forked from sktime/sktime
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pyproject.toml
318 lines (306 loc) · 9.18 KB
/
pyproject.toml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
[project]
name = "sktime"
version = "0.27.0"
description = "A unified framework for machine learning with time series"
readme = "README.md"
keywords = [
"data-mining",
"data-science",
"forecasting",
"machine-learning",
"scikit-learn",
"time-series",
"time-series-analysis",
"time-series-classification",
"time-series-regression",
]
license = { file = "LICENSE" }
# sktime is governed by the Community Council, see docs/source/get_involved/governance
# use the email or sktime discord (governance channel) to get in touch
maintainers = [
{ name = "sktime developers", email = "[email protected]" },
{ name = "Franz Király" },
{ name = "Jonathan Bechtel" },
{ name = "Kiril Ralinovski" },
{ name = "Marc Rovira" },
{ name = "Sagar Mishra" },
{ name = "Ugochukwu Onyeka" },
]
# sktime has a large number of contributors,
# for full credits see contributors.md
authors = [
{ name = "sktime developers", email = "[email protected]" },
]
requires-python = ">=3.8,<3.13"
classifiers = [
"Intended Audience :: Developers",
"Intended Audience :: Science/Research",
"License :: OSI Approved :: BSD License",
"Operating System :: MacOS",
"Operating System :: Microsoft :: Windows",
"Operating System :: POSIX",
"Operating System :: Unix",
"Programming Language :: Python",
"Programming Language :: Python :: 3 :: Only",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.9",
"Programming Language :: Python :: 3.10",
"Programming Language :: Python :: 3.11",
"Programming Language :: Python :: 3.12",
"Topic :: Scientific/Engineering",
"Topic :: Software Development",
]
# core dependencies of sktime
# this set should be kept minimal!
dependencies = [
"numpy<1.27,>=1.21", # required for framework layer and base class logic
"packaging", # for estimator specific dependency parsing
"pandas<2.2.0,>=1.1", # pandas is the main in-memory data container
"scikit-base<0.8.0", # base module for sklearn compatible base API
"scikit-learn>=0.24,<1.5.0", # required for estimators and framework layer
"scipy<2.0.0,>=1.2", # required for estimators and framework layer
]
[project.optional-dependencies]
# there are the following dependency sets:
# - all_extras_pandas2, all_extras - all soft dependencies
# - single-task soft dependencies, e.g., forecasting, classification, etc.
# - dev - the developer dependency set, for contributors to sktime
# - CI related, e.g., binder, docs, tests. Not for users of sktime.
#
# soft dependencies are not required for the core functionality of sktime
# but are required by popular estimators, e.g., prophet, tbats, etc.
# all soft dependencies
#
# users can install via "pip install sktime[all_extras]"
# or "pip install sktime[all_extras_pandas2]", to install only pandas 2 compatible deps
#
all_extras = [
"arch>=5.6,<6.4.0",
"cloudpickle",
"dash!=2.9.0",
"dask<2024.2.2",
"dtw-python",
'esig==0.9.7; python_version < "3.10"',
'filterpy>=1.4.5; python_version < "3.11"',
"gluonts>=0.9",
'h5py; python_version < "3.12"',
'hmmlearn>=0.2.7; python_version < "3.11"',
"holidays",
'keras-self-attention; python_version < "3.11"',
"kotsu>=0.3.1",
"matplotlib>=3.3.2",
"mne",
'numba<0.60,>=0.53',
'pmdarima!=1.8.1,<3.0.0,>=1.8; python_version < "3.12"',
'prophet>=1.1; python_version < "3.12"',
"pycatch22<0.4.4",
"pykalman-bardo<0.10,>=0.9.7",
'pyod>=0.8; python_version < "3.11"',
"pyts<0.14.0; python_version < '3.12'",
"scikit-optimize",
"scikit_posthocs>=0.6.5",
"seaborn>=0.11",
"seasonal",
"skpro<2.3.0,>=2",
'statsforecast<1.8.0,>=1.0.0; python_version < "3.12"',
"statsmodels>=0.12.1",
'stumpy>=1.5.1; python_version < "3.11"',
'tbats>=1.1; python_version < "3.12"',
'temporian>=0.7.0; python_version < "3.12" and sys_platform != "win32"',
'tensorflow<2.17,>=2; python_version < "3.12"',
'tsfresh>=0.17; python_version < "3.12"',
'tslearn<0.7.0,!=0.6.0,>=0.5.2; python_version < "3.11"',
"xarray",
]
# all soft dependencies compatible with pandas 2
all_extras_pandas2 = [
"arch>=5.6,<6.4.0",
"cloudpickle",
"dash!=2.9.0",
"dask<2024.2.2",
"dtw-python",
'esig==0.9.7; python_version < "3.10"',
'filterpy>=1.4.5; python_version < "3.11"',
"gluonts>=0.9",
'h5py; python_version < "3.12"',
'hmmlearn>=0.2.7; python_version < "3.11"',
"holidays",
'keras-self-attention; python_version < "3.11"',
"kotsu>=0.3.1",
"matplotlib>=3.3.2",
"mne",
'numba<0.60,>=0.53',
'pmdarima!=1.8.1,<3.0.0,>=1.8; python_version < "3.12"',
'prophet>=1.1; python_version < "3.12"',
"pycatch22<0.4.4",
"pykalman-bardo<0.10,>=0.9.7",
'pyod>=0.8; python_version < "3.11"',
"scikit_posthocs>=0.6.5",
"seaborn>=0.11",
"seasonal",
"skpro<2.3.0,>=2",
'statsforecast<1.8.0,>=1.0.0; python_version < "3.12"',
"statsmodels>=0.12.1",
'stumpy>=1.5.1; python_version < "3.11"',
'tbats>=1.1; python_version < "3.12"',
'temporian>=0.7.0; python_version < "3.12" and sys_platform != "win32"',
'tensorflow<2.17,>=2; python_version < "3.12"',
'tsfresh>=0.17; python_version < "3.12"',
'tslearn<0.7.0,!=0.6.0,>=0.5.2; python_version < "3.11"',
"xarray",
]
