forked from deepinsight/insightface
-
Notifications
You must be signed in to change notification settings - Fork 0
/
validate_dist.py
186 lines (166 loc) · 7.9 KB
/
validate_dist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
from dataset import FaceDataset, DataLoaderX, MXFaceDataset
import argparse
import logging
import os
import time
import timm
import glob
import numpy as np
import os.path as osp
from utils.utils_config import get_config
from scipy.spatial.transform import Rotation
import torch
import torch.distributed as dist
from torch import nn
import torch.nn.functional as F
import torch.utils.data.distributed
from backbones import get_network
from inference_simple import JMLRInference, Rt_from_6dof
from dataset import Rt26dof
def l2_distance(a, b):
dist = np.sqrt(np.sum(np.square(a-b), axis=1))
distance_list = np.sqrt(((a - b) ** 2).sum(axis=2)).mean(axis=1)
return distance_list
def main(args):
cfg = get_config(args.config)
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cudnn.allow_tf32 = False
world_size = int(os.environ['WORLD_SIZE'])
rank = int(os.environ['RANK'])
#dist_url = "tcp://{}:{}".format(os.environ["MASTER_ADDR"], os.environ["MASTER_PORT"])
dist.init_process_group('nccl')
local_rank = args.local_rank
torch.cuda.set_device(local_rank)
task1 = cfg.task
cfg.aug_modes = []
cfg.task = 0
batch_size = cfg.batch_size
dataset = MXFaceDataset(cfg=cfg, is_train=False, local_rank=local_rank)
if local_rank==0:
print('total:', len(dataset))
print('total batch:', len(dataset)//(batch_size*world_size))
cfg.task = task1
net = JMLRInference(cfg, local_rank)
net = net.to(local_rank)
net.eval()
#net = torch.nn.parallel.DistributedDataParallel(
# module=net, broadcast_buffers=False, device_ids=[local_rank])
sampler = torch.utils.data.distributed.DistributedSampler(dataset, shuffle=False)
loader = torch.utils.data.DataLoader(
dataset,
batch_size=batch_size,
sampler=sampler,
shuffle=False,
pin_memory=True,
num_workers=3,
drop_last=False,
)
num_epochs = 1
all_pred_verts = torch.zeros((len(dataset),1220,3), requires_grad=False).to(local_rank)
all_pred_R = torch.zeros((len(dataset),3,3), requires_grad=False).to(local_rank)
all_pred_t = torch.zeros((len(dataset),1,3), requires_grad=False).to(local_rank)
all_pred_verts2d = torch.zeros((len(dataset),1220,2), requires_grad=False).to(local_rank)
all_label_verts = torch.zeros((len(dataset),1220,3), requires_grad=False).to(local_rank)
all_label_R = torch.zeros((len(dataset),3,3), requires_grad=False).to(local_rank)
all_label_t = torch.zeros((len(dataset),1,3), requires_grad=False).to(local_rank)
all_label_verts2d = torch.zeros((len(dataset),1220,2), requires_grad=False).to(local_rank)
all_weight = 0.0
FLIPS = [False, True] if cfg.enable_flip else [False]
#FLIPS = [False]
if local_rank==0:
print('FLIPS:', FLIPS)
for epoch in range(num_epochs):
weight = 1.0
if epoch>0:
dataset.set_test_aug()
weight = 0.6
all_weight += weight
#all_distance = torch.zeros((len(dataset),), requires_grad=False).to(local_rank)
diff_R = []
diff_t = []
sampler.set_epoch(epoch)
for idx, sample in enumerate(loader):
img_local = sample['img_local']
label_verts = sample['verts']
tform = sample['tform']
label_6dof = sample['6dof']
data_idx = sample['idx']
label_verts2d = sample['verts2d']
img_local = img_local.to(local_rank)
pred_verts, pred_verts2d, pred_points2d = [], [], []
for is_flip in FLIPS:
with torch.no_grad():
#pred_verts, R_pred, t_pred = infer.forward(img_local, img_raw, tform)
#pred1, pred2 = net(img_local.to(local_rank), img_raw.to(local_rank))
