC0uhlsJxcgiGVnGk94Q6ciEEpG8YllZiNisxGXK7m5euy5PpL5aJKNsbmGB2hoRmbJS56/L4HC4jiIAjI2HbX2RwntLc+E/iT1ybaxkN/5nAEIveVRTF0JcWegbdEIkgoJdiERQsAuRCAp2IRJBwS5EInS04CTc0ayTLKpYxlAWlqGq4NlOk/MVanv2NV7o8c5FLq3MeVjuOHGefzOw1Mezq+qL3P9yhfvf0xORmkjbq9jxLMf9yEXaNcUy2JzIaB65vxQicuN8jWffVetcKmOyXCxjLyahLURab/UNcXltaCNvOVath4/52qs8q7NAshFrVe6f7uxCJIKCXYhEULALkQgKdiESQcEuRCIo2IVIhA5LbwBY1pBzuSPLwsX6ms5loUaOF/g7Osmlsvsf4vk9H719b3D8yMkzwXEAWGzEihBGZKguXjgwK3JbD+lhVuzmstbSHJeuYtlhHpGoCiRjK8vz1yx2rixSVDLWx25pcf6i58TONTQ8Qm0bxnjG5NlzU9Q2ffZUePwt3pPw2l27woaIpKg7uxCJoGAXIhEU7EIkgoJdiERQsAuRCAp2IRKho9Jbls8wMjQUtJXLXA5bWApn8hQznv1Vj8hCuUhxyyeeOkBtR06Gs+VmFnjhyKn5JWojyU4AgN7eSLZcpKhgqRR+bvmIXNfVzTPKskhGXL7Aj9kg95F6RPKyiM2d+9io8fWv1sKL3N3FpcjRDRuobXiUy2vVSOZmpRgpHkn6szXzXD5eKIevq2ZEwtadXYhEULALkQgKdiESQcEuRCIo2IVIhGV3482sC8ATAErt3/++u3/BzHYBeBDABgDPAPiMu0f2lwFvOipkF7EUedupNMK7rYWM7wbX+SYyPMdPluvmu+DHSMJLLpLcUa/xHeaYYlAul6ltIdKeKEeeG9ulB4DeIt/17Y4k0ORy3P9iV/h83T18fatVnghzdoonkjTB5+UL4fUYHuilc8ZGwooRAGzezBNhphd4nb+56fPUNj8zHRwfGuHnOnvmbHC8HkkmWsmdvQLgo+7+AbTaM99hZh8C8LcAvuru1wI4D+CzKziWEGKdWDbYvcU7eYKF9j8H8FEA32+PPwDg42vioRDisrDS/uxZu4PrJIAfA3gTwLT7L1uUHgewdW1cFEJcDlYU7O7ecPc9ALYBuAXA9Ss9gZndY2b7zWx/bZG3WBZCrC0XtRvv7tMA/gnAhwEMmf2ysfc2ACfInH3uvtfd9xZ6BlblrBDi0lk22M1so5kNtR93A/gYgINoBf2ftn/tbgCPrJWTQojVs5JEmHEAD5hZhtabw0Pu/vdm9gqAB83sPwN4DsA3lztQs9lEZSksKZUyo/N6iJfNGk8yiXQtQhNcMoolEjRJu6l6NZLA0eDPK9aCKGZrRhJhmPR2/jyXfqYi6zjQxyWqwUg9tgFSC68LXMprNLl0lbdIsk6Jv9iVcviYpTx/XWLnqi/ORGzc//npc9TWJMk6XSUuiZZZnTyLPC9qaePuBwDcFBg/jNbf70KIXwH0DTohEkHBLkQiKNiFSAQFuxCJoGAXIhEsJvFc9pOZnQFwrP3jKIBw6k5nkR/vRn68m181P3a6+8aQoaPB/q4Tm+1393DzNPkhP+THZfdDH+OFSAQFuxCJsJ7Bvm8dz30h8uPdyI9382vjx7r9zS6E6Cz6GC9EIqxLsJvZHWb2mpkdMrP71sOHth9HzexFM3vezPZ38Lz3m9mkmb10wdiImf3YzN5o/z+8Tn580cxOtNfkeTO7swN+bDezfzKzV8zsZTP76/Z4R9ck4kdH18TMuszsKTN7oe3Hf2qP7zKzJ9tx8z0z4xVXQ7h7R/8ByNAqa3U1gCKAFwDc0Gk/2r4cBTC6Due9DcDNAF66YOy/ALiv/fg+AH+7Tn58EcC/7/B6jAO4uf24H8DrAG7o9JpE/OjomgAwAH3txwUATwL4EICHAHyqPf7fAfzlxRx3Pe7stwA45O6HvVV6+kEAd62DH+uGuz8B4L21ke9Cq3An0KECnsSPjuPuE+7+bPvxHFrFUbaiw2sS8aOjeIvLXuR1PYJ9K4C3L/h5PYtVOoAfmdkzZnbPOvnwDmPuPtF+fArA2Dr6cq+ZHWh/zF/zPycuxMyuQqt+wpNYxzV5jx9Ah9dkLYq8pr5Bd6u73wzgDwH8lZndtt4OAa13drTeiNaDrwO4Bq0eARMAvtypE5tZH4AfAPicu7+rOmkn1yTgR8fXxFdR5JWxHsF+AsD2C36mxSrXGnc/0f5/EsDDWN/KO6fNbBwA2v9ProcT7n66faE1AXwDHVoTMyugFWDfcfcftoc7viYhP9ZrTdrnvugir4z1CPanAexu7ywWAXwKwKOddsLMes2s/53HAP4AwEvxWWvKo2gV7gTWsYDnO8HV5hPowJqYmaFVw/Cgu3/lAlNH14T50ek1WbMir53aYXzPbuOdaO10vgngP6yTD1ejpQS8AODlTvoB4LtofRysofW312fR6pn3OIA3APwEwMg6+fFtAC8COIBWsI13wI9b0fqIfgDA8+1/d3Z6TSJ+dHRNAPwWWkVcD6D1xvIfL7hmnwJwCMD/BlC6mOPqG3RCJELqG3RCJIOCXYhEULALkQgKdiESQcEuRCIo2IVIBAW7EImgYBciEf4vt7E0CnHQV6IAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ] + } + ] +} \ No newline at end of file