forked from nwojke/deep_sort
-
Notifications
You must be signed in to change notification settings - Fork 0
/
generate_detections.py
457 lines (380 loc) · 17.6 KB
/
generate_detections.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
# vim: expandtab:ts=4:sw=4
import os
import errno
import argparse
import numpy as np
import cv2
import tensorflow as tf
import tensorflow.contrib.slim as slim
def _batch_norm_fn(x, scope=None):
if scope is None:
scope = tf.get_variable_scope().name + "/bn"
return slim.batch_norm(x, scope=scope)
def create_link(
incoming, network_builder, scope, nonlinearity=tf.nn.elu,
weights_initializer=tf.truncated_normal_initializer(stddev=1e-3),
regularizer=None, is_first=False, summarize_activations=True):
if is_first:
network = incoming
else:
network = _batch_norm_fn(incoming, scope=scope + "/bn")
network = nonlinearity(network)
if summarize_activations:
tf.summary.histogram(scope+"/activations", network)
pre_block_network = network
post_block_network = network_builder(pre_block_network, scope)
incoming_dim = pre_block_network.get_shape().as_list()[-1]
outgoing_dim = post_block_network.get_shape().as_list()[-1]
if incoming_dim != outgoing_dim:
assert outgoing_dim == 2 * incoming_dim, \
"%d != %d" % (outgoing_dim, 2 * incoming)
projection = slim.conv2d(
incoming, outgoing_dim, 1, 2, padding="SAME", activation_fn=None,
scope=scope+"/projection", weights_initializer=weights_initializer,
biases_initializer=None, weights_regularizer=regularizer)
network = projection + post_block_network
else:
network = incoming + post_block_network
return network
def create_inner_block(
incoming, scope, nonlinearity=tf.nn.elu,
weights_initializer=tf.truncated_normal_initializer(1e-3),
bias_initializer=tf.zeros_initializer(), regularizer=None,
increase_dim=False, summarize_activations=True):
n = incoming.get_shape().as_list()[-1]
stride = 1
if increase_dim:
n *= 2
stride = 2
incoming = slim.conv2d(
incoming, n, [3, 3], stride, activation_fn=nonlinearity, padding="SAME",
normalizer_fn=_batch_norm_fn, weights_initializer=weights_initializer,
biases_initializer=bias_initializer, weights_regularizer=regularizer,
scope=scope + "/1")
if summarize_activations:
tf.summary.histogram(incoming.name + "/activations", incoming)
incoming = slim.dropout(incoming, keep_prob=0.6)
incoming = slim.conv2d(
incoming, n, [3, 3], 1, activation_fn=None, padding="SAME",
normalizer_fn=None, weights_initializer=weights_initializer,
biases_initializer=bias_initializer, weights_regularizer=regularizer,
scope=scope + "/2")
return incoming
def residual_block(incoming, scope, nonlinearity=tf.nn.elu,
weights_initializer=tf.truncated_normal_initializer(1e3),
bias_initializer=tf.zeros_initializer(), regularizer=None,
increase_dim=False, is_first=False,
summarize_activations=True):
def network_builder(x, s):
return create_inner_block(
x, s, nonlinearity, weights_initializer, bias_initializer,
regularizer, increase_dim, summarize_activations)
return create_link(
incoming, network_builder, scope, nonlinearity, weights_initializer,
regularizer, is_first, summarize_activations)
def _create_network(incoming, num_classes, reuse=None, l2_normalize=True,
create_summaries=True, weight_decay=1e-8):
nonlinearity = tf.nn.elu
conv_weight_init = tf.truncated_normal_initializer(stddev=1e-3)
conv_bias_init = tf.zeros_initializer()
conv_regularizer = slim.l2_regularizer(weight_decay)
fc_weight_init = tf.truncated_normal_initializer(stddev=1e-3)
fc_bias_init = tf.zeros_initializer()
fc_regularizer = slim.l2_regularizer(weight_decay)
def batch_norm_fn(x):
