diff --git a/acks.tex b/acks.tex deleted file mode 100644 index ef85ea4..0000000 --- a/acks.tex +++ /dev/null @@ -1,6 +0,0 @@ -\begin{frame} - \frametitle{Acknowledgement} - Acknowledgements should include both people who helped and funding - streams. If you are funded by an NEUP grant, that number usually goes - here. . -\end{frame} diff --git a/acros.tex b/acros.tex index 4deebc9..e047b5b 100644 --- a/acros.tex +++ b/acros.tex @@ -1,17 +1,20 @@ %\newacronym{<++>}{<++>}{<++>} -\newacronym[longplural={metric tons of heavy metal}]{MTHM}{MTHM}{metric ton of heavy metal} \newacronym{ABM}{ABM}{agent-based modeling} \newacronym{ACDIS}{ACDIS}{Program in Arms Control \& Domestic and International Security} +\newacronym{ADS}{ADS}{Accelerator-Driven Systems} \newacronym{AHTR}{AHTR}{Advanced High Temperature Reactor} \newacronym{ANDRA}{ANDRA}{Agence Nationale pour la gestion des D\'echets RAdioactifs, the French National Agency for Radioactive Waste Management} \newacronym{ANL}{ANL}{Argonne National Laboratory} +\newacronym{ANS}{ANS}{American Nuclear Society} \newacronym{API}{API}{application programming interface} \newacronym{ARE}{ARE}{Aircraft Reactor Experiment} \newacronym{ARFC}{ARFC}{Advanced Reactors and Fuel Cycles} \newacronym{ASME}{ASME}{American Society of Mechanical Engineers} +\newacronym{ASTRID}{ASTRID}{Advanced Sodium Technological Reactor for Industrial Demonstration} \newacronym{ATWS}{ATWS}{Anticipated Transient Without Scram} \newacronym{BDBE}{BDBE}{Beyond Design Basis Event} \newacronym{BIDS}{BIDS}{Berkeley Institute for Data Science} +\newacronym{BWR}{BWR}{Boiling Water Reactor} \newacronym{CAFCA}{CAFCA}{ Code for Advanced Fuel Cycles Assessment } \newacronym{CDTN}{CDTN}{Centro de Desenvolvimento da Tecnologia Nuclear} \newacronym{CEA}{CEA}{Commissariat \`a l'\'Energie Atomique et aux \'Energies Alternatives} @@ -35,16 +38,20 @@ \newacronym{DSNF}{DSNF}{DOE spent nuclear fuel} \newacronym{DYMOND}{DYMOND}{Dynamic Model of Nuclear Development } \newacronym{EBS}{EBS}{Engineered Barrier System} +\newacronym{EDF}{EDF}{\`{E}lectricit\`{e} de France} \newacronym{EDZ}{EDZ}{Excavation Disturbed Zone} \newacronym{EIA}{EIA}{U.S. Energy Information Administration} \newacronym{EPA}{EPA}{Environmental Protection Agency} +\newacronym{EPR}{EPR}{European Pressurized Reactor} \newacronym{EP}{EP}{Engineering Physics} +\newacronym{EU}{EU}{European Union} \newacronym{FCO}{FCO}{Fuel Cycle Options} \newacronym{FCT}{FCT}{Fuel Cycle Technology} \newacronym{FEHM}{FEHM}{Finite Element Heat and Mass Transfer} \newacronym{FEPs}{FEPs}{Features, Events, and Processes} \newacronym{FHR}{FHR}{Fluoride-Salt-Cooled High-Temperature Reactor} \newacronym{FLiBe}{FLiBe}{Fluoride-Lithium-Beryllium} +\newacronym{FP}{FP}{Fission Products} \newacronym{GDSE}{GDSE}{Generic Disposal System Environment} \newacronym{GDSM}{GDSM}{Generic Disposal System Model} \newacronym{GENIUSv1}{GENIUSv1}{Global Evaluation of Nuclear Infrastructure Utilization Scenarios, Version 1} @@ -59,6 +66,7 @@ \newacronym{HTGR}{HTGR}{High Temperature Gas-Cooled Reactor} \newacronym{IAEA}{IAEA}{International Atomic Energy Agency} \newacronym{IEMA}{IEMA}{Illinois Emergency Mangament Agency} +\newacronym{IHLRWM}{IHLRWM}{International High Level Radioactive Waste Management} \newacronym{INL}{INL}{Idaho National Laboratory} \newacronym{IPRR1}{IRP-R1}{Instituto de Pesquisas Radioativas Reator 1} \newacronym{IRP}{IRP}{Integrated Research Project} @@ -76,6 +84,8 @@ \newacronym{LOHS}{LOHS}{Loss of Heat Sink} \newacronym{LOLA}{LOLA}{Loss of Large Area} \newacronym{LP}{LP}{linear program} +\newacronym{LWR}{LWR}{Light Water Reactor} +\newacronym{MAGNOX}{MAGNOX}{Magnesium Alloy Graphie Moderated Gas Cooled Uranium Oxide Reactor} \newacronym{MA}{MA}{minor actinide} \newacronym{MCNP}{MCNP}{Monte Carlo N-Particle code} \newacronym{MILP}{MILP}{mixed-integer linear program} @@ -86,6 +96,7 @@ \newacronym{MSBR}{MSBR}{Molten Salt Breeder Reactor} \newacronym{MSRE}{MSRE}{Molten Salt Reactor Experiment} \newacronym{MSR}{MSR}{Molten Salt Reactor} +\newacronym[longplural={metric tons of heavy metal}]{MTHM}{MTHM}{metric ton of heavy metal} \newacronym{NAGRA}{NAGRA}{National Cooperative for the Disposal of Radioactive Waste} \newacronym{NEAMS}{NEAMS}{Nuclear Engineering Advanced Modeling and Simulation} \newacronym{NEUP}{NEUP}{Nuclear Energy University Programs} @@ -109,9 +120,10 @@ \newacronym{PBFHR}{PB-FHR}{Pebble-Bed Fluoride-Salt-Cooled High-Temperature Reactor} \newacronym{PEI}{PEI}{Peak Environmental Impact} \newacronym{PH}{PRONGHORN}{PRONGHORN} +\newacronym{PRIS}{PRIS}{Power Reactor Information System} \newacronym{PRKE}{PRKE}{Point Reactor Kinetics Equations} \newacronym{PSPG}{PSPG}{Pressure-Stabilizing/Petrov-Galerkin} -\newacronym{PWAR}{PWAR}{Pratt and Whitney Aircraft Reactor} +\newacronym{PWAR}{PWAR}{Pratt and Whitney Aircraft REeactor} \newacronym{PWR}{PWR}{Pressurized Water Reactor} \newacronym{PyNE}{PyNE}{Python toolkit for Nuclear Engineering} \newacronym{PyRK}{PyRK}{Python for Reactor Kinetics} @@ -130,18 +142,20 @@ \newacronym{SUPG}{SUPG}{Streamline-Upwind/Petrov-Galerkin} \newacronym{SWF}{SWF}{Separations and Waste Forms} \newacronym{SWU}{SWU}{Separative Work Unit} +\newacronym{ThOX}{ThOX}{thorium oxide} \newacronym{TRIGA}{TRIGA}{Training Research Isotope General Atomic} \newacronym{TRISO}{TRISO}{Tristructural Isotropic} \newacronym{TSM}{TSM}{Total System Model} \newacronym{TSPA}{TSPA}{Total System Performance Assessment for the Yucca Mountain License Application} -\newacronym{ThOX}{ThOX}{thorium oxide} \newacronym{UFD}{UFD}{Used Fuel Disposition} \newacronym{UML}{UML}{Unified Modeling Language} +\newacronym{UNF}{UNF}{Used Nuclear Fuel} \newacronym{UOX}{UOX}{uranium oxide} \newacronym{UQ}{UQ}{uncertainty quantification} \newacronym{US}{US}{United States} \newacronym{UW}{UW}{University of Wisconsin} \newacronym{VISION}{VISION}{the Verifiable Fuel Cycle Simulation Model} +\newacronym{VVER}{VVER}{Voda-Vodyanoi Energetichesky Reaktor (Russian Pressurized Water Reactor)} \newacronym{VV}{V\&V}{verification and validation} \newacronym{WIPP}{WIPP}{Waste Isolation Pilot Plant} \newacronym{YMR}{YMR}{Yucca Mountain Repository Site} diff --git a/appendix.tex b/appendix.tex new file mode 100644 index 0000000..488533f --- /dev/null +++ b/appendix.tex @@ -0,0 +1,67 @@ +\begin{frame} +\frametitle{Composition of fresh and spent fuel} + Reference depletion calculation from ORGIEN was used (also used in \cite{wilson_adoption_2009}). + \begin{table}[h] + \centering + \scalebox{0.26}{ + \begin{tabular}{|c|c|c|c|c|c|c|} + \hline + Isotope & Fresh UOX Fuel & Spent UOX Fuel (BU: $51\frac{GWdth}{MTHM}$) & Fresh SFR Fuel & Spent SFR Fuel \\ \hline + He4 & & 9.474E-07 & & 7.827E-06 \\ \hline + Ra226 & & 9.788E-14 & & 5.151E-14 \\ \hline + Ra228 & & 2.750E-20 & & 4.904E-21 \\ \hline + Pb206 & & 5.574E-18 & & 1.210E-18 \\ \hline + Pb207 & & 1.685E-15 & & 1.892E-16 \\ \hline + Pb208 & & 3.688E-12 & & 5.875E-11 \\ \hline + Pb210 & & 3.023E-19 & & 8.143E-18 \\ \hline + Th228 & & 8.475E-12 & & 1.004E-10 \\ \hline + Th229 & & 2.727E-12 & & 4.065E-12 \\ \hline + Th230 & & 2.625E-09 & & 2.139E-09 \\ \hline + Th232 & & 4.174E-10 & & 4.425E-11 \\ \hline + Bi209 & & 6.607E-16 & & 2.600E-14 \\ \hline + Ac227 & & 3.096E-14 & & 4.840E-15 \\ \hline + Pa231 & & 9.246E-10 & & 1.300E-10 \\ \hline + U232 & & 0.000 & & 0.000 \\ \hline + U233 & & 2.213E-09 & & 5.528E-09 \\ \hline + U234 & 0.000& 0.000 & & 0.000 \\ \hline + U235 & 0.032& 0.007 & 0.002 & 0.000 \\ \hline + U236 & & 0.005 & & 0.000 \\ \hline + U238 & 0.968& 0.920 & 0.887 & 0.808 \\ \hline + Np237 & & 0.000 & & 0.000 \\ \hline + Pu238 & & 0.000 & 0.001 & 0.001 \\ \hline + Pu239 & & 0.006 & 0.060 & 0.085 \\ \hline + Pu240 & & 0.002 & 0.027 & 0.027 \\ \hline + Pu241 & & 0.001 & 0.014 & 0.003 \\ \hline + Pu242 & & 0.000 & 0.005 & 0.001 \\ \hline + Pu244 & & 2.864E-08 & 1.508E-07 & 5.461E-09 \\ \hline + Am241 & & 6.442E-05 & & 0.001 \\ \hline + Am242m & & 8.533E-07 & & 7.961E-05 \\ \hline + Am243 & & 0.000 & & 0.000 \\ \hline + Cm242 & & 2.589E-05 & & 5.331E-05 \\ \hline + Cm243 & & 0.000 & & 3.242E-06 \\ \hline + Cm244 & & 8.561E-05 & & 0.000 \\ \hline + Cm245 & & 5.721E-06 & & 3.936E-05 \\ \hline + Cm246 & & 7.295E-07 & & 1.434E-05 \\ \hline + Cm247 & & 0.000 & & 5.317E-07 \\ \hline + Cm248 & & 7.691E-10 & & 0.000 \\ \hline + Cm250 & & 4.280E-18 & & 6.407E-15 \\ \hline + Cf249 & & 1.649E-12 & & 6.446E-10 \\ \hline + Cf250 & & 2.041E-12 & & 6.703E-11 \\ \hline + Cf251 & & 9.865E-13 & & 1.903E-12 \\ \hline + Cf 252 & & 6.579E-13 & & 4.014E-14 \\ \hline + H3 & & 8.584E-08 & & 1.747E-07 \\ \hline + C14 & & 4.057E-11 & & \\ \hline + C Other & & & & \\ \hline + Kr81 & & 4.216E-11 & & 8.038E-12 \\ \hline + Kr85 & & 3.444E-05 & & 2.950E-05 \\ \hline + Kr Other & & 0.000 & & 0.000 \\ \hline + Sr90 & & 0.001 & & 0.001 \\ \hline + Sr Other & & 0.000 & & 0.000 \\ \hline + Tc99 & & 0.000 & & 5.391E-05 \\ \hline + Tc Other & & 0.000 & & 0.002 \\ \hline + + \end{tabular}} + \caption{Fresh and Spent Fuel Compositions} + \label{tab:comp} +\end {table} +\end{frame} \ No newline at end of file diff --git a/arfc-pres.tex b/arfc-pres.tex index 5b7c745..e26d605 100644 --- a/arfc-pres.tex +++ b/arfc-pres.tex @@ -7,18 +7,26 @@ \documentclass[9pt]{beamer} \usetheme[white]{Illinois} %\title[short title]{long title} -\title[Short Title]{A Very Very Long Title for a Presentation about Cats} +\title[Synergistic Spent Nuclear Fuel Dynamics Within the European Union]{Synergistic Spent Nuclear Fuel Dynamics Within the European Union} %\subtitle[short subtitle]{long subtitle} -\subtitle[Short SubTitle]{Mostly Kittens} +\subtitle[French Transition into SFRs]{French Transition into SFRs} %\author[short name]{long name} -\author[Your Name]{Your Name\\Advanced Reactors and Fuel Cycles Group} +\author[Jin Whan Bae, Kathryn Huff, Clifford Singer]{Jin Whan Bae, Kathryn Huff, Clifford Singer \\ Advanced Reactors and Fuel Cycles Group} %\date[short date]{long date} -\date[04.01.2100]{April 1, 2100} +\date[10.31.2017]{October 31, 2017} %\institution[short name]{long name} \institute[UIUC]{University of Illinois at Urbana-Champaign} +%%%% Acronym support + +\usepackage[acronym,toc]{glossaries} +\include{acros} + +\makeglossaries + %\usepackage{bbding} \usepackage{amsfonts} +\usepackage{adjustbox} \usepackage{amsmath} \usepackage{xspace} \usepackage{graphicx} @@ -26,10 +34,6 @@ \usepackage{booktabs} % nice rules for tables \usepackage{microtype} % if using PDF \usepackage{bigints} -\usepackage{minted} - -\newcommand{\units}[1] {\:\text{#1}}% -\newcommand{\SN}{S$_N$}%{S$_\text{N}$}%{$S_N$}% \DeclareMathOperator{\erf}{erf} %I need some complimentary error funcitons... \DeclareMathOperator{\erfc}{erfc} @@ -39,12 +43,6 @@ %Those icons in the references are terrible looking \setbeamertemplate{bibliography item}[text] -%%%% Acronym support - -\usepackage[acronym,toc]{glossaries} -\include{acros} - -\makeglossaries %try to get rid of header on title page\dots \makeatletter @@ -54,6 +52,23 @@ }{} \makeatother + +\usepackage{booktabs} % nice rules (thick lines) for tables +\usepackage{microtype} % improves typography for PDF +\usepackage{xspace} +\usepackage{tabularx} +\usepackage[affil-it]{authblk} +\usepackage{tikz} +\usepackage{cleveref} +\usepackage{datatool} +\newcolumntype{b}{X} +\newcolumntype{s}{>{\hsize=.5\hsize}X} +\newcolumntype{m}{>{\hsize=.75\hsize}X} + +\newcommand{\Cyclus}{\textsc{Cyclus}\xspace}% +\graphicspath{ {images/} } +\usetikzlibrary{positioning, arrows, decorations, shapes } + \begin{document} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% From uw-beamer Here's a handy bit of code to place at @@ -85,26 +100,26 @@ \end{frame} } -\section{Motivation} -\subsection{Cat Behavior} -\input{cat_behavior} -\subsection{Cat Appearance} -\input{cat_appearance} -\subsection{Cat Math} -\input{cat_math} -\section{Methods} -\subsection{Illinois Colors} -\input{fierce} +\section{Background} +\input{background} + + +\section{Scenario Specification} +\input{case_specification} + + +\section{Results} +\input{results} + \section{Conclusion} \input{conclusion} -\input{acks} + %%--------------------------------%% %%--------------------------------%% \begin{frame}[allowframebreaks] \frametitle{References} - \bibliographystyle{plain} - {\footnotesize \bibliography{bibliography.bib} } - + \bibliographystyle{abbrv} + {\footnotesize \bibliography{bibliography} } \end{frame} %%--------------------------------%% diff --git a/background.tex b/background.tex new file mode 100644 index 0000000..f73f95b --- /dev/null +++ b/background.tex @@ -0,0 +1,176 @@ +\subsection{Motivation} +\begin{frame} + \frametitle{Background} + \begin{itemize} + \item France + \begin{itemize} + \item Preparation for a transition from \glspl{LWR} to \glspl{SFR} \cite{cne2_reports_2015} + \item Additional \gls{LWR} construction to supply Plutonium for \gls{SFR} transition + \end{itemize} + \item Most EU nations do not have a repository for \gls{UNF} + \end{itemize} +\end{frame} + +\begin{frame} + \frametitle{Summary} + By taking \gls{UNF} from other EU nations, France can transition into a fully \gls{SFR} fleet (66 GWe capacity) + without additional construction of \glspl{LWR}. + \begin{itemize} + \item Transition to 110 \gls{ASTRID}-type \glspl{SFR} (Capacity 66 GWe) + \item Collaborative approach benefits both sides + \end{itemize} +\end{frame} + +\begin{frame} + \frametitle{Literature Review} + Past research is mostly on: + \begin{itemize} + \item French transition to \glspl{SFR} after additional construction of \glspl{EPR} + \cite{carre_overview_2009, martin_symbiotic_2017, freynet_multiobjective_2016} + \item partitioning and transmutation in a regional (European) context \cite{fazio_study_2013} + \end{itemize} + + There is little research on managing \gls{UNF} in a cooperative manner in + advanced fuel cycles. +\end{frame} + +\subsection{Method and Specfications} + +\begin{frame} + \frametitle{Cyclus} + \Cyclus is the next generation agent-based nuclear \cite{huff_fundamental_2016} + fuel cycle simulator. + \begin{minipage}[b]{.45\linewidth} + \begin{itemize} + \item Flexibility to users and developers through a dynamic resource exchange solver + \item user-developed agent framework + \item low barrier to entry for new users and developers + \item expanding ecosystem + \end{itemize} + \end{minipage} + \hspace{.5cm} + \begin{minipage}[b]{.45\linewidth} + \begin{figure} + \begin{center} + \includegraphics[width=\textwidth]{./images/cyclus.png} + \end{center} + % does this need a caption? + \end{figure} + \end{minipage} + +\end{frame} + + +\begin{frame} + \frametitle{Method} + \Cyclus simulation of \gls{EU} nations (1970 - 2160) with + French Transition into an \gls{SFR} fleet from 2040. + +\begin{figure}[htbp!] + \begin{center} + \includegraphics[width=.8\textwidth]{./images/onesim/power_plot.png} + \end{center} + \caption{Total Deployment Scheme of \gls{EU} nations} + \label{fig:eu_dep} + +\end{figure} + +\end{frame} + +\subsection{Future Projections} + + + + + +\begin{frame} + \frametitle{Deployment Timeline for EU historical operation} + Historical operation and predictions are made using references such as \gls{IAEA} \gls{PRIS} \cite{iaea_pris_2017}, + World Nuclear Association \cite{world_nuclear_association_nuclear_2017} and papers on the + future of nuclear power + \cite{joskow_future_2012, hatch_politics_2015}. + \begin{figure}[htbp!] + \begin{center} + \includegraphics[width=.8\linewidth,height=.8\textheight,keepaspectratio]{./images/eu_future/power_plot.png} + \end{center} + \caption{Timeseries of installed nuclear capacity in \gls{EU}.} + \label{fig:eu_pow} + \end{figure} + +\end{frame} + + +\begin{frame} + \frametitle{Simulated European Deployment} + +\begin{table}[h] + \centering + \begin{adjustbox}{max totalsize={1.1\textwidth}{.8\textheight}, center} + \begin{tabularx}{\textwidth}{lmb} + \hline + + \textbf{Nation} & \textbf{Growth Trajectory} & \textbf{Specific Plan }\\ + \hline + UK & Aggressive Growth & {\small 13 units (17,900 MWe) by 2030.}\\ + \hline + Poland & Aggressive Growth & {\small Additional 6,000 MWe by 2035.}\\ + \hline + Hungary & Aggressive Growth & {\small Additional 2,400 MWe by 2025.} \\ + \hline + Finland & Modest Growth & {\small Additional 2,920 MWe by 2024.}\\ + \hline + Slovakia & Modest Growth & {\small Additional 942 MWe by 2025.}\\ + \hline + Bulgaria & Modest Growth & {\small Additional 1,000 MWe by 2035.} \\ + \hline + Romania & Modest Growth & {\small Additional 1,440 MWe by 2020.} \\ + \hline + Czech Rep. & Modest Growth & {\small Additional 2,400 MWe by 2035.}\\ + \hline + France & Modest Reduction & {\small No expansion or early shutdown.}\\ + \hline + Slovenia & Modest Reduction & {\small No expansion or early shutdown.}\\ + \hline + Netherlands & Modest Reduction & {\small No expansion or early shutdown.}\\ + \hline + Lithuania & Modest Reduction & {\small No expansion or early shutdown.}\\ + \hline + Spain & Modest Reduction & {\small No expansion or early shutdown.} \\ + \hline + Italy & Modest Reduction & {\small No expansion or early shutdown. }\\ + \hline + Belgium & Aggressive Reduction & All shut down 2025.\\ + \hline + Sweden & Aggressive Reduction & All shut down 2050.\\ + \hline + Germany & Aggressive Reduction & All shut down by 2022.\\ + \hline + + \end{tabularx} + \end{adjustbox} + \caption {Future Nuclear Programs of \gls{EU} Nations \cite{world_nuclear_association_nuclear_2017}} + \label{tab:eu_growth} +\end{table} +\end{frame} + + +\begin{frame} + \frametitle{Deployment Timeline for French Transition} + 110 \glspl{SFR} (66 GWe) are deployed by 2076. + \begin{figure}[htbp!] + \begin{minipage}[b]{.45\linewidth} + \begin{center} + \includegraphics[width=\textwidth]{./images/french-transition/power_plot.png} + \end{center} + \caption{French Transition into an SFR Fleet} + \label{fig:sfr_num} + \end{minipage} + \hspace{.5cm} + \begin{minipage}[b]{.45\linewidth} + \centering + \includegraphics[width=\textwidth]{./images/french-transition/sfr_deploy.png} + \caption{Deployment of French \glspl{SFR} and total installed capacity} + \label{fig:dep} + \end{minipage} +\end{figure} +\end{frame} diff --git a/bibliography.bib b/bibliography.bib index fec269a..b8fb59a 100644 --- a/bibliography.bib +++ b/bibliography.bib @@ -1,10 +1,458 @@ -@article{lastname_firstword_1900, - title = {The title of a great paper about kittens.}, - shorttitle = {Kittens}, - url = {http://www.sciencedirect.com.ezproxy.library.wisc.edu/science/article/pii/S0169772211000568}, - journal = {Journal of Cats and Kittens}, - author = {Mistopheles, Mr.}, +@techreport{joskow_future_2012, + type = {Working {Paper}}, + title = {The {Future} of {Nuclear} {Power} {After} {Fukushima}}, + copyright = {An error occurred getting the license - uri.}, + url = {http://dspace.mit.edu/handle/1721.1/70857}, + abstract = {This paper analyzes the impact of the Fukushima accident on the future of nuclear +power around the world. We begin with a discussion of the ‘but for’ baseline and the +much discussed ‘nuclear renaissance.’ Our pre-Fukushima benchmark for growth in +nuclear generation in the U.S. and other developed countries is much more modest than +many bullish forecasts of a big renaissance in new capacity may have suggested. For at +least the next decade in developed countries, it is composed primarily of life extensions +for many existing reactors, modest uprates of existing reactors as their licenses are +extended, and modest levels of new construction. The majority of forecasted new +construction is centered in China, Russia and the former states of the FSU, India and +South Korea. In analyzing the impact of Fukushima, we break the effect down into two +categories: the impact on existing plants, and the impact on the construction of new units. +In both cases, we argue that the accident at Fukushima will contribute to a reduction in +future trends in the expansion of nuclear energy, but at this time these effects appear to be +quite modest at the global level.}, + language = {en\_US}, + urldate = {2017-05-17}, + institution = {MIT CEEPR}, + author = {Joskow, Paul L. and Parsons, John E.