forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_cuda_trace.py
127 lines (93 loc) · 4.12 KB
/
test_cuda_trace.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
# Owner(s): ["module: cuda"]
import sys
import unittest
import unittest.mock
import torch
import torch.cuda._gpu_trace as gpu_trace
from torch.testing._internal.common_utils import NoTest, run_tests, TEST_CUDA, TestCase
# NOTE: Each test needs to be run in a brand new process, to reset the registered hooks
# and make sure the CUDA streams are initialized for each test that uses them.
if not TEST_CUDA:
print("CUDA not available, skipping tests", file=sys.stderr)
TestCase = NoTest # noqa: F811
@torch.testing._internal.common_utils.markDynamoStrictTest
class TestCudaTrace(TestCase):
def setUp(self):
torch._C._activate_gpu_trace()
self.mock = unittest.mock.MagicMock()
def test_event_creation_callback(self):
gpu_trace.register_callback_for_event_creation(self.mock)
event = torch.cuda.Event()
event.record()
self.mock.assert_called_once_with(event._as_parameter_.value)
def test_event_deletion_callback(self):
gpu_trace.register_callback_for_event_deletion(self.mock)
event = torch.cuda.Event()
event.record()
event_id = event._as_parameter_.value
del event
self.mock.assert_called_once_with(event_id)
def test_event_record_callback(self):
gpu_trace.register_callback_for_event_record(self.mock)
event = torch.cuda.Event()
event.record()
self.mock.assert_called_once_with(
event._as_parameter_.value, torch.cuda.default_stream().cuda_stream
)
def test_event_wait_callback(self):
gpu_trace.register_callback_for_event_wait(self.mock)
event = torch.cuda.Event()
event.record()
event.wait()
self.mock.assert_called_once_with(
event._as_parameter_.value, torch.cuda.default_stream().cuda_stream
)
def test_memory_allocation_callback(self):
gpu_trace.register_callback_for_memory_allocation(self.mock)
tensor = torch.empty(10, 4, device="cuda")
self.mock.assert_called_once_with(tensor.data_ptr())
def test_memory_deallocation_callback(self):
gpu_trace.register_callback_for_memory_deallocation(self.mock)
tensor = torch.empty(3, 8, device="cuda")
data_ptr = tensor.data_ptr()
del tensor
self.mock.assert_called_once_with(data_ptr)
def test_stream_creation_callback(self):
gpu_trace.register_callback_for_stream_creation(self.mock)
# see Note [HIP Lazy Streams]
if torch.version.hip:
user_stream = torch.cuda.Stream()
with torch.cuda.stream(user_stream):
tensor = torch.ones(5, device="cuda")
else:
torch.cuda.Stream()
self.mock.assert_called()
def test_device_synchronization_callback(self):
gpu_trace.register_callback_for_device_synchronization(self.mock)
torch.cuda.synchronize()
self.mock.assert_called()
def test_stream_synchronization_callback(self):
gpu_trace.register_callback_for_stream_synchronization(self.mock)
stream = torch.cuda.Stream()
stream.synchronize()
self.mock.assert_called_once_with(stream.cuda_stream)
def test_event_synchronization_callback(self):
gpu_trace.register_callback_for_event_synchronization(self.mock)
event = torch.cuda.Event()
event.record()
event.synchronize()
self.mock.assert_called_once_with(event._as_parameter_.value)
def test_memcpy_synchronization(self):
gpu_trace.register_callback_for_stream_synchronization(self.mock)
tensor = torch.rand(5, device="cuda")
tensor.nonzero()
self.mock.assert_called_once_with(torch.cuda.default_stream().cuda_stream)
def test_all_trace_callbacks_called(self):
other = unittest.mock.MagicMock()
gpu_trace.register_callback_for_memory_allocation(self.mock)
gpu_trace.register_callback_for_memory_allocation(other)
tensor = torch.empty(10, 4, device="cuda")
self.mock.assert_called_once_with(tensor.data_ptr())
other.assert_called_once_with(tensor.data_ptr())
if __name__ == "__main__":
run_tests()