-
Notifications
You must be signed in to change notification settings - Fork 0
/
index.idyll
2138 lines (1608 loc) · 82.4 KB
/
index.idyll
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
[meta title:"WQ ToolBox - pH Part 3" description:"" /]
[Header
fullWidth:true
title:"WQ ToolBox Manual"
subtitle:"pH III: To pH and Beyond..."
authorLink:"[email protected]"
date:`(new Date()).toDateString()`
background:"url('static/images/Buza-2.png')"
color:"white"
/]
[p]
The previous section was preparation for understanding important aspects of pH covered in this final part of the **WQ ToolBox**
pH chapter.
[/p]
[p]
A few of these topics regularly cause confusion, such as how to calculate acidity (\[H[sup]+[/sup]\]) from pH, the
correct way to average pH values, and measuring pH in seawater on the NBS scale -- the scale most everyone uses.
[/p]
[p style: `{fontSize: '0.90rem'}` ]
*This document was developed with* [a href:"https://idyll-lang.org/" target:"_blank" rel:"noopener noreferrer"]Idyll[/a] [Cite
authors:"Matthew Conlen and Jeffrey Heer"
title:"Idyll: A Markup Language for Authoring and Publishing Interactive Articles on the Web"
url:"https://idl.cs.washington.edu/files/2018-Idyll-UIST.pdf"
id:"idyll-uist"
venue: "Seattle, WA"
date:"2018"
/], *a "toolkit for creating data-driven stories
and explorable explanations". Custom components were built with* [a href:"https://reactjs.org/" target:"_blank" rel:"noopener noreferrer"]React[/a] *and* [a href:"https://d3js.org/" target:"_blank" rel:"noopener noreferrer"]D3[/a].
[/p]
[p style:`{textAlign:'right'}`]
contact [a href:'mailto: [email protected]'
target:"_blank"
rel:"noopener noreferrer"][email protected][/a]
[/p]
// ** LEARNING OBJECTIVES ** //
// [div className: 'section-preface']
// // ((((((((( To pH and Beyond )))))))))
// // [div style:`{textAlign:'center', marginTop:'15px'}`]
// // [Inline] [h2 style:`{display: 'inline', marginRight: '30px'}` id:"section-goals"]*To pH and Beyond*[/h2] [span style:`{fontSize: '0.85rem'}`][a href:"#top" style:`{textDecoration: 'none'}`]\[TableOfContents\][/a][/span] [/Inline]
// // [/div]
// [h3]Learning Objectives[/h3]
// [ul]
// [li] explain why pH is defined as a **negative logarithm** [/li]
// [li] distinguish the **strict definition of pH** (as H[sup]+[/sup] *activity*)[br/]from the **operational definition of pH** (as H[sup]+[/sup] *concentration*) [/li]
// [li] explain **the meaning of 10[sup]-pH[/sup]** and how to use it [/li]
// [li] know **which pH change doubles** (and which halves) **acidity** [/li]
// [li] understand the basics of **how a pH electrode works** [/li]
// [li] explain **ionic strength** and its importance to pH measurement [/li]
// [li] describe the **liquid junction potential** and its significance [/li]
// [li] distinguish the **NBS pH scale** from the **three seawater pH scales** [/li]
// [li] explain **the correct way to average pH values** [/li]
// [/ul]
// [/div]
// ** KEY POINTS ** //
[div className: 'key-take-aways']
// ((((((((( To pH and Beyond )))))))))
// [div style:`{textAlign:'center', marginTop:'15px'}`]
// [Inline] [h2 style:`{display: 'inline', marginRight: '30px'}` id:"section-goals"]*To pH and Beyond*[/h2] [span style:`{fontSize: '0.85rem'}`][a href:"#top" style:`{textDecoration: 'none'}`]\[TableOfContents\][/a][/span] [/Inline]
// [/div]
[h3]Key Take-aways[/h3]
[h4]General[/h4]
[ul]
[li] **negative logarithms** transform \[H[sup]+[/sup]\] into human-friendly pH values [/li]
[li] **10[sup]-pH[/sup]** transforms pH into \[H[sup]+[/sup]\] values for water-quality calculations [/li]
[li] **neutral pH is not always 7.0**; it varies with temperature & salinity [/li]
[/ul]
[h4]Rules of Thumb[/h4]
[ul]
[li] a pH *de*crease of ~0.3 units **doubles acidity** [/li]
[li] a pH *in*crease of ~0.3 units **halves acidity** [/li]
[/ul]
[h4]Measurement[/h4]
[ul]
[li] **pH electrodes measure H[sup]+[/sup] activity**, not H[sup]+[/sup] concentration [/li]
[li] **high ionic strength** solutions (seawater) create **high junction potentials** [/li]
// [li] **high junction potentials** introduce pH measurement error [/li]
[li] **seawater pH scales** minimize the junction potential problem[/li]
[/ul]
[h4]Calculating Mean pH[/h4]
[ul]
// [li] calculating **average pH** depends on the distribution of pH values [/li]
// [li] the distribution of pH values determines how to calculate **average pH** [/li]
[li] aquaculture/aquaponics/aquaria/pools pH sampling data are mostly[br/]***Normally distributed***, so **use the arithmetic mean** [/li]
[li] in that case, **[span id:'wavy-underline']do not[/span]** calculate the arithmetic mean of the \[H[sup]+[/sup]\] values [/li]
// [li] (if *log-normally* distributed, use the *geometric mean of the pH values*) [/li]
[/ul]
[/div]
// ** KEY TERMS ** //
[div className: 'key-terms']
// ((((((((( To pH and Beyond )))))))))
// [div style:`{textAlign:'center', marginTop:'15px'}`]
// [Inline] [h2 style:`{display: 'inline', marginRight: '30px'}` id:"section-goals"]*To pH and Beyond*[/h2] [span style:`{fontSize: '0.85rem'}`][a href:"#top" style:`{textDecoration: 'none'}`]\[TableOfContents\][/a][/span] [/Inline]
