-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtrain.py
221 lines (190 loc) · 11.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import torch
import json
import os
import os.path
import math
import glob
import re
import time
from random import sample
import pytorch_lightning as pl
import random
from pytorch_lightning import Trainer, seed_everything
from utils.dataloader import get_data_loaders, get_current_task_data, make_loader
from test import test_model_seq2seq, generate_sample_prev_task, test_model_seq2seq_ADAPTER
from collections import defaultdict
from CL_learner import Seq2SeqToD
from argparse import ArgumentParser
def get_checkpoint(log_dir, index_to_load):
file = glob.glob(f"{log_dir}/*")
for f in file:
f_noprefix = f.replace(f"{log_dir}","")
num = [int(s) for s in re.findall(r'\d+', f_noprefix)]
if index_to_load in num:
version = os.listdir(f+"/lightning_logs")[0]
check_name = os.listdir(f+"/lightning_logs/"+ version+"/checkpoints/")[0]
# checkpoint_name = f.replace("[","\[").replace("]","\]").replace("\'","\\'")+"/lightning_logs/"+ version+"/checkpoints/"+check_name
checkpoint_name = f+"/lightning_logs/"+ version+"/checkpoints/"+check_name
return checkpoint_name
def train(hparams, *args):
if(hparams.CL == "ADAPTER"):
hparams.saving_dir = f"runs_{hparams.task_type}/{hparams.dataset_list}/{hparams.CL}_EPC_{hparams.n_epochs}_LR_{hparams.lr}_BOTL_{hparams.bottleneck_size}_PERM_{hparams.seed}_{hparams.model_checkpoint}"
else:
hparams.saving_dir = f"runs_{hparams.task_type}/{hparams.dataset_list}/{hparams.CL}_EM_{hparams.episodic_mem_size}_LAMOL_{hparams.percentage_LAM0L}_REG_{hparams.reg}_PERM_{hparams.seed}_{hparams.model_checkpoint}"
if(hparams.CL == "MULTI"):
hparams.multi = True
hparams.continual = False
else:
hparams.multi = False
hparams.continual = True
# train!
model = Seq2SeqToD(hparams)
train_loader, val_loader, dev_val_loader, (train_datasets, val_datasets, test_datasets) = get_data_loaders(hparams, model.tokenizer)
## make the permutation
if(hparams.continual):
seed_everything(hparams.seed)
keys = list(train_loader.keys())
random.shuffle(keys)
train_loader = {key: train_loader[key] for key in keys}
print(f"RUNNING WITH SEED {hparams.seed}")
for k,_ in train_loader.items():
print(k)
print()
task_seen_so_far = []
if(hparams.CL != "MULTI"): model.set_number_of_tasks(len(list(train_loader.keys())))
if(hparams.CL == "GEM"): model.set_up_gem()
if hparams.multi:
start = time.time()
trainer = Trainer(
default_root_dir=hparams.saving_dir,
accumulate_grad_batches=hparams.gradient_accumulation_steps,
gradient_clip_val=hparams.max_norm,
max_epochs=hparams.n_epochs,
callbacks=[pl.callbacks.EarlyStopping(monitor='val_loss',min_delta=0.00, patience=5,verbose=False, mode='min')],
gpus=[0],
)
trainer.fit(model, train_loader, val_loader)
end = time.time()
print ("Time elapsed:", end - start)
model.model.save_pretrained(f'{hparams.saving_dir}')
model.tokenizer.save_pretrained(f'{hparams.saving_dir}')
test_model_seq2seq(hparams,model.model,model.tokenizer,dev_val_loader,time=f"FINAL")
elif hparams.continual:
for task_num, (task_id, task_loader) in enumerate(train_loader.items()):
model.task_list_seen.append(task_id)
if(hparams.CL == "REPLAY"):
print(f"Memory Size {len(model.reply_memory)}")
task_loader = make_loader(hparams,train_datasets[task_id]+model.reply_memory,model.tokenizer)
if(hparams.CL == "LAMOL"):
if(current_task_to_load == None or task_num >= current_task_to_load):
number_of_sample = hparams.percentage_LAM0L
aug_current_task = get_current_task_data(hparams,train_datasets[task_id],task_id,number_of_sample)
print(f"Current {task_id} AUG: {len(aug_current_task)}")
aug_data_prev_task = []
for task_id_so_far in task_seen_so_far:
## sample data by the LM, priming with [task_id] e.g., [hotel]
temp = generate_sample_prev_task(hparams,model.model,model.tokenizer,train_datasets,task_id_so_far,number_of_sample,time=f"{task_num}_{task_id}")
print(f"Current {task_id_so_far} AUG: {len(temp)}")
aug_data_prev_task += temp
## this task_loader include data generated by the same model
task_loader = make_loader(hparams,train_datasets[task_id]+aug_current_task+aug_data_prev_task,model.tokenizer)
## CORE
print()
print(f"TASK:{task_id}")
start = time.time()
trainer = Trainer(
default_root_dir=f'{hparams.saving_dir}/{task_num}_{task_id}',
accumulate_grad_batches=hparams.gradient_accumulation_steps,
gradient_clip_val=hparams.max_norm,
max_epochs=hparams.n_epochs,
callbacks=[pl.callbacks.EarlyStopping(monitor='val_loss', min_delta=0.00, patience=5, verbose=True, mode='min')],
gpus=[0],
#limit_train_batches=100,
)
trainer.fit(model, task_loader, val_loader[task_id])
end = time.time()
print ("Time elapsed:", end - start)
#load best model
# this model are better if the are runned to they epoch number
if(hparams.CL != "LAMOL" and hparams.CL != "EWC"):
