-
Notifications
You must be signed in to change notification settings - Fork 225
/
Copy pathtrain_tts.py
211 lines (186 loc) · 10.6 KB
/
train_tts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import tensorflow as tf
import numpy as np
from tqdm import trange
from utils.training_config_manager import TrainingConfigManager
from data.datasets import TTSDataset, TTSPreprocessor
from utils.decorators import ignore_exception, time_it
from utils.scheduling import piecewise_linear_schedule
from utils.logging_utils import SummaryManager
from model.transformer_utils import create_mel_padding_mask
from utils.scripts_utils import dynamic_memory_allocation, basic_train_parser
from data.metadata_readers import post_processed_reader
np.random.seed(42)
tf.random.set_seed(42)
dynamic_memory_allocation()
def display_target_symbol_duration_distributions():
phon_data, ups = post_processed_reader(config.phonemized_metadata_path)
dur_dict = {}
for key in phon_data.keys():
dur_dict[key] = np.load((config.duration_dir / key).with_suffix('.npy'))
symbol_durs = {}
for key in dur_dict:
for i, phoneme in enumerate(phon_data[key]):
symbol_durs.setdefault(phoneme, []).append(dur_dict[key][i])
for symbol in symbol_durs.keys():
summary_manager.add_histogram(tag=f'"{symbol}"/Target durations', values=symbol_durs[symbol],
buckets=len(set(symbol_durs[symbol])) + 1, step=0)
def display_predicted_symbol_duration_distributions(all_durations):
phon_data, ups = post_processed_reader(config.phonemized_metadata_path)
symbol_durs = {}
for key in all_durations.keys():
clean_key = key.decode('utf-8')
for i, phoneme in enumerate(phon_data[clean_key]):
symbol_durs.setdefault(phoneme, []).append(all_durations[key][i])
for symbol in symbol_durs.keys():
summary_manager.add_histogram(tag=f'"{symbol}"/Predicted durations', values=symbol_durs[symbol])
@ignore_exception
@time_it
def validate(model,
val_dataset,
summary_manager):
val_loss = {'loss': 0.}
norm = 0.
for mel, phonemes, durations, pitch, fname in val_dataset.all_batches():
model_out = model.val_step(input_sequence=phonemes,
target_sequence=mel,
target_durations=durations,
target_pitch=pitch)
norm += 1
val_loss['loss'] += model_out['loss']
val_loss['loss'] /= norm
summary_manager.display_loss(model_out, tag='Validation', plot_all=True)
summary_manager.display_attention_heads(model_out, tag='ValidationAttentionHeads')
summary_manager.add_histogram(tag=f'Validation/Predicted durations', values=model_out['duration'])
summary_manager.add_histogram(tag=f'Validation/Target durations', values=durations)
summary_manager.display_plot1D(tag=f'Validation/{fname[0].numpy().decode("utf-8")} predicted pitch',
y=model_out['pitch'][0])
summary_manager.display_plot1D(tag=f'Validation/{fname[0].numpy().decode("utf-8")} target pitch', y=pitch[0])
summary_manager.display_mel(mel=model_out['mel'][0],
tag=f'Validation/{fname[0].numpy().decode("utf-8")} predicted_mel')
summary_manager.display_mel(mel=mel[0], tag=f'Validation/{fname[0].numpy().decode("utf-8")} target_mel')
summary_manager.display_audio(tag=f'Validation {fname[0].numpy().decode("utf-8")}/prediction',
mel=model_out['mel'][0])
summary_manager.display_audio(tag=f'Validation {fname[0].numpy().decode("utf-8")}/target', mel=mel[0])
# predict withoyt enforcing durations and pitch
model_out = model.predict(phonemes, encode=False)
pred_lengths = tf.cast(tf.reduce_sum(1 - model_out['expanded_mask'], axis=-1), tf.int32)
pred_lengths = tf.squeeze(pred_lengths)
tar_lengths = tf.cast(tf.reduce_sum(1 - create_mel_padding_mask(mel), axis=-1), tf.int32)
tar_lengths = tf.squeeze(tar_lengths)
for j, pred_mel in enumerate(model_out['mel']):
predval = pred_mel[:pred_lengths[j], :]
tar_value = mel[j, :tar_lengths[j], :]
summary_manager.display_mel(mel=predval, tag=f'Test/{fname[j].numpy().decode("utf-8")}/predicted')
summary_manager.display_mel(mel=tar_value, tag=f'Test/{fname[j].numpy().decode("utf-8")}/target')
summary_manager.display_audio(tag=f'Prediction {fname[j].numpy().decode("utf-8")}/target', mel=tar_value)
summary_manager.display_audio(tag=f'Prediction {fname[j].numpy().decode("utf-8")}/prediction',
mel=predval)
return val_loss['loss']
parser = basic_train_parser()
args = parser.parse_args()
config = TrainingConfigManager(config_path=args.config)
config_dict = config.config
config.create_remove_dirs(clear_dir=args.clear_dir,
clear_logs=args.clear_logs,
clear_weights=args.clear_weights)
config.dump_config()
config.print_config()
model = config.get_model()
config.compile_model(model)
data_prep = TTSPreprocessor.from_config(config=config,
tokenizer=model.text_pipeline.tokenizer)
train_data_handler = TTSDataset.from_config(config,
preprocessor=data_prep,
kind='train')
valid_data_handler = TTSDataset.from_config(config,
preprocessor=data_prep,
kind='valid')
train_dataset = train_data_handler.get_dataset(bucket_batch_sizes=config_dict['bucket_batch_sizes'],
bucket_boundaries=config_dict['bucket_boundaries'],
shuffle=True)
valid_dataset = valid_data_handler.get_dataset(bucket_batch_sizes=config_dict['val_bucket_batch_size'],
bucket_boundaries=config_dict['bucket_boundaries'],
shuffle=False,
drop_remainder=True)
# create logger and checkpointer and restore latest model
summary_manager = SummaryManager(model=model, log_dir=config.log_dir, config=config_dict)
checkpoint = tf.train.Checkpoint(step=tf.Variable(1),
optimizer=model.optimizer,
net=model)
manager_training = tf.train.CheckpointManager(checkpoint, str(config.weights_dir / 'latest'),
max_to_keep=1, checkpoint_name='latest')
checkpoint.restore(manager_training.latest_checkpoint)
if manager_training.latest_checkpoint:
print(f'\nresuming training from step {model.step} ({manager_training.latest_checkpoint})')
else:
print(f'\nstarting training from scratch')
if config_dict['debug'] is True:
print('\nWARNING: DEBUG is set to True. Training in eager mode.')
