-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtrain_score.py
393 lines (323 loc) · 16.9 KB
/
train_score.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
import argparse
import time
import torch
import torch.optim
import torch.optim as optim
import torch.nn as nn
from sklearn.metrics import f1_score
from torchtext import data as torchtext_data
from models.heads import Scorer
from transformers import BertTokenizer, AdamW
def train(model, iterator, optimizer, criterion, binary):
epoch_loss = 0
epoch_acc = 0
model.train()
predicted_list = []
target_list = []
for batch in iterator:
optimizer.zero_grad()
predictions = model(batch.text).squeeze(1)
loss = criterion(predictions, batch.label)
if(binary):
predicted_list.append(torch.round(torch.sigmoid(predictions)).tolist())
acc = binary_accuracy(predictions, batch.label)
else:
predicted_list.append(predictions.argmax(dim=1).tolist())
acc = accuracy(predictions, batch.label)
target_list.append(batch.label.tolist())
loss.backward()
optimizer.step()
epoch_loss += loss.item()
epoch_acc += acc.item()
if(binary):
F1 = f1_score(sum(target_list,[]), sum(predicted_list,[]), average='binary')
else:
F1 = f1_score(sum(target_list,[]), sum(predicted_list,[]), average='micro')
return epoch_loss / len(iterator), epoch_acc / len(iterator), F1
def evaluate(model, iterator, criterion, binary):
epoch_loss = 0
epoch_acc = 0
model.eval()
predicted_list = []
target_list = []
with torch.no_grad():
for batch in iterator:
predictions = model(batch.text).squeeze(1)
loss = criterion(predictions, batch.label)
if(binary):
acc = binary_accuracy(predictions, batch.label)
predicted_list.append(torch.round(torch.sigmoid(predictions)).tolist())
else:
acc = accuracy(predictions, batch.label)
predicted_list.append(predictions.argmax(dim=1).tolist())
target_list.append(batch.label.tolist())
epoch_loss += loss.item()
epoch_acc += acc.item()
if(binary):
F1 = f1_score(sum(target_list,[]), sum(predicted_list,[]), average='binary')
else:
F1 = f1_score(sum(target_list,[]), sum(predicted_list,[]), average='micro')
return epoch_loss / len(iterator), epoch_acc / len(iterator), F1
def epoch_time(start_time, end_time):
elapsed_time = end_time - start_time
elapsed_mins = int(elapsed_time / 60)
elapsed_secs = int(elapsed_time - (elapsed_mins * 60))
return elapsed_mins, elapsed_secs
def binary_accuracy(preds, y):
"""
Returns accuracy per batch, i.e. if you get 8/10 right, this returns 0.8, NOT 8
"""
#round predictions to the closest integer
rounded_preds = torch.round(torch.sigmoid(preds))
correct = (rounded_preds == y).float() #convert into float for division
acc = correct.sum() / len(correct)
return acc
def accuracy(preds, y):
"""
Returns accuracy per batch, i.e. if you get 8/10 right, this returns 0.8, NOT 8
"""
pred_t = preds.argmax(dim=1, keepdim=True)
return pred_t.eq(y.view_as(pred_t)).float().mean()
def train_scorer(
dataset, dataset_fp=None, pretrained_model="medium",
epochs=10, batch_size=64, log_interval=10,
save_model=False, cached=False, no_cuda=False):
global device
device = "cuda" if torch.cuda.is_available() and not no_cuda else "cpu"
print("Preprocessing {} dataset...".format(dataset))
start = time.time()
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
max_input_length = tokenizer.max_model_input_sizes['bert-base-uncased']
init_token_idx = tokenizer.cls_token_id
eos_token_idx = tokenizer.sep_token_id
pad_token_idx = tokenizer.pad_token_id
unk_token_idx = tokenizer.unk_token_id
def tokenize_and_cut(sentence):
tokens = tokenizer.tokenize(sentence)
tokens = tokens[:max_input_length-2]
return tokens
TEXT = torchtext_data.Field(batch_first = True,
use_vocab = False,
tokenize = tokenize_and_cut,
preprocessing = tokenizer.convert_tokens_to_ids,
init_token = init_token_idx,
eos_token = eos_token_idx,
pad_token = pad_token_idx,
unk_token = unk_token_idx)
if "TC_" in dataset:
if(dataset == "TC_AG_NEWS"):
fil = '.data/ag_news_csv'
idx2class = ["World","Sports","Business","Sci/Tech"]
elif(dataset == "TC_SogouNews"):
fil = '.data/sogou_news_csv'