// [/div]
[h3]Key Terms[/h3]
[ul]
[li] **ionic strength** -- a solution's ionic charge in mol/L or mol/kg [/li]
[li] **liquid junction potential** -- voltage difference across the boundary[br/]where the reference fluid meets the sample solution [/li]
[li] **buffer** -- a chemical system designed to maintain pH within a narrow range of values [/li]
[li] **NBS (or NIST) buffers** -- a series of standard buffers used to calibrate pH electrodes [/li]
[li] **Ion Selective Field Effect Transistors (ISFET)** solid state technology that is an alternative to traditional glass electrodes [/li]
[li] **order of magnitude** -- a power of ten; a factor (multiple) of ten difference between values (*e.g.*, 100 is one order of magnitude greater than 10) [/li]
[li] **normal distribution** -- a probability distribution of a variable that generates the familiar bell-shaped curve [/li]
[li] **log-normal distribution** -- a probability distribution in which the *logarithm* of the variable generates a bell-shaped curve. [/li]
// [li] **geometric mean** -- central tendency of lognormal distributions[/li]
[/ul]
[/div]
[div className: 'table-of-contents']
// [div style:`{background: '#F5F5DC', borderRadius: '15px', padding: '15px', textAlign:'center', marginTop:'0px', marginBottom:'18px', paddingTop:'2px'}`]
[h3 id:"top"]Table of Contents[/h3]
[ul style:`{listStyleType:'none', marginTop:'0px'}`]
[ul className: 'ulToc']
// [li] [a href:"#section-goals"]Section Goals[/a] [/li]
[li] [a href:"#inconvenient"]Inconvenient numbers[/a] [/li]
[li] [a href:"#ph-def"]pH ≔ -log[sub]10[/sub]|\[H[sup]+[/sup]\]|[/a] [/li]
[li] [a href:"#ten-to-minus-ph"]*What is 10[sup]-pH[/sup]?!*[/a] [/li]
[li] [a href:"#power-of-ten"]A Power of Ten[/a] [/li]
[li] [a href:"#neutral-ph"]pH 7 is not always neutral[/a] [/li]
[li] [a href:"#ph-electrode"]The pH Electrode[/a] [/li]
[li] [a href:"#ionic-strength"]Ionic Strength[/a] [/li]
[li] [a href:"#junction-potential"]Liquid Junction Potential[/a] [/li]
[li] [a href:"#buffers-calibration"]Buffers and Calibration[/a] [/li]
[li] [a href:"#ph-scales"]NBS & the Three Little pH Scales[/a] [/li]
[li] [a href:"#mean-ph"]*What does ‘mean pH’ mean?!*[/a] [/li]
[li] [a href:"#next-steps"]Next Steps...[/a] [/li]
[li] [a href:"#refs"]References[/a] [/li]
[/ul]
[/ul]
[/div]
// ((((((((( Inconvenient Numbers )))))))))
// [div style:`{marginTop: '35px'}`]
// [h3 style:`{display: 'inline', marginRight: '30px'}`]*Inconvenient numbers*[/h3]
// [/div]
// ((((((((( INCOVENIENT NUMBER )))))))))
[div]
[Inline] [h3 style:`{display: 'inline', marginRight: '30px'}` id:"inconvenient"]*Inconvenient Numbers*[/h3] [span style:`{fontSize: '0.85rem'}`][a href:"#top" style:`{textDecoration: 'none'}`]\[TableOfContents\][/a][/span] [/Inline]
[/div]
[p]
Those \[H[sup]+[/sup]\] numbers calculated in the previous section are so small and hide behind so many repeated zeros that
they're hard to grasp. Most of us can't do it at a glance; we count the zeros, maybe lose our place; then re-count...
[/p]
[p]
That's more than just inefficient: it's too easy to make a serious mistake by missing a zero or two. The numbers just aren't in a very human-friendly format and can't
be communicated easily.
[/p]
[p]
Here are two options:
[/p]
[p]
***Scientific notation*** A number between one and ten times a power of ten (*e.g.*, 6.02 x 10[sup]23[/sup]).
This format is common currency in the tech literature: it's easier to communicate and very easy to work with mathematically.
[/p]
// [p]
// ***Scientific notation*** A number between one and ten times a power of ten (*e.g.*, [Display value: `sqrt_kw_1.toString().split('e')[0].slice(0, 5)` format: '.3e' /][span style:`{fontSize:'0.75rem'}`]x[/span]10[sup][Display value: `sqrt_kw_1.toString().split('e')[1]` format: '.3e' /][/sup]).
// This format is common currency in the tech literature: it's easier to communicate and very easy to work with mathematically.
// [/p]
[p]
We still can find a friendlier form for our present purposes, especiallly as negative and fractional exponents add a layer of confusion for some.
(See the math appendix of the **WQ ToolBox** online manual for a refresher or to learn how to use scientific notation like a pro.)
[/p]
[p]
***Metric prefixes*** Another way to make those small numbers more useable is to represent them as one of the standard metric prefixes for quantities less than one,
like *milli-* (one-thousandth), *micro-* (one-millionth), and *nano-* (one-billionth). (For a full list, see the appendix of the **WQ ToolBox** online manual.)
[/p]
[p]
This is a very helpful approach that you'll find throughout the tech literature; and if you're using the **WQ Map**, you already may have noticed that the x-axis is
scaled in millimoles per kg (**mmol/kg**); *i.e.*, thousandths of a mole per kg.
[/p]
[div style:`{border:'black 1px solid', marginTop:'25px', marginBottom:'25px'}`]
![WqMapMmol](static/images/wqmap-mmol.png)
[/div]
[p]
We'd work more efficiently -- and feel more comfortable -- with a reasonably-sized positive number that describes acidity. And that finally brings us to pH.