pred1, pred2, meta = net(img_local, is_flip=is_flip)
_pred_verts = net.convert_verts(pred1, meta)
pred_verts.append(_pred_verts)
_pred_verts2d, _pred_points2d = net.convert_2d(pred2, tform, meta)
pred_verts2d.append(_pred_verts2d)
pred_points2d.append(_pred_points2d)
pred_verts = sum(pred_verts) / len(pred_verts)
pred_verts2d = sum(pred_verts2d) / len(pred_verts2d)
pred_points2d = sum(pred_points2d) / len(pred_points2d)
R_pred, t_pred = net.solve(pred_verts, pred_verts2d)
label_6dof = label_6dof.cpu().numpy()
label_6dof = label_6dof * cfg.label_6dof_std.reshape(1, 6) + cfg.label_6dof_mean.reshape(1,6)
R_label, t_label = Rt_from_6dof(label_6dof)
diff_R.append(np.mean(np.abs(R_pred - R_label)))
diff_t.append(np.mean(np.abs(t_pred - t_label)))
#distance = torch.tensor(distance, dtype=torch.float32, requires_grad=False).to(local_rank)
data_idx = data_idx.view(-1)
#all_distance[data_idx] = distance
label_verts = label_verts.view(-1,1220,3) / 10.0
if epoch==0:
all_label_verts[data_idx,:,:] = label_verts.to(local_rank)
all_label_R[data_idx,:,:] = torch.tensor(R_label).to(local_rank)
all_label_t[data_idx,:,:] = torch.tensor(t_label).to(local_rank)
all_label_verts2d[data_idx,:,:] = label_verts2d.to(local_rank)
all_pred_verts[data_idx,:,:] += torch.tensor(pred_verts).to(local_rank) * weight
#all_pred_R[data_idx,:,:] += torch.tensor(R_pred).to(local_rank) * weight
#all_pred_t[data_idx,:,:] += torch.tensor(t_pred).to(local_rank) * weight
all_pred_verts2d[data_idx,:,:] += torch.tensor(pred_verts2d).to(local_rank) * weight
if idx%20==0 and local_rank==0:
print('processing-epoch-idx:', epoch, idx)
#print('distance:', distance.shape, distance.cpu().numpy().mean())
print('diff_R:', np.mean(diff_R))
print('diff_t:', np.mean(diff_t))
dist.all_reduce(all_label_verts, op=dist.ReduceOp.SUM)
dist.all_reduce(all_label_verts2d, op=dist.ReduceOp.SUM)
dist.all_reduce(all_label_R, op=dist.ReduceOp.SUM)
dist.all_reduce(all_label_t, op=dist.ReduceOp.SUM)
dist.all_reduce(all_pred_verts, op=dist.ReduceOp.SUM)
dist.all_reduce(all_pred_verts2d, op=dist.ReduceOp.SUM)
#dist.all_reduce(all_pred_R, op=dist.ReduceOp.SUM)
#dist.all_reduce(all_pred_t, op=dist.ReduceOp.SUM)
#dist.all_reduce(all_distance, op=dist.ReduceOp.SUM)
if local_rank==0:
label_verts = all_label_verts.cpu().numpy()
label_verts2d = all_label_verts2d.cpu().numpy()
R_label = all_label_R.cpu().numpy()
t_label = all_label_t.cpu().numpy()
pred_verts = all_pred_verts.cpu().numpy() / all_weight
#R_pred = all_pred_R.cpu().numpy() / all_weight
#t_pred = all_pred_t.cpu().numpy() / all_weight
pred_verts2d = all_pred_verts2d.cpu().numpy() / all_weight
R_pred, t_pred = net.solve(pred_verts, pred_verts2d)
#R_pred, t_pred = net.solve(pred_verts, label_verts2d)
#R_pred, t_pred = net.solve(label_verts, pred_verts2d)
X1 = label_verts @ R_label + t_label
X2 = pred_verts @ R_pred + t_pred
X3 = label_verts @ R_pred + t_pred
X4 = pred_verts @ R_label + t_label
distance = l2_distance(X1, X2) + l2_distance(X1, X3) + 10.0*l2_distance(X1,X4)
distance *= 1000.0
print('top20 distance:', np.mean(distance[:20]))
score = np.mean(distance)
print('epoch distance:', epoch, score)
with open(os.path.join(cfg.output, 'val.txt'), 'w') as f:
f.write("%f\n"%score)
if __name__ == "__main__":
#torch.backends.cudnn.benchmark = True
parser = argparse.ArgumentParser(description='JMLR validation')
parser.add_argument('config', type=str, help='config file')
parser.add_argument('--local_rank', type=int, default=0, help='local_rank')
args_ = parser.parse_args()
main(args_)