-
Notifications
You must be signed in to change notification settings - Fork 187
/
messages.py
1954 lines (1567 loc) · 82.4 KB
/
messages.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
from __future__ import annotations
from typing import List, Union, Iterable
from functools import partial
from itertools import chain
from typing_extensions import Literal, overload
import httpx
from .... import _legacy_response
from ...._types import NOT_GIVEN, Body, Query, Headers, NotGiven
from ...._utils import (
is_given,
required_args,
maybe_transform,
strip_not_given,
async_maybe_transform,
)
from ...._compat import cached_property
from ...._resource import SyncAPIResource, AsyncAPIResource
from ...._response import to_streamed_response_wrapper, async_to_streamed_response_wrapper
from ...._constants import DEFAULT_TIMEOUT
from ...._streaming import Stream, AsyncStream
from ...._base_client import make_request_options
from ....lib.streaming import PromptCachingBetaMessageStreamManager, AsyncPromptCachingBetaMessageStreamManager
from ....types.model_param import ModelParam
from ....types.metadata_param import MetadataParam
from ....types.tool_choice_param import ToolChoiceParam
from ....types.beta.prompt_caching import message_create_params
from ....types.anthropic_beta_param import AnthropicBetaParam
from ....types.beta.prompt_caching.prompt_caching_beta_message import PromptCachingBetaMessage
from ....types.beta.prompt_caching.prompt_caching_beta_tool_param import PromptCachingBetaToolParam
from ....types.beta.prompt_caching.prompt_caching_beta_message_param import PromptCachingBetaMessageParam
from ....types.beta.prompt_caching.prompt_caching_beta_text_block_param import PromptCachingBetaTextBlockParam
from ....types.beta.prompt_caching.raw_prompt_caching_beta_message_stream_event import (
RawPromptCachingBetaMessageStreamEvent,
)
__all__ = ["Messages", "AsyncMessages"]
class Messages(SyncAPIResource):
@cached_property
def with_raw_response(self) -> MessagesWithRawResponse:
"""
This property can be used as a prefix for any HTTP method call to return the
the raw response object instead of the parsed content.
For more information, see https://www.github.com/anthropics/anthropic-sdk-python#accessing-raw-response-data-eg-headers
"""
return MessagesWithRawResponse(self)
@cached_property
def with_streaming_response(self) -> MessagesWithStreamingResponse:
"""
An alternative to `.with_raw_response` that doesn't eagerly read the response body.
For more information, see https://www.github.com/anthropics/anthropic-sdk-python#with_streaming_response
"""
return MessagesWithStreamingResponse(self)
@overload
def create(
self,
*,
max_tokens: int,
messages: Iterable[PromptCachingBetaMessageParam],
model: ModelParam,
metadata: MetadataParam | NotGiven = NOT_GIVEN,
stop_sequences: List[str] | NotGiven = NOT_GIVEN,
stream: Literal[False] | NotGiven = NOT_GIVEN,
system: Union[str, Iterable[PromptCachingBetaTextBlockParam]] | NotGiven = NOT_GIVEN,
temperature: float | NotGiven = NOT_GIVEN,
tool_choice: ToolChoiceParam | NotGiven = NOT_GIVEN,
tools: Iterable[PromptCachingBetaToolParam] | NotGiven = NOT_GIVEN,
top_k: int | NotGiven = NOT_GIVEN,
top_p: float | NotGiven = NOT_GIVEN,
betas: List[AnthropicBetaParam] | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> PromptCachingBetaMessage:
"""
Send a structured list of input messages with text and/or image content, and the
model will generate the next message in the conversation.
The Messages API can be used for either single queries or stateless multi-turn
conversations.
Args:
max_tokens: The maximum number of tokens to generate before stopping.
Note that our models may stop _before_ reaching this maximum. This parameter
only specifies the absolute maximum number of tokens to generate.
Different models have different maximum values for this parameter. See
[models](https://docs.anthropic.com/en/docs/models-overview) for details.
messages: Input messages.
Our models are trained to operate on alternating `user` and `assistant`
conversational turns. When creating a new `Message`, you specify the prior
conversational turns with the `messages` parameter, and the model then generates
the next `Message` in the conversation. Consecutive `user` or `assistant` turns
in your request will be combined into a single turn.