[/p]
// ((((((((( PH DEF )))))))))
[div style:`{marginTop: '35px'}`]
[Inline] [h3 style:`{display: 'inline', marginRight: '30px'}` id:"ph-def"]*pH [span style:`{fontSize:'1.5rem'}` ]≔[/span] -log[sub]10[/sub]{H[sup]+[/sup]}*[/h3] [span style:`{fontSize: '0.85rem'}`][a href:"#top" style:`{textDecoration: 'none'}`]\[TableOfContents\][/a][/span] [/Inline]
[/div]
[aside]
[Inline]
The symbol "[span style:`{fontSize:'1.13rem'}` ]≔[/span]" indicates a definition, not an equation. "log[sub]10[/sub]" sometimes is written as "lg".
[/Inline]
[/aside]
[p]
One way to transform those zero-filled \[H[sup]+[/supb]\] values into a human-friendly form is by hitting them with a logarithm ("log", for short).
[/p]
[p]
And that's what we do to get pH.
[/p]
// [aside]Logarithm is a funny-looking word when you first come across it. It's formed of two Greek words: αριθμός - λόγος (here, ratio[/aside]
[p style:`{fontSize: "0.78rem"}`]
\[FYI, some non-tech details about logs are in the next expandable panel. "Tech-ier" details are in the Math Review appendix of this online manual.\]
[/p]
[p]
Strictly, pH is defined as the negative logartithm to the base-10 of the *activity* of the hydrogen ion. In math symbolism:
[/p]
// [div style:`{marginTop: '15px', }`]
[div]
[Equation display:true]{pH} \coloneqq -\log_{10}\lbrace{H^+}\rbrace[/Equation]
[/div]
[p]
As a heads-up, you also will see it written in different notation with [Equation display:false]\alpha[/Equation] (alpha) symbolizing activity:
[/p]
[div]
[Equation display:true]
{pH} \coloneqq -\log_{10}(\alpha_{H^+})
[/Equation]
[/div]
[p]
We pointed out in the previous section that, in dilute solutions, activity can be approximated by concentration. Substituting concentration for activity leads
to the analytical -- *i.e.*, the measurable -- definition of pH:
[/p]
[div style:`{marginTop: '15px'}`]
[Equation display:true]{pH} \colonapprox -\log_{10}{[H^+]}[/Equation]
[/div]
[p]
It's important to stress that this is an **approximation**. McCarty & Vitz (2006) [Cite
authors:"McCarty, C. and E. Vitz"
title:"pH Paradoxes: Demonstrating that it is not true that pH = -log[H+]"
url:"https://www.semanticscholar.org/paper/pH-Paradoxes%3A-Demonstrating-That-It-Is-Not-True-pH-Mccarty-Vitz/852c89694bebe3a5fc03c4bc78615d15b98dcae2#paper-header"
id:"ph-paradoxes"
venue: "Journal of Chemical Education, 83 (2006) 752-757"
date:"2006"
/] describe some of the pH paradoxes that arise when this fact is ignored.
[/p]
// For example, when acid with pH ~1 is diluted with an equal volume of 5 M MgCl2, one would expect the pH calculated as -log\[H+\] to increase as
// the concentration of acid is halved; surprisingly, it decreases to values below zero, as demonstrated with a pH meter or methyl green indicator [Cite id:"ph-paradoxes"/]
// A common example is 0.1 M HCl. Calculated in the "typical" way, pH is 1; with the corrections of activity (gamma ~ 0.826), it's less strong: about pH 1.08. because
// on the log-10 scale, the concentration approach yields a value ~21% more acidic (true is ~17.4% less acidic), an important difference for precise work.
[p]
For our purposes, it is important to remember that this approximation is less valid in concentrated solutions and in solutions with high ionic activity (like seawater).
[/p]
[p]
Distinguishing between activity and concentration also is necessary to understand the behavior and limitations of pH electrodes.
[/p]
[p]
For now, we'll focus on transforming those unwieldy \[H[sup]+[/sup]\] values into friendly pH values. We'll build on the earlier interactive display
that shows how \[H[sup]+[/sup]\] depends on temperature by adding code that shows how -log[sub]10[/sub] turns **[span style:`{color:'green'}`]\[H[sup]+[/sup]\][/span]**
(in **[span style:`{color: 'green', fontSize: '1.1rem'}`]green[/span]**)
into the familiar pH values that you know and love.
