forked from google/lyra
-
Notifications
You must be signed in to change notification settings - Fork 0
/
exported_layers_test.h
110 lines (94 loc) · 4.08 KB
/
exported_layers_test.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
/*
* Copyright 2021 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef LYRA_CODEC_EXPORTED_LAYERS_TEST_H_
#define LYRA_CODEC_EXPORTED_LAYERS_TEST_H_
#include <algorithm>
#include <string>
#include <vector>
// Placeholder for get runfiles header.
#include "absl/random/random.h"
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "include/ghc/filesystem.hpp"
#include "layer_wrappers_lib.h"
#include "lyra_types.h"
#include "sparse_matmul/sparse_matmul.h"
namespace chromemedia {
namespace codec {
template <typename LayerTypes>
class ExportedLayersTest : public testing::Test {
protected:
ExportedLayersTest()
: model_path_(ghc::filesystem::current_path() / "wavegru"),
params_(LayerTypes::Params(model_path_.string())),
spin_barrier_(1) {}
std::vector<float> GenerateRandomInput(const int size,
const int exponent_bits) {
std::vector<float> input(size);
const float scale = static_cast<float>(1 << exponent_bits);
for (auto& element : input) {
// Note: the biggest source of error comes from clipping, so we keep the
// input range small to avoid it.
element = absl::Uniform<float>(gen_, -0.01, 0.01) * scale;
}
return input;
}
const ghc::filesystem::path model_path_;
LayerParams params_;
csrblocksparse::SpinBarrier spin_barrier_;
absl::BitGen gen_;
};
TYPED_TEST_SUITE_P(ExportedLayersTest);
TYPED_TEST_P(ExportedLayersTest, FixedPointResultMatchesFloat) {
using FloatLayerType = typename TypeParam::FloatLayerType;
using FixedLayerType = typename TypeParam::FixedLayerType;
using FixedInputType = typename TypeParam::FixedLayerType::Input;
using FixedOutputType = typename TypeParam::FixedLayerType::Output;
// Run the float layer.
auto float_layer = FloatLayerType::Create(this->params_);
std::vector<float> input_float =
this->GenerateRandomInput(float_layer->InputViewToUpdate().rows() *
float_layer->InputViewToUpdate().cols(),
FixedInputType::kExponentBits);
ASSERT_NE(float_layer, nullptr);
const int output_rows = float_layer->rows();
const int output_cols = this->params_.length;
std::vector<float> output_float(output_rows * output_cols);
std::copy(input_float.begin(), input_float.end(),
float_layer->InputViewToUpdate().data());
float_layer->Run(0, &this->spin_barrier_,
csrblocksparse::MutableVectorView<float>(
output_float.data(), output_rows, output_cols));
// Run again using the fixed-point layer.
auto fixed_layer = FixedLayerType::Create(this->params_);
ASSERT_NE(fixed_layer, nullptr);
std::transform(input_float.begin(), input_float.end(),
fixed_layer->InputViewToUpdate().data(),
[](float x) { return FixedInputType(x); });
std::vector<FixedOutputType> output_fixed(output_rows * output_cols);
fixed_layer->Run(0, &this->spin_barrier_,
csrblocksparse::MutableVectorView<FixedOutputType>(
output_fixed.data(), output_rows, output_cols));
// Compare, with a tolerance adaptive to the precision of the fixed-point
// representation.
const float tolerance = (1 << FixedOutputType::kExponentBits) * 5e-4f;
EXPECT_THAT(std::vector<float>(output_fixed.begin(), output_fixed.end()),
testing::Pointwise(testing::FloatNear(tolerance), output_float));
}
REGISTER_TYPED_TEST_SUITE_P(ExportedLayersTest, FixedPointResultMatchesFloat);
} // namespace codec
} // namespace chromemedia
#endif // LYRA_CODEC_EXPORTED_LAYERS_TEST_H_