Each input message must be an object with a `role` and `content`. You can
specify a single `user`-role message, or you can include multiple `user` and
`assistant` messages.
If the final message uses the `assistant` role, the response content will
continue immediately from the content in that message. This can be used to
constrain part of the model's response.
Example with a single `user` message:
```json
[{ "role": "user", "content": "Hello, Claude" }]
```
Example with multiple conversational turns:
```json
[
{ "role": "user", "content": "Hello there." },
{ "role": "assistant", "content": "Hi, I'm Claude. How can I help you?" },
{ "role": "user", "content": "Can you explain LLMs in plain English?" }
]
```
Example with a partially-filled response from Claude:
```json
[
{
"role": "user",
"content": "What's the Greek name for Sun? (A) Sol (B) Helios (C) Sun"
},
{ "role": "assistant", "content": "The best answer is (" }
]
```
Each input message `content` may be either a single `string` or an array of
content blocks, where each block has a specific `type`. Using a `string` for
`content` is shorthand for an array of one content block of type `"text"`. The
following input messages are equivalent:
```json
{ "role": "user", "content": "Hello, Claude" }
```
```json
{ "role": "user", "content": [{ "type": "text", "text": "Hello, Claude" }] }
```
Starting with Claude 3 models, you can also send image content blocks:
```json
{
"role": "user",
"content": [
{
"type": "image",
"source": {
"type": "base64",
"media_type": "image/jpeg",
"data": "/9j/4AAQSkZJRg..."
}
},
{ "type": "text", "text": "What is in this image?" }
]
}
```
We currently support the `base64` source type for images, and the `image/jpeg`,
`image/png`, `image/gif`, and `image/webp` media types.
See [examples](https://docs.anthropic.com/en/api/messages-examples#vision) for
more input examples.
Note that if you want to include a
[system prompt](https://docs.anthropic.com/en/docs/system-prompts), you can use
the top-level `system` parameter — there is no `"system"` role for input
messages in the Messages API.
model: The model that will complete your prompt.\n\nSee
[models](https://docs.anthropic.com/en/docs/models-overview) for additional
details and options.
metadata: An object describing metadata about the request.
stop_sequences: Custom text sequences that will cause the model to stop generating.
Our models will normally stop when they have naturally completed their turn,
which will result in a response `stop_reason` of `"end_turn"`.
If you want the model to stop generating when it encounters custom strings of
text, you can use the `stop_sequences` parameter. If the model encounters one of
the custom sequences, the response `stop_reason` value will be `"stop_sequence"`
and the response `stop_sequence` value will contain the matched stop sequence.
stream: Whether to incrementally stream the response using server-sent events.
See [streaming](https://docs.anthropic.com/en/api/messages-streaming) for
details.
system: System prompt.
A system prompt is a way of providing context and instructions to Claude, such
as specifying a particular goal or role. See our
[guide to system prompts](https://docs.anthropic.com/en/docs/system-prompts).
temperature: Amount of randomness injected into the response.
Defaults to `1.0`. Ranges from `0.0` to `1.0`. Use `temperature` closer to `0.0`
for analytical / multiple choice, and closer to `1.0` for creative and
generative tasks.
Note that even with `temperature` of `0.0`, the results will not be fully
deterministic.
tool_choice: How the model should use the provided tools. The model can use a specific tool,
any available tool, or decide by itself.
tools: Definitions of tools that the model may use.
If you include `tools` in your API request, the model may return `tool_use`
content blocks that represent the model's use of those tools. You can then run
those tools using the tool input generated by the model and then optionally
return results back to the model using `tool_result` content blocks.
Each tool definition includes:
- `name`: Name of the tool.
- `description`: Optional, but strongly-recommended description of the tool.
- `input_schema`: [JSON schema](https://json-schema.org/) for the tool `input`
shape that the model will produce in `tool_use` output content blocks.
For example, if you defined `tools` as:
```json
[
{
"name": "get_stock_price",
"description": "Get the current stock price for a given ticker symbol.",
"input_schema": {
"type": "object",
"properties": {
"ticker": {
"type": "string",
"description": "The stock ticker symbol, e.g. AAPL for Apple Inc."