display_target_symbol_duration_distributions()
# main event
print('\nTRAINING')
losses = []
texts = []
for text_file in config_dict['text_prediction']:
with open(text_file, 'r') as file:
text = file.readlines()
texts.append(text)
all_files = len(set(train_data_handler.metadata_reader.filenames)) # without duplicates
all_durations = {}
t = trange(model.step, config_dict['max_steps'], leave=True)
for _ in t:
t.set_description(f'step {model.step}')
mel, phonemes, durations, pitch, fname = train_dataset.next_batch()
learning_rate = piecewise_linear_schedule(model.step, config_dict['learning_rate_schedule'])
model.set_constants(learning_rate=learning_rate)
output = model.train_step(input_sequence=phonemes,
target_sequence=mel,
target_durations=durations,
target_pitch=pitch)
losses.append(float(output['loss']))
predicted_durations = dict(zip(fname.numpy(), output['duration'].numpy()))
all_durations.update(predicted_durations)
if len(all_durations) >= all_files: # all the dataset has been processed
display_predicted_symbol_duration_distributions(all_durations)
all_durations = {}
t.display(f'step loss: {losses[-1]}', pos=1)
for pos, n_steps in enumerate(config_dict['n_steps_avg_losses']):
if len(losses) > n_steps:
t.display(f'{n_steps}-steps average loss: {sum(losses[-n_steps:]) / n_steps}', pos=pos + 2)
summary_manager.display_loss(output, tag='Train')
summary_manager.display_scalar(scalar_value=t.avg_time, tag='Meta/iter_time')
summary_manager.display_scalar(scalar_value=tf.shape(fname)[0], tag='Meta/batch_size')
summary_manager.display_scalar(tag='Meta/learning_rate', scalar_value=model.optimizer.lr)
if model.step % config_dict['train_images_plotting_frequency'] == 0:
summary_manager.display_attention_heads(output, tag='TrainAttentionHeads')
summary_manager.display_mel(mel=output['mel'][0], tag=f'Train/predicted_mel')
summary_manager.display_mel(mel=mel[0], tag=f'Train/target_mel')
summary_manager.display_plot1D(tag=f'Train/Predicted pitch', y=output['pitch'][0])
summary_manager.display_plot1D(tag=f'Train/Target pitch', y=pitch[0])
if model.step % 1000 == 0:
save_path = manager_training.save()
if (model.step % config_dict['weights_save_frequency'] == 0) & (
model.step >= config_dict['weights_save_starting_step']):
model.save_model(config.weights_dir / f'step_{model.step}')
t.display(f'checkpoint at step {model.step}: {config.weights_dir / f"step_{model.step}"}',
pos=len(config_dict['n_steps_avg_losses']) + 2)
if model.step % config_dict['validation_frequency'] == 0:
t.display(f'Validating', pos=len(config_dict['n_steps_avg_losses']) + 3)
val_loss, time_taken = validate(model=model,
val_dataset=valid_dataset,
summary_manager=summary_manager)
t.display(f'validation loss at step {model.step}: {val_loss} (took {time_taken}s)',
pos=len(config_dict['n_steps_avg_losses']) + 3)
if model.step % config_dict['prediction_frequency'] == 0 and (model.step >= config_dict['prediction_start_step']):
for i, text in enumerate(texts):
wavs = []
for i, text_line in enumerate(text):
out = model.predict(text_line, encode=True)
wav = summary_manager.audio.reconstruct_waveform(out['mel'].numpy().T)
wavs.append(wav)
wavs = np.concatenate(wavs)
wavs = tf.expand_dims(wavs, 0)
wavs = tf.expand_dims(wavs, -1)
summary_manager.add_audio(f'Text file input', wavs.numpy(), sr=summary_manager.config['sampling_rate'],
step=summary_manager.global_step)
print('Done.')