-
Notifications
You must be signed in to change notification settings - Fork 13
/
asr.py
154 lines (133 loc) · 5.09 KB
/
asr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import os
import sys
import numpy as np
import gym
from gym import wrappers
import mujoco_py
import pybullet_envs
# hyper parameters
class Hp():
def __init__(self):
self.main_loop_size = 100
self.horizon = 1000
self.step_size = 0.015
self.n_directions = 60
self.b = 20
assert self.b<=self.n_directions, "b must be <= n_directions"
self.noise = 0.025
self.seed = 1
''' chose your favourite '''
#self.env_name = 'Reacher-v1'
#self.env_name = 'Pendulum-v0'
#self.env_name = 'HalfCheetahBulletEnv-v0'
#self.env_name = 'Hopper-v1'#'HopperBulletEnv-v0'
self.env_name = 'Ant-v1'#'AntBulletEnv-v0'#
#self.env_name = 'HalfCheetah-v1'
#self.env_name = 'Swimmer-v1'
#self.env_name = 'Humanoid-v1'
# observation filter
class Normalizer():
def __init__(self, num_inputs):
self.n = np.zeros(num_inputs)
self.mean = np.zeros(num_inputs)
self.mean_diff = np.zeros(num_inputs)
self.var = np.zeros(num_inputs)
def observe(self, x):
self.n += 1.
last_mean = self.mean.copy()
self.mean += (x-self.mean)/self.n
self.mean_diff += (x-last_mean)*(x-self.mean)
self.var = (self.mean_diff/self.n).clip(min=1e-2)
def normalize(self, inputs):
obs_mean = self.mean
obs_std = np.sqrt(self.var)
return (inputs-obs_mean)/obs_std
# linear policy
class Policy():
def __init__(self, input_size, output_size):
self.theta = np.zeros((output_size, input_size))
def evaluate(self, input):
return self.theta.dot(input)
def positive_perturbation(self, input, delta):
return (self.theta + hp.noise*delta).dot(input)
def negative_perturbation(self, input, delta):
return (self.theta - hp.noise*delta).dot(input)
def sample_deltas(self):
return [np.random.randn(*self.theta.shape) for _ in range(hp.n_directions)]
def update(self, rollouts, sigma_r):
step = np.zeros(self.theta.shape)
for r_pos, r_neg, d in rollouts:
step += (r_pos - r_neg)*d
self.theta += hp.step_size * step / (sigma_r*hp.b)
# training loop
def train(env, policy, normalizer, hp):
for episode in range(hp.main_loop_size):
# init deltas and rewards
deltas = policy.sample_deltas()
reward_positive = [0]*hp.n_directions
reward_negative = [0]*hp.n_directions
# positive directions
for k in range(hp.n_directions):
state = env.reset()
done = False
num_plays = 0.
while not done and num_plays<hp.horizon:
normalizer.observe(state)
state = normalizer.normalize(state)
action = policy.positive_perturbation(state, deltas[k])
state, reward, done, _ = env.step(action)
reward = max(min(reward, 1), -1)
reward_positive[k] += reward
num_plays += 1
# negative directions
for k in range(hp.n_directions):
state = env.reset()
done = False
num_plays = 0.
while not done and num_plays<hp.horizon:
normalizer.observe(state)
state = normalizer.normalize(state)
action = policy.negative_perturbation(state, deltas[k])
state, reward, done, _ = env.step(action)
reward = max(min(reward, 1), -1)
reward_negative[k] += reward
num_plays += 1
all_rewards = np.array(reward_negative + reward_positive)
sigma_r = all_rewards.std()
# sort rollouts wrt max(r_pos, r_neg) and take (hp.b) best
scores = {k:max(r_pos, r_neg) for k,(r_pos,r_neg) in enumerate(zip(reward_positive,reward_negative))}
order = sorted(scores.keys(), key=lambda x:scores[x])[-hp.b:]
rollouts = [(reward_positive[k], reward_negative[k], deltas[k]) for k in order[::-1]]
# update policy:
policy.update(rollouts, sigma_r)
# evaluate
state = env.reset()
done = False
num_plays = 1.
reward_evaluation = 0
while not done and num_plays<hp.horizon:
normalizer.observe(state)
state = normalizer.normalize(state)
action = policy.evaluate(state)
state, reward, done, _ = env.step(action)
reward_evaluation += reward
num_plays += 1
# finish, print:
print('episode',episode,'reward_evaluation',reward_evaluation)
def mkdir(base, name):
path = os.path.join(base, name)
if not os.path.exists(path):
os.makedirs(path)
return path
if __name__ == '__main__':
hp = Hp()
np.random.seed(hp.seed)
work_dir = mkdir('exp', 'brs')
monitor_dir = mkdir(work_dir, 'monitor')
env = gym.make(hp.env_name)
#env = wrappers.Monitor(env, monitor_dir, force=True)
num_inputs = env.observation_space.shape[0]
num_outputs = env.action_space.shape[0]
policy = Policy(num_inputs, num_outputs)
normalizer = Normalizer(num_inputs)
train(env, policy, normalizer, hp)