}
},
"required": ["ticker"]
}
}
]
```
And then asked the model "What's the S&P 500 at today?", the model might produce
`tool_use` content blocks in the response like this:
```json
[
{
"type": "tool_use",
"id": "toolu_01D7FLrfh4GYq7yT1ULFeyMV",
"name": "get_stock_price",
"input": { "ticker": "^GSPC" }
}
]
```
You might then run your `get_stock_price` tool with `{"ticker": "^GSPC"}` as an
input, and return the following back to the model in a subsequent `user`
message:
```json
[
{
"type": "tool_result",
"tool_use_id": "toolu_01D7FLrfh4GYq7yT1ULFeyMV",
"content": "259.75 USD"
}
]
```
Tools can be used for workflows that include running client-side tools and
functions, or more generally whenever you want the model to produce a particular
JSON structure of output.
See our [guide](https://docs.anthropic.com/en/docs/tool-use) for more details.
top_k: Only sample from the top K options for each subsequent token.
Used to remove "long tail" low probability responses.
[Learn more technical details here](https://towardsdatascience.com/how-to-sample-from-language-models-682bceb97277).
Recommended for advanced use cases only. You usually only need to use
`temperature`.
top_p: Use nucleus sampling.
In nucleus sampling, we compute the cumulative distribution over all the options
for each subsequent token in decreasing probability order and cut it off once it
reaches a particular probability specified by `top_p`. You should either alter
`temperature` or `top_p`, but not both.
Recommended for advanced use cases only. You usually only need to use
`temperature`.
betas: Optional header to specify the beta version(s) you want to use.
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
...
@overload
def create(
self,
*,
max_tokens: int,
messages: Iterable[PromptCachingBetaMessageParam],
model: ModelParam,
stream: Literal[True],
metadata: MetadataParam | NotGiven = NOT_GIVEN,
stop_sequences: List[str] | NotGiven = NOT_GIVEN,
system: Union[str, Iterable[PromptCachingBetaTextBlockParam]] | NotGiven = NOT_GIVEN,
temperature: float | NotGiven = NOT_GIVEN,
tool_choice: ToolChoiceParam | NotGiven = NOT_GIVEN,
tools: Iterable[PromptCachingBetaToolParam] | NotGiven = NOT_GIVEN,
top_k: int | NotGiven = NOT_GIVEN,
top_p: float | NotGiven = NOT_GIVEN,
betas: List[AnthropicBetaParam] | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> Stream[RawPromptCachingBetaMessageStreamEvent]:
"""
Send a structured list of input messages with text and/or image content, and the
model will generate the next message in the conversation.
The Messages API can be used for either single queries or stateless multi-turn
conversations.
Args:
max_tokens: The maximum number of tokens to generate before stopping.
Note that our models may stop _before_ reaching this maximum. This parameter
only specifies the absolute maximum number of tokens to generate.
Different models have different maximum values for this parameter. See
[models](https://docs.anthropic.com/en/docs/models-overview) for details.
messages: Input messages.
Our models are trained to operate on alternating `user` and `assistant`
conversational turns. When creating a new `Message`, you specify the prior
conversational turns with the `messages` parameter, and the model then generates
the next `Message` in the conversation. Consecutive `user` or `assistant` turns
in your request will be combined into a single turn.
Each input message must be an object with a `role` and `content`. You can
specify a single `user`-role message, or you can include multiple `user` and
`assistant` messages.
If the final message uses the `assistant` role, the response content will
continue immediately from the content in that message. This can be used to
constrain part of the model's response.
Example with a single `user` message:
```json
[{ "role": "user", "content": "Hello, Claude" }]
```
Example with multiple conversational turns:
```json
[
{ "role": "user", "content": "Hello there." },
{ "role": "assistant", "content": "Hi, I'm Claude. How can I help you?" },
{ "role": "user", "content": "Can you explain LLMs in plain English?" }
]
```
Example with a partially-filled response from Claude:
```json
[
{
"role": "user",
"content": "What's the Greek name for Sun? (A) Sol (B) Helios (C) Sun"
},
{ "role": "assistant", "content": "The best answer is (" }
]
```
Each input message `content` may be either a single `string` or an array of
content blocks, where each block has a specific `type`. Using a `string` for
`content` is shorthand for an array of one content block of type `"text"`. The
following input messages are equivalent:
```json
{ "role": "user", "content": "Hello, Claude" }
```
```json
{ "role": "user", "content": [{ "type": "text", "text": "Hello, Claude" }] }
```
Starting with Claude 3 models, you can also send image content blocks:
```json
{
"role": "user",
"content": [
{
"type": "image",
"source": {
"type": "base64",
"media_type": "image/jpeg",
"data": "/9j/4AAQSkZJRg..."