}, + month = feb, + year = {2012}, + file = {Full Text PDF:/home/dkadkf/Zotero/storage/29IIH4F6/Joskow and Parsons - 2012 - The Future of Nuclear Power After Fukushima.pdf:application/pdf;Snapshot:/home/dkadkf/Zotero/storage/DW6XA46Q/70857.html:text/html} +} + +@phdthesis{fabbris_optimisation_2014, + type = {phdthesis}, + title = {Optimisation multi-physique et multi-critère des coeurs de {RNR}-{Na} : application au concept {CFV}}, + shorttitle = {Optimisation multi-physique et multi-critère des coeurs de {RNR}-{Na}}, + url = {https://tel.archives-ouvertes.fr/tel-01133491/document}, + abstract = {La conception du coeur d’un réacteur nucléaire est fortement multidisciplinaire (neutronique, thermo-hydraulique, thermomécanique du combustible, physique du cycle, etc.). Le problème est aussi de type multi-objectif (plusieurs performances) à grand nombre de dimensions (plusieurs dizaines de paramètres de conception).Les codes de calculs déterministes utilisés traditionnellement pour la caractérisation des coeurs demandant d’importantes ressources informatiques, l’approche de conception classique rend difficile l’exploration et l’optimisation de nouveaux concepts innovants. Afin de pallier ces difficultés, une nouvelle méthodologie a été développée lors de ces travaux de thèse. Ces travaux sont basés sur la mise en oeuvre et la validation de schémas de calculs neutronique et thermo-hydraulique pour disposer d’un outil de caractérisation d’un coeur de réacteur à neutrons rapides à caloporteur sodium tant du point de vue des performances neutroniques que de son comportement en transitoires accidentels.La méthodologie mise en oeuvre s’appuie sur la construction de modèles de substitution (ou métamodèles) aptes à remplacer la chaîne de calcul neutronique et thermo-hydraulique. Des méthodes mathématiques avancées pour la planification d’expériences, la construction et la validation des métamodèles permettent de remplacer cette chaîne de calcul par des modèles de régression au pouvoir de prédiction élevé.La méthode est appliquée à un concept innovant de coeur à Faible coefficient de Vidange sur un très large domaine d’étude, et à son comportement lors de transitoires thermo-hydrauliques non protégés pouvant amener à des situations incidentelles, voire accidentelles. Des analyses globales de sensibilité permettent d’identifier les paramètres de conception influents sur la conception du coeur et son comportement en transitoire. Des optimisations multicritères conduisent à des nouvelles configurations dont les performances sont parfois significativement améliorées. La validation des résultats produits au cours de ces travaux de thèse démontre la pertinence de la méthode au stade de la préconception d’un coeur de réacteur à neutrons rapides refroidi au sodium.}, + language = {fr}, + urldate = {2017-07-21}, + school = {Université de Grenoble}, + author = {Fabbris, Olivier}, + month = oct, + year = {2014}, + annote = {85 - geometry +91 - initial fuel + }, + file = {Full Text PDF:/home/dkadkf/Zotero/storage/AI9FANBF/Fabbris - 2014 - Optimisation multi-physique et multi-critère des c.pdf:application/pdf;Snapshot:/home/dkadkf/Zotero/storage/54B5PP4P/tel-01133491.html:text/html} +} + +@techreport{boucher_benchmark_2012, + title = {Benchmark {Study} on {Nuclear} {Fuel} {Cycle} {Transition} {Scenarios} {Analysis} {Codes}}, + number = {NEA/NSC/WPFC/DOC(2012)16}, + institution = {OECD, Nuclear Energy Agency}, + author = {Boucher, L.}, + month = jun, + year = {2012}, + file = {nsc-wpfc-doc2012-16.pdf:/home/dkadkf/Zotero/storage/3SSZVRG4/nsc-wpfc-doc2012-16.pdf:application/pdf} +} + +@inproceedings{hugelmann_melox_1999, + title = {{MELOX} fuel fabrication plant: operational feedback and future prospects}, + volume = {3}, + shorttitle = {{MELOX} fuel fabrication plant}, + url = {http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/31/062/31062323.pdf#page=110}, + urldate = {2017-05-03}, + booktitle = {{MOX} {Fuel} {Cycle} {Technologies} for {Medium} and {Long} {Term} {Deployment} ({Proc}. {Symp}. {Vienna}, 1999), {C}\&{S} {Papers} {Series} {No}}, + author = {Hugelmann, D. and Greneche, D.}, + year = {1999}, + pages = {102--108}, + file = {[PDF] iaea.org:/home/dkadkf/Zotero/storage/II69N986/Hugelmann and Greneche - 1999 - MELOX fuel fabrication plant operational feedback.pdf:application/pdf} +} + +@book{schneider_spent_2008, + title = {Spent nuclear fuel reprocessing in {France}}, + url = {http://www.psr.org/nuclear-bailout/resources/spent-nuclear-fuel.pdf}, + author = {Schneider, Mycle and Marignac, Yves}, + year = {2008}, + annote = {La Hague - 1100 tons/year + } +} + +@techreport{iaea_management_2007, + address = {Vienna, Austria}, + type = {{TECDOC}}, + title = {Management iof {Reprocessed} {Uraniuim}}, + url = {http://www-pub.iaea.org/MTCD/publications/PDF/te_1529_web.pdf}, + abstract = {The International Atomic Energy Agency is giving continuous attention to the collection, +analysis and exchange of information on issues of back-end of the nuclear fuel cycle, an +important part of the nuclear fuel cycle. Reprocessing of spent fuel arising from nuclear +power production is one of the strategies for the back end of the fuel cycle. As a major +fraction of spent fuel is made up of uranium, chemical reprocessing of spent fuel would leave +behind large quantities of separated uranium which is designated as reprocessed uranium +(RepU). Reprocessing of spent fuel could form a crucial part of future fuel cycle +methodologies, which currently aim to separate and recover plutonium and minor actinides. +The use of reprocessed uranium (RepU) and plutonium reduces the overall environmental +impact of the entire fuel cycle. Environmental considerations will be important in determining +the future growth of nuclear energy. It should be emphasized that the recycling of fissile +materials not only reduces the toxicity and volumes of waste from the back end of the fuel +cycle; it also reduces requirements for fresh milling and mill tailings. In comparison, the +method of direct disposal of spent fuel premeditates creation of larger capacity repositories for +permanent disposal. The issue of recycle and reuse of valuable material is important for the +nuclear fuel cycle in the context of sustainable growth of the nuclear energy. Recognizing the +importance of this subject, the International Atomic Energy Agency initiated the preparation +of this report to review and summarize information available on the management of +reprocessed uranium.}, + language = {English}, + number = {1529}, + urldate = {2017-04-28}, + institution = {IAEA}, + author = {IAEA}, + month = feb, + year = {2007}, + pages = {108} +} + +@misc{iaea_pris_2017, + title = {{PRIS} - {Home}}, + url = {https://www.iaea.org/pris/}, + urldate = {2017-04-03}, + author = {IAEA}, + month = sep, + year = {2017}, + file = {PRIS - Home:/home/dkadkf/Zotero/storage/KJU7EXF4/pris.html:text/html} +} + +@misc{world_nuclear_association_nuclear_2017, + title = {Nuclear {Power} in the {European} {Union} - {World} {Nuclear} {Association}}, + url = {http://www.world-nuclear.org/information-library/country-profiles/others/european-union.aspx}, + urldate = {2017-04-17}, + author = {World Nuclear Association}, + month = feb, + year = {2017}, + file = {Nuclear Power in the European Union - World Nuclear Association:/home/dkadkf/Zotero/storage/VG9QDBRU/european-union.html:text/html} +} + +@techreport{hermann_validation_1995, + title = {Validation of the {SCALE} system for {PWR} spent fuel isotopic composition analyses}, + url = {http://www.osti.gov/scitech/biblio/57886}, + urldate = {2017-04-03}, + institution = {Oak Ridge National Lab., TN (United States)}, + author = {Hermann, O. W. and Bowman, S. M. and Parks, C. V. and Brady, M. C.}, + year = {1995} +} + +@techreport{oecd_spent_2011, + title = {Spent {Nuclear} {Fuel} {Asssay} {Data} for {Isotopic} {Validation}}, + url = {https://www.oecd-nea.org/science/wpncs/ADSNF/SOAR_final.pdf}, + abstract = {Management of spent fuel from commercial nuclear reactors is a key issue for many NEA +member countries. As interim storage facilities in many countries reach their design capacities, +the need to optimise spent fuel storage management is becoming an increasingly important +issue to managing fuel cycle costs while reducing associated risks. In nuclear criticality safety +studies involving spent fuel, burn-up credit is being pursued and has been implemented in many +countries as a means of more accurately and realistically determining the system reactivity by +taking into account a decrease in the reactivity of spent fuel during irradiation. Implementation +of burn-up credit has gained in world-wide interest during the last 20 years and it represents one +of the most technically challenging issues in nuclear criticality safety. To address these challenges +and help co-ordinate activities in NEA member countries, the Working Party on Nuclear +Criticality Safety (WPNCS) of the OECD/NEA Nuclear Science Committee (NSC) has organised the +Expert Group on Burn-up Credit Criticality (EGBUC). The decision of many countries to advance +burn-up credit as part of their criticality safety licensing strategy has heightened interest in +measurement data needed to validate code calculations for a burn-up credit methodology.}, + institution = {Nuclear Energy Agency}, + author = {OECD}, year = {2011} -}, +} + +@article{wigeland_nuclear_2014, + title = {Nuclear {Fuel} {Cycle} {Evaluation} and {Screening}–{Final} {Report}}, + url = {https://fuelcycleevaluation.inl.gov/Shared%20Documents/ES%20Main%20Report.pdf}, + urldate = {2017-03-29}, + author = {Wigeland, R and Taiwo, T and Ludewig, H and Todosow, M and Halsey, W and Gehin, J and Jubin, R and Buelt, J and Stockinger, S and Jenni, K and Oakley, B}, + year = {2014}, + file = {ES Main Report.pdf:/home/dkadkf/Zotero/storage/WEVPB9EQ/ES Main Report.pdf:application/pdf} +} + +@techreport{piet_implications_2010, + title = {Implications of {Fast} {Reactor} {Transuranic} {Conversion} {Ratio}}, + url = {https://www.researchgate.net/profile/Steve_Piet/publication/255218036_Implications_of_Fast_Reactor_Transuranic_Conversion_Ratio/links/54f87b470cf2ccffe9df3b55/Implications-of-Fast-Reactor-Transuranic-Conversion-Ratio.pdf}, + institution = {Idaho National Laboratory (INL)}, + author = {Piet, Steven J. and Hoffman, Edward A. and Bays, Samuel E.}, + year = {2010}, + file = {[PDF] researchgate.net:/home/dkadkf/Zotero/storage/WSSD6JHQ/Piet et al. - 2010 - Implications of Fast Reactor Transuranic Conversio.pdf:application/pdf} +} + +@article{martinez-val_pateros_2009, + title = {{PATEROS} {P}\&{T} {Roadmap} proposal for advanced fuel cycles leading to a sustainable nuclear energy: syntheses report}, + shorttitle = {{PATEROS} {P}\&{T} {Roadmap} proposal for advanced fuel cycles leading to a sustainable nuclear energy}, + author = {Martinez-Val, J.