-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathquick_run_acekl.py
148 lines (106 loc) · 3.84 KB
/
quick_run_acekl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import torch
import torch.nn as nn
from torch.autograd import Variable
import torch.nn.functional as F
import numpy as np
import sys
import math
from tqdm import tqdm
from sklearn import metrics
import pdb
def softplus(x): # Smooth Relu
return np.log(1 + np.exp(x))
def weighted_mse_loss(input,target,weights):
out = (torch.squeeze(input)-target)**2
loss = torch.mean(out * weights) # or sum over whatever dimensions
return loss
def mse_loss(input,target):
out = (torch.squeeze(input)-target)**2
# pdb.set_trace()
loss = torch.mean(out) # or sum over whatever dimensions
return loss
'''
CREATE MODEL CLASS
'''
class LinearRegressionModel(nn.Module):
def __init__(self, input_dim, lmd = 1.0/5000):
super(LinearRegressionModel, self).__init__()
self.lmd = lmd
self.weight = torch.nn.Parameter(torch.zeros(1, input_dim))
self.bias = torch.nn.Parameter(torch.zeros(1))
self.reset_parameters()
def reset_parameters(self):
stdv = 1. / math.sqrt(self.weight.size(1))
self.weight.data.uniform_(-stdv, stdv)
self.bias.data.uniform_(-stdv, stdv)
def forward(self, input_X):
"""
linear part
"""
linear_part = F.linear(input_X, self.weight, self.bias)
return linear_part
def cal_loss(self, input_X, input_Y, sample_weights):
linear_part = self.forward(input_X)
mse = weighted_mse_loss(linear_part, input_Y, sample_weights)
regularzizer = self.lmd * torch.sum(self.weight**2)
loss = mse + regularzizer
return loss
def main():
"""
load data
"""
X = np.load(sys.argv[1])
X = np.where(X == 0, -1, 1).astype(np.float32)
# print X
y = np.load(sys.argv[2])
y = -np.log(y).astype(np.float32)
x_train = X
y_train = y
input_dim = X.shape[1]
original_datum = x_train[0]
distances = metrics.pairwise_distances(x_train,
original_datum.reshape(1, -1),
metric='euclidean'
).ravel()
kernel_width = np.sqrt(original_datum.shape[0]) * .75
kernel_fn = lambda d: np.sqrt(np.exp(-(d ** 2) / kernel_width ** 2))
sample_weights_train = kernel_fn(distances)
'''
INSTANTIATE MODEL CLASS
'''
model = LinearRegressionModel(input_dim)
rng = np.random.RandomState(12345)
model.cuda()
learning_rate = 0.01
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
epochs = 50000
for epoch in tqdm(range(epochs)):
epoch += 1
idxs = rng.permutation(len(y_train))
# pdb.set_trace()
x_train, y_train, sample_weights_train = x_train[idxs], y_train[idxs], sample_weights_train[idxs]
if torch.cuda.is_available():
vx = Variable(torch.from_numpy(x_train).cuda())
if torch.cuda.is_available():
vy = Variable(torch.from_numpy(y_train).cuda())
if torch.cuda.is_available():
vsample_weights = Variable(torch.from_numpy(sample_weights_train).cuda())
optimizer.zero_grad()
loss = model.cal_loss(vx, vy, vsample_weights)
# print('loss {}'.format(loss.data[0]))
# loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# print('epoch {}, loss {}'.format(epoch, loss.data[0]))
print('loss {}'.format(loss.data[0]))
print model.weight.cpu().data.numpy()
w = np.squeeze(model.weight.cpu().data.numpy())
original_row_data = X[0]
components = w*original_row_data
print components
contributions = softplus(components)/np.sum(softplus(components))
print sorted(zip(range(input_dim), contributions),
key=lambda x: x[1],
reverse=True)
if __name__ == '__main__':
main()