return slim.batch_norm(x, scope=tf.get_variable_scope().name + "/bn")
network = incoming
network = slim.conv2d(
network, 32, [3, 3], stride=1, activation_fn=nonlinearity,
padding="SAME", normalizer_fn=batch_norm_fn, scope="conv1_1",
weights_initializer=conv_weight_init, biases_initializer=conv_bias_init,
weights_regularizer=conv_regularizer)
if create_summaries:
tf.summary.histogram(network.name + "/activations", network)
tf.summary.image("conv1_1/weights", tf.transpose(
slim.get_variables("conv1_1/weights:0")[0], [3, 0, 1, 2]),
max_images=128)
network = slim.conv2d(
network, 32, [3, 3], stride=1, activation_fn=nonlinearity,
padding="SAME", normalizer_fn=batch_norm_fn, scope="conv1_2",
weights_initializer=conv_weight_init, biases_initializer=conv_bias_init,
weights_regularizer=conv_regularizer)
if create_summaries:
tf.summary.histogram(network.name + "/activations", network)
# NOTE(nwojke): This is missing a padding="SAME" to match the CNN
# architecture in Table 1 of the paper. Information on how this affects
# performance on MOT 16 training sequences can be found in
# issue 10 https://github.com/nwojke/deep_sort/issues/10
network = slim.max_pool2d(network, [3, 3], [2, 2], scope="pool1")
network = residual_block(
network, "conv2_1", nonlinearity, conv_weight_init, conv_bias_init,
conv_regularizer, increase_dim=False, is_first=True,
summarize_activations=create_summaries)
network = residual_block(
network, "conv2_3", nonlinearity, conv_weight_init, conv_bias_init,
conv_regularizer, increase_dim=False,
summarize_activations=create_summaries)
network = residual_block(
network, "conv3_1", nonlinearity, conv_weight_init, conv_bias_init,
conv_regularizer, increase_dim=True,
summarize_activations=create_summaries)
network = residual_block(
network, "conv3_3", nonlinearity, conv_weight_init, conv_bias_init,
conv_regularizer, increase_dim=False,
summarize_activations=create_summaries)
network = residual_block(
network, "conv4_1", nonlinearity, conv_weight_init, conv_bias_init,
conv_regularizer, increase_dim=True,
summarize_activations=create_summaries)
network = residual_block(
network, "conv4_3", nonlinearity, conv_weight_init, conv_bias_init,
conv_regularizer, increase_dim=False,
summarize_activations=create_summaries)
feature_dim = network.get_shape().as_list()[-1]
print("feature dimensionality: ", feature_dim)
network = slim.flatten(network)
network = slim.dropout(network, keep_prob=0.6)
network = slim.fully_connected(
network, feature_dim, activation_fn=nonlinearity,
normalizer_fn=batch_norm_fn, weights_regularizer=fc_regularizer,
scope="fc1", weights_initializer=fc_weight_init,
biases_initializer=fc_bias_init)
features = network
if l2_normalize:
# Features in rows, normalize axis 1.
features = slim.batch_norm(features, scope="ball", reuse=reuse)
feature_norm = tf.sqrt(
tf.constant(1e-8, tf.float32) +
tf.reduce_sum(tf.square(features), [1], keep_dims=True))
features = features / feature_norm
with slim.variable_scope.variable_scope("ball", reuse=reuse):
weights = slim.model_variable(
"mean_vectors", (feature_dim, num_classes),
initializer=tf.truncated_normal_initializer(stddev=1e-3),
regularizer=None)
scale = slim.model_variable(
"scale", (num_classes, ), tf.float32,
tf.constant_initializer(0., tf.float32), regularizer=None)
if create_summaries:
tf.summary.histogram("scale", scale)
# scale = slim.model_variable(
# "scale", (), tf.float32,
# initializer=tf.constant_initializer(0., tf.float32),
# regularizer=slim.l2_regularizer(1e-2))
# if create_summaries:
# tf.scalar_summary("scale", scale)
scale = tf.nn.softplus(scale)