}, + year = {2009} +} + +@misc{fazio_study_2013, + title = {Study on partitioning and transmutation as a possible option for spent fuel management within a nuclear phase out scenario}, + url = {https://www.researchgate.net/publication/264479296_Study_on_partitioning_and_transmutation_as_a_possible_option_for_spent_fuel_management_within_a_nuclear_phase_out_scenario}, + abstract = {Most Partitioning and Transmutation (P\&T) studies +implicitly presuppose the continuous use of nuclear +energy [1]. In this case the development of new facilities +or the modification of the fuel cycle can be justified in the +long-term as an important feature in order to improve +sustainability by minimizing radioactive waste and +reducing the burden at waste disposal. +In the case of a country with nuclear energy phase-out +policy, the P\&T option might have also an important role +for what concerns the final disposal strategies of the spent +fuel. In this work three selected scenarios are analyzed in +order to assess the impact of P\&T implementation in a +nuclear energy phase out option.}, + urldate = {2017-06-27}, + journal = {ResearchGate}, + author = {Fazio, C}, + month = oct, + year = {2013}, + annote = {Regional (European) scenario of partitioning and transmutation to lessen SNF load}, + file = {Snapshot:/home/dkadkf/Zotero/storage/2STTNZDS/264479296_Study_on_partitioning_and_transmutation_as_a_possible_option_for_spent_fuel_management.pdf:application/pdf} +} + +@article{gabrielli_astrid-like_2015, + series = {The {Fourth} {International} {Symposium} on {Innovative} {Nuclear} {Energy} {Systems}, {INES}-4}, + title = {{ASTRID}-like {Fast} {Reactor} {Cores} for {Burning} {Plutonium} and {Minor} {Actinides}}, + volume = {71}, + issn = {1876-6102}, + url = {http://www.sciencedirect.com/science/article/pii/S1876610214026927}, + doi = {10.1016/j.egypro.2014.11.863}, + abstract = {A reduction of nuclear waste by transmutation of trans-uranium elements (TRUs), such as Pu and Minor Actinides (MAs) contained in Spent Nuclear Fuel (SNF), is a goal for future reactors. In general, countries with on-going nuclear scenarios would profit from MA mass stabilization, while transmutation of Pu and MAs from SNF could be desired in countries in nuclear phase-out. Both missions can be accomplished by employing fast reactors loaded with fuels containing different amounts of Pu and MAs in a closed (or partially closed) fuel cycle. In this paper, two 1200 MWth sodium-cooled fast reactor cores, based on the French ASTRID design, are proposed for burning TRUs (phase-out option) or only MAs (on-going option). Main attention is focused on the safety and on the transmutation performance. The coolant void effect, in the region including the core and the plenum above and the Doppler constant of both systems are negative also with irradiated fuel. The conversion ratios (CR) of the Pu and MA burners are in the ranges from 0.6 to 0.7 and from 0.5 to 0.6, respectively. These results show a large safety and transmutation potential of ASTRID type reactors.}, + journal = {Energy Procedia}, + author = {Gabrielli, Fabrizio and Rineiski, Andrei and Vezzoni, Barbara and Maschek, Werner and Fazio, Concetta and Salvatores, Massimo}, + month = may, + year = {2015}, + keywords = {Nuclear fuel cycle, Nuclear reactor safety, Sodium fast reactors, Transmutation}, + pages = {130--139}, + file = {ScienceDirect Full Text PDF:/home/dkadkf/Zotero/storage/2APV2MPJ/Gabrielli et al. - 2015 - ASTRID-like Fast Reactor Cores for Burning Plutoni.pdf:application/pdf;ScienceDirect Snapshot:/home/dkadkf/Zotero/storage/I78CKW34/S1876610214026927.html:text/html} +} + +@techreport{cne2_reports_2015, + title = {Reports of the {CNE}2}, + url = {https://www.cne2.fr/index.php/en/cne-2-2007-to-this-day}, + abstract = {According to the provisions of the 2006 act, the long-term management of high and intermediatelevel +waste involves two related components: the partitioning-transmutation of actinides found in the +spent fuel of future nuclear reactors and the geological disposal of long-lived high and intermediatelevel +waste (LLHLW \& LLILW) in accordance with the principle of reversibility. In addition, facilities +in the front-end and back-end of the nuclear fuel cycle and the dismantling of decommissioned +facilities produce long-lived low-level waste (LLLLW), very low-level waste (VLLW) and waste +with augmented natural radioactivity. The LLLLW pose different management problems due to the +very large quantities produced. Short-lived low and intermediate-level waste is stored at the Aube +storage centre (centre de stockage de l’Aube – CSA)}, + language = {English}, + urldate = {2017-06-24}, + institution = {Commission Nationae D'Evaluation}, + month = jun, + year = {2015}, + pages = {120}, + file = {CNE2 - Reports of the CNE2 - 2007 to this day:/home/dkadkf/Zotero/storage/9WF2G3QN/cne-2-2007-to-this-day.html:text/html} +} + +@article{freynet_multiobjective_2016, + title = {Multiobjective optimization for nuclear fleet evolution scenarios using {COSI}}, + volume = {2}, + url = {http://epjn.epj.org/articles/epjn/abs/2016/01/epjn150066/epjn150066.html}, + journal = {EPJ Nuclear Sciences \& Technologies}, + author = {Freynet, David and Coquelet-Pascal, Christine and Eschbach, Romain and Krivtchik, Guillaume and Merle-Lucotte, Elsa}, + year = {2016}, + pages = {9}, + file = {epjn150066.pdf:/home/dkadkf/Zotero/storage/HA6HH8VJ/epjn150066.pdf:application/pdf;[HTML] epj-n.org:/home/dkadkf/Zotero/storage/ZHNXV2WH/epjn150066.html:text/html;Snapshot:/home/dkadkf/Zotero/storage/8URTHTBQ/epjn150066.html:text/html} +} + +@article{coquelet-pascal_comparison_nodate, + title = {Comparison of different scenarios for the deployment of fast reactors in {France}. {Results} obtained with {COSI}}, + url = {http://inis.iaea.org/Search/search.aspx?orig_q=RN:44008962}, + language = {English}, + urldate = {2017-06-17}, + author = {Coquelet-Pascal, Christine and Meyer, Maryan and Girieud, Richard}, + file = {Snapshot:/home/dkadkf/Zotero/storage/USKER87I/search.html:text/html} +} + +@article{madic_futuristic_2007, + series = {Proceedings of the {Plutonium} {Futures} - {The} {Science} 2006 {Conference}}, + title = {Futuristic back-end of the nuclear fuel cycle with the partitioning of minor actinides}, + volume = {444}, + issn = {0925-8388}, + url = {http://www.sciencedirect.com/science/article/pii/S0925838807012029}, + doi = {10.1016/j.jallcom.2007.05.051}, + abstract = {For future back-end of the nuclear fuel cycle, the partitioning of minor actinides: Np, Am and Cm, followed by their transmutation will minimize importantly the radiotoxicity of nuclear glass waste. In this paper, the research done in France and in Europe will be presented: (i) partitioning of Np by modified PUREX process, (ii) partitioning of Am and Cm by the DIAMEX and SANEX hydrometallurgical processes.}, + journal = {Journal of Alloys and Compounds}, + author = {Madic, C. and Boullis, B. and Baron, P. and Testard, F. and Hudson, M. J. and Liljenzin, J. -O. and Christiansen, B. and Ferrando, M. and Facchini, A. and Geist, A. and Modolo, G. and Espartero, A. G. and De Mendoza, J.}, + month = oct, + year = {2007}, + keywords = {Actinide alloys and compounds}, + pages = {23--27}, + file = {ScienceDirect Snapshot:/home/dkadkf/Zotero/storage/QNKQI4NX/S0925838807012029.html:text/html} +} + +@inproceedings{carre_overview_2009, + address = {Paris, France}, + title = {Overview on the {French} nuclear fuel cycle strategy and transition scenario studies}, + url = {https://www.researchgate.net/profile/Frank_Carre/publication/273751217_Overview_on_the_French_Nuclear_Fuel_Cycle_Strategy_and_Transition_Scenario_Studies/links/55f6ace108ae07629dbae8ea.pdf}, + abstract = {This paper gives an overview on the French nuclear fuel cycle strategy and on the scenario studies performed to +describe the transition from Gen II to Gen IV systems. It also gives a presentation of the R\&D performed in France and in +collaboration with international initiatives on advanced fuel cycle associated with Gen IV systems}, + booktitle = {Proceedings of {GLOBAL}}, + author = {Carre, Frank and Delbecq, Jean-Michel}, + year = {2009}, + file = {[PDF] researchgate.net:/home/dkadkf/Zotero/storage/A2XM22QS/Carré and Delbecq - 2009 - Overview on the French nuclear fuel cycle strategy.pdf:application/pdf} +} + +@article{salvatores_nuclear_2005, + title = {Nuclear fuel cycle strategies including {Partitioning} and {Transmutation}}, + volume = {235}, + issn = {0029-5493}, + url = {http://www.sciencedirect.com/science/article/pii/S0029549304003759}, + doi = {10.1016/j.nucengdes.2004.10.009}, + abstract = {The widespread concern about radioactive waste management has promoted interest during the last decade for the potential role of Partitioning and Transmutation strategies, in order to alleviate the burden on future deep geological repositories. The physics of transmutation allows to point-out preferential approaches, e.g., based on the use of a fast neutron spectrum. The practical implementation of Partitioning and Transmutation implies the development of sophisticated technologies and can be more realistic if seen in a regional context. Some examples will be given to illustrate the “regional” approach, and some considerations will be made on the use of Accelerator Driven Systems (ADS), in the frame of a progressive strategy from present nuclear power fleets to future systems, as studied, e.g., in the frame of the GENERATION-IV initiative.}, + number = {7}, + journal = {Nuclear Engineering and Design}, + author = {Salvatores, M.