idx2class = ["Sports","Finance","Entertainment","Automobile","Technology"]
elif(dataset == "TC_DBpedia"):
fil = '.data/dbpedia_csv'
idx2class = ["Company","EducationalInstitution","Artist","Athlete",
"OfficeHolder","MeanOfTransportation","Building",
"NaturalPlace","Village","Animal","Plant",
"Album","Film","WrittenWork"]
elif(dataset == "TC_YahooAnswers"):
fil = '.data/yahoo_answers_csv'
idx2class = ["Society & Culture","Science & Mathematics",
"Health","Education & Reference","Computers & Internet",
"Sports","Business & Finance","Entertainment & Music",
"Family & Relationships","Politics & Government"]
LABEL = torchtext_data.LabelField(dtype = torch.long)
train_val_fields = [
('label', LABEL), # process it as label
('none', None), # process it as label
('text', TEXT) # process it as text
]
test_data, train_data = torchtext_data.TabularDataset.splits(path=fil,
format='csv',
train='train.csv',
validation='test.csv',
fields=train_val_fields,
skip_header=False)
print(f"Number of training examples: {len(train_data)}")
print(f"Number of testing examples: {len(test_data)}")
BATCH_SIZE = args.batch_size
LABEL.build_vocab(train_data)
train_iterator, test_iterator = torchtext_data.BucketIterator.splits(
(train_data, test_data),
batch_size = BATCH_SIZE,
device = device,
sort_key=lambda x: len(x.text))
output_dim = len(idx2class)
elif dataset == "sentiment":
idx2class = ["neg","pos"]
class2idx = {c: i for i, c in enumerate(idx2class)}
LABEL = torchtext_data.LabelField(dtype = torch.float)
train_data, test_data = torchtext_data.IMDB.splits(TEXT, LABEL)
print(f"Number of training examples: {len(train_data)}")
print(f"Number of testing examples: {len(test_data)}")
BATCH_SIZE = args.batch_size
LABEL.build_vocab(train_data)
train_iterator, test_iterator = torchtext_data.BucketIterator.splits(
(train_data, test_data),
batch_size = BATCH_SIZE,
device = device)
idx2class = ["neg","pos"]
output_dim = len(idx2class)
elif dataset == "AmazonReviewFull":
idx2class = ["1","2","3","4","5"]
class2idx = {c: i for i, c in enumerate(idx2class)}
fil = ".data/amazon_review_full_csv"
LABEL = torchtext_data.LabelField(dtype = torch.long)
train_val_fields = [
('label', LABEL), # process it as label
('none', None), # process it as label
('text', TEXT) # process it as text
]
test_data, train_data = torchtext_data.TabularDataset.splits(path=fil,
format='csv',
train='train.csv',
validation='test.csv',
fields=train_val_fields,
skip_header=False)
print(f"Number of training examples: {len(train_data)}")
print(f"Number of testing examples: {len(test_data)}")
BATCH_SIZE = args.batch_size
LABEL.build_vocab(train_data)
train_iterator, test_iterator = torchtext_data.BucketIterator.splits(
(train_data, test_data),
batch_size = BATCH_SIZE,
device = device,
sort_key=lambda x: len(x.text))
output_dim = len(idx2class)
elif dataset == "daily_dialogue_emotion":
LABEL = torchtext_data.LabelField(dtype = torch.long)
train_val_fields = [
('text', TEXT), # process it as text
('label', LABEL) # process it as label
]
train_data, test_data = torchtext_data.TabularDataset.splits(path='data/dailydialog',
format='tsv',
train='train.tsv',
validation='test.tsv',
fields=train_val_fields,
skip_header=True)
print(f"Number of training examples: {len(train_data)}")
print(f"Number of testing examples: {len(test_data)}")
BATCH_SIZE = args.batch_size
LABEL.build_vocab(train_data)
train_iterator, test_iterator = torchtext_data.BucketIterator.splits(
(train_data, test_data),
batch_size = BATCH_SIZE,
device = device,
sort_key=lambda x: len(x.text))
idx2class = ["no_emotion", "anger", "disgust", "fear", "happiness", "sadness", "surprise"]
output_dim = len(idx2class)
elif dataset == "hate_speech":
# https://github.com/t-davidson
LABEL = torchtext_data.LabelField(dtype = torch.long)
train_val_fields = [
('text', TEXT), # process it as text
('label', LABEL) # process it as label
]
train_data, test_data = torchtext_data.TabularDataset.splits(path='data/hate_speech',
format='tsv',
train='train.tsv',
validation='test.tsv',
fields=train_val_fields,
skip_header=True)
print(f"Number of training examples: {len(train_data)}")