# checkpoint = torch.load(trainer.checkpoint_callback.best_model_path) use this if the next doesn't work
checkpoint = torch.load(trainer.checkpoint_callback.best_model_path, map_location=lambda storage, loc: storage)
print("load from:",trainer.checkpoint_callback.best_model_path)
checkpoint['state_dict'] = { k.replace('model.', ''): v for k, v in checkpoint['state_dict'].items() }
model.model.load_state_dict(checkpoint['state_dict'])
# testing the model by generating the answers
if(hparams.test_every_step):
if(hparams.CL == "ADAPTER"):
test_model_seq2seq_ADAPTER(hparams,model,model.tokenizer,dev_val_loader,test_datasets,time=f"{task_num}_{task_id}")
else:
test_model_seq2seq(hparams,model.model,model.tokenizer,dev_val_loader,time=f"{task_num}_{task_id}")
## END CORE
model.first_task = False
## save some training data into the episodic mem
if hparams.CL == "AGEM":
for idx_b, b in enumerate(task_loader):
model.episodic_mem["all"].append(b)
if idx_b==hparams.episodic_mem_size: break
elif hparams.CL == "REPLAY":
# in percentage
model.reply_memory += sample(train_datasets[task_id],min(len(train_datasets[task_id]),hparams.episodic_mem_size))# sample(train_datasets[task_id],min(len(train_datasets[task_id]),int(hparams.episodic_mem_size*len(train_datasets[task_id])))
else: ## save example per task
for idx_b, b in enumerate(task_loader):
model.episodic_mem[task_id].append(b)
if idx_b==hparams.episodic_mem_size: break
##### Compute Fisher info Matrix for EWC
if hparams.CL == "EWC" or hparams.CL =="L2":
model.model.cpu()
for n, p in model.model.named_parameters():
model.optpar[n] = torch.Tensor(p.cpu().data)
model.fisher[n] = torch.zeros(p.size()) #torch.Tensor(p.cpu().data).zero_()
if hparams.CL == "EWC":
for _, batch in enumerate(model.episodic_mem[task_id]):
model.model.zero_grad()
(loss), *_ = model.model(input_ids=batch["encoder_input"],
attention_mask=batch["attention_mask"],
labels=batch["decoder_output"])
loss.backward()
for n, p in model.model.named_parameters():
if p.grad is not None:
model.fisher[n].data += p.grad.data ** 2
for name_f,_ in model.fisher.items():
model.fisher[name_f] /= len(model.episodic_mem[task_id]) #*hparams.train_batch_size
model.model.zero_grad()
task_seen_so_far.append(task_id)
model.model.save_pretrained(f'{hparams.saving_dir}')
model.tokenizer.save_pretrained(f'{hparams.saving_dir}')
if(hparams.CL == "ADAPTER"):
test_model_seq2seq_ADAPTER(hparams,model,model.tokenizer,dev_val_loader,test_datasets,time=f"FINAL")
else:
test_model_seq2seq(hparams,model.model,model.tokenizer,dev_val_loader,time=f"FINAL")
if __name__ == '__main__':
parser = ArgumentParser()
parser.add_argument('--model_checkpoint', type=str, default="gpt2")
parser.add_argument("--train_batch_size", type=int, default=1, help="Batch size for training")
parser.add_argument("--valid_batch_size", type=int, default=1, help="Batch size for validation")
parser.add_argument("--test_batch_size", type=int, default=1, help="Batch size for validation")
parser.add_argument("--gradient_accumulation_steps", type=int, default=1, help="Accumulate gradients on several steps")
parser.add_argument("--dataset_list", type=str, default="SGD,TM19,TM20,MWOZ", help="Path for saving")
parser.add_argument("--max_history", type=int, default=5, help="max number of turns in the dialogue")
parser.add_argument("--max_norm", type=float, default=1.0, help="Clipping gradient norm")
parser.add_argument("--setting", type=str, default="single", help="Path for saving")
parser.add_argument("--verbose", action='store_true', help="continual baseline")
parser.add_argument("--test_every_step", action='store_true', help="continual baseline")
parser.add_argument("--length", type=int, default=50, help="lenght of the generation")
parser.add_argument("--debug", action='store_true', help="continual baseline")
parser.add_argument("--n_epochs", type=int, default=5, help="Number of training epochs")
parser.add_argument("--bottleneck_size", type=int, default=100)
parser.add_argument("--number_of_adpt", type=int, default=40, help="number of adapterss")
parser.add_argument("--lr", type=float, default=6.25e-5, help="Learning rate")
parser.add_argument("--percentage_LAM0L", type=float, default=0.2, help="LAMOL percentage of augmented data used")
parser.add_argument("--reg", type=float, default=0.01, help="CL regularization term")
parser.add_argument("--episodic_mem_size", type=int, default=100, help="number of batch/sample put in the episodic memory")
# options=["E2E","DST","NLG","INTENT"]
parser.add_argument('--task_type', type=str, default="NLG")
# options=["VANILLA"]
parser.add_argument('--CL', type=str, default="MULTI")
# options=[1,2,3,4,5]
parser.add_argument('--seed', default=1, type=int)
hyperparams = parser.parse_args()
train(hyperparams)