}, + month = mar, + year = {2005}, + pages = {805--816}, + file = {ScienceDirect Snapshot:/home/dkadkf/Zotero/storage/3PMMTCTG/S0029549304003759.html:text/html} +} + +@article{varaine_pre-conceptual_2012, + title = {Pre-conceptual design study of {ASTRID} core}, + url = {https://www.researchgate.net/profile/Frederic_Varaine/publication/282657288_Pre-conceptual_design_study_of_ASTRID_core/links/56166d1908ae37cfe4090bb7.pdf}, + abstract = {In the framework of the ASTRID project at CEA, core design studies are performed at CEA with the AREVA and EDF support. At the stage of the project, pre-conceptual design studies are conducted in accordance with GEN IV reactors criteria, in particularly for safety improvements. An improved safety for a sodium cooled reactor requires revisiting many aspects of the design and is a rather lengthy process in current design approach. Two types of cores are under evaluation, one classical derivated from the SFR V2B and one more challenging called CFV (low void effect core) with a large gain on the sodium void effect. The SFR V2b core have the following specifications : a very low burn-up reactivity swing (due to a small cycle reactivity loss) and a reduced sodium void effect with regard to past designs such as the EFR (around 2\$ minus). Its performances are an average burn-up of 100 GWd/t, and an internal conversion ratio equal to one given a very good behavior of this core during a control rod withdrawal transient). The CFV with its specific design offers a negative sodium void worth while maintaining core performances. In accordance of ASTRID needs for demonstration those cores are 1500 MWth power (600 MWe). This paper will focus on the CFV pre-conceptual design of the core and S/A, and the performances in terms of safety will be evaluated on different transient scenario like ULOF, in order to assess its intrinsic behavior compared to a more classical design like V2B core. The gap in term of margin to a severe accident due to a loss of flow initiator underlines the potential capability of this type of core to enhance prevention of severe accident in accordance to safety demonstration. + +Pre-conceptual design study of ASTRID core (PDF Download Available). Available from: https://www.researchgate.net/publication/282657288\_Pre-conceptual\_design\_study\_of\_ASTRID\_core [accessed Aug 31, 2017].}, + urldate = {2017-05-19}, + author = {Varaine, Frederic and Chenaud, Marie-Sophie and Marsault, Philippe and Bernardin, Bruno and Conti, Alain and Sciora, Pierre and Venard, Christophe and Fontaine, Bruno and Martin, Laurent and Mignot, Gerard}, + month = jun, + year = {2012}, + file = {[PDF] researchgate.net:/home/dkadkf/Zotero/storage/2B4SNXP4/MARSAULT–Marie-Sophie et al. - Pre-conceptual design study of ASTRID core.pdf:application/pdf} +} + +@book{hatch_politics_2015, + title = {Politics and {Nuclear} {Power}: {Energy} {Policy} in {Western} {Europe}}, + isbn = {978-0-8131-6307-9}, + shorttitle = {Politics and {Nuclear} {Power}}, + abstract = {With the dramatic changes OPEC precipitated in the structure of world energy markets during the 1970s, energy became a central concern to policymakers throughout the industrialized West. This book ex-amines the responses of public officials in three leading European nations -- the Federal Republic of Germany, France, and the Netherlands -- to the energy crisis. As the study shows, the proposed energy programs in the three countries shared remarkable similarities; yet the policy outcomes were very different. To explain why, Michael T. Hatch goes beyond the specific content of government energy policy to include an analysis of the policymaking process itself.At the heart of the study is an exploration of the various dimensions of nuclear policy in West Germany. The political consensus on nuclear power that prevailed in the initial years following the energy crisis disintegrated as antinuclear "citizens' initiatives," the courts, and trade unions, as well as the traditional political parties, entered the policymaking process. Subsequent government efforts to resolve the political stalemate over nuclear power foundered in a morass of domestic electoral politics and an international debate over nuclear proliferation.Extending the analysis to comparisons with French and Dutch nuclear strategies, Hatch argues that the critical factor in determining nuclear policy was the manner in which the political system structured the nuclear debate. In contrast to West Germany, where the electoral and parliamentary systems enhanced the influence of the antinuclear "Greens," the electoral system and constellation of political parties in France served to dissipate the influence of the antinuclear forces. Thus in France the nuclear program en-countered few impediments. In the Netherlands, as in West Germany, government policy was paralyzed in the face of antinuclear sentiment across a broad spectrum of Dutch society.Hatch has provided here not only a useful examination of the development of energy policy in western Europe but also a case study of the close interplay between policy and politics.}, + language = {en}, + publisher = {University Press of Kentucky}, + author = {Hatch, Michael T.}, + month = jan, + year = {2015}, + note = {Google-Books-ID: TrwfBgAAQBAJ}, + keywords = {History / Europe / Western, Political Science / Public Policy / Science \& Technology Policy, Technology \& Engineering / Power Resources / Nuclear} +} + +@article{sutharshan_ap1000tm_2011, + series = {Asian {Nuclear} {Prospects} 2010}, + title = {The {AP}1000TM {Reactor}: {Passive} {Safety} and {Modular} {Design}}, + volume = {7}, + issn = {1876-6102}, + shorttitle = {The {AP}1000TM {Reactor}}, + url = {http://www.sciencedirect.com/science/article/pii/S1876610211015475}, + doi = {10.1016/j.egypro.2011.06.038}, + abstract = {Our world is ever growing, there will be higher demands on electricity, and fossil fuels cannot satisfy this demand without further harming the environment. Likewise, renewable energy sources such as solar and winds are still in their infancy and, when used alone, are not realistic solutions to meet this demand. Westinghouse Electric Company is ready to address higher electricity demand with the only Generation III+reactor to receive Design Certification from the United States Nuclear Regulatory Commission, the AP1000™ pressurized water reactor (PWR). Westinghouse Electric Company once again sets a new industry standard with the AP1000™ reactor. The AP1000™ is a two-loopPressurized Water Reactor (PWR) with passive safety features and extensive plant simplifications that enhance its construction, operation, maintenance and safety. The paper discusses the unique design features of AP 1000.}, + urldate = {2017-05-12}, + journal = {Energy Procedia}, + author = {Sutharshan, Balendra and Mutyala, Meena and Vijuk, Ronald P and Mishra, Alok}, + month = jan, + year = {2011}, + keywords = {core operating parameters, Generation III+ reactor, modular design, passive safety, probabilistic risk assessment, PWR}, + pages = {293--302}, + file = {ScienceDirect Full Text PDF:/home/dkadkf/Zotero/storage/2D66N8K4/Sutharshan et al. - 2011 - The AP1000TM Reactor Passive Safety and Modular D.pdf:application/pdf;ScienceDirect Snapshot:/home/dkadkf/Zotero/storage/E87IC8RM/S1876610211015475.html:text/html} +} + +@article{lamarsh_introduction_1983, + title = {Introduction to nuclear engineering}, + url = {https://inis.iaea.org/search/search.aspx?orig_q=RN:17073185}, + urldate = {2017-05-11}, + author = {Lamarsh, John R.}, + year = {1983}, + file = {Snapshot:/home/dkadkf/Zotero/storage/SZH27EZ6/search.html:text/html} +} + +@article{huff_fundamental_2016, + title = {Fundamental concepts in the {Cyclus} nuclear fuel cycle simulation framework}, + volume = {94}, + issn = {0965-9978}, + url = {http://www.sciencedirect.com/science/article/pii/S0965997816300229}, + doi = {10.1016/j.advengsoft.2016.01.014}, + abstract = {As nuclear power expands, technical, economic, political, and environmental analyses of nuclear fuel cycles by simulators increase in importance. To date, however, current tools are often fleet-based rather than discrete and restrictively licensed rather than open source. Each of these choices presents a challenge to modeling fidelity, generality, efficiency, robustness, and scientific transparency. The Cyclus nuclear fuel cycle simulator framework and its modeling ecosystem incorporate modern insights from simulation science and software architecture to solve these problems so that challenges in nuclear fuel cycle analysis can be better addressed. A summary of the Cyclus fuel cycle simulator framework and its modeling ecosystem are presented. Additionally, the implementation of each is discussed in the context of motivating challenges in nuclear fuel cycle simulation. Finally, the current capabilities of Cyclus are demonstrated for both open and closed fuel cycles.}, + urldate = {2016-02-12}, + journal = {Advances in Engineering Software}, + author = {Huff, Kathryn D. and Gidden, Matthew J. and Carlsen, Robert W. and Flanagan, Robert R. and McGarry, Meghan B. and Opotowsky, Arrielle C. and Schneider, Erich A. and Scopatz, Anthony M. and Wilson, Paul P. H.}, + month = apr, + year = {2016}, + keywords = {Nuclear fuel cycle, agent based modeling, Computer Science - Computational Engineering, Finance, and Science, Computer Science - Mathematical Software, Computer Science - Multiagent Systems, Computer Science - Software Engineering, D.2.13, D.2.4, I.6.7, I.6.8, Nuclear Engineering, Object orientation, Systems analysis, Nuclear Fuel Cycle, Simulation, Finance, and Science, Computer Science - Computational Engineering, Systems Analysis}, + pages = {46--59}, + annote = {arXiv: 1509.03604}, + file = {arXiv\:1509.03604 PDF:/home/dkadkf/Zotero/storage/F9KVM9DZ/Huff et al. - 2015 - Fundamental Concepts in the Cyclus Fuel Cycle Simu.pdf:application/pdf;arXiv\:1509.03604 PDF:/home/dkadkf/Zotero/storage/4FI3T63Q/Huff et al. - 2015 - Fundamental Concepts in the Cyclus Fuel Cycle Simu.pdf:application/pdf;arXiv.org Snapshot:/home/dkadkf/Zotero/storage/HXSDS7VW/1509.html:text/html;arXiv.org Snapshot:/home/dkadkf/Zotero/storage/WQVTXAN2/1509.html:text/html;fundamentals.pdf:/home/dkadkf/Zotero/storage/C6G4NQJH/fundamentals.pdf:application/pdf;fundamentals.pdf:/home/dkadkf/Zotero/storage/BRJECDWC/fundamentals.pdf:application/pdf;ScienceDirect Full Text PDF:/home/dkadkf/Zotero/storage/E7DK64AA/Huff et al. - 2016 - Fundamental concepts in the Cyclus nuclear fuel cy.pdf:application/pdf;ScienceDirect Snapshot:/home/dkadkf/Zotero/storage/JCCZAZB3/S0965997816300229.html:text/html;ScienceDirect Snapshot:/home/dkadkf/Zotero/storage/63CHUQ54/login.html:text/html;ScienceDirect Snapshot:/home/dkadkf/Zotero/storage/EVBNKXMA/S0965997816300229.html:text/html} +} + +@article{brown_identification_2016, + title = {Identification of fuel cycle simulator functionalities for analysis of transition to a new fuel cycle}, + volume = {96}, + issn = {0306-4549}, + url = {http://www.sciencedirect.com/science/article/pii/S0306454916303383}, + doi = {10.1016/j.anucene.2016.05.027}, + abstract = {Dynamic fuel cycle simulation tools are intended to model holistic transient nuclear fuel cycle scenarios. As with all simulation tools, fuel cycle simulators require verification through unit tests, benchmark cases, and integral tests. Model validation is a vital aspect, as well. Although comparative studies have been performed, there is no comprehensive unit test and benchmark library for fuel cycle simulator tools. The objective of this paper is to identify some of the “must test” functionalities of a fuel cycle simulator tool within the context of specific problems of interest to the Fuel Cycle Options Campaign within the U.S. Department of Energy’s Office of Nuclear Energy (DOE-NE). This paper identifies the features needed to cover the range of promising fuel cycle options identified in the DOE-NE Fuel Cycle Evaluation and Screening and categorizes these features to facilitate prioritization. Features are categorized as essential functions, integrating features, and exemplary capabilities. A library of unit tests applicable to each of the essential functions should be developed as future work. An international dialog on the functionalities and standard test methods for fuel cycle simulator tools is encouraged.