-
Notifications
You must be signed in to change notification settings - Fork 74
/
knapsack.rs
148 lines (138 loc) · 5.06 KB
/
knapsack.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
//! Solves the knapsack problem
use std::cmp::max;
/// knapsack_table(w, weights, values) returns the knapsack table (`n`, `m`) with maximum values, where `n` is number of items
///
/// Arguments:
/// * `w` - knapsack capacity
/// * `weights` - set of weights for each item
/// * `values` - set of values for each item
fn knapsack_table(w: &usize, weights: &[usize], values: &[usize]) -> Vec<Vec<usize>> {
// Initialize `n` - number of items
let n: usize = weights.len();
// Initialize `m`
// m[i, w] - the maximum value that can be attained with weight less that or equal to `w` using items up to `i`
let mut m: Vec<Vec<usize>> = vec![vec![0; w + 1]; n + 1];
for i in 0..=n {
for j in 0..=*w {
// m[i, j] compiled according to the following rule:
if i == 0 || j == 0 {
m[i][j] = 0;
} else if weights[i - 1] <= j {
// If `i` is in the knapsack
// Then m[i, j] is equal to the maximum value of the knapsack,
// where the weight `j` is reduced by the weight of the `i-th` item and the set of admissible items plus the value `k`
m[i][j] = max(values[i - 1] + m[i - 1][j - weights[i - 1]], m[i - 1][j]);
} else {
// If the item `i` did not get into the knapsack
// Then m[i, j] is equal to the maximum cost of a knapsack with the same capacity and a set of admissible items
m[i][j] = m[i - 1][j]
}
}
}
m
}
/// knapsack_items(weights, m, i, j) returns the indices of the items of the optimal knapsack (from 1 to `n`)
///
/// Arguments:
/// * `weights` - set of weights for each item
/// * `m` - knapsack table with maximum values
/// * `i` - include items 1 through `i` in knapsack (for the initial value, use `n`)
/// * `j` - maximum weight of the knapsack
fn knapsack_items(weights: &[usize], m: &[Vec<usize>], i: usize, j: usize) -> Vec<usize> {
if i == 0 {
return vec![];
}
if m[i][j] > m[i - 1][j] {
let mut knap: Vec<usize> = knapsack_items(weights, m, i - 1, j - weights[i - 1]);
knap.push(i);
knap
} else {
knapsack_items(weights, m, i - 1, j)
}
}
/// knapsack(w, weights, values) returns the tuple where first value is `optimal profit`,
/// second value is `knapsack optimal weight` and the last value is `indices of items`, that we got (from 1 to `n`)
///
/// Arguments:
/// * `w` - knapsack capacity
/// * `weights` - set of weights for each item
/// * `values` - set of values for each item
///
/// Complexity
/// - time complexity: O(nw),
/// - space complexity: O(nw),
///
/// where `n` and `w` are `number of items` and `knapsack capacity`
pub fn knapsack(w: usize, weights: Vec<usize>, values: Vec<usize>) -> (usize, usize, Vec<usize>) {
// Checks if the number of items in the list of weights is the same as the number of items in the list of values
assert_eq!(weights.len(), values.len(), "Number of items in the list of weights doesn't match the number of items in the list of values!");
// Initialize `n` - number of items
let n: usize = weights.len();
// Find the knapsack table
let m: Vec<Vec<usize>> = knapsack_table(&w, &weights, &values);
// Find the indices of the items
let items: Vec<usize> = knapsack_items(&weights, &m, n, w);
// Find the total weight of optimal knapsack
let mut total_weight: usize = 0;
for i in items.iter() {
total_weight += weights[i - 1];
}
// Return result
(m[n][w], total_weight, items)
}
#[cfg(test)]
mod tests {
// Took test datasets from https://people.sc.fsu.edu/~jburkardt/datasets/bin_packing/bin_packing.html
use super::knapsack;
#[test]
fn test_p02() {
assert_eq!(
(51, 26, vec![2, 3, 4]),
knapsack(26, vec![12, 7, 11, 8, 9], vec![24, 13, 23, 15, 16])
);
}
#[test]
fn test_p04() {
assert_eq!(
(150, 190, vec![1, 2, 5]),
knapsack(
190,
vec![56, 59, 80, 64, 75, 17],
vec![50, 50, 64, 46, 50, 5]
)
);
}
#[test]
fn test_p01() {
assert_eq!(
(309, 165, vec![1, 2, 3, 4, 6]),
knapsack(
165,
vec![23, 31, 29, 44, 53, 38, 63, 85, 89, 82],
vec![92, 57, 49, 68, 60, 43, 67, 84, 87, 72]
)
);
}
#[test]
fn test_p06() {
assert_eq!(
(1735, 169, vec![2, 4, 7]),
knapsack(
170,
vec![41, 50, 49, 59, 55, 57, 60],
vec![442, 525, 511, 593, 546, 564, 617]
)
);
}
#[test]
fn test_p07() {
assert_eq!(
(1458, 749, vec![1, 3, 5, 7, 8, 9, 14, 15]),
knapsack(
750,
vec![70, 73, 77, 80, 82, 87, 90, 94, 98, 106, 110, 113, 115, 118, 120],
vec![135, 139, 149, 150, 156, 163, 173, 184, 192, 201, 210, 214, 221, 229, 240]
)
);
}
}