forked from yos1up/DNC
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
200 lines (170 loc) · 8.18 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import numpy as np
import math
import chainer
from chainer import functions as F
from chainer import links as L
from chainer import \
cuda, gradient_check, optimizers, serializers, utils, \
Chain, ChainList, Function, Link, Variable
def onehot(x,n):
ret = np.zeros(n).astype(np.float32)
ret[x] = 1.0
return ret
def overlap(u, v): # u, v: (1 * -) Variable -> (1 * 1) Variable
denominator = F.sqrt(F.batch_l2_norm_squared(u) * F.batch_l2_norm_squared(v))
if (np.array_equal(denominator.data, np.array([0]))):
return F.matmul(u, F.transpose(v))
return F.matmul(u, F.transpose(v)) / F.reshape(denominator,(1,1))
def C(M, k, beta):
# (N * W), (1 * W), (1 * 1) -> (N * 1)
# (not (N * W), ({R,1} * W), (1 * {R,1}) -> (N * {R,1}))
W = M.data.shape[1]
ret_list = [0] * M.data.shape[0]
for i in range(M.data.shape[0]):
ret_list[i] = overlap(F.reshape(M[i,:], (1, W)), k) * beta # pick i-th row
return F.transpose(F.softmax(F.transpose(F.concat(ret_list, 0)))) # concat vertically and calc softmax in each column
def u2a(u): # u, a: (N * 1) Variable
N = len(u.data)
phi = np.argsort(u.data.reshape(N)) # u.data[phi]: ascending
a_list = [0] * N
cumprod = Variable(np.array([[1.0]]).astype(np.float32))
for i in range(N):
a_list[phi[i]] = cumprod * (1.0 - F.reshape(u[phi[i],0], (1,1)))
cumprod *= F.reshape(u[phi[i],0], (1,1))
return F.concat(a_list, 0) # concat vertically
class DeepLSTM(Chain): # too simple?
def __init__(self, d_in, d_out):
super(DeepLSTM, self).__init__(
l1 = L.LSTM(d_in, d_out),
l2 = L.Linear(d_out, d_out),)
def __call__(self, x):
self.x = x
self.y = self.l2(self.l1(self.x))
return self.y
def reset_state(self):
self.l1.reset_state()
class DNC(Chain):
def __init__(self, X, Y, N, W, R):
self.X = X # input dimension
self.Y = Y # output dimension
self.N = N # number of memory slot
self.W = W # dimension of one memory slot
self.R = R # number of read heads
self.controller = DeepLSTM(W*R+X, Y+W*R+3*W+5*R+3)
super(DNC, self).__init__(
l_dl = self.controller,
l_Wr = L.Linear(self.R * self.W, self.Y) # nobias=True ?
)# <question : should all learnable weights be here??>
self.reset_state()
def __call__(self, x):
# <question : is batchsize>1 possible for RNN ? if No, I will implement calculations without batch dimension.>
self.chi = F.concat((x, self.r))
(self.nu, self.xi) = \
F.split_axis(self.l_dl(self.chi), [self.Y], 1)
(self.kr, self.betar, self.kw, self.betaw,
self.e, self.v, self.f, self.ga, self.gw, self.pi
) = F.split_axis(self.xi, np.cumsum(
[self.W*self.R, self.R, self.W, 1, self.W, self.W, self.R, 1, 1]), 1)
self.kr = F.reshape(self.kr, (self.R, self.W)) # R * W
self.betar = 1 + F.softplus(self.betar) # 1 * R
# self.kw: 1 * W
self.betaw = 1 + F.softplus(self.betaw) # 1 * 1
self.e = F.sigmoid(self.e) # 1 * W
# self.v : 1 * W
self.f = F.sigmoid(self.f) # 1 * R
self.ga = F.sigmoid(self.ga) # 1 * 1
self.gw = F.sigmoid(self.gw) # 1 * 1
self.pi = F.softmax(F.reshape(self.pi, (self.R, 3))) # R * 3 (softmax for 3)
# self.wr : N * R
self.psi_mat = 1 - F.matmul(Variable(np.ones((self.N, 1)).astype(np.float32)), self.f) * self.wr # N * R
self.psi = Variable(np.ones((self.N, 1)).astype(np.float32)) # N * 1
for i in range(self.R):
self.psi = self.psi * F.reshape(self.psi_mat[:,i],(self.N,1)) # N * 1
# self.ww, self.u : N * 1
self.u = (self.u + self.ww - (self.u * self.ww)) * self.psi
