-
Notifications
You must be signed in to change notification settings - Fork 8
/
senti_debias.yaml
75 lines (66 loc) · 1.59 KB
/
senti_debias.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
_target_: newsreclib.models.fair_rec.senti_debias_module.SentiDebiasModule
# discriminator
discriminator:
_target_: newsreclib.models.fair_rec.senti_debias_module.Discriminator
input_dim: 300
hidden_dim: 256
output_dim: 3
# generator
generator:
_target_: newsreclib.models.fair_rec.senti_debias_module.Generator
# training strategy
late_fusion: False
# news encoder
dataset_attributes: ${data.dataset_attributes}
attributes2encode: ["title"]
use_plm: False
# text encoder
pretrained_embeddings_path: null
plm_model: null
frozen_layers: null
embed_dim: 300
num_heads: 15
query_dim: 200
dropout_probability: 0.2
# sentiment encoder
sentiment_encoder:
_target_: newsreclib.models.components.encoders.news.aspect.SentimentEncoder
num_sent_classes: 3
sent_embed_dim: 256
sent_output_dim: 300
# outputs
outputs:
train: ["preds", "targets", "cand_news_size"]
val: ["preds", "targets", "cand_news_size"]
test:
[
"preds",
"targets",
"cand_news_size",
"hist_news_size",
"target_categories",
"target_sentiments",
"hist_categories",
"hist_sentiments",
"user_ids",
"cand_news_ids",
]
# loss coefficients
alpha_coefficient: 0.15
beta_coefficient: 10
# evaluation
top_k_list: [5, 10]
num_categ_classes: 18
num_sent_classes: 3
save_recs: False
recs_fpath: "${paths.output_dir}/recommendations.json"
optimizer: null
optimizer_generator:
_target_: torch.optim.Adam
_partial_: True
lr: 0.00001
optimizer_discriminator:
_target_: torch.optim.Adam
_partial_: True
lr: 0.00002
scheduler: null