}
},
{ "type": "text", "text": "What is in this image?" }
]
}
```
We currently support the `base64` source type for images, and the `image/jpeg`,
`image/png`, `image/gif`, and `image/webp` media types.
See [examples](https://docs.anthropic.com/en/api/messages-examples#vision) for
more input examples.
Note that if you want to include a
[system prompt](https://docs.anthropic.com/en/docs/system-prompts), you can use
the top-level `system` parameter — there is no `"system"` role for input
messages in the Messages API.
model: The model that will complete your prompt.\n\nSee
[models](https://docs.anthropic.com/en/docs/models-overview) for additional
details and options.
stream: Whether to incrementally stream the response using server-sent events.
See [streaming](https://docs.anthropic.com/en/api/messages-streaming) for
details.
metadata: An object describing metadata about the request.
stop_sequences: Custom text sequences that will cause the model to stop generating.
Our models will normally stop when they have naturally completed their turn,
which will result in a response `stop_reason` of `"end_turn"`.
If you want the model to stop generating when it encounters custom strings of
text, you can use the `stop_sequences` parameter. If the model encounters one of
the custom sequences, the response `stop_reason` value will be `"stop_sequence"`
and the response `stop_sequence` value will contain the matched stop sequence.
system: System prompt.
A system prompt is a way of providing context and instructions to Claude, such
as specifying a particular goal or role. See our
[guide to system prompts](https://docs.anthropic.com/en/docs/system-prompts).
temperature: Amount of randomness injected into the response.
Defaults to `1.0`. Ranges from `0.0` to `1.0`. Use `temperature` closer to `0.0`
for analytical / multiple choice, and closer to `1.0` for creative and
generative tasks.
Note that even with `temperature` of `0.0`, the results will not be fully
deterministic.
tool_choice: How the model should use the provided tools. The model can use a specific tool,
any available tool, or decide by itself.
tools: Definitions of tools that the model may use.
If you include `tools` in your API request, the model may return `tool_use`
content blocks that represent the model's use of those tools. You can then run
those tools using the tool input generated by the model and then optionally
return results back to the model using `tool_result` content blocks.
Each tool definition includes:
- `name`: Name of the tool.
- `description`: Optional, but strongly-recommended description of the tool.
- `input_schema`: [JSON schema](https://json-schema.org/) for the tool `input`
shape that the model will produce in `tool_use` output content blocks.
For example, if you defined `tools` as:
```json
[
{
"name": "get_stock_price",
"description": "Get the current stock price for a given ticker symbol.",
"input_schema": {
"type": "object",
"properties": {
"ticker": {
"type": "string",
"description": "The stock ticker symbol, e.g. AAPL for Apple Inc."
}
},
"required": ["ticker"]
}
}
]
```
And then asked the model "What's the S&P 500 at today?", the model might produce
`tool_use` content blocks in the response like this:
```json
[
{
"type": "tool_use",
"id": "toolu_01D7FLrfh4GYq7yT1ULFeyMV",
"name": "get_stock_price",
"input": { "ticker": "^GSPC" }
}
]
```
You might then run your `get_stock_price` tool with `{"ticker": "^GSPC"}` as an
input, and return the following back to the model in a subsequent `user`
message:
```json
[
{
"type": "tool_result",
"tool_use_id": "toolu_01D7FLrfh4GYq7yT1ULFeyMV",
"content": "259.75 USD"
}
]
```
Tools can be used for workflows that include running client-side tools and
functions, or more generally whenever you want the model to produce a particular
JSON structure of output.
See our [guide](https://docs.anthropic.com/en/docs/tool-use) for more details.
top_k: Only sample from the top K options for each subsequent token.
Used to remove "long tail" low probability responses.