# Each mean vector in columns, normalize axis 0.
weight_norm = tf.sqrt(
tf.constant(1e-8, tf.float32) +
tf.reduce_sum(tf.square(weights), [0], keep_dims=True))
logits = scale * tf.matmul(features, weights / weight_norm)
else:
logits = slim.fully_connected(
features, num_classes, activation_fn=None,
normalizer_fn=None, weights_regularizer=fc_regularizer,
scope="softmax", weights_initializer=fc_weight_init,
biases_initializer=fc_bias_init)
return features, logits
def _network_factory(num_classes, is_training, weight_decay=1e-8):
def factory_fn(image, reuse, l2_normalize):
with slim.arg_scope([slim.batch_norm, slim.dropout],
is_training=is_training):
with slim.arg_scope([slim.conv2d, slim.fully_connected,
slim.batch_norm, slim.layer_norm],
reuse=reuse):
features, logits = _create_network(
image, num_classes, l2_normalize=l2_normalize,
reuse=reuse, create_summaries=is_training,
weight_decay=weight_decay)
return features, logits
return factory_fn
def _preprocess(image, is_training=False, enable_more_augmentation=True):
image = image[:, :, ::-1] # BGR to RGB
if is_training:
image = tf.image.random_flip_left_right(image)
if enable_more_augmentation:
image = tf.image.random_brightness(image, max_delta=50)
image = tf.image.random_contrast(image, lower=0.8, upper=1.2)
image = tf.image.random_saturation(image, lower=0.8, upper=1.2)
return image
def _run_in_batches(f, data_dict, out, batch_size):
data_len = len(out)
num_batches = int(data_len / batch_size)
s, e = 0, 0
for i in range(num_batches):
s, e = i * batch_size, (i + 1) * batch_size
batch_data_dict = {k: v[s:e] for k, v in data_dict.items()}
out[s:e] = f(batch_data_dict)
if e < len(out):
batch_data_dict = {k: v[e:] for k, v in data_dict.items()}
out[e:] = f(batch_data_dict)
def extract_image_patch(image, bbox, patch_shape):
"""Extract image patch from bounding box.
Parameters
----------
image : ndarray
The full image.
bbox : array_like
The bounding box in format (x, y, width, height).
patch_shape : Optional[array_like]
This parameter can be used to enforce a desired patch shape
(height, width). First, the `bbox` is adapted to the aspect ratio
of the patch shape, then it is clipped at the image boundaries.
If None, the shape is computed from :arg:`bbox`.
Returns
-------
ndarray | NoneType
An image patch showing the :arg:`bbox`, optionally reshaped to
:arg:`patch_shape`.
Returns None if the bounding box is empty or fully outside of the image
boundaries.
"""
bbox = np.array(bbox)
if patch_shape is not None:
# correct aspect ratio to patch shape
target_aspect = float(patch_shape[1]) / patch_shape[0]
new_width = target_aspect * bbox[3]
bbox[0] -= (new_width - bbox[2]) / 2
bbox[2] = new_width
# convert to top left, bottom right
bbox[2:] += bbox[:2]
bbox = bbox.astype(np.int)
# clip at image boundaries
bbox[:2] = np.maximum(0, bbox[:2])
bbox[2:] = np.minimum(np.asarray(image.shape[:2][::-1]) - 1, bbox[2:])
if np.any(bbox[:2] >= bbox[2:]):
return None
sx, sy, ex, ey = bbox
image = image[sy:ey, sx:ex]
image = cv2.resize(image, patch_shape[::-1])
return image
def _create_image_encoder(preprocess_fn, factory_fn, image_shape, batch_size=32,
session=None, checkpoint_path=None,
loss_mode="cosine"):
image_var = tf.placeholder(tf.uint8, (None, ) + image_shape)
preprocessed_image_var = tf.map_fn(
lambda x: preprocess_fn(x, is_training=False),
tf.cast(image_var, tf.float32))
l2_normalize = loss_mode == "cosine"
feature_var, _ = factory_fn(
preprocessed_image_var, l2_normalize=l2_normalize, reuse=None)
feature_dim = feature_var.get_shape().as_list()[-1]
if session is None:
session = tf.Session()
if checkpoint_path is not None:
slim.get_or_create_global_step()
init_assign_op, init_feed_dict = slim.assign_from_checkpoint(
checkpoint_path, slim.get_variables_to_restore())
session.run(init_assign_op, feed_dict=init_feed_dict)
def encoder(data_x):
out = np.zeros((len(data_x), feature_dim), np.float32)
_run_in_batches(
lambda x: session.run(feature_var, feed_dict=x),
{image_var: data_x}, out, batch_size)
return out
return encoder
def create_image_encoder(model_filename, batch_size=32, loss_mode="cosine",
session=None):
image_shape = 128, 64, 3
factory_fn = _network_factory(
num_classes=1501, is_training=False, weight_decay=1e-8)
return _create_image_encoder(
_preprocess, factory_fn, image_shape, batch_size, session,
model_filename, loss_mode)
def create_box_encoder(model_filename, batch_size=32, loss_mode="cosine"):
image_shape = 128, 64, 3
image_encoder = create_image_encoder(model_filename, batch_size, loss_mode)
def encoder(image, boxes):
image_patches = []
for box in boxes:
patch = extract_image_patch(image, box, image_shape[:2])
if patch is None:
print("WARNING: Failed to extract image patch: %s." % str(box))
patch = np.random.uniform(
0., 255., image_shape).astype(np.uint8)
image_patches.append(patch)
image_patches = np.asarray(image_patches)
return image_encoder(image_patches)
return encoder
def generate_detections(encoder, mot_dir, output_dir, detection_dir=None):
"""Generate detections with features.
