forked from facebookresearch/MCC
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mcc_model.py
386 lines (297 loc) · 14.1 KB
/
mcc_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# timm: https://github.com/rwightman/pytorch-image-models/tree/master/timm
# DeiT: https://github.com/facebookresearch/deit
# MAE: https://github.com/facebookresearch/mae
# --------------------------------------------------------
from functools import partial
import torch
import torch.nn as nn
import torch.nn.functional as F
from timm.models.vision_transformer import PatchEmbed, Block, Mlp, DropPath
from util.pos_embed import get_2d_sincos_pos_embed
class MCCDecoderAttention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0., args=None):
super().__init__()
assert dim % num_heads == 0, 'dim should be divisible by num_heads'
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim ** -0.5
self.args = args
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x, unseen_size):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv.unbind(0)
attn = (q @ k.transpose(-2, -1)) * self.scale
mask = torch.zeros((1, 1, N, N), device=attn.device)
mask[:, :, :, -unseen_size:] = float('-inf')
for i in range(unseen_size):
mask[:, :, -(i + 1), -(i + 1)] = 0
attn = attn + mask
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class MCCDecoderBlock(nn.Module):
def __init__(
self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., init_values=None,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, args=None):
super().__init__()
self.args = args
self.norm1 = norm_layer(dim)
self.attn = MCCDecoderAttention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop, args=args)
self.ls1 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
self.ls2 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
def forward(self, x, unseen_size):
x = x + self.drop_path1(self.ls1(self.attn(self.norm1(x), unseen_size)))
x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x))))
return x
class XYZPosEmbed(nn.Module):
""" Masked Autoencoder with VisionTransformer backbone
"""
def __init__(self, embed_dim):
super().__init__()
self.embed_dim = embed_dim
self.two_d_pos_embed = nn.Parameter(
torch.zeros(1, 64 + 1, embed_dim), requires_grad=False) # fixed sin-cos embedding
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.win_size = 8
self.pos_embed = nn.Linear(3, embed_dim)
self.blocks = nn.ModuleList([
Block(embed_dim, num_heads=12, mlp_ratio=2.0, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6))
for _ in range(1)
])
self.invalid_xyz_token = nn.Parameter(torch.zeros(embed_dim,))
self.initialize_weights()
def initialize_weights(self):
torch.nn.init.normal_(self.cls_token, std=.02)
two_d_pos_embed = get_2d_sincos_pos_embed(self.two_d_pos_embed.shape[-1], 8, cls_token=True)
self.two_d_pos_embed.data.copy_(torch.from_numpy(two_d_pos_embed).float().unsqueeze(0))
torch.nn.init.normal_(self.invalid_xyz_token, std=.02)
def forward(self, seen_xyz, valid_seen_xyz):
emb = self.pos_embed(seen_xyz)
emb[~valid_seen_xyz] = 0.0
emb[~valid_seen_xyz] += self.invalid_xyz_token
B, H, W, C = emb.shape
emb = emb.view(B, H // self.win_size, self.win_size, W // self.win_size, self.win_size, C)
emb = emb.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, self.win_size * self.win_size, C)
emb = emb + self.two_d_pos_embed[:, 1:, :]