[Learn more technical details here](https://towardsdatascience.com/how-to-sample-from-language-models-682bceb97277).
Recommended for advanced use cases only. You usually only need to use
`temperature`.
top_p: Use nucleus sampling.
In nucleus sampling, we compute the cumulative distribution over all the options
for each subsequent token in decreasing probability order and cut it off once it
reaches a particular probability specified by `top_p`. You should either alter
`temperature` or `top_p`, but not both.
Recommended for advanced use cases only. You usually only need to use
`temperature`.
betas: Optional header to specify the beta version(s) you want to use.
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
...
@overload
def create(
self,
*,
max_tokens: int,
messages: Iterable[PromptCachingBetaMessageParam],
model: ModelParam,
stream: bool,
metadata: MetadataParam | NotGiven = NOT_GIVEN,
stop_sequences: List[str] | NotGiven = NOT_GIVEN,
system: Union[str, Iterable[PromptCachingBetaTextBlockParam]] | NotGiven = NOT_GIVEN,
temperature: float | NotGiven = NOT_GIVEN,
tool_choice: ToolChoiceParam | NotGiven = NOT_GIVEN,
tools: Iterable[PromptCachingBetaToolParam] | NotGiven = NOT_GIVEN,
top_k: int | NotGiven = NOT_GIVEN,
top_p: float | NotGiven = NOT_GIVEN,
betas: List[AnthropicBetaParam] | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> PromptCachingBetaMessage | Stream[RawPromptCachingBetaMessageStreamEvent]:
"""
Send a structured list of input messages with text and/or image content, and the
model will generate the next message in the conversation.
The Messages API can be used for either single queries or stateless multi-turn
conversations.
Args:
max_tokens: The maximum number of tokens to generate before stopping.
Note that our models may stop _before_ reaching this maximum. This parameter
only specifies the absolute maximum number of tokens to generate.
Different models have different maximum values for this parameter. See
[models](https://docs.anthropic.com/en/docs/models-overview) for details.
messages: Input messages.
Our models are trained to operate on alternating `user` and `assistant`
conversational turns. When creating a new `Message`, you specify the prior
conversational turns with the `messages` parameter, and the model then generates
the next `Message` in the conversation. Consecutive `user` or `assistant` turns
in your request will be combined into a single turn.
Each input message must be an object with a `role` and `content`. You can
specify a single `user`-role message, or you can include multiple `user` and
`assistant` messages.
If the final message uses the `assistant` role, the response content will
continue immediately from the content in that message. This can be used to
constrain part of the model's response.
Example with a single `user` message:
```json
[{ "role": "user", "content": "Hello, Claude" }]
```
Example with multiple conversational turns:
```json
[
{ "role": "user", "content": "Hello there." },
{ "role": "assistant", "content": "Hi, I'm Claude. How can I help you?" },
{ "role": "user", "content": "Can you explain LLMs in plain English?" }
]
```
Example with a partially-filled response from Claude:
```json
[
{
"role": "user",
"content": "What's the Greek name for Sun? (A) Sol (B) Helios (C) Sun"
},
{ "role": "assistant", "content": "The best answer is (" }
]
```
Each input message `content` may be either a single `string` or an array of
content blocks, where each block has a specific `type`. Using a `string` for
`content` is shorthand for an array of one content block of type `"text"`. The
following input messages are equivalent:
```json
{ "role": "user", "content": "Hello, Claude" }
```
```json
{ "role": "user", "content": [{ "type": "text", "text": "Hello, Claude" }] }
```
Starting with Claude 3 models, you can also send image content blocks:
```json
{
"role": "user",
"content": [
{
"type": "image",
"source": {
"type": "base64",
"media_type": "image/jpeg",
"data": "/9j/4AAQSkZJRg..."
}
},
{ "type": "text", "text": "What is in this image?" }
]
}
```
We currently support the `base64` source type for images, and the `image/jpeg`,
`image/png`, `image/gif`, and `image/webp` media types.
See [examples](https://docs.anthropic.com/en/api/messages-examples#vision) for
more input examples.