}, + urldate = {2016-09-23}, + journal = {Annals of Nuclear Energy}, + author = {Brown, Nicholas R. and Carlsen, Brett W. and Dixon, Brent W. and Feng, Bo and Greenberg, Harris R. and Hays, Ross D. and Passerini, Stefano and Todosow, Michael and Worrall, Andrew}, + month = oct, + year = {2016}, + keywords = {Fuel cycle simulator, Transition analysis, Unit tests}, + pages = {88--95}, + file = {ScienceDirect Full Text PDF:/home/dkadkf/Zotero/storage/9H5GZ7QA/Brown et al. - 2016 - Identification of fuel cycle simulator functionali.pdf:application/pdf;ScienceDirect Snapshot:/home/dkadkf/Zotero/storage/Z6WQH4Q4/S0306454916303383.html:text/html;ScienceDirect Snapshot:/home/dkadkf/Zotero/storage/NFQC7CXG/S0306454916303383.html:text/html} +} + +@article{freynet_multiobjective_2016-1, + title = {Multiobjective optimization for nuclear fleet evolution scenarios using {COSI}}, + volume = {2}, + url = {http://epjn.epj.org/articles/epjn/abs/2016/01/epjn150066/epjn150066.html}, + urldate = {2017-02-17}, + journal = {EPJ Nuclear Sciences \& Technologies}, + author = {Freynet, David and Coquelet-Pascal, Christine and Eschbach, Romain and Krivtchik, Guillaume and Merle-Lucotte, Elsa}, + year = {2016}, + pages = {9}, + file = {[HTML] epj-n.org:/home/dkadkf/Zotero/storage/AVP329PE/epjn150066.html:text/html;Snapshot:/home/dkadkf/Zotero/storage/HIBGZJTC/epjn150066.html:text/html} +} + +@article{martin_symbiotic_2017, + title = {Symbiotic equilibrium between {Sodium} {Fast} {Reactors} and {Pressurized} {Water} {Reactors} supplied with {MOX} fuel}, + volume = {103}, + issn = {0306-4549}, + url = {http://www.sciencedirect.com/science/article/pii/S0306454916308076}, + doi = {10.1016/j.anucene.2017.01.041}, + abstract = {The symbiotic equilibrium between 1.51 GWe breeder SFR (Sodium Fast Reactors) and 1.6 GWe EPR™ (European Pressurized water Reactors) is studied. EPR™ are only supplied with MOX (Mixed OXide) fuel to avoid the use of natural uranium. The equilibrium is studied by considering the flows of plutonium. Its isotopic composition is here described by a single real number referred to as the Pu grade. Plutonium flows through both reactor types are characterized by using linear functions of the Pu grade in new fuels. These functions have been determined by fitting data from a former scenario study carried out with the COSI6 simulation software. +Two different reprocessing strategies are considered. With joint reprocessing of all spent fuels, total and fissile plutonium flows balance for a unique fraction x of EPR™ in the fleet, equal to 0.2547. This x value is consistent with the results reported in the former scenario study mentioned above. When EPR™ spent fuels are used in priority to supply SFR (distinct reprocessing), x reaches 0.2582 at most. COSI6 simulations have been performed to further assess these results. The EPR™ fraction in the fleet at symbiotic equilibrium barely depends on the applied reprocessing strategy, so that the more flexible joint reprocessing constitutes the reference option in that case.}, + urldate = {2017-02-16}, + journal = {Annals of Nuclear Energy}, + author = {Martin, G. and Coquelet-Pascal, C.}, + month = may, + year = {2017}, + keywords = {Nuclear energy, SFR, FAST REACTORS, plutonium, EPR™, Fuel reprocessing, Symbiotic nuclear systems, Thermal reactors}, + pages = {356--362}, + file = {ScienceDirect Full Text PDF:/home/dkadkf/Zotero/storage/4D8VC2KI/Martin and Coquelet-Pascal - 2017 - Symbiotic equilibrium between Sodium Fast Reactors.pdf:application/pdf;ScienceDirect Snapshot:/home/dkadkf/Zotero/storage/VPCQBPZW/S0306454916308076.html:text/html} +} + +@techreport{wilson_adoption_2009, + title = {The {Adoption} of {Advanced} {Fuel} {Cycle} {Technology} {Under} a {Single} {Repository} {Policy}}, + institution = {University of Wisconsin -- Madison}, + author = {Wilson, P.}, + year = {2009} +} +@misc{bae_arfc/transition-scenarios:_2017, + title = {arfc/transition-scenarios: {Synergistic} {Spent} {Nuclear} {Fuel} {Dynamics} {Within} the {European} {Union}}, + shorttitle = {arfc/transition-scenarios}, + url = {https://zenodo.org/record/858671#.WahAzHWGPdJ}, + abstract = {This release contains code to reproduce the plots used in the paper Synergistic Spent Nuclear Fuel Dynamics Within the European Union}, + urldate = {2017-08-31}, + publisher = {Advanced Reactors and Fuel Cycles Research Group}, + author = {Bae, Jin Whan and Park, Gyu Tae and Huff, Kathryn}, + month = aug, + year = {2017}, + note = {DOI: 10.5281/zenodo.858671}, + file = {Zenodo Snapshot:/home/dkadkf/Zotero/storage/B8JXTTQ8/858671.html:text/html} +} \ No newline at end of file diff --git a/case_specification.tex b/case_specification.tex new file mode 100644 index 0000000..6148a3c --- /dev/null +++ b/case_specification.tex @@ -0,0 +1,201 @@ + \subsection{Assumptions} + +\begin{frame} + \frametitle{Assumptions} + \begin{itemize} + \item Fuel cycle facility parameters (throughput, availability) + \item Compositions of fresh and spent fuel + \item Material flow + \end{itemize} +\end{frame} + +\begin{frame} + \frametitle{Assumptions} + \begin{itemize} + \item SFR technology available for deployment in 2040. + \item Reactor construction is always completed on time. + \item Separated uranium is unused and stockpiled. + \item LWRs have a lifetime of 60 years, unless shut down prematurely. + \item SFRs have a lifetime of 80 years. + \end{itemize} + For the French Transition: + \begin{itemize} + \item Reprocessing and fabrication begins 2020 + \item French nuclear capacity remains constant at 66,000 MWe + \end{itemize} +\end{frame} + +%tikz styling definitions + +\tikzstyle{decision} = [diamond, draw, fill=blue!20, +text width=4.5em, text badly centered, node distance=3cm, inner sep=0pt] +\tikzstyle{block} = [rectangle, draw, fill=blue!20, +text width=5em, text centered, rounded corners, minimum height=4em] +\tikzstyle{line} = [draw, -latex'] +\tikzstyle{cloud} = [draw, ellipse,fill=red!20, node distance=3cm, +minimum height=2em] + +\subsection{Simulation Parameters} + +\begin{frame} + \frametitle{Material Flow} + +\begin{figure} + \begin{adjustbox}{max totalsize={0.9\textwidth}{.8\textheight}, center} + \begin{tikzpicture}[align=center, node distance = 3cm and 3cm, auto] + % Place nodes + \node [block] (sr) {Mine (\texttt{SOURCE})}; + \node [cloud, below of=sr] (nu) {Nat U}; + \node [block, below of=nu] (enr) {Enrichment ({\small \texttt{ENRICHMENT}})}; + \node [cloud, below of=enr] (uox) {\gls{UOX}}; + \node [block, below of=uox] (lwr) {\gls{LWR} (\texttt{REACTOR})}; + \node [cloud, right of=lwr] (snf) {\gls{UNF}}; + \node [block, right of=snf] (pool) {Pool (\texttt{Storage})}; + \node [cloud, left of=lwr] (tl2) {Dep U}; + \node [cloud, right of=enr] (tl) {Dep U}; + \node [block, right of=tl] (sk) {Repository (\texttt{SINK})}; + \node [cloud, below of=sk] (cunf) {Cooled \gls{UNF}}; + \node [cloud, below of=pool] (cunf2) {Cooled \gls{UNF}}; + \node [block, below of=snf] (rep) {Reprocessing ({\small \texttt{SEPARATIONS}})}; + \node [cloud, below of=rep] (u) {Sep. U} ; + \node [cloud, left of=rep] (pu) {Sep. Pu}; + \node [block, left of=pu] (mix) {Fabrication (\texttt{MIXER})}; + \node [cloud, below of=mix] (mox) {\gls{MOX}}; + \node [block, below of=mox] (mxr) {\gls{MOX} Reactors}; + \node [cloud, right of= mxr] (snmox) {Spent \gls{MOX}}; + + + \draw[->, thick] (sr) -- (nu); + \draw[->, thick] (nu) -- (enr); + \draw[->, thick] (enr) -- (tl); + \draw[->, thick] (enr) -- (tl2); + \draw[->, thick] (tl) -- (sk); + \draw[->, thick] (tl2) -- (mix); + \draw[->, thick] (enr) -- (uox); + \draw[->, thick] (uox) -- (lwr); + \draw[->, thick] (lwr) -- (snf); + + \draw[->, thick] (lwr) -- (snf); + \draw[->, thick] (snf) -- (pool); + \draw[->, thick] (pool) -- (cunf); + \draw[->, thick] (pool) -- (cunf2); + \draw[->, thick] (cunf) -- (sk); + \draw[->, thick] (cunf2) -- (rep); + + \draw[->, thick] (rep) -- (u); + \draw[->, thick] (rep) -- (pu); + \draw[->, thick] (pu) -- (mix); + \draw[->, thick] (mix) -- (mox); + \draw[->, thick] (mox) -- (mxr); + \draw[->, thick] (mxr) -- (snmox); + \draw[->, thick] (snmox) -- (rep); + \end{tikzpicture} + \end{adjustbox} + + \caption{Model Fuel Cycle with \gls{MOX} Reprocessing} + \label{diag:fc} +\end{figure} +\end{frame} + +\begin{frame} + \frametitle{EU Nuclear Opearations \textasciitilde 2050} + Deployment and Reactor data from \gls{IAEA} \gls{PRIS}. + Reprocessing plant and fabrication plant modeled after French La Hague and MELOX site + \cite{schneider_spent_2008, hugelmann_melox_1999}. + +\begin{table}[h] + \centering + \begin{tabularx}{\textwidth}{bb} + \hline + Parameter & Value \\ + \hline + Simulation Start Year & 1970 \\ + Simulation End Year & 2160 \\ + Reprocessing Capacity & 91.6 [MTHM \gls{UNF} per month] \cite{schneider_spent_2008} \\ + Reprocessing Efficiency & 99.8 [\%] \\ + Reprocessing Streams & Plutonium and Uranium \\ + \gls{MOX} Fabrication & \small{9\% Reprocessed Pu + 91\% Depleted U} \\ + \gls{MOX} Fabrication Throughput & 16.25 [MTHM \gls{MOX} per month] \cite{hugelmann_melox_1999} \\ + \gls{MOX} Fuel Reprocessing Stage & Used \gls{MOX} is not reprocessed. \\ + Reprocessed Uranium Usage & None. Stockpile reprocessed U \\ + \hline + \end{tabularx} + \caption {Parameter for Historical Operation of \gls{EU} Case (\textasciitilde 2040)} + \label{tab:sim_eu} +\end{table} + +\end{frame} + +\begin{frame} + \frametitle{French Transition to SFRs \textasciitilde 2160} + +\begin{table}[h] + \centering + \begin{tabularx}{\textwidth}{bb} + \hline + Parameter & Value \\ + \hline + \gls{SFR} Available Year & 2040 \\ + Reprocessing and Fabrication Begins & 2020 \\ + Separation