self.a = u2a(self.u) # N * 1
self.cw = C(self.M, self.kw, self.betaw) # N * 1
self.ww = F.matmul(F.matmul(self.a, self.ga) + F.matmul(self.cw, 1.0 - self.ga), self.gw) # N * 1
self.M = self.M * (np.ones((self.N, self.W)).astype(np.float32) - F.matmul(self.ww, self.e)) + F.matmul(self.ww, self.v) # N * W
self.p = (1.0 - F.matmul(Variable(np.ones((self.N,1)).astype(np.float32)), F.reshape(F.sum(self.ww),(1,1)))) \
* self.p + self.ww # N * 1
self.wwrep = F.matmul(self.ww, Variable(np.ones((1, self.N)).astype(np.float32))) # N * N
self.L = (1.0 - self.wwrep - F.transpose(self.wwrep)) * self.L + F.matmul(self.ww, F.transpose(self.p)) # N * N
self.L = self.L * (np.ones((self.N, self.N)) - np.eye(self.N)) # force L[i,i] == 0
self.fo = F.matmul(self.L, self.wr) # N * R
self.ba = F.matmul(F.transpose(self.L), self.wr) # N * R
self.cr_list = [0] * self.R
for i in range(self.R):
self.cr_list[i] = C(self.M, F.reshape(self.kr[i,:],(1, self.W)),
F.reshape(self.betar[0,i],(1, 1))) # N * 1
self.cr = F.concat(self.cr_list) # N * R
self.bacrfo = F.concat((F.reshape(F.transpose(self.ba),(self.R,self.N,1)),
F.reshape(F.transpose(self.cr),(self.R,self.N,1)),
F.reshape(F.transpose(self.fo) ,(self.R,self.N,1)),),2) # R * N * 3
self.pi = F.reshape(self.pi, (self.R,3,1)) # R * 3 * 1
self.wr = F.transpose(F.reshape(F.batch_matmul(self.bacrfo, self.pi), (self.R, self.N))) # N * R
self.r = F.reshape(F.matmul(F.transpose(self.M), self.wr),(1, self.R * self.W)) # W * R (-> 1 * RW)
self.y = self.l_Wr(self.r) + self.nu # 1 * Y
return self.y
def reset_state(self):
self.l_dl.reset_state()
self.u = Variable(np.zeros((self.N, 1)).astype(np.float32))
self.p = Variable(np.zeros((self.N, 1)).astype(np.float32))
self.L = Variable(np.zeros((self.N, self.N)).astype(np.float32))
self.M = Variable(np.zeros((self.N, self.W)).astype(np.float32))
self.r = Variable(np.zeros((1, self.R*self.W)).astype(np.float32))
self.wr = Variable(np.zeros((self.N, self.R)).astype(np.float32))
self.ww = Variable(np.zeros((self.N, 1)).astype(np.float32))
# any variable else ?
X = 5
Y = 5
N = 10
W = 10
R = 2
mdl = DNC(X, Y, N, W, R)
opt = optimizers.Adam()
opt.setup(mdl)
datanum = 100000
loss = 0.0
acc = 0.0
for datacnt in range(datanum):
lossfrac = np.zeros((1,2))
# x_seq = np.random.rand(X,seqlen).astype(np.float32)
# t_seq = np.random.rand(Y,seqlen).astype(np.float32)
# t_seq = np.copy(x_seq)
contentlen = np.random.randint(3,6)
content = np.random.randint(0,X-1,contentlen)
seqlen = contentlen + contentlen
x_seq_list = [float('nan')] * seqlen
t_seq_list = [float('nan')] * seqlen
for i in range(seqlen):
if (i < contentlen):
x_seq_list[i] = onehot(content[i],X)
elif (i == contentlen):
x_seq_list[i] = onehot(X-1,X)
else:
x_seq_list[i] = np.zeros(X).astype(np.float32)
if (i >= contentlen):
t_seq_list[i] = onehot(content[i-contentlen],X)
mdl.reset_state()
for cnt in range(seqlen):
x = Variable(x_seq_list[cnt].reshape(1,X))
if (isinstance(t_seq_list[cnt], np.ndarray)):
t = Variable(t_seq_list[cnt].reshape(1,Y))
else:
t = []
y = mdl(x)
if (isinstance(t,chainer.Variable)):
loss += (y - t)**2
print y.data, t.data, np.argmax(y.data)==np.argmax(t.data)
if (np.argmax(y.data)==np.argmax(t.data)): acc += 1
if (cnt+1==seqlen):
mdl.cleargrads()
loss.grad = np.ones(loss.data.shape, dtype=np.float32)
loss.backward()
opt.update()
loss.unchain_backward()
print '(', datacnt, ')', loss.data.sum()/loss.data.size/contentlen, acc/contentlen
lossfrac += [loss.data.sum()/loss.data.size/seqlen, 1.]
loss = 0.0
acc = 0.0