cls_token = self.cls_token + self.two_d_pos_embed[:, :1, :]
cls_tokens = cls_token.expand(emb.shape[0], -1, -1)
emb = torch.cat((cls_tokens, emb), dim=1)
for _, blk in enumerate(self.blocks):
emb = blk(emb)
return emb[:, 0].view(B, (H // self.win_size) * (W // self.win_size), -1)
class DecodeXYZPosEmbed(nn.Module):
""" Masked Autoencoder with VisionTransformer backbone
"""
def __init__(self, embed_dim):
super().__init__()
self.embed_dim = embed_dim
self.pos_embed = nn.Linear(3, embed_dim)
def forward(self, unseen_xyz):
return self.pos_embed(unseen_xyz)
class MCC(nn.Module):
""" Masked Autoencoder with VisionTransformer backbone
"""
def __init__(self,
img_size=224, patch_size=16, in_chans=3,
embed_dim=1024, depth=24, num_heads=16,
decoder_embed_dim=512, decoder_depth=8, decoder_num_heads=16,
mlp_ratio=4., norm_layer=nn.LayerNorm,
rgb_weight=1.0, occupancy_weight=1.0, args=None):
super().__init__()
self.rgb_weight = rgb_weight
self.occupancy_weight = occupancy_weight
self.args = args
# --------------------------------------------------------------------------
# encoder specifics
self.patch_embed = PatchEmbed(img_size, patch_size, in_chans, embed_dim)
num_patches = self.patch_embed.num_patches
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.cls_token_xyz = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim), requires_grad=False) # fixed sin-cos embedding
self.xyz_pos_embed = XYZPosEmbed(embed_dim)
self.blocks = nn.ModuleList([
Block(
embed_dim, num_heads, mlp_ratio, qkv_bias=True, norm_layer=norm_layer,
drop_path=args.drop_path
) for i in range(depth)])
self.blocks_xyz = nn.ModuleList([
Block(
embed_dim, num_heads, mlp_ratio, qkv_bias=True, norm_layer=norm_layer,
drop_path=args.drop_path
) for i in range(depth)])
self.norm = norm_layer(embed_dim)
self.norm_xyz = norm_layer(embed_dim)
self.cached_enc_feat = None
# --------------------------------------------------------------------------
# decoder specifics
self.decoder_embed = nn.Linear(
embed_dim * 2,
decoder_embed_dim,
bias=True
)
self.decoder_xyz_pos_embed = DecodeXYZPosEmbed(decoder_embed_dim)
self.decoder_pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, decoder_embed_dim), requires_grad=False) # fixed sin-cos embedding
self.decoder_blocks = nn.ModuleList([
MCCDecoderBlock(
decoder_embed_dim, decoder_num_heads, mlp_ratio, qkv_bias=True, norm_layer=norm_layer,
drop_path=args.drop_path,
args=args,
) for i in range(decoder_depth)])
self.decoder_norm = norm_layer(decoder_embed_dim)
if self.args.regress_color:
self.decoder_pred = nn.Linear(decoder_embed_dim, 3 + 1, bias=True) # decoder to patch
else:
self.decoder_pred = nn.Linear(decoder_embed_dim, 256 * 3 + 1, bias=True) # decoder to patch
self.loss_occupy = nn.BCEWithLogitsLoss()
if self.args.regress_color:
self.loss_rgb = nn.MSELoss()
else:
self.loss_rgb = nn.CrossEntropyLoss()
self.initialize_weights()
def initialize_weights(self):
pos_embed = get_2d_sincos_pos_embed(self.pos_embed.shape[-1], int(self.patch_embed.num_patches**.5), cls_token=True)
self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0))
decoder_pos_embed = get_2d_sincos_pos_embed(self.decoder_pos_embed.shape[-1], int(self.patch_embed.num_patches**.5), cls_token=True)
self.decoder_pos_embed.data.copy_(torch.from_numpy(decoder_pos_embed).float().unsqueeze(0))
