Releases: allegroai/clearml
Releases · allegroai/clearml
PyPI v0.13.3
Features and Bug Fixes
- Add binding for
tensorboard.summarywriter.addscalars
- Add
Logger.tensorboard_single_series_per_graph()
configuration option to allow per-series TensorBoard-like graphs - Add docker image interface using
Task.set_base_docker()
andTask.get_base_docker()
- Use standard OS environment variables to obtain default credentials for:
- AWS:
AWS_ACCESS_KEY_ID
,AWS_SECRET_ACCESS_KEY
andAWS_DEFAULT_REGION
- Azure:
AZURE_STORAGE_ACCOUNT
andAZURE_STORAGE_KEY
- Google:
GOOGLE_APPLICATION_CREDENTIALS
- AWS:
- Add simple dictionary task parameters interface using
Task.get_parameters_as_dict()
andTask.set_parameters_as_dict()
allowing getting and setting parameters for task instances obtained usingTask.get_task()
- Make sure
Task.connect()
always returns the connected instance passed to it - Prefer
tensorflow_gpu
overtensorflow
when inspecting installed packages and recording experiment dependencies - Remove title/series naming restrictions (allow
$
and.
) when reporting metrics - Fix incorrect printouts in initialization wizard and upgrade notifications
- Fix debug images URL for uploaded files with
%
in their name
Breaking Changes
- Rename
trains.debugging.apply_args()
totrains.debugging.apply_logging_args()
PyPI v0.13.2
Features and Bug Fixes
- Allow reporting a pre-uploaded image url in
Logger.report_image()
using theurl
parameter - Add support for git repositories without ".git" suffix (e.g. Azure Repos)
- Improve conda support
- Improve hyper-parameters argparser integration
- Fix
savefig()
patching inmatplotlib
binding - Fix logs, events and jupyter flushing on exit
PyPI v0.13.1
Features and Bug Fixes
- Add support for
pyplot.savefig
andpylab.savefig
in matplotlib binding - Add support for SageMaker
- Improve configuration wizard
- Try to make sure tensorboard is available when using torch
- Do not store keras model network design if it cannot be serialized #72
- Fix matplotlib binding support
PyPI v0.13.0
Features and Bug Fixes
- Add support for trains-server v0.13.0
- Add support for nested (non-main) tasks
- Add warning when automatic argument parser binding cannot be turned off
- Add
Task.upload_artifact()
support for external URLs (pre-uploaded) - Add support for special characters in hyper-parameter keys (white-spaces,
.
and$
) #69 - Add support for PyTorch
.pt
model files - Calculate data-audit artifact uniqueness by user-criteria #45
- Use an environment variable for setting a default docker image #58
- Improve
trains-init
configuration wizard - Update examples for new joblib versions
- Update jupyter example to TensorFlow 2
- Fix task clone to copy only input artifacts
- Fix matplotlib import binding when using
Agg
backend - Fix
ProxyDictPreWrite
andProxyDictPostWrite
so they can be pickled correctly #72 - Fix requests issue in Python 2.7 that can cause a deadlock when importing netrc
- Fix argparser binding sub-parser and type casting support #74
- Fix argparser binding python 2.7 unicode handling
- Fix unsynced connected hyper parameters overridden during remote execution
PyPI v0.12.2
Features and Bug Fixes
- Add
default_output_uri
feature #57 - Improve
trains-init
configuration wizard - Improve argparser binding
- Fix artifact support in data pipeline #63
- Fix threading issue while querying multiple experiments #64
- Fix uploading large files over slow HTTP connections
- Fix support for Git versions < 2
Breaking Changes
- Do not reuse an experiment with artifacts
PyPI v0.12.1
Features and Bug Fixes
- Add
Task.connect_configuration()
, connect your configuration file (or configuration dictionary including nesting support). See example. - Add
Task.connect_label_enumeration()
, store model detection classes together with the model & experiment - Edit & override configuration file (or dictionary) content when executing with trains-agent
Task.connect()
automatically supports nested dictionaries (e.g.param/nested/key
) , including overriding values when running with trains-agent. See example.- Add
Artifact.get()
, download & load an artifact. - Add
Task.get_tasks()
, retrieve previous experiments, get metrics, rename etc. - Improve Windows support
- Improve Minio support
- Fix Python2 support
- Fix Issue #56
PyPI v0.12.0
Features and Bug Fixes
- TRAINS Agent support (Full DevOps support)
- Add AutoML and orchestration examples
Supports TRAINS-server v0.12 or above - Add Logger x/y/z axis title for: report_surface / report_confusion_matrix / report_scatter3d / report_scatter2d / report_histogram
- Add support for TensorFlow 2.0
- Embed pyhocon into package
- Fix artifacts support on Windows
- Fix example code Windows support
PyPI v0.11.3
Features and Bug Fixes
- Resource-Monitor will only monitor active GPU devices
based on environment variables: NVIDIA_VISIBLE_DEVICES or CUDA_VISIBLE_DEVICES - Fix issue #48
PyPI v0.11.2
Features and Bug Fixes
- Fix Python 2.7 support
- Improve sample code Windows support
PyPI v0.11.1
Features and Bug Fixes
- GPU Monitoring is now embedded into trains (removed gpustat dependency)
- Add initial support for Tensorflow v2.0 (tested with v2.0.0rc1)
- Add artifact upload retry on network errors (default: 3)
- Suppress urllib3 retry warnings
- Fix Matplotlib support with Agg backend (multiple plot windows caused repeated graphs to be sent)
- Fix support for tuples in hyper-parameters
- Fix multi processing issues with different task types