-
Notifications
You must be signed in to change notification settings - Fork 6
/
make_parallel.py
executable file
·46 lines (36 loc) · 1.75 KB
/
make_parallel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
from keras.layers.merge import concatenate
from keras.layers.core import Lambda
from keras.models import Model
def make_parallel(model, gpus=[0, 1]):
import tensorflow as tf
def get_slice(data, idx, parts):
shape = tf.shape(data)
size = tf.concat([ shape[:1] // parts, shape[1: ] ], axis=0)
stride = tf.concat([ shape[:1] // parts, shape[1: ] * 0 ], axis=0)
start = stride * idx
return tf.slice(data, start, size)
outputs_all = []
for i in range(len(model.outputs)):
outputs_all.append([])
#Place a copy of the model on each GPU, each getting a slice of the batch
for i, gpu_id in enumerate(gpus):
with tf.device('/gpu:%d' % gpu_id):
with tf.name_scope('tower_%d' % gpu_id) as scope:
inputs = []
#Slice each input into a piece for processing on this GPU
for x in model.inputs:
input_shape = tuple(x.get_shape().as_list())[1:]
slice_n = Lambda(get_slice, output_shape=input_shape, arguments={'idx': i, 'parts': len(gpus)})(x)
inputs.append(slice_n)
outputs = model(inputs)
if not isinstance(outputs, list):
outputs = [outputs]
#Save all the outputs for merging back together later
for l in range(len(outputs)):
outputs_all[l].append(outputs[l])
# merge outputs on CPU
with tf.device('/cpu:0'):
merged = []
for outputs in outputs_all:
merged.append(concatenate(outputs, axis=0))
return Model(inputs=model.inputs, outputs=merged)