Parameters
----------
encoder : Callable[image, ndarray] -> ndarray
The encoder function takes as input a BGR color image and a matrix of
bounding boxes in format `(x, y, w, h)` and returns a matrix of
corresponding feature vectors.
mot_dir : str
Path to the MOTChallenge directory (can be either train or test).
output_dir
Path to the output directory. Will be created if it does not exist.
detection_dir
Path to custom detections. The directory structure should be the default
MOTChallenge structure: `[sequence]/det/det.txt`. If None, uses the
standard MOTChallenge detections.
"""
if detection_dir is None:
detection_dir = mot_dir
try:
os.makedirs(output_dir)
except OSError as exception:
if exception.errno == errno.EEXIST and os.path.isdir(output_dir):
pass
else:
raise ValueError(
"Failed to created output directory '%s'" % output_dir)
for sequence in os.listdir(mot_dir):
print("Processing %s" % sequence)
sequence_dir = os.path.join(mot_dir, sequence)
image_dir = os.path.join(sequence_dir, "img1")
image_filenames = {
int(os.path.splitext(f)[0]): os.path.join(image_dir, f)
for f in os.listdir(image_dir)}
detection_file = os.path.join(
detection_dir, sequence, "det/det.txt")
detections_in = np.loadtxt(detection_file, delimiter=',')
detections_out = []
frame_indices = detections_in[:, 0].astype(np.int)
min_frame_idx = frame_indices.astype(np.int).min()
max_frame_idx = frame_indices.astype(np.int).max()
for frame_idx in range(min_frame_idx, max_frame_idx + 1):
print("Frame %05d/%05d" % (frame_idx, max_frame_idx))
mask = frame_indices == frame_idx
rows = detections_in[mask]
if frame_idx not in image_filenames:
print("WARNING could not find image for frame %d" % frame_idx)
continue
bgr_image = cv2.imread(
image_filenames[frame_idx], cv2.IMREAD_COLOR)
features = encoder(bgr_image, rows[:, 2:6].copy())
detections_out += [np.r_[(row, feature)] for row, feature
in zip(rows, features)]
output_filename = os.path.join(output_dir, "%s.npy" % sequence)
np.save(
output_filename, np.asarray(detections_out), allow_pickle=False)
def parse_args():
"""Parse command line arguments.
"""
parser = argparse.ArgumentParser(description="Re-ID feature extractor")
parser.add_argument(
"--model",
default="resources/networks/mars-small128.ckpt-68577",
help="Path to checkpoint file")
parser.add_argument(
"--loss_mode", default="cosine", help="Network loss training mode")
parser.add_argument(
"--mot_dir", help="Path to MOTChallenge directory (train or test)",
required=True)
parser.add_argument(
"--detection_dir", help="Path to custom detections. Defaults to "
"standard MOT detections Directory structure should be the default "
"MOTChallenge structure: [sequence]/det/det.txt", default=None)
parser.add_argument(
"--output_dir", help="Output directory. Will be created if it does not"
" exist.", default="detections")
return parser.parse_args()
if __name__ == "__main__":
args = parse_args()
f = create_box_encoder(args.model, batch_size=32, loss_mode=args.loss_mode)
generate_detections(f, args.mot_dir, args.output_dir, args.detection_dir)