[/p]
// *********************** //
// ***** Log example ***** //
// *********************** //
[div className:"dynamic-module" ]
[div className: 'yellow-panel-div']
[var name: 'tempInC_log' value: 15 /]
[derived name: temp_log value: `273.15 + tempInC_log` /]
[Inline]
[var name:"tempUnits_log" value:"° C" /]
[span style:`{marginLeft: '145px'}` ]Temperature [Range value: tempInC_log min: 4 max: 40 step: 0.1 /][/span]
// Derive temperature value based on units selection
[derived name: tempForSelectedUnits_log value: `tempUnits_log === '° C' ? tempInC_log : 32 + 9 * tempInC_log / 5` /]
[/Inline]
[Inline]
[Display value: tempForSelectedUnits_log format:".1f" /]
[Select style:`{marginRight: "40px"}` value:tempUnits_log options:`["° C", "° F"]` /]
[/Inline]
[var name: 'sal_log' value: 0 /]
[derived name: temp_log value: `273.15 + tempInC_log` /]
// calcKwMehrbach(temp, sal)
[derived name: expSum value: `(148.9652 - 13847.26 / temp_log) - 23.6521 * Math.log(temp_log) +
(-5.977 + 118.67 / temp_log + 1.0495 * Math.log(temp_log)) * Math.sqrt(sal_log) - 0.01615 * sal_log`/]
[derived name: kw_1_log value: `Math.exp(expSum)` /]
[derived name: sqrt_log_1 value: `Math.sqrt(Math.exp(expSum))` /]
// ** for paedogogical purposes, POSITIVE log10
[derived name: thePh_positiveLog10 value: `Math.log10(sqrt_log_1)` /]
// ** the REAL pH
[derived name: thePh value: `-Math.log10(sqrt_log_1)` /]
// ** REPEAT ROOT Kw INTERACTION with *_kw suffix
[p style:`{marginBottom: '5px', textAlign: 'left'}`]Here's the H[sup]+[/sup] concentration at [Display value: tempForSelectedUnits_log format:".1f" /][Display value: tempUnits_log/][/p]
// ^^^^^^^^^^^^^^^^^^^^^^^^^ ORIGINAL ^^^^^^^^^^^^^^^^^^^^^^^^^ //
[p style:`{marginLeft:'208px'}`]
**[span style:`{color:'green'}` ]\[H[sup]+[/sup]\][/span]** = √K[sub]w[/sub]
[/p]
[p style:`{marginLeft:'245px'}`]
= √([Display value: kw_1_log format: '.3r' /] mol[sup]2[/sup]/L[sup]2[/sup])
[/p]
[p style:`{marginLeft:'245px'}`]
= **[span style:`{color:'green'}` ][Display value: sqrt_log_1 format: '.7r' /] mol/L[/span]**
[/p]
// -- NEGATIVE LOG10 -- //
[p style:`{marginBottom: '8px', marginTop: '35px', textAlign: 'left'}`]And here's the -log[sub]10[/sub] transform of that **[span style:`{color:'green'}` ]\[H[sup]+[/sup]\][/span]** into pH[/p]
// ^^^^^^^^^^^^^^^^^^^^^^^^^ ORIGINAL ^^^^^^^^^^^^^^^^^^^^^^^^^ //
[p style:`{marginLeft:'98px'}`]
**-log[sub]10[/sub]|[span style:`{color:'green'}` ]\[H[sup]+[/sup]\][/span]|** = **-log[sub]10[/sub]|[span style:`{color:'green', fontSize: '1.0rem'}` ][Display value: sqrt_log_1 format: '.7r' /][/span]|**
[/p]
[p style:`{marginLeft:'193px'}`]
= **[span style:`{color:'blue', fontSize:'1.2rem', background:'yellow', border:'1px solid black', padding: '6px 65px'}` ]pH [Display value: thePh format: '.5f' /][/span]**
[/p]
[/div]
[/div]
// ^^^^^^^^^^^^^^^^^^^^^^^^^ //
[p]
Using -log[sub]10[/sub] thus turns [span][Display value: sqrt_log_1 format: '.7r' /][/span] mol/L into
[span]pH [Display value: thePh format: '.2f' /][/span]. (Note that pH has no units; it's a pure number.)
[/p]
[p]
Let's unpack two math questions that sometimes come up.
[/p]
[p]
First: *Why use* **negative** *log[sub]10[/sub] instead of just log[sub]10[/sub]?*
[/p]
[p]
We could have used *positive* log[sub]10[/sub], but then the pH spit out the other end would have been negative. Using -log[sub]10[/sub] makes most all pH values
-- and certainly all that you'll come across in your work -- positive, as we prefer them.
[/p]
[p]
One consequence of that choice is that solutions with higher acidity are assigned a lower pH. That's a bit inconvenient, but we’re used to that by now.
[/p]
[p]
Second: *Why use the base-10 log?*
[/p]
[p]
Any logarithmic base would work: log[sub]2[/sub] (binary), log[sub]16[/sub] (hex), or log[sub]e[/sub] (*ln*, the Natural logarithm).
But log[sub]10[/sub], the Common or Briggsian logarithm, was well tabulated before the wide availability of digital computing devices and so was the go-to base
for most scientific and engineering work; and most of us are more comfortable with the base-10 number system.
[/p]
[hr className:'neutral-ph-hr'/]
[p]OK. We now have pH, the "master variable" that describes the acidity of production and recreational aquatic systems.[/p]
[p]
When someone asks how acidic your system is, you can answer:
[/p]
[p style:`{textAlign: 'center', margin: '0px'}`]
"*My pH is about [Display value: thePh format: '.2f' /].*"
[/p]
[p style:`{margin: '0px'}`]...instead of...[/p]
[p style:`{textAlign: 'center', margin: '0px'}`]
"*My \[H[sup]+[/sup]\] is [Display value: sqrt_log_1 format: '.7r' /] mol/L*."
[/p]
[hr className:'neutral-ph-hr'/]
[p]
Before moving on, it's useful to visualize the non-linear relationship between pH and \[H[sup]+[/sup]\]
that results after the -log[sub]10[/sub] transformation. This is illustrated in the next interactive display.
[/p]
// **************************** //
// ******* PH vs [H^+] ******** //
// **************************** //
[div className:"dynamic-module" ]
[div className: 'yellow-panel-div']
[h4 style:`{textAlign:'center', paddingTop:'10px'}` ]The Non-linear Relationship between pH and \[H[sup]+[/sup]\][/h4]
[p style:`{fontSize: '1.05rem', textAlign: 'center', marginTop:'0px'}` ]
(To change **pH**, click it and drag horizontally. Range: pH 6 to pH 9)
[/p]
[var name:"phOne_graph" value:7.25 /]
// Owing to (digital) rounding error, 'magnify' by 10^9, do the calc, then telescope out
[derived name: hplus_graph value:`10000000000 * Math.pow(10, -phOne_graph)`/]
[div style:`{fontSize: '2.00rem', textAlign: 'center'}`]
pH [span style:`{color:'green'}`][Dynamic value:phOne_graph min: 6.0 max: 9.0 step: 0.01 /][/span]
[/div]
// [div style:`{fontSize: '2.00rem', textAlign: 'center'}`]
// from pH [span style:`{color:color_phOne_full}`][Dynamic value:phOne_entered min: 6.0 max: 9.0 step: 0.01 /][/span] to pH [span style:`{color:color_phTwo_full}`][Dynamic value:phTwo_entered min: 6.0 max: 9.0 step: 0.01 /][/span]
// [/div]
[PhVsHplus_graph className:"d3-component"
ph_1: phOne_graph
hPlus_1: hplus_graph
/]
[/div]
[/div]
// ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
// ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[p]
This non-linearity introduces several wrinkles into the proper interpretation of pH. We'll use this graph later to iron out a few of these,
such as how small changes in pH represent large changes in acid concentration; and how to calculate the average of a set of pH values.
