Skip to content

Latest commit

 

History

History
285 lines (245 loc) · 10.3 KB

Mixture-of-Agents.md

File metadata and controls

285 lines (245 loc) · 10.3 KB

Mixture of Agents combines multiple LLMs to work together in cycles to answer a prompt.

In each layer LLMs run in parallel and their outputs are then combined and fed into the next layer. The final layer's responses are given to the main LLM for the end response.

-- Why MoA/agentic workflows?

Accuracy⬆️: Allows LLMs to "think", refine, breakdown complex tasks into smaller sub-tasks.

Costs⬇️: Using a combination of smaller, open-source models can significantly reduce costs even if you are calling an LLM multiple times.

import streamlit as st
import json
from typing import Iterable
from moa.agent import MOAgent
from moa.agent.moa import ResponseChunk
from streamlit_ace import st_ace
import copy

# Default configuration
default_config = {
    "main_model": "llama3-70b-8192",
    "cycles": 3,
    "layer_agent_config": {}
}

layer_agent_config_def = {
    "layer_agent_1": {
        "system_prompt": "Think through your response step by step. {helper_response}",
        "model_name": "llama3-8b-8192"
    },
    "layer_agent_2": {
        "system_prompt": "Respond with a thought and then your response to the question. {helper_response}",
        "model_name": "gemma-7b-it",
        "temperature": 0.7
    },
    "layer_agent_3": {
        "system_prompt": "You are an expert at logic and reasoning. Always take a logical approach to the answer. {helper_response}",
        "model_name": "llama3-8b-8192"
    },

}

# Recommended Configuration

rec_config = {
    "main_model": "llama3-70b-8192",
    "cycles": 2,
    "layer_agent_config": {}
}

layer_agent_config_rec = {
    "layer_agent_1": {
        "system_prompt": "Think through your response step by step. {helper_response}",
        "model_name": "llama3-8b-8192",
        "temperature": 0.1
    },
    "layer_agent_2": {
        "system_prompt": "Respond with a thought and then your response to the question. {helper_response}",
        "model_name": "llama3-8b-8192",
        "temperature": 0.2
    },
    "layer_agent_3": {
        "system_prompt": "You are an expert at logic and reasoning. Always take a logical approach to the answer. {helper_response}",
        "model_name": "llama3-8b-8192",
        "temperature": 0.4
    },
    "layer_agent_4": {
        "system_prompt": "You are an expert planner agent. Create a plan for how to answer the human's query. {helper_response}",
        "model_name": "mixtral-8x7b-32768",
        "temperature": 0.5
    },
}


def stream_response(messages: Iterable[ResponseChunk]):
    layer_outputs = {}
    for message in messages:
        if message['response_type'] == 'intermediate':
            layer = message['metadata']['layer']
            if layer not in layer_outputs:
                layer_outputs[layer] = []
            layer_outputs[layer].append(message['delta'])
        else:
            # Display accumulated layer outputs
            for layer, outputs in layer_outputs.items():
                st.write(f"Layer {layer}")
                cols = st.columns(len(outputs))
                for i, output in enumerate(outputs):
                    with cols[i]:
                        st.expander(label=f"Agent {i+1}", expanded=False).write(output)
            
            # Clear layer outputs for the next iteration
            layer_outputs = {}
            
            # Yield the main agent's output
            yield message['delta']

def set_moa_agent(
    main_model: str = default_config['main_model'],
    cycles: int = default_config['cycles'],
    layer_agent_config: dict[dict[str, any]] = copy.deepcopy(layer_agent_config_def),
    main_model_temperature: float = 0.1,
    override: bool = False
):
    if override or ("main_model" not in st.session_state):
        st.session_state.main_model = main_model
    else:
        if "main_model" not in st.session_state: st.session_state.main_model = main_model 

    if override or ("cycles" not in st.session_state):
        st.session_state.cycles = cycles
    else:
        if "cycles" not in st.session_state: st.session_state.cycles = cycles

    if override or ("layer_agent_config" not in st.session_state):
        st.session_state.layer_agent_config = layer_agent_config
    else:
        if "layer_agent_config" not in st.session_state: st.session_state.layer_agent_config = layer_agent_config

    if override or ("main_temp" not in st.session_state):
        st.session_state.main_temp = main_model_temperature
    else:
        if "main_temp" not in st.session_state: st.session_state.main_temp = main_model_temperature

    cls_ly_conf = copy.deepcopy(st.session_state.layer_agent_config)
    
    if override or ("moa_agent" not in st.session_state):
        st.session_state.moa_agent = MOAgent.from_config(
            main_model=st.session_state.main_model,
            cycles=st.session_state.cycles,
            layer_agent_config=cls_ly_conf,
            temperature=st.session_state.main_temp
        )

    del cls_ly_conf
    del layer_agent_config

st.set_page_config(
    page_title="Mixture-Of-Agents Powered by Groq",
    page_icon='static/favicon.ico',
        menu_items={
        'About': "## Groq Mixture-Of-Agents \n Powered by [Groq](https://groq.com)"
    },
    layout="wide"
)
valid_model_names = [
    'llama3-70b-8192',
    'llama3-8b-8192',
    'gemma-7b-it',
    'gemma2-9b-it',
    'mixtral-8x7b-32768'
]

st.markdown("<a href='https://groq.com'><img src='app/static/banner.png' width='500'></a>", unsafe_allow_html=True)
st.write("---")



# Initialize session state
if "messages" not in st.session_state:
    st.session_state.messages = []

set_moa_agent()

# Sidebar for configuration
with st.sidebar:
    # config_form = st.form("Agent Configuration", border=False)
    st.title("MOA Configuration")
    with st.form("Agent Configuration", border=False):
        if st.form_submit_button("Use Recommended Config"):
            try:
                set_moa_agent(
                    main_model=rec_config['main_model'],
                    cycles=rec_config['cycles'],
                    layer_agent_config=layer_agent_config_rec,
                    override=True
                )
                st.session_state.messages = []
                st.success("Configuration updated successfully!")
            except json.JSONDecodeError:
                st.error("Invalid JSON in Layer Agent Configuration. Please check your input.")
            except Exception as e:
                st.error(f"Error updating configuration: {str(e)}")
        # Main model selection
        new_main_model = st.selectbox(
            "Select Main Model",
            options=valid_model_names,
            index=valid_model_names.index(st.session_state.main_model)
        )

        # Cycles input
        new_cycles = st.number_input(
            "Number of Layers",
            min_value=1,
            max_value=10,
            value=st.session_state.cycles
        )

        # Main Model Temperature
        main_temperature = st.number_input(
            label="Main Model Temperature",
            value=0.1,
            min_value=0.0,
            max_value=1.0,
            step=0.1
        )

        # Layer agent configuration
        tooltip = "Agents in the layer agent configuration run in parallel _per cycle_. Each layer agent supports all initialization parameters of [Langchain's ChatGroq](https://api.python.langchain.com/en/latest/chat_models/langchain_groq.chat_models.ChatGroq.html) class as valid dictionary fields."
        st.markdown("Layer Agent Config", help=tooltip)
        new_layer_agent_config = st_ace(
            value=json.dumps(st.session_state.layer_agent_config, indent=2),
            language='json',
            placeholder="Layer Agent Configuration (JSON)",
            show_gutter=False,
            wrap=True,
            auto_update=True
        )

        if st.form_submit_button("Update Configuration"):
            try:
                new_layer_config = json.loads(new_layer_agent_config)
                set_moa_agent(
                    main_model=new_main_model,
                    cycles=new_cycles,
                    layer_agent_config=new_layer_config,
                    main_model_temperature=main_temperature,
                    override=True
                )
                st.session_state.messages = []
                st.success("Configuration updated successfully!")
            except json.JSONDecodeError:
                st.error("Invalid JSON in Layer Agent Configuration. Please check your input.")
            except Exception as e:
                st.error(f"Error updating configuration: {str(e)}")

    st.markdown("---")
    st.markdown("""
    ### Credits
    - MOA: [Together AI](https://www.together.ai/blog/together-moa)
    - LLMs: [Groq](https://groq.com/)
    - Paper: [arXiv:2406.04692](https://arxiv.org/abs/2406.04692)
    """)

# Main app layout
st.header("Mixture of Agents", anchor=False)
st.write("A demo of the Mixture of Agents architecture proposed by Together AI, Powered by Groq LLMs.")
st.image("./static/moa_groq.svg", caption="Mixture of Agents Workflow", width=1000)

# Display current configuration
with st.expander("Current MOA Configuration", expanded=False):
    st.markdown(f"**Main Model**: ``{st.session_state.main_model}``")
    st.markdown(f"**Main Model Temperature**: ``{st.session_state.main_temp:.1f}``")
    st.markdown(f"**Layers**: ``{st.session_state.cycles}``")
    st.markdown(f"**Layer Agents Config**:")
    new_layer_agent_config = st_ace(
        value=json.dumps(st.session_state.layer_agent_config, indent=2),
        language='json',
        placeholder="Layer Agent Configuration (JSON)",
        show_gutter=False,
        wrap=True,
        readonly=True,
        auto_update=True
    )

# Chat interface
for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.markdown(message["content"])

if query := st.chat_input("Ask a question"):
    st.session_state.messages.append({"role": "user", "content": query})
    with st.chat_message("user"):
        st.write(query)

    moa_agent: MOAgent = st.session_state.moa_agent
    with st.chat_message("assistant"):
        message_placeholder = st.empty()
        ast_mess = stream_response(moa_agent.chat(query, output_format='json'))
        response = st.write_stream(ast_mess)
    
    st.session_state.messages.append({"role": "assistant", "content": response})

Resources: skapadia3214-groq-moa