Efficiency & 99.8 [\%] \\ + Reprocessing Streams & plutonium and uranium \\ + ASTRID fuel Fabrication & \small{22\% Reprocessed Pu + 78\% Depleted U} \\ + ASTRID Fuel Reprocessing Stage & Used fuel gets reprocessed infinitely. \\ + Reprocessed Uranium Usage & None. Stockpile reprocessed U. \\ + \hline + \end{tabularx} + \caption {Parameter for French Transition to \gls{SFR}} + \label{tab:sim_france} +\end{table} + +\end{frame} + + +\begin{frame} + \frametitle{Reactor Parameters - \glspl{LWR} } + Number of assemblies are linearly adjusted from a model 1,000 MWe reactor. + \begin{table}[h] + \centering + \begin{tabularx}{\textwidth}{bccc} + \hline + Parameter & Units & PWR & BWR \\ + \hline + cycle time & months & \multicolumn{2}{c}{18} \\ + refueling outage & months & \multicolumn{2}{c}{2}\\ + Fuel mass per assembly & kg & 446 & 180 \\ + Burnup & GWd/MTHM & \multicolumn{2}{c}{51} \\ + \small{Num. of assem. per core} & (for 1,000 MWe) & 193 & 764 \\ + \small{Num. of assem. per batch} & (for 1,000 MWe) & 62 & 254 \\ + Fuel & & \gls{UOX}, \gls{MOX} & \gls{UOX} \\ + \hline + \end{tabularx} + \caption {\gls{LWR} Parameters} + \label{tab:lwr} + \end{table} +\end{frame} + + +\begin{frame} + \frametitle{Reactor Parameters - ASTRID-type SFRs} + +\begin{table}[h] + \centering + \begin{tabularx}{\textwidth}{bb} + \hline + Parameter & Value \\ + \hline + SFR Cycle Time & 12 months \\ + SFR Refueling Outage & 2 months \\ + Fuel Mass per Batch & 5,568 kg \\ + Initial Pu Loading & 4.9 Tons \\ + Breeding Ratio & 1.08 \\ + Batch per Core & 4 \\ + Power Output & 600 MWe \\ + lifetime & 80 years \\ + Fuel & {\small \gls{MOX} (78\% Tails, 22\% Separated Pu)}\\ + \hline + \end{tabularx} + \caption {\gls{SFR} ASTRID Parameters \cite{varaine_pre-conceptual_2012}} + \label{tab:sfr} +\end{table} +\end{frame} diff --git a/cat_appearance.tex b/cat_appearance.tex deleted file mode 100644 index f3c35b2..0000000 --- a/cat_appearance.tex +++ /dev/null @@ -1,51 +0,0 @@ -\begin{frame} - \frametitle{Columns} - % a comment - \begin{columns} - \column[t]{5cm} - Sometimes things need to be put side by side, in two nice - looking columns. - - Maybe one column involves a quotation. - - \begin{quote} - Explicit is better than implicit. -- The Zen of Python - \end{quote} - - - And, also, perhaps, a logo. - \begin{center} - \includegraphics[height=0.2\textheight]{./images/arfc-logo} - \end{center} - \column[t]{5cm} - \begin{figure}[htbp!] - \begin{center} - \includegraphics[height=4cm]{./images/kitten} - \end{center} - \caption{A caption describing the image. \cite{lastname_firstword_1900}.} - \label{fig:kittenfigure} - \end{figure} - \end{columns} -\end{frame} - -\begin{frame}[fragile] - \frametitle{Some Code} - I have to use the fragile syntax for code slides. - \begin{minted}{python} -def meow(volume): - """Make a demanding noise at the specified volume - - Parameters - ---------- - volume: int - The volume of the demand. No relation to importance. - - Returns - ------- - str - meow - """ - o = 'o'*volume - return 'me'+ o + 'ow' -\end{minted} -\end{frame} diff --git a/cat_behavior.tex b/cat_behavior.tex deleted file mode 100644 index 419b24c..0000000 --- a/cat_behavior.tex +++ /dev/null @@ -1,25 +0,0 @@ -\begin{frame} - \frametitle{An Image} - % a comment - \begin{figure}[htbp!] - \begin{center} - \includegraphics[height=4cm]{./images/kitten} - \end{center} - \caption{A caption describing the image. \cite{lastname_firstword_1900}.} - \label{fig:kittenfigure} - \end{figure} -\end{frame} - -\begin{frame} - \frametitle{A Table} - Frames (slides) can have ``blocks.'' - \begin{block}{This one is about a cat} - A cat in a hat. - \end{block} - \begin{block}{A cat} - In a hat. - - \includegraphics[height=0.2\textheight]{./images/catinhat} - \end{block} - -\end{frame} diff --git a/cat_math.tex b/cat_math.tex deleted file mode 100644 index 47fcdda..0000000 --- a/cat_math.tex +++ /dev/null @@ -1,27 +0,0 @@ -\begin{frame} - \frametitle{Cat Math: Part 1} - % a comment - \begin{align} - x &= y - \intertext{where} - x &= \mbox{cats}\\ - y &= \mbox{peculiar} - \end{align} -\end{frame} - -\begin{frame} -\frametitle{Cat Math: Part 2} - Everything in Beamer is just like in \LaTeX. - Right down to the theorems. - \begin{theorem}[Pythagoras] - $ a^2 + b^2 = c^2$ - \end{theorem} - \begin{corollary} - $ x + y = y + x $ - \end{corollary} - \begin{proof} - $\omega +\phi = \epsilon $ - \end{proof} - - -\end{frame} diff --git a/conclusion.tex b/conclusion.tex index a9e2837..149d053 100644 --- a/conclusion.tex +++ b/conclusion.tex @@ -1,10 +1,84 @@ \begin{frame} - \frametitle{Conclusion} - We showed many things. - \begin{itemize} - \item Cats are peculiar - \item Blue and Orange are fierce colors - \item Math can be rendered nicely - \item Cite your sources - \end{itemize} + \frametitle{Conclusion} + France can transition into + a fully SFR fleet with installed capacity of 66GWe by 2076. + \begin{itemize} + \item Reprocessing Capacity : $\approx 140 \frac{MTHM}{month}$ + \item Fabrication Throughput: $\approx 150 \frac{MTHM}{month}$ + \end{itemize} \end{frame} + +\begin{frame} + \frametitle{Discussion} + Total Legacy \gls{UNF} reprocessed: \textbf{54,111 MTHM} + + France + Spain + Italy + Belgium + Germany = 53,809 MTHM + \begin{table}[h] +\centering + \begin{adjustbox}{max totalsize={0.7\textwidth}{.8\textheight}, center} + \begin{tabularx}{\textwidth}{lbb} + \hline + + \textbf{Nation} & \textbf{Growth Trajectory} & \small{\textbf{UNF in 2050 [MTHM] }}\\ + \hline + UK & Aggressive Growth & 53,188\\ + \hline + Poland & Aggressive Growth & 6,714\\ + \hline + Hungary & Aggressive Growth & 4,768 \\ + \hline + Finland & Modest Growth & 7,528\\ + \hline + Slovakia & Modest Growth & 3,446\\ + \hline + Bulgaria & Modest Growth & 3,930 \\ + \hline + Czech Rep. & Modest Growth & 7,583\\ + \hline + Slovenia & Modest Reduction & 765\\ + \hline + Netherlands & Modest Reduction & 539\\ + \hline + Lithuania & Modest Reduction & 2,644 \\ + \hline + \textcolor{red}{France} & \textbf{Modest Reduction} & \textbf{12,943} \\ + \hline + \textcolor{red}{Spain} & \textbf{Modest Reduction} & \textbf{9,771} \\ + \hline + \textcolor{red}{Italy} & \textbf{Modest Reduction} & \textbf{583}\\ + \hline + \textcolor{red}{Belgium} & \textbf{Aggressive Reduction} & \textbf{6,644}\\ + \hline + Sweden & Aggressive Reduction & 16,035\\ + \hline + \textcolor{red}{Germany} & \textbf{Aggressive Reduction} & \textbf{23,868}\\ + \hline + + \end{tabularx} + \end{adjustbox} + \caption {Growth Trajectory and UNF Inventory of \gls{EU} Nations.} + \label{tab:which_count} +\end{table} +\end{frame} + + +\begin{frame} + \frametitle{Discussion} + \begin{itemize} + \item Most EU nations do not have an operating repository or management plan + \item Some nations need a repository for complete decommission \& nuclear phase-out + \item Strong incentive for collaboration + \end{itemize} +\end{frame} + +\begin{frame} + \frametitle{Acknowledgments} + \begin{itemize} + \item NEUP Grant: PI - Kathryn Huff + \item \gls{ARFC} Research Group + \item \gls{ACDIS} Group + \end{itemize} + \begin{center} + \includegraphics[width=\textwidth]{./images/neup.png} + \end{center} +\end{frame} \ No newline at end of file diff --git a/fierce.tex b/fierce.tex deleted file mode 100644 index 89f09b5..0000000 --- a/fierce.tex +++ /dev/null @@ -1,13 +0,0 @@ -\begin{frame} - \frametitle{Blue and Orange are Fierce} - % a comment - Those are the Illini Colors. Use them like you see them in Figure - \ref{fig:fierce}. - \begin{figure}[htbp!] - \begin{center} - \includegraphics[height=4cm]{./images/fierce} - \end{center} - \caption{Kristofer Hivju is pretty serious about this color palette \cite{lastname_firstword_1900}.} - \label{fig:fierce} - \end{figure} -\end{frame} diff --git a/future.tex b/future.tex new file mode 100644 index 0000000..c91bedb --- /dev/null +++ b/future.tex @@ -0,0 +1,92 @@ +\subsection{Future Projections} + +\begin{frame} + \frametitle{Future Deployment of Reactors in \gls{EU}} + The power reactors listed in the table are used in the simulation + to predict \gls{EU} \gls{UNF} inventory in 2050. + \begin{table}[h] + \centering + \caption {Power Reactors under construction and planned \cite{world_nuclear_association_nuclear_2017}} + \label{tab:eu_deployment} + \scalebox{0.70}{ + \begin{tabular}{ccccc} + \hline + \textbf{Exp. Operational} & \textbf{Country} & \textbf{Reactor} & \textbf{Type} & \textbf{Gross MWe}\\ + \hline + 2018 & Slovakia & Mochovce 3 & PWR & 471 \\ + 2018 & Slovakia & Mochovce 4 & PWR & 471 \\ + 2018 & France & Flamanville 3 & PWR & 1600 \\ + 2018 & Finland & Olkilouto 3 & PWR & 1720 \\ + 2019 & Romania & Cernavoda 3 & PHWR & 720 \\ + 2020 & Romania & Cernavoda 4 & PHWR & 720 \\ + 2024 & Finland & Hanhikivi & VVER1200 & 1200 \\ + 2024 & Hungary & Paks 5 & VVER1200 & 1200 \\ + 2025 & Hungary & Paks 6 & VVER1200 & 1200 \\ + 2025 & Bulgaria & Kozloduy 7 & AP1000? & 950 \\ + 2026 & UK & Hinkley Point C1 & EPR & 1670 \\ + 2027 & UK & Hinkley Point C2 & EPR & 1670 \\ + 2029 & Poland & Choczewo & N/A & 3000 \\ + 2035 & Poland & N/A & N/A & 3000 \\ + 2035 & Czech Rep & Dukovany 5 & N/A & 1200 \\ + 2035 & Czech Rep & Temelin 3 & AP1000 & 1200 \\ + 2040 & Czech Rep & Temelin 4 & AP1000 & 1200 \\ + \hline + \end{tabular} + } +\end{table} +\end{frame} + + +\begin{frame} + \frametitle{Simulated European Deployment} + +\begin{table}[h] + \centering + \begin{adjustbox}{max totalsize={1.1\textwidth}{.8\textheight}, center} + \begin{tabularx}{\textwidth}{lmb} + \hline + + \textbf{Nation} & \textbf{Growth Trajectory} & \textbf{Specific Plan }\\ + \hline + UK & Aggressive Growth & {\small 13 units (17,900 MWe) by 2030.}\\ + \hline + Poland & Aggressive Growth & {\small Additional 6,000 MWe by 2035.}\\ + \hline + Hungary & Aggressive Growth & {\small Additional 2,400 MWe by 2025.} \\ + \hline + Finland & Modest Growth & {\small Additional 2,920 MWe by 2024.}\\ + \hline + Slovakia & Modest Growth & {\small Additional 942 MWe by 2025.}\\ + \hline + Bulgaria & Modest Growth & {\small Additional 1,000 MWe by 2035.} \\ + \hline + Romania & Modest Growth & {\small Additional 1,440 MWe by 2020.} \\ + \hline + Czech Rep. & Modest Growth & {\small Additional 2,400 MWe by 2035.}\\ + \hline + France & Modest Reduction & {\small No expansion or early shutdown.}\\ + \hline + Slovenia & Modest Reduction & {\small No expansion or early shutdown.}\\ + \hline + Netherlands & Modest Reduction & {\small No expansion or early shutdown.