[/p]
// ************************* //
// ****** LOGS NAPIER ****** //
// ************************* //
[p id:"close-who-and-why"][/p]
[var name:"showContent_logs_napier" value:false /]
[Button className: 'showHideBtn' onClick:`showContent_logs_napier = !showContent_logs_napier` ]
[Display value:`showContent_logs_napier ? 'Hide Content' : 'The Who & the Why of Logs' ` /]
[/Button]
[Conditional if:`showContent_logs_napier`]
[div className:"dynamic-module" ]
[div style:`{marginTop:'15px', marginBottom:'20px', width:'100%'}` ]
![logs](static/images/logs.jpg)
[/div]
[p style:`{textAlign:'right', marginTop:'3px', fontSize:'small'}`]
Image by [a href:"https://pixabay.com/users/geralt-9301/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=4251037"]Gerd Altmann[/a] from [a href:"https://pixabay.com/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=4251037" target:"_blank" rel:"noopener noreferrer"]Pixabay[/a]
[/p]
#### Who developed logs?
[p]
The Scottish mathematician John Napier is credited with having developed -- some say "discovered" or "invented" -- logarithms in the late 16th - early 17th
century. His first table of logs was published in 1614.
[/p]
[p]
The English mathematician Henry Briggs, in consultation with Napier, modified Napier's logs to develop the log[sub]10[/sub] or Common logarithms still used today.
[/p]
[p]
There's evidence that their Swiss contemporary, Joost Bürgi, developed logs several years earlier, but he published his work after Napier.
[/p]
[p]
And as in so many areas of science and philosophy, a similar method was developed by the Greeks -- Archimedes, in this case -- about 1,800 years earlier.
[/p]
#### Why were logs developed?
[p]
Logarithms were developed to simplify calculations. Increasingly precise scientific observations, especially those of the German astronomer Johannes
Kepler at the Danish observatory at Uranienborg, required arduously multiplying and dividing numbers with many digits by hand, always with the inevitable
chance of human error.
[/p]
[p]
Napier's logarithms transformed *multiplications* into more easily performed *additions*; similarly, *divisions* were turned into simpler *subtractions*.
Logarithms were a game-changing tool that contributed greatly to advancing scientific research.
[/p]
// [p]
// Logs were used for that same purpose well into the 1970s when they were taught in school, math books had pages and pages of log tables,
// and every tech student carried around a slide rule -- a "mechanical computer" cleverly designed with logarithmic scales that
// simplified calculations.
// [/p]
[p]
Logs were used for that same purpose well into the 1970s when they were taught in school. Math books had pages and pages of log tables…
[/p]
[div style:`{marginLeft: '60px', marginBottom: '25px', width: '80%'}` ]
![log-tables](static/images/log-tables.jpg)
[/div]
[p style:`{textAlign:'right', marginTop:'3px', fontSize:'small'}`]
Image by [a href:"https://pixabay.com/users/sandid-356019/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=683556"]sandid[/a] from [a href:"https://pixabay.com/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=683556" target:"_blank" rel:"noopener noreferrer"]Pixabay[/a]
[/p]
[p]
…and every tech student packed a slide rule -- a "mechanical computer" cleverly designed with logarithmic scales that
simplified calculations.
[/p]
[div style:`{marginLeft: '60px', marginBottom: '25px', width: '80%'}` ]
![Slide-Rule](static/images/slide-rule.jpg)
[/div]
[p style:`{textAlign:'right', marginTop:'3px', fontSize:'small'}`]
Image by [a href:"https://pixabay.com/users/hoerwin56-2108907/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=3499408"]Gerd Altmann[/a] from [a href:"https://pixabay.com/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=3499408" target:"_blank" rel:"noopener noreferrer"]Pixabay[/a]
[/p]
[p]
Since the wide availability of calculators and digital computers, logs no longer are used in that way, but they still play an important role in
science and engineering.
[/p]
[p]
As described above this panel, a logarithm can "tame" inconveniently expressed numbers by transforming them into a more human-friendly form. Log transforms are
particularly useful whenever a variable spans a very wide range of values: logs compress a wide range into a more manageable narrow range.
[/p]
[p]
Logs are used in this way not only for pH, but also for the decibel scale of sound intensity and the Richter Scale that describes earthquake damage.
[/p]
// Observed that multiplying two numbers of the same base was simplified by adding their exponents. *e.g.*,
// 4 x 8 = 2[sup]2[/sup] x 2[sup]3[/sup] = 2[sup]\(2 + 3\)[/sup] = 2[sup]5[/sup] = 32
[div style: `{textAlign: 'center'}` ]
[a className:"closePanelBtn" href:"#close-who-and-why" onClick:`showContent_logs_napier = false` ]Close Content[/a]
[/div]
[/div]
[/Conditional]
// ((((((((( 10^(-pH) )))))))))
[div style:`{marginTop: '35px'}`]
[Inline] [h3 style:`{display: 'inline', marginRight: '30px'}` id:"ten-to-minus-ph"] *What is 10[sup]-pH[/sup]?!* [/h3][span style:`{fontSize: '0.85rem'}`][a href:"#top" style:`{textDecoration: 'none'}`]\[TableOfContents\][/a][/span] [/Inline]
[/div]
[p]
When you dive into the tech literature, you'll sometimes see pH as an exponent:
[/p]
[Equation display:true]
10^{-pH}
[/Equation]
[p]
If you’re only used to seeing pH in, let’s say, the “normal” way, then that expression understandably might throw you off balance.
