diff --git a/docs/source/dev-guide.rst b/docs/source/dev-guide.rst index 5ca6ed79..2487ca00 100644 --- a/docs/source/dev-guide.rst +++ b/docs/source/dev-guide.rst @@ -7,7 +7,7 @@ Topics Installing an editable copy of PyARPES ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -1. Install `rye to make an isolated environment for development. +1. Install `rye ` to make an isolated environment for development. 2. Clone the respository .. code:: bash @@ -15,7 +15,8 @@ Installing an editable copy of PyARPES git clone https://gitlab.com/arafune/arpes 3. Install libraries to develop PyARPES with - ``rye sync`` + + ``rye sync``. 4. After that, activate the .venv/ environment. diff --git a/docs/source/single-particle-spectral.rst b/docs/source/single-particle-spectral.rst index 9fcb7c9e..e3ca05a0 100644 --- a/docs/source/single-particle-spectral.rst +++ b/docs/source/single-particle-spectral.rst @@ -20,16 +20,35 @@ disentangle, it is typically slowly varying in momentum and photon energy, and therefore ARPES can be thought of as measuring also :math:`A(\textbf{k}, \omega)`. -.. math:: + + +.. only:: html + + .. math:: \textbf{A}(\mathbf{k}, \omega) = -\frac{1}{\pi} - \frac{\color{blue}{\Sigma''(\color{black}{\mathbf{k}, \omega})}} - {[\omega - \hspace{-0.25em}\underbrace{\color{green}{\epsilon_0(\color{black}{\mathbf{k}})}}_{\color{green}{\text{Bare band}}}\hspace{-0.25em} - \hspace{-0.4em}\underbrace{\color{red}{\Sigma'\left(\color{black}{\mathbf{k},\omega}\right)}}_{\color{red}{\text{E-renormalization}}}\hspace{-0.9em}]^2 + - [\underbrace{\color{blue}{\Sigma''\left(\color{black}{\mathbf{k},\omega}\right)}}_{ + \frac{\color{blue}{\Sigma''\color{white}({\mathbf{k}, \omega})}} + {[\omega - \hspace{-0.25em}\underbrace{\color{green}{\epsilon_0\color{white}({\mathbf{k}})}}_{\color{green}{\text{Bare band}}}\hspace{-0.25em} - \hspace{-0.4em}\underbrace{\color{red}{\Sigma'\color{white}\left({\mathbf{k},\omega}\right)}}_{\color{red}{\text{E-renormalization}}}\hspace{-0.9em}]^2 + + [\underbrace{\color{blue}{\Sigma''\color{white}\left({\mathbf{k},\omega}\right)}}_{ \color{blue}{\text{Lifetimes}} }]^2} + + + +.. only:: not html + + .. math:: + + + \textbf{A}(\mathbf{k}, \omega) = -\frac{1}{\pi} + \frac{\color{blue}{\Sigma''(\color{black}{\mathbf{k}, \omega})}} + {[\omega - \hspace{-0.25em}\underbrace{\color{green}{\epsilon_0\color{black}({\mathbf{k}})}}_{\color{green}{\text{Bare band}}}\hspace{-0.25em} - \hspace{-0.4em}\underbrace{\color{red}{\Sigma'\color{black}\left({\mathbf{k},\omega}\right)}}_{\color{red}{\text{E-renormalization}}}\hspace{-0.9em}]^2 + + [\underbrace{\color{blue}{\Sigma''\color{black}\left({\mathbf{k},\omega}\right)}}_{ + \color{blue}{\text{Lifetimes}} + }]^2} + From this quantity much can be extracted, including single-particle band structure, energy renormalization by interaction, and measurement of the quasiparticle lifetimes. ARPES therefore makes available momentum