diff --git a/docs/source/dev-guide.rst b/docs/source/dev-guide.rst
index 5ca6ed79..2487ca00 100644
--- a/docs/source/dev-guide.rst
+++ b/docs/source/dev-guide.rst
@@ -7,7 +7,7 @@ Topics
Installing an editable copy of PyARPES
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-1. Install `rye to make an isolated environment for development.
+1. Install `rye ` to make an isolated environment for development.
2. Clone the respository
.. code:: bash
@@ -15,7 +15,8 @@ Installing an editable copy of PyARPES
git clone https://gitlab.com/arafune/arpes
3. Install libraries to develop PyARPES with
- ``rye sync``
+
+ ``rye sync``.
4. After that, activate the .venv/ environment.
diff --git a/docs/source/single-particle-spectral.rst b/docs/source/single-particle-spectral.rst
index 9fcb7c9e..e3ca05a0 100644
--- a/docs/source/single-particle-spectral.rst
+++ b/docs/source/single-particle-spectral.rst
@@ -20,16 +20,35 @@ disentangle, it is typically slowly varying in momentum and photon
energy, and therefore ARPES can be thought of as measuring also
:math:`A(\textbf{k}, \omega)`.
-.. math::
+
+
+.. only:: html
+
+ .. math::
\textbf{A}(\mathbf{k}, \omega) = -\frac{1}{\pi}
- \frac{\color{blue}{\Sigma''(\color{black}{\mathbf{k}, \omega})}}
- {[\omega - \hspace{-0.25em}\underbrace{\color{green}{\epsilon_0(\color{black}{\mathbf{k}})}}_{\color{green}{\text{Bare band}}}\hspace{-0.25em} - \hspace{-0.4em}\underbrace{\color{red}{\Sigma'\left(\color{black}{\mathbf{k},\omega}\right)}}_{\color{red}{\text{E-renormalization}}}\hspace{-0.9em}]^2 +
- [\underbrace{\color{blue}{\Sigma''\left(\color{black}{\mathbf{k},\omega}\right)}}_{
+ \frac{\color{blue}{\Sigma''\color{white}({\mathbf{k}, \omega})}}
+ {[\omega - \hspace{-0.25em}\underbrace{\color{green}{\epsilon_0\color{white}({\mathbf{k}})}}_{\color{green}{\text{Bare band}}}\hspace{-0.25em} - \hspace{-0.4em}\underbrace{\color{red}{\Sigma'\color{white}\left({\mathbf{k},\omega}\right)}}_{\color{red}{\text{E-renormalization}}}\hspace{-0.9em}]^2 +
+ [\underbrace{\color{blue}{\Sigma''\color{white}\left({\mathbf{k},\omega}\right)}}_{
\color{blue}{\text{Lifetimes}}
}]^2}
+
+
+
+.. only:: not html
+
+ .. math::
+
+
+ \textbf{A}(\mathbf{k}, \omega) = -\frac{1}{\pi}
+ \frac{\color{blue}{\Sigma''(\color{black}{\mathbf{k}, \omega})}}
+ {[\omega - \hspace{-0.25em}\underbrace{\color{green}{\epsilon_0\color{black}({\mathbf{k}})}}_{\color{green}{\text{Bare band}}}\hspace{-0.25em} - \hspace{-0.4em}\underbrace{\color{red}{\Sigma'\color{black}\left({\mathbf{k},\omega}\right)}}_{\color{red}{\text{E-renormalization}}}\hspace{-0.9em}]^2 +
+ [\underbrace{\color{blue}{\Sigma''\color{black}\left({\mathbf{k},\omega}\right)}}_{
+ \color{blue}{\text{Lifetimes}}
+ }]^2}
+
From this quantity much can be extracted, including single-particle band
structure, energy renormalization by interaction, and measurement of the
quasiparticle lifetimes. ARPES therefore makes available momentum