[/p]
[p]
So, what does it mean?
[/p]
[p]
We learned above that, when we have \[H[sup]+[/sup]\], we calculate pH with the -log[sub]10[/sub]:
[/p]
[p]
[Equation display:true]
{pH} = -\log_{10}{[H^+]}
[/Equation]
[/p]
[p]
That's when we have \[H[sup]+[/sup]\] and want pH. To do the inverse -- *i.e.*, when we have pH and want \[H[sup]+[/sup]\] -- we use the mathematical inverse of the base-10 logarithm
-- base-10 exponentiation:
[/p]
[Equation display:true]
[{H^+}] = 10^{-pH}
[/Equation]
// 10^{-pH} = {\lbrace{H^+}\rbrace} \approx[{H^+}]
[p]
The next display drives this point home.
[/p]
// *********************** //
// ***** 10^-{pH} ***** //
// *********************** //
[div className:"dynamic-module" ]
[div className: 'yellow-panel-div']
[h4 style:`{textAlign:'center', paddingTop:'10px'}` ]10[sup]-**[span style:`{color:'blue', fontSize: '1.0rem'}` ]pH[/span]**[/sup] calculates **[span style:`{color:'green', fontSize: '1.0rem'}` ]\[H[sup]+[/sup]\][/span]**, the acid concentration in mol/L[/h4]
[var name:"my_ph" value:8.3 /]
[Inline]
[span style:`{marginLeft: '145px'}` ]pH [Range value: my_ph min: -3 max: 15 step: 0.01 /] **[span style:`{color:'blue', fontSize: '1.0rem'}` ][Display value:my_ph /][/span]** (NBS Scale)[/span]
[/Inline]
// [H+] from pH
[derived name: conc_h_plus value: `Math.pow(10, -my_ph)` /]
// pH from [H+]
[derived name: calced_ph value: `-Math.log10(conc_h_plus)` format:".7r" /]
// ** RESULT: [H+] for pH...
[p]
Calculate \[H[sup]+[/sup]\] from pH...
[/p]
[p style:`{marginBottom: '5px', marginLeft:'80px'}`]
\[H[sup]+[/sup]\] = 10[sup]-pH[/sup] = 10[sup]-(**[span style:`{color:'blue', fontSize: '1.0rem'}` ][Display value:my_ph /][/span]**)[/sup] = **[span style:`{color:'green', fontSize: '1.0rem'}` ][Display value: conc_h_plus format:".7r" /][/span]** mol/L
[/p]
// ^^^^^^^^^^^^^^^^^^^^^^^^^ [H+] from pH ^^^^^^^^^^^^^^^^^^^^^^^^^ //
[p style:`{marginTop:'30px'}`]
Calculate pH from \[H[sup]+[/sup]\]...
[/p]
[p style:`{marginLeft:'68px'}`]
pH = -log[sub]10[/sub]|\[H[sup]+[/sup]\]| = -log[sub]10[/sub]|**[span style:`{color:'green', fontSize: '1.0rem'}` ][Display value: conc_h_plus format:".7r" /][/span]**| = **[span style:`{color:'blue', fontSize: '1.0rem'}` ][Display value:calced_ph /][/span]**
[/p]
[/div]
[/div]
// ^^^^^^^^^^^^^^^^^^^^^^^^^ //
[p]
You might wonder why we would need to know \[H[sup]+[/sup]\] after we already have pH.
[/p]
[p]
Fair question. The reason is that, once we have measured pH, we need to do more with it than just enter it in a spreadsheet and admire it.
[/p]
// [p]
// As stated in the first section, pH determines the concentration of critical water-quality properties, such as Un-Ionized Ammonia (UIA).
// [/p]
[p]
In particular, \[H[sup]+[/sup]\] is required by formulae we use to calculate the critical water-quality properties that we manage, such as Un-Ionized Ammonia (UIA).
[/p]
[p]
That means that we need a way to change our measured pH values into their corresponding \[H[sup]+[/sup]\] values. Ten raised to the -pH power does the trick.
[/p]
[p]
We won’t take a side-trip from here into an explanation of the steps that turn 10[sup]-pH[/sup] into \[H[sup]+[/sup]\]. For now, we'll just mention that
logarithms and exponents are *inverse functions*: one un-does whatever the other does.
[/p]
[p]
You'll find a more complete explanation, along with examples, in the manual’s math refresher appendix.
[/p]
// ((((((((( A power of ten )))))))))
[div style:`{marginTop: '35px'}`]
[Inline] [h3 style:`{display: 'inline', marginRight: '30px'}` id:"power-of-ten"]*A power of ten*[/h3] [span style:`{fontSize: '0.85rem'}`][a href:"#top" style:`{textDecoration: 'none'}`]\[TableOfContents\][/a][/span] [/Inline]
[/div]
[aside]
[Inline]
A power of ten is termed an ***order of magnitude***. Two orders of magnitude (two powers of ten) is a factor of 100; three orders
of magnitude, 1000; *etc.*
[/Inline]
[/aside]
[p]
A consequence of putting pH on the log[sub]10[/sub] scale is that a difference of one pH unit -- *e.g.*, from pH 6 to pH 7, or from pH 7.35 to pH 8.35 -- represents
a ten-fold difference in a solution's acidity.
[/p]
[p]
The next interactive panel illustrates this by computing \[H[sup]+[/sup]\] from pH in steps of one pH unit -- *i.e*, by powers of ten -- from pH -3 to pH 15. As you move the
slider, you'll see the concentration of H[sup]+[/sup] change by one order of magnitude at each step.
