-
Notifications
You must be signed in to change notification settings - Fork 0
/
index.js
251 lines (213 loc) Β· 7.27 KB
/
index.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
/*
* Copyright (c) 2006 Ho Ngoc Duc. All Rights Reserved.
* Astronomical algorithms from the book "Astronomical Algorithms" by Jean Meeus, 1998
*
* Permission to use, copy, modify, and redistribute this software and its
* documentation for personal, non-commercial use is hereby granted provided that
* this copyright notice and appropriate documentation appears in all copies.
*/
const PI = Math.PI;
const INT = (d) => Math.floor(d);
/* Compute the (integral) Julian day number of day dd/mm/yyyy, i.e., the number
* of days between 1/1/4713 BC (Julian calendar) and dd/mm/yyyy.
* Formula from http://www.tondering.dk/claus/calendar.html
*/
const jdFromDate = (dd, mm, yy) => {
let a, y, m, jd;
a = INT((14 - mm) / 12);
y = yy + 4800 - a;
m = mm + 12 * a - 3;
jd =
dd +
INT((153 * m + 2) / 5) +
365 * y +
INT(y / 4) -
INT(y / 100) +
INT(y / 400) -
32045;
if (jd < 2299161) {
jd = dd + INT((153 * m + 2) / 5) + 365 * y + INT(y / 4) - 32083;
}
return jd;
};
/* Convert a Julian day number to day/month/year. Parameter jd is an integer */
const jdToDate = (jd) => {
let a, b, c, d, e, m, day, month, year;
if (jd > 2299160) {
// After 5/10/1582, Gregorian calendar
a = jd + 32044;
b = INT((4 * a + 3) / 146097);
c = a - INT((b * 146097) / 4);
} else {
b = 0;
c = jd + 32082;
}
d = INT((4 * c + 3) / 1461);
e = c - INT((1461 * d) / 4);
m = INT((5 * e + 2) / 153);
day = e - INT((153 * m + 2) / 5) + 1;
month = m + 3 - 12 * INT(m / 10);
year = b * 100 + d - 4800 + INT(m / 10);
return new Array(day, month, year);
};
/* Compute the time of the k-th new moon after the new moon of 1/1/1900 13:52 UCT
* (measured as the number of days since 1/1/4713 BC noon UCT, e.g., 2451545.125 is 1/1/2000 15:00 UTC).
* Returns a floating number, e.g., 2415079.9758617813 for k=2 or 2414961.935157746 for k=-2
* Algorithm from: "Astronomical Algorithms" by Jean Meeus, 1998
*/
const NewMoon = (k) => {
let T, T2, T3, dr, Jd1, M, Mpr, F, C1, deltat, JdNew;
T = k / 1236.85; // Time in Julian centuries from 1900 January 0.5
T2 = T * T;
T3 = T2 * T;
dr = PI / 180;
Jd1 = 2415020.75933 + 29.53058868 * k + 0.0001178 * T2 - 0.000000155 * T3;
Jd1 = Jd1 + 0.00033 * Math.sin((166.56 + 132.87 * T - 0.009173 * T2) * dr); // Mean new moon
M = 359.2242 + 29.10535608 * k - 0.0000333 * T2 - 0.00000347 * T3; // Sun's mean anomaly
Mpr = 306.0253 + 385.81691806 * k + 0.0107306 * T2 + 0.00001236 * T3; // Moon's mean anomaly
F = 21.2964 + 390.67050646 * k - 0.0016528 * T2 - 0.00000239 * T3; // Moon's argument of latitude
C1 =
(0.1734 - 0.000393 * T) * Math.sin(M * dr) + 0.0021 * Math.sin(2 * dr * M);
C1 = C1 - 0.4068 * Math.sin(Mpr * dr) + 0.0161 * Math.sin(dr * 2 * Mpr);
C1 = C1 - 0.0004 * Math.sin(dr * 3 * Mpr);
C1 = C1 + 0.0104 * Math.sin(dr * 2 * F) - 0.0051 * Math.sin(dr * (M + Mpr));
C1 =
C1 -
0.0074 * Math.sin(dr * (M - Mpr)) +
0.0004 * Math.sin(dr * (2 * F + M));
C1 =
C1 -
0.0004 * Math.sin(dr * (2 * F - M)) -
0.0006 * Math.sin(dr * (2 * F + Mpr));
C1 =
C1 +
0.001 * Math.sin(dr * (2 * F - Mpr)) +
0.0005 * Math.sin(dr * (2 * Mpr + M));
if (T < -11) {
deltat =
0.001 +
0.000839 * T +
0.0002261 * T2 -
0.00000845 * T3 -
0.000000081 * T * T3;
} else {
deltat = -0.000278 + 0.000265 * T + 0.000262 * T2;
}
JdNew = Jd1 + C1 - deltat;
return JdNew;
};
/* Compute the longitude of the sun at any time.