Note that if you want to include a
[system prompt](https://docs.anthropic.com/en/docs/system-prompts), you can use
the top-level `system` parameter — there is no `"system"` role for input
messages in the Messages API.
model: The model that will complete your prompt.\n\nSee
[models](https://docs.anthropic.com/en/docs/models-overview) for additional
details and options.
stream: Whether to incrementally stream the response using server-sent events.
See [streaming](https://docs.anthropic.com/en/api/messages-streaming) for
details.
metadata: An object describing metadata about the request.
stop_sequences: Custom text sequences that will cause the model to stop generating.
Our models will normally stop when they have naturally completed their turn,
which will result in a response `stop_reason` of `"end_turn"`.
If you want the model to stop generating when it encounters custom strings of
text, you can use the `stop_sequences` parameter. If the model encounters one of
the custom sequences, the response `stop_reason` value will be `"stop_sequence"`
and the response `stop_sequence` value will contain the matched stop sequence.
system: System prompt.
A system prompt is a way of providing context and instructions to Claude, such
as specifying a particular goal or role. See our
[guide to system prompts](https://docs.anthropic.com/en/docs/system-prompts).
temperature: Amount of randomness injected into the response.
Defaults to `1.0`. Ranges from `0.0` to `1.0`. Use `temperature` closer to `0.0`
for analytical / multiple choice, and closer to `1.0` for creative and
generative tasks.
Note that even with `temperature` of `0.0`, the results will not be fully
deterministic.
tool_choice: How the model should use the provided tools. The model can use a specific tool,
any available tool, or decide by itself.
tools: Definitions of tools that the model may use.
If you include `tools` in your API request, the model may return `tool_use`
content blocks that represent the model's use of those tools. You can then run
those tools using the tool input generated by the model and then optionally
return results back to the model using `tool_result` content blocks.
Each tool definition includes:
- `name`: Name of the tool.
- `description`: Optional, but strongly-recommended description of the tool.
- `input_schema`: [JSON schema](https://json-schema.org/) for the tool `input`
shape that the model will produce in `tool_use` output content blocks.
For example, if you defined `tools` as:
```json
[
{
"name": "get_stock_price",
"description": "Get the current stock price for a given ticker symbol.",
"input_schema": {
"type": "object",
"properties": {
"ticker": {
"type": "string",
"description": "The stock ticker symbol, e.g. AAPL for Apple Inc."
}
},
"required": ["ticker"]
}
}
]
```
And then asked the model "What's the S&P 500 at today?", the model might produce
`tool_use` content blocks in the response like this:
```json
[
{
"type": "tool_use",
"id": "toolu_01D7FLrfh4GYq7yT1ULFeyMV",
"name": "get_stock_price",
"input": { "ticker": "^GSPC" }
}
]
```
You might then run your `get_stock_price` tool with `{"ticker": "^GSPC"}` as an
input, and return the following back to the model in a subsequent `user`
message:
```json
[
{
"type": "tool_result",
"tool_use_id": "toolu_01D7FLrfh4GYq7yT1ULFeyMV",
"content": "259.75 USD"
}
]
```
Tools can be used for workflows that include running client-side tools and
functions, or more generally whenever you want the model to produce a particular
JSON structure of output.
See our [guide](https://docs.anthropic.com/en/docs/tool-use) for more details.
top_k: Only sample from the top K options for each subsequent token.
Used to remove "long tail" low probability responses.
[Learn more technical details here](https://towardsdatascience.com/how-to-sample-from-language-models-682bceb97277).
Recommended for advanced use cases only. You usually only need to use
`temperature`.
top_p: Use nucleus sampling.
In nucleus sampling, we compute the cumulative distribution over all the options
for each subsequent token in decreasing probability order and cut it off once it
reaches a particular probability specified by `top_p`. You should either alter
`temperature` or `top_p`, but not both.
Recommended for advanced use cases only. You usually only need to use
`temperature`.
betas: Optional header to specify the beta version(s) you want to use.
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
...
