-
Notifications
You must be signed in to change notification settings - Fork 14
/
dataloader.py
264 lines (232 loc) · 11.5 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
#! -*- coding:utf-8 -*-
import json
from typing import Dict, List, Optional, Tuple
from collections import defaultdict
import numpy as np
from keras.preprocessing.sequence import pad_sequences
import log
def find_entity(source: List[int], target: List[int]) -> int:
target_len = len(target)
for i in range(len(source)):
if source[i: i + target_len] == target:
return i
return -1
def to_tuple(sent: str):
""" list to tuple (inplace operation)
"""
triple_list = []
for triple in sent['triple_list']:
triple_list.append(tuple(triple))
sent['triple_list'] = triple_list
def filter_data(fpath: str, rel2id: Dict):
filtered_data = []
for obj in json.load(open(fpath)):
filtered_triples = []
if 'NYT11-HRL' in fpath and len(obj['triple_list']) != 1:
continue
for triple in obj['triple_list']:
if triple[1] not in rel2id:
continue
filtered_triples.append(triple)
if not filtered_triples:
continue
obj['triple_list'] = filtered_triples
filtered_data.append(obj)
return filtered_data
def load_rel(rel_path: str) -> Tuple[Dict, Dict, List, int]:
id2rel, rel2id = json.load(open(rel_path))
all_rels = list(id2rel.keys())
id2rel = {int(i): j for i, j in id2rel.items()}
return id2rel, rel2id, all_rels
def load_data(fpath: str, rel2id: Dict, is_train: bool = False) -> List:
data = filter_data(fpath, rel2id)
if is_train:
text_lens = [len(obj['text'].split()) for obj in data]
log.info("train text insight")
log.info(f" max len: {max(text_lens)}")
log.info(f" min len: {min(text_lens)}")
log.info(f" avg len: {sum(text_lens) / len(text_lens)}")
for sent in data:
to_tuple(sent)
log.info(f"data len: {len(data)}")
return data
class DataGenerator:
def __init__(self, datas: List, tokenizer: object, rel2id: Dict, all_rels: List, max_len: int,
batch_size: int = 32, max_sample_triples: Optional[int] = None, neg_samples: Optional[int] = None):
self.max_sample_triples = max_sample_triples
self.neg_samples = neg_samples
self.batch_size = batch_size
self.tokenizer = tokenizer
self.max_len = max_len
self.rel2id = rel2id
self.rels_set = list(rel2id.values())
self.relation_size = len(rel2id)
self.num_rels = len(all_rels)
self.all_rels = all_rels
self.datas = []
for data in datas:
pos_datas = []
neg_datas = []
text_tokened = tokenizer.encode(data['text'])
entity_set = set() # (head idx, tail idx)
triples_set = set() # (sub head, sub tail, obj head, obj tail, rel)
subj_rel_set = set() # (sub head, sub tail, rel)
subj_set = set() # (sub head, sub tail)
rel_set = set()
trans_map = defaultdict(list) # {(sub_head, rel): [tail_heads]}
for triple in data['triple_list']:
subj, rel, obj = triple
rel_idx = self.rel2id[rel]
subj_tokened = tokenizer.encode(subj)
obj_tokened = tokenizer.encode(obj)
subj_head_idx = find_entity(text_tokened.ids, subj_tokened.ids[1:-1])
subj_tail_idx = subj_head_idx + len(subj_tokened.ids[1:-1]) - 1
obj_head_idx = find_entity(text_tokened.ids, obj_tokened.ids[1:-1])
obj_tail_idx = obj_head_idx + len(obj_tokened.ids[1:-1]) - 1
if subj_head_idx == -1 or obj_head_idx == -1:
continue
entity_set.add((subj_head_idx, subj_tail_idx, 0))
entity_set.add((obj_head_idx, obj_tail_idx, 1))
subj_rel_set.add((subj_head_idx, subj_tail_idx, rel_idx))
subj_set.add((subj_head_idx, subj_tail_idx))
triples_set.add(
(subj_head_idx, subj_tail_idx, obj_head_idx, obj_tail_idx, rel_idx)
)
rel_set.add(rel_idx)
trans_map[(subj_head_idx, subj_tail_idx, rel_idx)].append(obj_head_idx)
if not rel_set:
continue
entity_heads = np.zeros((self.max_len, 2))
entity_tails = np.zeros((self.max_len, 2))
for (head, tail, _type) in entity_set:
entity_heads[head][_type] = 1
entity_tails[tail][_type] = 1
rels = np.zeros(self.relation_size)
for idx in rel_set:
rels[idx] = 1
if self.max_sample_triples is not None:
triples_list = list(triples_set)
np.random.shuffle(triples_list)
triples_list = triples_list[:self.max_sample_triples]
else:
triples_list = list(triples_set)
neg_history = set()
for subj_head_idx, subj_tail_idx, obj_head_idx, obj_tail_idx, rel_idx in triples_list:
current_neg_datas = []
sample_obj_heads = np.zeros(self.max_len)
for idx in trans_map[(subj_head_idx, subj_tail_idx, rel_idx)]:
sample_obj_heads[idx] = 1.0
# postive samples
pos_datas.append({
'token_ids': text_tokened.ids,
