forked from borglab/gtsam
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Pose2SLAMExample_lago.cpp
64 lines (52 loc) · 1.97 KB
/
Pose2SLAMExample_lago.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file Pose2SLAMExample_lago.cpp
* @brief A 2D Pose SLAM example that reads input from g2o, and solve the Pose2 problem
* using LAGO (Linear Approximation for Graph Optimization). See class lago.h
* Output is written on a file, in g2o format
* Syntax for the script is ./Pose2SLAMExample_lago input.g2o output.g2o
* @date May 15, 2014
* @author Luca Carlone
*/
#include <gtsam/slam/lago.h>
#include <gtsam/slam/dataset.h>
#include <gtsam/geometry/Pose2.h>
#include <fstream>
using namespace std;
using namespace gtsam;
int main(const int argc, const char *argv[]) {
// Read graph from file
string g2oFile;
if (argc < 2)
g2oFile = findExampleDataFile("noisyToyGraph.txt");
else
g2oFile = argv[1];
NonlinearFactorGraph::shared_ptr graph;
Values::shared_ptr initial;
boost::tie(graph, initial) = readG2o(g2oFile);
// Add prior on the pose having index (key) = 0
auto priorModel = noiseModel::Diagonal::Variances(Vector3(1e-6, 1e-6, 1e-8));
graph->addPrior(0, Pose2(), priorModel);
graph->print();
std::cout << "Computing LAGO estimate" << std::endl;
Values estimateLago = lago::initialize(*graph);
std::cout << "done!" << std::endl;
if (argc < 3) {
estimateLago.print("estimateLago");
} else {
const string outputFile = argv[2];
std::cout << "Writing results to file: " << outputFile << std::endl;
NonlinearFactorGraph::shared_ptr graphNoKernel;
Values::shared_ptr initial2;
boost::tie(graphNoKernel, initial2) = readG2o(g2oFile);
writeG2o(*graphNoKernel, estimateLago, outputFile);
std::cout << "done! " << std::endl;
}
return 0;
}