print(f"Number of testing examples: {len(test_data)}")
BATCH_SIZE = args.batch_size
LABEL.build_vocab(train_data)
train_iterator, test_iterator = torchtext_data.BucketIterator.splits(
(train_data, test_data),
batch_size = BATCH_SIZE,
device = device,
sort_key=lambda x: len(x.text))
# 0 - hate speech
# 1 - offensive language
# 2 - neither
idx2class = ["hate", "offensive","neither"]
output_dim = len(idx2class)
elif dataset == "wiki_detox":
# https://github.com/t-davidson
LABEL = torchtext_data.LabelField(dtype = torch.float)
train_val_fields = [
('text', TEXT), # process it as text
('label', LABEL) # process it as label
]
train_data, test_data = torchtext_data.TabularDataset.splits(path='data/wiki_detox',
format='tsv',
train='train.tsv',
validation='test.tsv',
fields=train_val_fields,
skip_header=True)
print(f"Number of training examples: {len(train_data)}")
print(f"Number of testing examples: {len(test_data)}")
BATCH_SIZE = args.batch_size
LABEL.build_vocab(train_data)
train_iterator, test_iterator = torchtext_data.BucketIterator.splits(
(train_data, test_data),
batch_size = BATCH_SIZE,
device = device,
sort_key=lambda x: len(x.text))
# 0 - non attack
# 1 - attack
idx2class = ["non_attack","attack"]
output_dim = len(idx2class)
end = time.time()
model = Scorer(hidden_dim=256,
output_dim=1 if output_dim==2 else output_dim,
n_layers=2,
bidirectional=True,
dropout=0.25).to(device)
for name, param in model.named_parameters():
if name.startswith('bert'):
param.requires_grad = False
optimizer = optim.Adam(model.parameters())
if output_dim==2:
criterion = nn.BCEWithLogitsLoss().to(device)
else:
criterion = torch.nn.CrossEntropyLoss().to(device)
best_valid_loss = float('inf')
print("Starting Training")
for epoch in range(epochs):
start_time = time.time()
train_loss, train_acc, train_F1 = train(model, train_iterator, optimizer, criterion,True if output_dim==2 else False)
valid_loss, valid_acc, valid_F1 = evaluate(model, test_iterator, criterion,True if output_dim==2 else False)
end_time = time.time()
epoch_mins, epoch_secs = epoch_time(start_time, end_time)
if valid_loss < best_valid_loss:
best_valid_loss = valid_loss
torch.save(model.state_dict(), f'models/scorers/{args.dataset}.pt')
print(f'Epoch: {epoch+1:02} | Epoch Time: {epoch_mins}m {epoch_secs}s')
print(f'\tTrain Loss: {train_loss:.3f} | Train Acc: {train_acc*100:.2f}% |Train F1: {train_F1*100:.2f}% ')
print(f'\t Val. Loss: {valid_loss:.3f} | Val. Acc: {valid_acc*100:.2f}% | Val. F1: {valid_F1*100:.2f}% ')
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Train a discriminator on top of GPT-2 representations")
parser.add_argument("--dataset", type=str, default="sentiment",
choices=("sentiment", "clickbait", "toxic", "hate_speech","wiki_detox",
"daily_dialogue_topics","daily_dialogue_act",
"daily_dialogue_emotion","generic","emocap","NLI","MNLI","DNLI",
"empathetic_dialogue","TC_AG_NEWS","TC_SogouNews","TC_DBpedia","TC_YahooAnswers",
"AmazonReviewFull"),
help="dataset to train the discriminator on."
"In case of generic, the dataset is expected"
"to be a TSBV file with structure: class \\t text")
parser.add_argument("--dataset_fp", type=str, default="",
help="File path of the dataset to use. "
"Needed only in case of generic datadset")
parser.add_argument("--pretrained_model", type=str, default="medium",
help="Pretrained model to use as encoder")
parser.add_argument("--epochs", type=int, default=5, metavar="N",
help="Number of training epochs")
parser.add_argument("--batch_size", type=int, default=64, metavar="N",
help="input batch size for training (default: 64)")
parser.add_argument("--log_interval", type=int, default=10, metavar="N",
help="how many batches to wait before logging training status")
parser.add_argument("--save_model", action="store_true",
help="whether to save the model")
parser.add_argument("--cached", action="store_true",
help="whether to cache the input representations")
parser.add_argument("--no_cuda", action="store_true",
help="use to turn off cuda")
args = parser.parse_args()
train_scorer(**(vars(args)))