# initialize patch_embed like nn.Linear (instead of nn.Conv2d)
w = self.patch_embed.proj.weight.data
torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
# timm's trunc_normal_(std=.02) is effectively normal_(std=0.02) as cutoff is too big (2.)
torch.nn.init.normal_(self.cls_token, std=.02)
torch.nn.init.normal_(self.cls_token_xyz, std=.02)
# initialize nn.Linear and nn.LayerNorm
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
# we use xavier_uniform following official JAX ViT:
torch.nn.init.xavier_uniform_(m.weight)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def forward_encoder(self, x, seen_xyz, valid_seen_xyz):
# get tokens
x = self.patch_embed(x)
x = x + self.pos_embed[:, 1:, :]
y = self.xyz_pos_embed(seen_xyz, valid_seen_xyz)
##### forward E_XYZ #####
# append cls token
cls_token_xyz = self.cls_token_xyz
cls_tokens_xyz = cls_token_xyz.expand(y.shape[0], -1, -1)
y = torch.cat((cls_tokens_xyz, y), dim=1)
# apply Transformer blocks
for blk in self.blocks_xyz:
y = blk(y)
y = self.norm_xyz(y)
##### forward E_RGB #####
# append cls token
cls_token = self.cls_token + self.pos_embed[:, :1, :]
cls_tokens = cls_token.expand(x.shape[0], -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
# apply Transformer blocks
for blk in self.blocks:
x = blk(x)
x = self.norm(x)
# combine encodings
x = torch.cat([x, y], dim=2)
return x
def forward_decoder(self, x, unseen_xyz):
# embed tokens
x = self.decoder_embed(x)
x = x + self.decoder_pos_embed
# 3D pos embed
unseen_xyz = self.decoder_xyz_pos_embed(unseen_xyz)
x = torch.cat([x, unseen_xyz], dim=1)
# apply Transformer blocks
for blk in self.decoder_blocks:
x = blk(x, unseen_xyz.shape[1])
x = self.decoder_norm(x)
# predictor projection
pred = self.decoder_pred(x)
# remove cls & seen token
pred = pred[:, -unseen_xyz.shape[1]:, :]
return pred
def forward_loss(self, pred, unseen_occupy, unseen_rgb):
loss = self.loss_occupy(
pred[:, :, :1].reshape((-1, 1)),
unseen_occupy.reshape((-1, 1)).float()
) * self.occupancy_weight
if unseen_occupy.sum() > 0:
if self.args.regress_color:
pred_rgb = pred[:, :, 1:][unseen_occupy.bool()]
gt_rgb = unseen_rgb[unseen_occupy.bool()]
else:
pred_rgb = pred[:, :, 1:][unseen_occupy.bool()].reshape((-1, 256))
gt_rgb = torch.round(unseen_rgb[unseen_occupy.bool()] * 255).long().reshape((-1,))
rgb_loss = self.loss_rgb(pred_rgb, gt_rgb) * self.rgb_weight
loss = loss + rgb_loss
return loss
def clear_cache(self):
self.cached_enc_feat = None
def forward(self, seen_images, seen_xyz, unseen_xyz, unseen_rgb, unseen_occupy, valid_seen_xyz,
cache_enc=False):
unseen_xyz = shrink_points_beyond_threshold(unseen_xyz, self.args.shrink_threshold)
if self.cached_enc_feat is None:
seen_images = preprocess_img(seen_images)
seen_xyz = shrink_points_beyond_threshold(seen_xyz, self.args.shrink_threshold)
latent = self.forward_encoder(seen_images, seen_xyz, valid_seen_xyz)
if cache_enc:
if self.cached_enc_feat is None:
self.cached_enc_feat = latent
else:
latent = self.cached_enc_feat
pred = self.forward_decoder(latent, unseen_xyz)
loss = self.forward_loss(pred, unseen_occupy, unseen_rgb)
return loss, pred
def get_mcc_model(**kwargs):
return MCC(
embed_dim=768, depth=12, num_heads=12,
decoder_embed_dim=512, decoder_depth=8, decoder_num_heads=16,
mlp_ratio=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs
)
def shrink_points_beyond_threshold(xyz, threshold):
xyz = xyz.clone().detach()
dist = (xyz ** 2.0).sum(axis=-1) ** 0.5
affected = (dist > threshold) * torch.isfinite(dist)
xyz[affected] = xyz[affected] * (
threshold * (2.0 - threshold / dist[affected]) / dist[affected]
)[..., None]
return xyz
def preprocess_img(x):
if x.shape[2] != 224:
assert x.shape[2] == 800
x = F.interpolate(
x,
scale_factor=224./800.,
mode="bilinear",
)
resnet_mean = torch.tensor([0.485, 0.456, 0.406], device=x.device).reshape((1, 3, 1, 1))
resnet_std = torch.tensor([0.229, 0.224, 0.225], device=x.device).reshape((1, 3, 1, 1))
imgs_normed = (x - resnet_mean) / resnet_std
return imgs_normed
class LayerScale(nn.Module):
def __init__(self, dim, init_values=1e-5, inplace=False):
super().__init__()
self.inplace = inplace
self.gamma = nn.Parameter(init_values * torch.ones(dim))
def forward(self, x):
return x.mul_(self.gamma) if self.inplace else x * self.gamma