[/p]
// *********************** //
// ****** PH STEPS ******* //
// *********************** //
[div className:"dynamic-module" ]
[div className: 'yellow-panel-div']
// [NEXT] Enter a pH to see the range of [H+] and justify the -log10 scale
[var name: myPh value: 7 /]
[derived name: concHPlus value: `Math.pow(10, -myPh)` /]
[div style:`{marginLeft: '200px'}` ]
pH [Range value: myPh min: -3 max: 15 step: 1 /] [Display value: myPh /]
// [Range value: myPh min: -1.1 max: 15.1 step: 0.01 /]
[/div]
[div style:`{marginLeft: '170px'}` ]
at pH [Display value: myPh /], \[H[sup]+[/sup]\] = [Display value: concHPlus format: '.2r' /] mol/L
[/div]
[/div]
[/div]
// ************** ?? A BUG IN THE CSS ?? ************** //
// [HACK HACK]
// Without text (or something else?) between two className-ed divs,
// subsequent divs were assigned the className by default, up-screwing my formatting
// The [p] inserted between them "fixed" it
//
[p]
Such one-unit changes in pH are easy to understand:
[/p]
[ul]
[li]every increase of one pH unit (*e.g.*, pH 7 to pH 8) means 10 times *less* acid[/li]
[li]every decrease of one pH unit (*e.g.*, pH 7 to pH 6) means 10 times *more* acid[/li]
[/ul]
[p]
Arbitrary changes -- *e.g.*, from pH 7.20 to pH 6.85 -- are not as obvious. How much more acidic is a solution of pH 6.85 than one with pH 7.20?
[/p]
[p]
The tool in the next interactive display will help you get a better "feel" for how more general changes in pH relate to
changes in a solution's acidity.
[/p]
[p style:`{fontSize:'small'}`]
(**NB**: The uppercase Greek letter Δ ("delta") that you'll see below means "change".)
[/p]
// **************************** //
// ****** POSTO CHANGES ******* //
// **************************** //
[div className:"dynamic-module" ]
[div className: 'yellow-panel-div']
[h4 style:`{textAlign:'center', paddingTop:'10px'}` ]pH Changes and \[H[sup]+[/sup]\] Acidity [/h4]
[p style:`{fontSize: '1.05rem', textAlign: 'center', paddingTop:'0px'}` ]
(To change either **pH**, click it and drag horizontally. Range: pH 6 to pH 9)
[/p]
[var name:"phOne_entered" value:7.25 /]
[var name:"phTwo_entered" value:7.25 /]
// Owing to (digital) rounding error, 'magnify' by 10^9, do the calc, then telescope out
[derived name: phOne_hPlus value:`10000000000 * Math.pow(10, -phOne_entered)`/]
[derived name: phTwo_hPlus value:`10000000000 * Math.pow(10, -phTwo_entered)`/]
[derived name: diff_hPlus value:`Math.abs(phOne_hPlus - phTwo_hPlus) / 10000000000`/]
// Percent difference result
[derived name: myPhDynamicDifference_ph value:`Math.abs(phOne_entered.toFixed(2) - phTwo_entered.toFixed(2))`/]
[derived name: myPhDynamicDifference_hPlus value:`Math.abs(Math.pow(10, -phOne_entered.toFixed(2)) - Math.pow(10, -phTwo_entered.toFixed(2)))`/]
// MORE or LESS -- relative to pH entered on the LEFT
[derived name: equalityTest value: `Math.pow(10, 12) * Math.abs((phOne_entered.toFixed(2) - phTwo_entered.toFixed(2)))`/]
[derived name: moreOrLess_ph value:`equalityTest < 1 ? "no change: " : (phOne_entered < phTwo_entered ? " increases by " : " decreases by ")` /]
[derived name: moreOrLess_hPlus value:`equalityTest < 1 ? "no change: " : (phOne_entered < phTwo_entered ? " decreases by " : " increases by ")` /]
[derived name: moreOrLess_posto value:`equalityTest < 1 ? " (no change)" : (phOne_entered < phTwo_entered ? " decrease" : " increase")` /]
[var name:'color_phOne' value:'green'/]
[var name:'color_phTwo' value:'green'/]
[derived name: color_phOne value:`phOne_entered < phTwo_entered ? 'red' : 'blue'` /]
[derived name: color_phTwo value:`phOne_entered < phTwo_entered ? 'blue' : 'red'` /]
// IF phOne === phTwo, go 'green'
[derived name: equalPhs value: `phOne_entered.toFixed(2) - phTwo_entered.toFixed(2) === 0 ? 'EQUAL' : 'NOT equal'` /]
[derived name: color_phOne_full value:`phOne_entered.toFixed(2) === phTwo_entered.toFixed(2) ? 'green' : color_phOne` /]
[derived name: color_phTwo_full value:`phOne_entered.toFixed(2) === phTwo_entered.toFixed(2) ? 'green' : color_phTwo` /]
[div style:`{fontSize: '2.00rem', textAlign: 'center'}`]
from pH [span style:`{color:color_phOne_full}`][Dynamic value:phOne_entered min: 6.0 max: 9.0 step: 0.01 /][/span] to pH [span style:`{color:color_phTwo_full}`][Dynamic value:phTwo_entered min: 6.0 max: 9.0 step: 0.01 /][/span]
[/div]
[derived name: phIncreasingDecreasing value:`equalityTest < 1 ? "--" : (phOne_entered < phTwo_entered ? "pH has increased, so the solution is LESS acidic" : "pH has decreased, so the solution is MORE acidic")` /]
[p style:`{fontSize: '1.1rem', textAlign: 'center', marginBottom: '0px'}`]
[span style:`{color:color_phTwo_full}` ][Display value: phIncreasingDecreasing /][/span]
[/p]
[derived name: phDiff value: `Math.pow(10, -phOne_entered) - Math.pow(10, -phTwo_entered)` /]
// [NB] Always go FROM phOne_entered to phTwo_entered
[derived name: acid_increase value:`Math.abs(100 * phDiff / Math.pow(10, -phOne_entered.toFixed(2)))` /]
