-
Notifications
You must be signed in to change notification settings - Fork 0
/
stlwrite1.m
239 lines (214 loc) · 9.24 KB
/
stlwrite1.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
function stlwrite1(filename, varargin)
%STLWRITE Write STL file from patch or surface data.
%
% STLWRITE(FILE, FV) writes a stereolithography (STL) file to FILE for a
% triangulated patch defined by FV (a structure with fields 'vertices'
% and 'faces').
%
% STLWRITE(FILE, FACES, VERTICES) takes faces and vertices separately,
% rather than in an FV struct
%
% STLWRITE(FILE, X, Y, Z) creates an STL file from surface data in X, Y,
% and Z. STLWRITE triangulates this gridded data into a triangulated
% surface using triangulation options specified below. X, Y and Z can be
% two-dimensional arrays with the same size. If X and Y are vectors with
% length equal to SIZE(Z,2) and SIZE(Z,1), respectively, they are passed
% through MESHGRID to create gridded data. If X or Y are scalar values,
% they are used to specify the X and Y spacing between grid points.
%
% STLWRITE(...,'PropertyName',VALUE,'PropertyName',VALUE,...) writes an
% STL file using the following property values:
%
% MODE - File is written using 'binary' (default) or 'ascii'.
%
% TITLE - Header text (max 80 chars) written to the STL file.
%
% TRIANGULATION - When used with gridded data, TRIANGULATION is either:
% 'delaunay' - (default) Delaunay triangulation of X, Y
% 'f' - Forward slash division of grid quads
% 'b' - Back slash division of quadrilaterals
% 'x' - Cross division of quadrilaterals
% Note that 'f', 'b', or 't' triangulations now use an
% inbuilt version of FEX entry 28327, "mesh2tri".
%
% FACECOLOR - Single colour (1-by-3) or one-colour-per-face (N-by-3)
% vector of RGB colours, for face/vertex input. RGB range
% is 5 bits (0:31), stored in VisCAM/SolidView format
% (http://en.wikipedia.org/wiki/STL_(file_format)#Color_in_binary_STL)
%
% Example 1:
% % Write binary STL from face/vertex data
% tmpvol = zeros(20,20,20); % Empty voxel volume
% tmpvol(8:12,8:12,5:15) = 1; % Turn some voxels on
% fv = isosurface(tmpvol, 0.99); % Create the patch object
% stlwrite('test.stl',fv) % Save to binary .stl
%
% Example 2:
% % Write ascii STL from gridded data
% [X,Y] = deal(1:40); % Create grid reference
% Z = peaks(40); % Create grid height
% stlwrite('test.stl',X,Y,Z,'mode','ascii')
% Original idea adapted from surf2stl by Bill McDonald. Huge speed
% improvements implemented by Oliver Woodford. Non-Delaunay triangulation
% of quadrilateral surface courtesy of Kevin Moerman. FaceColor
% implementation by Grant Lohsen.
%
% Author: Sven Holcombe, 11-24-11
% Check valid filename path
path = fileparts(filename);
if ~isempty(path) && ~exist(path,'dir')
error('Directory "%s" does not exist.',path);
end
% Get faces, vertices, and user-defined options for writing
[faces, vertices, options] = parseInputs(varargin{:});
asciiMode = strcmp( options.mode ,'ascii');
% Create the facets
facets = single(vertices');
facets = reshape(facets(:,faces'), 3, 3, []);
% Compute their normals
V1 = squeeze(facets(:,2,:) - facets(:,1,:));
V2 = squeeze(facets(:,3,:) - facets(:,1,:));
normals = V1([2 3 1],:) .* V2([3 1 2],:) - V2([2 3 1],:) .* V1([3 1 2],:);
clear V1 V2
normals = bsxfun(@times, normals, 1 ./ sqrt(sum(normals .* normals, 1)));
facets = cat(2, reshape(normals, 3, 1, []), facets);
clear normals
% Open the file for writing
permissions = {'w','wb+'};
fid = fopen(filename, permissions{asciiMode+1});
if (fid == -1)
error('stlwrite:cannotWriteFile', 'Unable to write to %s', filename);
end
% Write the file contents
if asciiMode
% Write HEADER
fprintf(fid,'solid %s\r\n',options.title);
% Write DATA
fprintf(fid,[...
'facet normal %.7E %.7E %.7E\r\n' ...
'outer loop\r\n' ...
'vertex %.7E %.7E %.7E\r\n' ...
'vertex %.7E %.7E %.7E\r\n' ...
'vertex %.7E %.7E %.7E\r\n' ...
'endloop\r\n' ...
'endfacet\r\n'], facets);
% Write FOOTER
fprintf(fid,'endsolid %s\r\n',options.title);
else % BINARY
% Write HEADER
fprintf(fid, '%-80s', options.title); % Title
fwrite(fid, size(facets, 3), 'uint32'); % Number of facets
% Write DATA
% Add one uint16(0) to the end of each facet using a typecasting trick
facets = reshape(typecast(facets(:), 'uint16'), 12*2, []);
% Set the last bit to 0 (default) or supplied RGB
facets(end+1,:) = options.facecolor;
fwrite(fid, facets, 'uint16');
end
% Close the file
fclose(fid);
fprintf('Wrote %d facets\n',size(facets, 3));
%% Input handling subfunctions
function [faces, vertices, options] = parseInputs(varargin)
% Determine input type
if isstruct(varargin{1}) % stlwrite('file', FVstruct, ...)
if ~all(isfield(varargin{1},{'vertices','faces'}))
error( 'Variable p must be a faces/vertices structure' );
end
faces = varargin{1}.faces;
vertices = varargin{1}.vertices;
options = parseOptions(varargin{2:end});
elseif isnumeric(varargin{1})
firstNumInput = cellfun(@isnumeric,varargin);
firstNumInput(find(~firstNumInput,1):end) = 0; % Only consider numerical input PRIOR to the first non-numeric
numericInputCnt = nnz(firstNumInput);
options = parseOptions(varargin{numericInputCnt+1:end});
switch numericInputCnt
case 3 % stlwrite('file', X, Y, Z, ...)