@required_args(["max_tokens", "messages", "model"], ["max_tokens", "messages", "model", "stream"])
def create(
self,
*,
max_tokens: int,
messages: Iterable[PromptCachingBetaMessageParam],
model: ModelParam,
metadata: MetadataParam | NotGiven = NOT_GIVEN,
stop_sequences: List[str] | NotGiven = NOT_GIVEN,
stream: Literal[False] | Literal[True] | NotGiven = NOT_GIVEN,
system: Union[str, Iterable[PromptCachingBetaTextBlockParam]] | NotGiven = NOT_GIVEN,
temperature: float | NotGiven = NOT_GIVEN,
tool_choice: ToolChoiceParam | NotGiven = NOT_GIVEN,
tools: Iterable[PromptCachingBetaToolParam] | NotGiven = NOT_GIVEN,
top_k: int | NotGiven = NOT_GIVEN,
top_p: float | NotGiven = NOT_GIVEN,
betas: List[AnthropicBetaParam] | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> PromptCachingBetaMessage | Stream[RawPromptCachingBetaMessageStreamEvent]:
if not is_given(timeout) and self._client.timeout == DEFAULT_TIMEOUT:
timeout = 600
extra_headers = {
**strip_not_given(
{
"anthropic-beta": ",".join(chain((str(e) for e in betas), ["prompt-caching-2024-07-31"]))
if is_given(betas)
else NOT_GIVEN
}
),
**(extra_headers or {}),
}
extra_headers = {"anthropic-beta": "prompt-caching-2024-07-31", **(extra_headers or {})}
return self._post(
"/v1/messages?beta=prompt_caching",
body=maybe_transform(
{
"max_tokens": max_tokens,
"messages": messages,
"model": model,
"metadata": metadata,
"stop_sequences": stop_sequences,
"stream": stream,
"system": system,
"temperature": temperature,
"tool_choice": tool_choice,
"tools": tools,
"top_k": top_k,
"top_p": top_p,
},
message_create_params.MessageCreateParams,
),
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=PromptCachingBetaMessage,
stream=stream or False,
stream_cls=Stream[RawPromptCachingBetaMessageStreamEvent],
)
def stream(
self,
*,
max_tokens: int,
messages: Iterable[PromptCachingBetaMessageParam],
model: ModelParam,
metadata: message_create_params.Metadata | NotGiven = NOT_GIVEN,
stop_sequences: List[str] | NotGiven = NOT_GIVEN,
system: Union[str, Iterable[PromptCachingBetaTextBlockParam]] | NotGiven = NOT_GIVEN,
temperature: float | NotGiven = NOT_GIVEN,
tool_choice: message_create_params.ToolChoice | NotGiven = NOT_GIVEN,
tools: Iterable[PromptCachingBetaToolParam] | NotGiven = NOT_GIVEN,
top_k: int | NotGiven = NOT_GIVEN,
top_p: float | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> PromptCachingBetaMessageStreamManager:
"""Create a Message stream"""
if not is_given(timeout) and self._client.timeout == DEFAULT_TIMEOUT:
timeout = 600
extra_headers = {
"anthropic-beta": "prompt-caching-2024-07-31",
"X-Stainless-Stream-Helper": "beta.prompt_caching.messages",
**(extra_headers or {}),
}
request = partial(
self._post,
"/v1/messages?beta=prompt_caching",
body=maybe_transform(
{
"max_tokens": max_tokens,
"messages": messages,
"model": model,
"metadata": metadata,
"stop_sequences": stop_sequences,
"stream": True,
"system": system,
"temperature": temperature,
"tool_choice": tool_choice,
"tools": tools,
"top_k": top_k,
"top_p": top_p,
},
message_create_params.MessageCreateParams,
),
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=PromptCachingBetaMessage,
stream=True,
stream_cls=Stream[RawPromptCachingBetaMessageStreamEvent],
)
return PromptCachingBetaMessageStreamManager(request)
class AsyncMessages(AsyncAPIResource):
@cached_property
def with_raw_response(self) -> AsyncMessagesWithRawResponse:
"""
This property can be used as a prefix for any HTTP method call to return the
the raw response object instead of the parsed content.
For more information, see https://www.github.com/anthropics/anthropic-sdk-python#accessing-raw-response-data-eg-headers
"""
return AsyncMessagesWithRawResponse(self)
@cached_property
def with_streaming_response(self) -> AsyncMessagesWithStreamingResponse:
"""
An alternative to `.with_raw_response` that doesn't eagerly read the response body.
For more information, see https://www.github.com/anthropics/anthropic-sdk-python#with_streaming_response
"""