-
Notifications
You must be signed in to change notification settings - Fork 1
/
main.py
122 lines (98 loc) · 4.39 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import os
import argparse
from solver import Solver
from data_loader import get_loader
from torch.backends import cudnn
from utils import mkdir
from datetime import datetime
import zipfile
import torch
import numpy as np
def zipdir(path, ziph):
files = os.listdir(path)
for file in files:
if file.endswith(".py") or file.endswith("cfg"):
ziph.write(os.path.join(path, file))
if file.endswith("cfg"):
os.remove(file)
def save_config(config):
current_time = str(datetime.now()).replace(":", "_")
save_name = "densenet_files_{}.{}"
with open(save_name.format(current_time, "cfg"), "w") as f:
for k, v in sorted(args.items()):
f.write('%s: %s\n' % (str(k), str(v)))
zipf = zipfile.ZipFile(save_name.format(current_time, "zip"),
'w', zipfile.ZIP_DEFLATED)
zipdir('.', zipf)
zipf.close()
return current_time
def str2bool(v):
return v.lower() in ('true')
def main(version, config):
# for fast training
cudnn.benchmark = True
# create directories if not exist
mkdir(config.log_path)
if config.mode == 'train':
temp_save_path = os.path.join(config.model_save_path, version)
mkdir(temp_save_path)
data_loader = get_loader(config.data_path + config.train_data_path,
config.train_x_key, config.train_y_key,
config.batch_size, config.mode)
solver = Solver(version, data_loader, vars(config))
solver.train()
elif config.mode == 'test':
data_loader = get_loader(config.data_path + config.test_data_path,
config.test_x_key, config.test_y_key,
config.batch_size, config.mode)
solver = Solver(version, data_loader, vars(config))
solver.test()
if __name__ == '__main__':
torch.set_printoptions(threshold=np.nan)
parser = argparse.ArgumentParser()
# dataset info
parser.add_argument('--input_channels', type=int, default=3)
parser.add_argument('--class_count', type=int, default=256)
# training settings
parser.add_argument('--lr', type=float, default=0.1)
parser.add_argument('--momentum', type=float, default=0.9)
parser.add_argument('--weight_decay', type=float, default=0.0001)
parser.add_argument('--num_epochs', type=int, default=70)
parser.add_argument('--batch_size', type=int, default=16)
parser.add_argument('--pretrained_model', type=str, default=None)
parser.add_argument('--config', type=str, default='121',
choices=['121', '169', '201', '264'])
parser.add_argument('--num_features', type=int, default=64)
parser.add_argument('--compress_factor', type=int, default=2)
parser.add_argument('--expand_factor', type=int, default=4)
parser.add_argument('--growth_rate', type=int, default=32)
# misc
parser.add_argument('--mode', type=str, default='train',
choices=['train', 'test'])
parser.add_argument('--use_gpu', type=str2bool, default=True)
parser.add_argument('--use_tensorboard', type=str2bool, default=True)
# dataset
parser.add_argument('--data_path', type=str, default='../../data/c256/')
parser.add_argument('--train_data_path', type=str,
default='caltech_256_60_train_nobg_norm.hdf5')
parser.add_argument('--train_x_key', type=str, default='train_x')
parser.add_argument('--train_y_key', type=str, default='train_y')
parser.add_argument('--test_data_path', type=str,
default='caltech_256_60_test_nobg_norm.hdf5')
parser.add_argument('--test_x_key', type=str, default='test_x')
parser.add_argument('--test_y_key', type=str, default='test_y')
# path
parser.add_argument('--log_path', type=str, default='./logs')
parser.add_argument('--model_save_path', type=str, default='./models')
# epoch step size
parser.add_argument('--loss_log_step', type=int, default=1)
parser.add_argument('--model_save_step', type=int, default=1)
parser.add_argument('--train_eval_step', type=int, default=1)
config = parser.parse_args()
args = vars(config)
print('------------ Options -------------')
for k, v in sorted(args.items()):
print('%s: %s' % (str(k), str(v)))
print('-------------- End ----------------')
version = save_config(config)
main(version, config)