% Extract the matrix Z
Z = varargin{3};
% Convert scalar XY to vectors
ZsizeXY = fliplr(size(Z));
for i = 1:2
if isscalar(varargin{i})
varargin{i} = (0:ZsizeXY(i)-1) * varargin{i};
end
end
% Extract X and Y
if isequal(size(Z), size(varargin{1}), size(varargin{2}))
% X,Y,Z were all provided as matrices
[X,Y] = varargin{1:2};
elseif numel(varargin{1})==ZsizeXY(1) && numel(varargin{2})==ZsizeXY(2)
% Convert vector XY to meshgrid
[X,Y] = meshgrid(varargin{1}, varargin{2});
else
error('stlwrite:badinput', 'Unable to resolve X and Y variables');
end
% Convert to faces/vertices
if strcmp(options.triangulation,'delaunay')
faces = delaunay(X,Y);
vertices = [X(:) Y(:) Z(:)];
else
if ~exist('mesh2tri','file')
error('stlwrite:missing', '"mesh2tri" is required to convert X,Y,Z matrices to STL. It can be downloaded from:\n%s\n',...
'http://www.mathworks.com/matlabcentral/fileexchange/28327')
end
[faces, vertices] = mesh2tri(X, Y, Z, options.triangulation);
end
case 2 % stlwrite('file', FACES, VERTICES, ...)
faces = varargin{1};
vertices = varargin{2};
otherwise
error('stlwrite:badinput', 'Unable to resolve input types.');
end
end
if ~isempty(options.facecolor) % Handle colour preparation
facecolor = uint16(options.facecolor);
%Set the Valid Color bit (bit 15)
c0 = bitshift(ones(size(faces,1),1,'uint16'),15);
%Red color (10:15), Blue color (5:9), Green color (0:4)
c0 = bitor(bitshift(bitand(2^6-1, facecolor(:,1)),10),c0);
c0 = bitor(bitshift(bitand(2^11-1, facecolor(:,2)),5),c0);
c0 = bitor(bitand(2^6-1, facecolor(:,3)),c0);
options.facecolor = c0;
else
options.facecolor = 0;
end
function options = parseOptions(varargin)
IP = inputParser;
IP.addParamValue('mode', 'binary', @ischar)
IP.addParamValue('title', sprintf('Created by stlwrite.m %s',datestr(now)), @ischar);
IP.addParamValue('triangulation', 'delaunay', @ischar);
IP.addParamValue('facecolor',[], @isnumeric)
IP.parse(varargin{:});
options = IP.Results;
function [F,V]=mesh2tri(X,Y,Z,tri_type)
% function [F,V]=mesh2tri(X,Y,Z,tri_type)
%
% Available from http://www.mathworks.com/matlabcentral/fileexchange/28327
% Included here for convenience. Many thanks to Kevin Mattheus Moerman
% 15/07/2010
%------------------------------------------------------------------------
[J,I]=meshgrid(1:1:size(X,2)-1,1:1:size(X,1)-1);
switch tri_type
case 'f'%Forward slash
TRI_I=[I(:),I(:)+1,I(:)+1; I(:),I(:),I(:)+1];
TRI_J=[J(:),J(:)+1,J(:); J(:),J(:)+1,J(:)+1];
F = sub2ind(size(X),TRI_I,TRI_J);
case 'b'%Back slash
TRI_I=[I(:),I(:)+1,I(:); I(:)+1,I(:)+1,I(:)];
TRI_J=[J(:)+1,J(:),J(:); J(:)+1,J(:),J(:)+1];
F = sub2ind(size(X),TRI_I,TRI_J);
case 'x'%Cross
TRI_I=[I(:)+1,I(:); I(:)+1,I(:)+1; I(:),I(:)+1; I(:),I(:)];
TRI_J=[J(:),J(:); J(:)+1,J(:); J(:)+1,J(:)+1; J(:),J(:)+1];
IND=((numel(X)+1):numel(X)+prod(size(X)-1))';
F = sub2ind(size(X),TRI_I,TRI_J);
F(:,3)=repmat(IND,[4,1]);
Fe_I=[I(:),I(:)+1,I(:)+1,I(:)]; Fe_J=[J(:),J(:),J(:)+1,J(:)+1];
Fe = sub2ind(size(X),Fe_I,Fe_J);
Xe=mean(X(Fe),2); Ye=mean(Y(Fe),2); Ze=mean(Z(Fe),2);
X=[X(:);Xe(:)]; Y=[Y(:);Ye(:)]; Z=[Z(:);Ze(:)];
end
V=[X(:),Y(:),Z(:)];