}\\ + \hline + Lithuania & Modest Reduction & {\small No expansion or early shutdown.}\\ + \hline + Spain & Modest Reduction & {\small No expansion or early shutdown.} \\ + \hline + Italy & Modest Reduction & {\small No expansion or early shutdown. }\\ + \hline + Belgium & Aggressive Reduction & All shut down 2025.\\ + \hline + Sweden & Aggressive Reduction & All shut down 2050.\\ + \hline + Germany & Aggressive Reduction & All shut down by 2022.\\ + \hline + + \end{tabularx} + \end{adjustbox} + \caption {Future Nuclear Programs of \gls{EU} Nations \cite{world_nuclear_association_nuclear_2017}} + \label{tab:eu_growth} +\end{table} +\end{frame} + diff --git a/images/catinhat.jpg b/images/catinhat.jpg deleted file mode 100644 index 2fef8f3..0000000 Binary files a/images/catinhat.jpg and /dev/null differ diff --git a/images/catinhat.png b/images/catinhat.png deleted file mode 100644 index 03b3aac..0000000 Binary files a/images/catinhat.png and /dev/null differ diff --git a/images/cyclus.png b/images/cyclus.png new file mode 100644 index 0000000..772a00b Binary files /dev/null and b/images/cyclus.png differ diff --git a/images/eu_future/mox_fuel.png b/images/eu_future/mox_fuel.png new file mode 100644 index 0000000..f733488 Binary files /dev/null and b/images/eu_future/mox_fuel.png differ diff --git a/images/eu_future/number_plot.png b/images/eu_future/number_plot.png new file mode 100644 index 0000000..b5d1569 Binary files /dev/null and b/images/eu_future/number_plot.png differ diff --git a/images/eu_future/power_plot.png b/images/eu_future/power_plot.png new file mode 100644 index 0000000..63d5a86 Binary files /dev/null and b/images/eu_future/power_plot.png differ diff --git a/images/eu_future/regional_snf.png b/images/eu_future/regional_snf.png new file mode 100644 index 0000000..a64819f Binary files /dev/null and b/images/eu_future/regional_snf.png differ diff --git a/images/eu_future/snf_discharge.png b/images/eu_future/snf_discharge.png new file mode 100644 index 0000000..5eb1087 Binary files /dev/null and b/images/eu_future/snf_discharge.png differ diff --git a/images/eu_future/tails.png b/images/eu_future/tails.png new file mode 100644 index 0000000..34e7464 Binary files /dev/null and b/images/eu_future/tails.png differ diff --git a/images/eu_future/total_fuel.png b/images/eu_future/total_fuel.png new file mode 100644 index 0000000..fcc0335 Binary files /dev/null and b/images/eu_future/total_fuel.png differ diff --git a/images/eu_future/uox_fuel.png b/images/eu_future/uox_fuel.png new file mode 100644 index 0000000..350ed2b Binary files /dev/null and b/images/eu_future/uox_fuel.png differ diff --git a/images/fierce.jpg b/images/fierce.jpg deleted file mode 100644 index 9b26775..0000000 Binary files a/images/fierce.jpg and /dev/null differ diff --git a/images/fierce.png b/images/fierce.png deleted file mode 100644 index 626afa7..0000000 Binary files a/images/fierce.png and /dev/null differ diff --git a/images/french-transition/power_plot.png b/images/french-transition/power_plot.png new file mode 100644 index 0000000..d980f90 Binary files /dev/null and b/images/french-transition/power_plot.png differ diff --git a/images/french-transition/pu.png b/images/french-transition/pu.png new file mode 100644 index 0000000..464bdf9 Binary files /dev/null and b/images/french-transition/pu.png differ diff --git a/images/french-transition/pu_cum.png b/images/french-transition/pu_cum.png new file mode 100644 index 0000000..64ba33c Binary files /dev/null and b/images/french-transition/pu_cum.png differ diff --git a/images/french-transition/raffinate.png b/images/french-transition/raffinate.png new file mode 100644 index 0000000..5ec3a9a Binary files /dev/null and b/images/french-transition/raffinate.png differ diff --git a/images/french-transition/raffinate_cum.png b/images/french-transition/raffinate_cum.png new file mode 100644 index 0000000..91cebf5 Binary files /dev/null and b/images/french-transition/raffinate_cum.png differ diff --git a/images/french-transition/reprocess_waste.png b/images/french-transition/reprocess_waste.png new file mode 100644 index 0000000..da08345 Binary files /dev/null and b/images/french-transition/reprocess_waste.png differ diff --git a/images/french-transition/reprocess_waste_cum.png b/images/french-transition/reprocess_waste_cum.png new file mode 100644 index 0000000..6a69ab9 Binary files /dev/null and b/images/french-transition/reprocess_waste_cum.png differ diff --git a/images/french-transition/sfr_deploy.png b/images/french-transition/sfr_deploy.png new file mode 100644 index 0000000..66c1f5d Binary files /dev/null and b/images/french-transition/sfr_deploy.png differ diff --git a/images/french-transition/where_fuel.png b/images/french-transition/where_fuel.png new file mode 100644 index 0000000..7c92d7c Binary files /dev/null and b/images/french-transition/where_fuel.png differ diff --git a/images/kitten.png b/images/kitten.png deleted file mode 100644 index 79f9f7f..0000000 Binary files a/images/kitten.png and /dev/null differ diff --git a/images/neup.png b/images/neup.png new file mode 100644 index 0000000..bff7065 Binary files /dev/null and b/images/neup.png differ diff --git a/images/onesim/power_plot.png b/images/onesim/power_plot.png new file mode 100644 index 0000000..646ab5f Binary files /dev/null and b/images/onesim/power_plot.png differ diff --git a/results.tex b/results.tex new file mode 100644 index 0000000..5af8c36 --- /dev/null +++ b/results.tex @@ -0,0 +1,127 @@ +\subsection{EU Nuclear Operation until 2050} + +\begin{frame} + \frametitle{Historical Operation of EU Reactors} + +\begin{table}[h] + \centering + \scalebox{0.86}{ + \begin{tabular}{cccc} + \hline + \textbf{Category } & \textbf{Value} & \textbf{Unit} & \textbf{Specifics}\\ \hline + Total UOX Usage & 176,600 & MTHM & \\ + Total MOX Usage & 6,953 & MTHM & \\ + \textcolor{red}{Total Used UOX Stored} & 110,013 & MTHM & \gls{UNF} that is not reprocessed\\ + \textcolor{red}{Total Used UOX Stored (France)} & 12,943 & MTHM & \gls{UNF} that is not reprocessed \\ + Total Tails & 1,059,210 & MTHM & \\ + Total Natural U Used & 1,235,810 & MTHM & \\ \hline + \end{tabular}} + \caption{Simulation Results for Historical Nuclear Operation + of \gls{EU} Nations} + \label{tab:sim_result} +\end {table} + +\end{frame} + +\begin{frame} + \frametitle{Tails and UNF Inventory} +\begin{figure}[htbp!] + \centering + \includegraphics[width=\textwidth]{./images/eu_future/total_fuel.png} + \caption{Timeseries of Total Fuel Usage in \gls{EU}.} + \label{fig:eu_fuel} +\end{figure} +\end{frame} + +\begin{frame} + +\begin{figure}[htbp!] + \begin{center} + \includegraphics[scale=0.7]{./images/eu_future/snf_discharge.png} + \end{center} + \caption{Timeseries of Used Nuclear Fuel in \gls{EU}.} + \label{fig:eu_snf} +\end{figure} + +\end{frame} + +\subsection{French Transition Scenario ~2160} + +\begin{frame} + \frametitle{SFR Deployment with Legacy UNF} + \begin{itemize} + \item Reprocessing UNF from all EU nations can start approx. 202 SFRs. (\gls{UOX} \gls{UNF} has about 0.9\% pu) + \item $\frac{Pu \ from \ legacy \ \gls{UNF}}{4.9} \approx 202$ + \item Initial Pu loading of $4.9$ tons for ASTRID-type SFR \cite{varaine_pre-conceptual_2012}. + \item Two generations of 66GWe SFRs = 220 SFRs + \end{itemize} +\end{frame} + +\begin{frame} + \frametitle{Frech Transition Results} + +\begin{table}[h] + \centering + \scalebox{0.86}{ + \begin{tabular}{ccc} + \hline + \textbf{Category} & \textbf{Unit} & \textbf{Value} \\ \hline + Total MOX used & MTHM & 63,820 \\ + Total \glspl{SFR} Deployed & & 220 \\ + Total Plutonium Reprocessed & MTHM & 15,099 \\ + Total \gls{ASTRID} fuel from UOX Waste & MTHM & 2,923 \\ + Total \gls{ASTRID} fuel from MOX Waste & MTHM & 60,535 \\ + Total Tails used & MTHM & 49,779 \\ + \textcolor{red}{Total legacy UNF reprocessed} & MTHM & 54,111 \\ + Total Reprocessed Uranium Stockpile & MTHM & 183,740 \\ + Total Raffinate & MTHM & 33,806 \\ \hline + \end{tabular}} + \caption {\gls{SFR} Simulation Results} + \label{tab:sfr_sim_result} +\end{table} + +\end{frame} + +\begin{frame} + \frametitle{Material Flow in French Transition Scenario} + +\begin{figure}[htbp!] +\begin{minipage}[b]{.45\linewidth} + \begin{center} + \includegraphics[width=\textwidth]{./images/french-transition/where_fuel.png} + \end{center} + \caption{Timeseries of fuel loaded into \glspl{SFR}, separated by origin} + \label{fig:fuel} +\end{minipage} +\hspace{.5cm} +\begin{minipage}[b]{.45\linewidth} + \centering + \includegraphics[width=\linewidth]{./images/french-transition/pu.png} + \caption{Separated plutonium discharge from Reprocessing Plant} + \label{fig:pu_no_cum} +\end{minipage} +\end{figure} + +\end{frame} + +\begin{frame} + \frametitle{Material Flow in French Transition Scenario} + +\begin{figure}[htbp!] +\begin{minipage}[b]{.45\linewidth} + \begin{center} + \includegraphics[width=\textwidth]{./images/french-transition/raffinate.png} + \end{center} + \caption{Timeseries of raffinate discharge from reprocessing plants} + \label{fig:fuel} +\end{minipage} +\hspace{.5cm} +\begin{minipage}[b]{.45\linewidth} + \centering + \includegraphics[width=\linewidth]{./images/french-transition/raffinate_cum.png} + \caption{Cumulative raffinate inventory separated by origin} + \label{fig:pu_no_cum} +\end{minipage} +\end{figure} + +\end{frame} \ No newline at end of file diff --git a/tab.tex b/tab.tex deleted file mode 100644 index 9b3efef..0000000 --- a/tab.tex +++ /dev/null @@ -1,35 +0,0 @@ - % Future Fuel Cycles - \begin{table} - \centering - \footnotesize{ - \begin{tabular}{|l|l|l|} - \multicolumn{3}{c}{\textbf{Domestic Fuel Cycle Options}}\\ - \hline - Title & Description& Challenges \\ - \hline - \hline - Open & Once Through & High Temperatures, Volumes \\ - & Current US PWR Fleet & \\ - & No Separations & \\ - & No Recycling & \\ - & Higher Burnups & \\ - \hline - Modified Open & Partial Recycling & Both high volumes \\ - & Next Gen. PWR Fleet & and variable spent fuel streams \\ - & Limited Separations & \\ - & Limited Transmutation & \\ - & Advanced Fuel Forms & \\ - & HLW treatment & \\ - \hline - Closed & Full Recycling & Variable spent fuel streams \\ - & Full Separations & \\ - & Full Recycling & \\ - & VHTGR, SFRs, & \\ - & other transmutation & \\ - & HLW treatment & \\ - \hline - \end{tabular} - \caption[Fuel Cycle Options]{Domestic Fuel Cycle Options } - \label{tab:fco} - } - \end{table}