* Parameter: floating number jdn, the number of days since 1/1/4713 BC noon
* Algorithm from: "Astronomical Algorithms" by Jean Meeus, 1998
*/
const SunLongitude = (jdn) => {
let T, T2, dr, M, L0, DL, L;
T = (jdn - 2451545.0) / 36525; // Time in Julian centuries from 2000-01-01 12:00:00 GMT
T2 = T * T;
dr = PI / 180; // degree to radian
M = 357.5291 + 35999.0503 * T - 0.0001559 * T2 - 0.00000048 * T * T2; // mean anomaly, degree
L0 = 280.46645 + 36000.76983 * T + 0.0003032 * T2; // mean longitude, degree
DL = (1.9146 - 0.004817 * T - 0.000014 * T2) * Math.sin(dr * M);
DL =
DL +
(0.019993 - 0.000101 * T) * Math.sin(dr * 2 * M) +
0.00029 * Math.sin(dr * 3 * M);
L = L0 + DL; // true longitude, degree
L = L * dr;
L = L - PI * 2 * INT(L / (PI * 2)); // Normalize to (0, 2*PI)
return L;
};
/* Compute sun position at midnight of the day with the given Julian day number.
* The time zone if the time difference between local time and UTC: 7.0 for UTC+7:00.
* The function returns a number between 0 and 11.
* From the day after March equinox and the 1st major term after March equinox, 0 is returned.
* After that, return 1, 2, 3 ...
*/
const getSunLongitude = (dayNumber, timeZone) => {
return INT((SunLongitude(dayNumber - 0.5 - timeZone / 24) / PI) * 6);
};
/* Compute the day of the k-th new moon in the given time zone.
* The time zone if the time difference between local time and UTC: 7.0 for UTC+7:00
*/
const getNewMoonDay = (k, timeZone) => {
return INT(NewMoon(k) + 0.5 + timeZone / 24);
};
/* Find the day that starts the luner month 11 of the given year for the given time zone */
const getLunarMonth11 = (yy, timeZone) => {
let k, off, nm, sunLong;
//off = jdFromDate(31, 12, yy) - 2415021.076998695;
off = jdFromDate(31, 12, yy) - 2415021;
k = INT(off / 29.530588853);
nm = getNewMoonDay(k, timeZone);
sunLong = getSunLongitude(nm, timeZone); // sun longitude at local midnight
if (sunLong >= 9) {
nm = getNewMoonDay(k - 1, timeZone);
}
return nm;
};
/* Find the index of the leap month after the month starting on the day a11. */
const getLeapMonthOffset = (a11, timeZone) => {
let k, last, arc, i;
k = INT((a11 - 2415021.076998695) / 29.530588853 + 0.5);
last = 0;
i = 1; // We start with the month following lunar month 11
arc = getSunLongitude(getNewMoonDay(k + i, timeZone), timeZone);
do {
last = arc;
i++;
arc = getSunLongitude(getNewMoonDay(k + i, timeZone), timeZone);
} while (arc != last && i < 14);
return i - 1;
};
/* Convert solar date dd/mm/yyyy to the corresponding lunar date */
const convertSolar2Lunar = (dd, mm, yy, timeZone) => {
let k, dayNumber, monthStart, a11, b11, lunarDay, lunarMonth;
let lunarYear, lunarLeap, diff, leapMonthDiff;
dayNumber = jdFromDate(dd, mm, yy);
k = INT((dayNumber - 2415021.076998695) / 29.530588853);
monthStart = getNewMoonDay(k + 1, timeZone);
if (monthStart > dayNumber) {
monthStart = getNewMoonDay(k, timeZone);
}
//alert(dayNumber+" -> "+monthStart);
a11 = getLunarMonth11(yy, timeZone);
b11 = a11;
if (a11 >= monthStart) {
lunarYear = yy;
a11 = getLunarMonth11(yy - 1, timeZone);
} else {
lunarYear = yy + 1;
b11 = getLunarMonth11(yy + 1, timeZone);
}
lunarDay = dayNumber - monthStart + 1;
diff = INT((monthStart - a11) / 29);
lunarLeap = 0;
lunarMonth = diff + 11;
if (b11 - a11 > 365) {
leapMonthDiff = getLeapMonthOffset(a11, timeZone);
if (diff >= leapMonthDiff) {
lunarMonth = diff + 10;
if (diff == leapMonthDiff) {
lunarLeap = 1;
}
}
}
if (lunarMonth > 12) {
lunarMonth = lunarMonth - 12;
}
if (lunarMonth >= 11 && diff < 4) {
lunarYear -= 1;
}
return new Array(lunarDay, lunarMonth, lunarYear, lunarLeap);
};
const lunar = (o, c, d) => {
const proto = c.prototype;
proto.toLunar = function () {
const { $y, $M, $D, $offset = 0 } = this;
const [d, m, y] = convertSolar2Lunar($D, $M + 1, $y, $offset / 60);
return this.set("D", d)
.set("M", m - 1)
.set("y", y);
};
};
export default lunar;