'segment_ids': text_tokened.type_ids,
'entity_heads': entity_heads,
'entity_tails': entity_tails,
'rels': rels,
'sample_subj_head': subj_head_idx,
'sample_subj_tail': subj_tail_idx,
'sample_rel': rel_idx,
'sample_obj_heads': sample_obj_heads,
})
# 1. inverse (tail as subj)
neg_subj_head_idx = obj_head_idx
neg_sub_tail_idx = obj_tail_idx
neg_pair = (neg_subj_head_idx, neg_sub_tail_idx, rel_idx)
if neg_pair not in subj_rel_set and neg_pair not in neg_history:
current_neg_datas.append({
'token_ids': text_tokened.ids,
'segment_ids': text_tokened.type_ids,
'entity_heads': entity_heads,
'entity_tails': entity_tails,
'rels': rels,
'sample_subj_head': neg_subj_head_idx,
'sample_subj_tail': neg_sub_tail_idx,
'sample_rel': rel_idx,
'sample_obj_heads': np.zeros(self.max_len), # set 0 for negative samples
})
neg_history.add(neg_pair)
# 2. (pos sub, neg_rel)
for neg_rel_idx in rel_set - {rel_idx}:
neg_pair = (subj_head_idx, subj_tail_idx, neg_rel_idx)
if neg_pair not in subj_rel_set and neg_pair not in neg_history:
current_neg_datas.append({
'token_ids': text_tokened.ids,
'segment_ids': text_tokened.type_ids,
'entity_heads': entity_heads,
'entity_tails': entity_tails,
'rels': rels,
'sample_subj_head': subj_head_idx,
'sample_subj_tail': subj_tail_idx,
'sample_rel': neg_rel_idx,
'sample_obj_heads': np.zeros(self.max_len), # set 0 for negative samples
})
neg_history.add(neg_pair)
# 3. (neg sub, pos rel)
for (neg_subj_head_idx, neg_sub_tail_idx) in subj_set - {(subj_head_idx, subj_tail_idx)}:
neg_pair = (neg_subj_head_idx, neg_sub_tail_idx, rel_idx)
if neg_pair not in subj_rel_set and neg_pair not in neg_history:
current_neg_datas.append({
'token_ids': text_tokened.ids,
'segment_ids': text_tokened.type_ids,
'entity_heads': entity_heads,
'entity_tails': entity_tails,
'rels': rels,
'sample_subj_head': neg_subj_head_idx,
'sample_subj_tail': neg_sub_tail_idx,
'sample_rel': rel_idx,
'sample_obj_heads': np.zeros(self.max_len), # set 0 for negative samples
})
neg_history.add(neg_pair)
np.random.shuffle(current_neg_datas)
if self.neg_samples is not None:
current_neg_datas = current_neg_datas[:self.neg_samples]
neg_datas += current_neg_datas
current_datas = pos_datas + neg_datas
self.datas.extend(current_datas)
self.steps = len(self.datas) // self.batch_size
if len(self.datas) % self.batch_size != 0:
self.steps += 1
def __len__(self):
return self.steps
def __iter__(self, random: bool = False):
idxs = list(range(len(self.datas)))
if random:
np.random.shuffle(idxs)
batch_tokens, batch_segments = [], []
batch_entity_heads, batch_entity_tails = [], []
batch_rels = []
batch_sample_subj_head, batch_sample_subj_tail = [], []
batch_sample_rel = []
batch_sample_obj_heads = []
for idx in idxs:
obj = self.datas[idx]
batch_tokens.append(obj['token_ids'])
batch_segments.append(obj['segment_ids'])
batch_entity_heads.append(obj['entity_heads'])
batch_entity_tails.append(obj['entity_tails'])
batch_rels.append(obj['rels'])
batch_sample_subj_head.append(obj['sample_subj_head'])
batch_sample_subj_tail.append(obj['sample_subj_tail'])
batch_sample_rel.append(obj['sample_rel'])
batch_sample_obj_heads.append(obj['sample_obj_heads'])
if len(batch_tokens) == self.batch_size or idx == idxs[-1]:
batch_tokens = pad_sequences(batch_tokens, maxlen=self.max_len, padding='post', truncating='post')
batch_segments = pad_sequences(batch_segments, maxlen=self.max_len, padding='post', truncating='post')
batch_entity_heads = pad_sequences(batch_entity_heads, maxlen=self.max_len, value=np.zeros(2))
batch_entity_tails = pad_sequences(batch_entity_tails, maxlen=self.max_len, value=np.zeros(2))
batch_rels = np.array(batch_rels)
batch_sample_subj_head = np.array(batch_sample_subj_head)
batch_sample_subj_tail = np.array(batch_sample_subj_tail)
batch_sample_rel = np.array(batch_sample_rel)
batch_sample_obj_heads = np.array(batch_sample_obj_heads)
yield [batch_tokens, batch_segments, batch_entity_heads, batch_entity_tails, batch_rels, batch_sample_subj_head, batch_sample_subj_tail, batch_sample_rel, batch_sample_obj_heads], None
batch_tokens, batch_segments = [], []
batch_entity_heads, batch_entity_tails = [], []
batch_rels = []
batch_sample_subj_head, batch_sample_subj_tail = [], []
batch_sample_rel = []
batch_sample_obj_heads = []
def forfit(self, random: bool = False):
while True:
for inputs, labels in self.__iter__(random=random):
yield inputs, labels