# single-task dependencies, e.g., forecasting, classification, etc.
# manually curated and intentionally smaller to avoid dependency conflicts
# names are identical with the names of the modules and estimator type strings
# dependency sets are selected to cover the most popular estimators in each module
# (this is a subjective choice, and may change over time as the ecosystem evolves,
# removals are rare and always accompanied by a deprecation warning)
#
# users can install via "pip install sktime[forecasting,transformations]" etc
#
alignment = [
"dtw-python>=1.3,<1.5",
'numba<0.60,>=0.53',
]
annotation = [
"hmmlearn<0.4,>=0.2.7",
'numba<0.60,>=0.53',
'pyod<1.2,>=0.8; python_version < "3.12"',
]
classification = [
'esig<0.10,>=0.9.7; python_version < "3.11"',
'numba<0.60,>=0.53',
'tensorflow<2.17,>=2; python_version < "3.12"',
'tsfresh<0.21,>=0.17; python_version < "3.12"',
]
clustering = [
'numba<0.60,>=0.53',
'tslearn<0.7.0,!=0.6.0,>=0.5.2; python_version < "3.12"',
]
forecasting = [
"arch>=5.6,<6.4",
'pmdarima!=1.8.1,<2.1,>=1.8; python_version < "3.12"',
"prophet<1.2,>=1.1",
"skpro<2.3.0,>=2",
'statsforecast<1.8.0,>=1.0.0; python_version < "3.12"',
"statsmodels<0.15,>=0.12.1",
'tbats<1.2,>=1.1; python_version < "3.12"',
]
networks = [
"keras-self-attention<0.52,>=0.51",
'tensorflow<2.17,>=2; python_version < "3.12"',
]
param_est = [
"seasonal<0.4,>=0.3.1",
"statsmodels<0.15,>=0.12.1",
]
regression = [
'numba<0.60,>=0.53',
'tensorflow<2.17,>=2; python_version < "3.12"',
]
transformations = [
'esig<0.10,>=0.9.7; python_version < "3.11"',
"filterpy<1.5,>=1.4.5",
"holidays>=0.29,<0.46",
"mne>=1.5,<1.7",
'numba<0.60,>=0.53',
"pycatch22>=0.4,<0.4.4",
"pykalman-bardo<0.10,>=0.9.7",
"statsmodels<0.15,>=0.12.1",
'stumpy<1.13,>=1.5.1; python_version < "3.12"',
'temporian>=0.7.0; python_version < "3.12" and sys_platform != "win32"',
'tsfresh<0.21,>=0.17; python_version < "3.12"',
]
# dev - the developer dependency set, for contributors to sktime
dev = [
"backoff",
"httpx",
"pre-commit",
"pytest",
"pytest-cov",
"pytest-randomly",
"pytest-timeout",
"pytest-xdist",
"wheel",
]
# CI related soft dependency sets - not for users of sktime, only for developers
# docs and tests are standard dep sets for development use
# they are stable and subject to deprecation policies
# contributors should use the dev dependency set for contributing to sktime, see above
docs = [
"jupyter",
"myst-parser",
"nbsphinx>=0.8.6",
"numpydoc",
"pydata-sphinx-theme",
"Sphinx!=7.2.0,<8.0.0",
"sphinx-copybutton",
"sphinx-design<0.6.0",
"sphinx-gallery<0.16.0",
"sphinx-issues<5.0.0",
"tabulate",
]
tests = [
"pytest>=7.4,<8.2",
"pytest-cov<4.2,>=4.1",
"pytest-randomly<3.16,>=3.15",
"pytest-timeout>=2.1,<2.4",
"pytest-xdist>=3.3,<3.6",
]
# CI related soft dependency sets - not for users of sktime, only for developers
# these are for specual uses and may be changed or removed at any time
binder = [
"jupyter",
"pandas<2.0.0",
]
cython_extras = [
"mrseql",
'mrsqm; python_version < "3.11"',
"numba<0.60",
]
dl = [
'FrEIA; python_version < "3.12"',
'neuralforecast<1.7.0,>=1.6.4; python_version < "3.11"',
'tensorflow<2.17,>=2; python_version < "3.12"',
'torch; python_version < "3.12"',
]
mlflow = [
"mlflow",
]
mlflow_tests = [
"boto3",
"botocore",
"mlflow",
"moto",
]
pandas1 = [
"pandas<2.0.0",
]
[project.urls]
"API Reference" = "https://www.sktime.net/en/stable/api_reference.html"
Documentation = "https://www.sktime.net"
Download = "https://pypi.org/project/sktime/#files"
Homepage = "https://www.sktime.net"
"Release Notes" = "https://www.sktime.net/en/stable/changelog.html"
Repository = "https://github.com/sktime/sktime"
[build-system]
build-backend = "setuptools.build_meta"
requires = [
"setuptools>61",
]
[tool.setuptools.package-data]
sktime = [
"*.csv",
"*.csv.gz",
"*.arff",
"*.arff.gz",
"*.txt",
"*.ts",
"*.tsv",
]
[tool.setuptools.packages.find]
exclude = ["tests", "tests.*"]
[tool.nbqa.exclude]
black = "^docs/source/examples/"
flake8 = "^docs/source/examples/"
isort = "^docs/source/examples/"