[derived name: acid_decrease value:`Math.abs(100 * phDiff / Math.pow(10, -phOne_entered.toFixed(2)))` /]
[derived name: percentChange value:`phDiff === 0 ? 0 : (phDiff > 0 ? acid_decrease : acid_increase)`/]
// OLD ACIDITY DISPLAY
// [div style:`{marginLeft: '36px', fontSize: '1.5rem'}`]
// acidity: [Display value: percentChange format:'.1f' /]% [Display value: moreOrLess_posto /]
// [/div]
[PhVsHplus_posto className:"d3-component"
ph_1: phOne_entered
ph_2: phTwo_entered
hPlus_1: phOne_hPlus
hPlus_2: phTwo_hPlus
ph_diff: myPhDynamicDifference_ph
hplus_diff: myPhDynamicDifference_hPlus
posto: percentChange
moreOrLess_ph: moreOrLess_ph
moreOrLess_hPlus: moreOrLess_hPlus
moreOrLess_posto: moreOrLess_posto
/]
[/div]
[/div]
// ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
// ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
// ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
// ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[aside]
*Rule of Thumb*
[span style:`{fontSize: '0.92rem', marginTop: '0px'}`]A 0.3 *decrease* in pH doubles acid concentration; a 0.3 *increase* halves it.[/span]
[/aside]
// [p]
// If the relationship between pH and \[H[sup]+[/sup]\] were linear, then pH always would change at the same rate \[H[sup]+[/sup]\]
// in the is on the log[sub]10[/sub] scale...
// [/p]
// [p]
// Because the relationship between pH and \[H[sup]+[/sup]\] is non-linear, the propotional change...
// [/p]
[p]
As a rule of thumb, acid concentration doubles (*i.e.*, increases by 100%) with each drop in pH of ***approximately*** 0.30 units.
[/p]
[p]
You can see this in the display.
[/p]
[ul]
[li] set the "from" pH (on the left) to 7.72 [/li]
[li] set the "to" pH (on the right) 0.30 units lower to pH 7.42 [/li]
[/ul]
[p]
The graph will display a 99.5% increase in acidity -- roughly 100% (or double) the acidity at pH 7.72, the starting point.
[/p]
[p]
Note that lowering the "to" pH another 0.01 units to 7.41 represents an increase in acidity of about *104%* from the starting pH.
[/p]
[p]
The exact doubling point is between 0.30 and 0.31: it's about 0.3010299956639812; we round that
off to 0.30 only because it's a much 'nicer' number that serves our need for a rough approximation.
[/p]
[p]
You'll get the same percentage increase in acidity for any pair of pH values as long as the ending pH is 0.30 pH units lower than the starting pH.
[/p]
[p]
Similarly, each pH *increase* of 0.30 pH units cuts the amount of acid by about one-half (*i.e.*, decreases it by 50%).
[/p]
[p]
You can see this in the display, too: *e.g.*, if you start at pH 8.08 and raise it by 0.30 units to pH 8.38, the resulting solution
will be about one-half as acidic.
[/p]
[p]
The intent of this exercise is to drive home one important point:
[/p]
[p style:`{textAlign:'center'}` ]
*small changes in pH cause large changes in acid concentration*
[/p]
// ******************** //
// **** NEUTRAL PH **** //
// ******************** //
// #### *pH 7 is not always neutral*
// ((((((((( PH 7 NOT NEUTRAL )))))))))
[div style:`{marginTop: '35px'}`]
[Inline] [h3 style:`{display: 'inline', marginRight: '30px', marginTop: '50px'}` id:"neutral-ph"]*pH 7 is not always neutral*[/h3] [span style:`{fontSize: '0.85rem'}`][a href:"#top" style:`{textDecoration: 'none'}`]\[TableOfContents\][/a][/span] [/Inline]
[/div]
[p]
Typical summaries of pH often state that it runs from 0 to 14 and the half-way point, pH 7, is neutral -- the point at which a solution is
neither acidic nor alkaline.
[/p]
[p]But you'll remember from the first section that the pH scale is open at both ends: it extends below 0 and above 14.[/p]
[p]
And pH 7 isn't always neutral.
[/p]
[p]
We can see this for ourselves by putting together a couple pieces of the pH puzzle that we learned above.
[/p]
[hr className:"neutral-ph-hr"/]
[p style:`{marginBottom: '2px', fontSize: '1.15rem'}`]
① **Pure water is always neutral.**
[/p]
[p style:`{marginTop: '0px'}`]
Dissociation of water produces equal amounts of H[sup]+[/sup] and OH[sup]-[/sup]:
[/p]
[Equation display:true]
H_2O \leftrightarrows {H^+} + {OH^-}
[/Equation]
[p]
The number of positive ions always balances the number of negative ions, so there never is an excess of H[sup]+[/sup]
that would make the solution acidic; or an excess of OH[sup]-[/sup] that would make it basic.
[/p]
[p]
And that means that pure water ***always*** is neutral.
[/p]
[p style:`{marginBottom: '2px', fontSize: '1.15rem'}`]
② **Changing the temperature changes H[sup]+[/sup] and pH.**
[/p]
[p style:`{marginTop: '0px'}`]
We saw that higher temperature drives the reaction to the right. That produces more H[sup]+[/sup], and that means lower pH.
[/p]
// [p style:`{marginBottom:'8px'}`]
[p]
Similarly, lower temperature drives the reaction to the left. That produces less H[sup]+[/sup], and that means higher pH.
[/p]
[hr className:"neutral-ph-hr"/]
[p style:`{marginBottom:'3px'}`]
Putting those facts together: