-
Notifications
You must be signed in to change notification settings - Fork 5
/
vram.c
259 lines (223 loc) · 7.09 KB
/
vram.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
/*
* Helper for use with the PSP Software Development Kit - http://www.pspdev.org
* -----------------------------------------------------------------------
* Licensed as 'free to use and modify as long as credited appropriately'
*
* vram.c - Standard C high performance VRAM allocation routines.
*
* Copyright (c) 2007 Alexander Berl 'Raphael' <[email protected]>
* http://wordpress.fx-world.org
*/
#include "vram.h"
#include <stdio.h>
// Configure the memory to be managed
#define __MEM_SIZE 0x00200000
#define __MEM_START 0x04000000
// Configure the block size the memory gets subdivided into (page size)
// __MEM_SIZE/__BLOCK_SIZE may not exceed 2^16-1 = 65535
// The block size also defines the alignment of allocations
// Larger block sizes perform better, because the blocktable is smaller and therefore fits better into cache
// however the overhead is also bigger and more memory is wasted
#define __BLOCK_SIZE 512
#define __MEM_BLOCKS (__MEM_SIZE/__BLOCK_SIZE)
#define __BLOCKS(x) ((x+__BLOCK_SIZE-1)/__BLOCK_SIZE)
#define __BLOCKSIZE(x) ((x+__BLOCK_SIZE-1)&~(__BLOCK_SIZE-1))
// A MEMORY BLOCK ENTRY IS MADE UP LIKE THAT:
// bit: 31 30 29 - 15 14-0
// free block prev size
//
// bit 31: free bit, indicating if block is allocated or not
// bit 30: blocked bit, indicating if block is part of a larger block (0) - used for error resilience
// bit 29-15: block index of previous block
// bit 14- 0: size of current block
//
// This management can handle a max amount of 2^16-1 = 65535 blocks, which resolves to 64MB at blocksize of 1024 bytes
//
#define __BLOCK_GET_SIZE(x) ((x & 0x7FFF))
#define __BLOCK_GET_PREV(x) ((x >> 15) & 0x7FFF)
#define __BLOCK_GET_FREE(x) ((x >> 31))
#define __BLOCK_GET_BLOCK(x) ((x >> 30) & 0x1)
#define __BLOCK_SET_SIZE(x,y) x=((x & ~0x7FFF) | ((y) & 0x7FFF))
#define __BLOCK_ADD_SIZE(x,y) x=((x & ~0x7FFF) | (((x & 0x7FFF)+((y) & 0x7FFF)) & 0x7FFF))
#define __BLOCK_SET_PREV(x,y) x=((x & ~0x3FFF8000) | (((y) & 0x7FFF)<<15))
#define __BLOCK_SET_FREE(x,y) x=((x & 0x7FFFFFFF) | (((y) & 0x1)<<31))
#define __BLOCK_SET_BLOCK(x,y) x=((x & 0xBFFFFFFF) | (((y) & 0x1)<<30))
#define __BLOCK_MAKE(s,p,f,n) (((f & 0x1)<<31) | ((n & 0x1)<<30) | (((p) & 0x7FFF)<<15) | ((s) & 0x7FFF))
#define __BLOCK_GET_FREEBLOCK(x) ((x>>30) & 0x3) // returns 11b if block is a starting block and free, 10b if block is a starting block and allocated, 0xb if it is a non-starting block (don't change)
#define __BLOCK0 ((__MEM_BLOCKS) | (1<<31) | (1<<30))
unsigned int __mem_blocks[__MEM_BLOCKS] = { 0 };
static int __largest_update = 0;
static int __largest_block = __MEM_BLOCKS;
static int __mem_free = __MEM_BLOCKS;
inline void* vrelptr( void *ptr )
{
return (void*)((unsigned int)ptr & ~__MEM_START);
}
inline void* vabsptr( void *ptr )
{
return (void*)((unsigned int)ptr | __MEM_START);
}
static void __find_largest_block()
{
int i = 0;
__largest_block = 0;
while (i<__MEM_BLOCKS)
{
int csize = __BLOCK_GET_SIZE(__mem_blocks[i]);
if (__BLOCK_GET_FREEBLOCK(__mem_blocks[i])==3 && csize>__largest_block)
__largest_block = csize;
i += csize;
}
__largest_update = 0;
}
#ifdef _DEBUG
void __memwalk()
{
int i = 0;
if (__mem_blocks[0]==0) __mem_blocks[0] = __BLOCK0;
while (i<__MEM_BLOCKS)
{
printf("BLOCK %i:\n", i);
printf(" free: %i\n", __BLOCK_GET_FREEBLOCK(__mem_blocks[i]));
printf(" size: %i\n", __BLOCK_GET_SIZE(__mem_blocks[i]));
printf(" prev: %i\n", __BLOCK_GET_PREV(__mem_blocks[i]));
i+=__BLOCK_GET_SIZE(__mem_blocks[i]);
}
}
#endif
void* valloc( size_t size )
{
// Initialize memory block, if not yet done
if (__mem_blocks[0]==0) __mem_blocks[0] = __BLOCK0;
int i = 0;
int j = 0;
int bsize = __BLOCKS(size);
if (__largest_update==0 && __largest_block<bsize)
{
#ifdef _DEBUG
printf("Not enough memory to allocate %i bytes (largest: %i)!\n",size,vlargestblock());
#endif
return(0);
}
#ifdef _DEBUG
printf("allocating %i bytes, in %i blocks\n", size, bsize);
#endif
// Find smallest block that still fits the requested size
int bestblock = -1;
int bestblock_prev = 0;
int bestblock_size = __MEM_BLOCKS+1;
while (i<__MEM_BLOCKS)
{
int csize = __BLOCK_GET_SIZE(__mem_blocks[i]);
if (__BLOCK_GET_FREEBLOCK(__mem_blocks[i])==3 && csize>=bsize)
{
if (csize<bestblock_size)
{
bestblock = i;
bestblock_prev = j;
bestblock_size = csize;
}
if (csize==bsize)
break;
}
j = i;
i += csize;
}
if (bestblock<0)
{
#ifdef _DEBUG
printf("Not enough memory to allocate %i bytes (largest: %i)!\n",size,vlargestblock());
#endif
return(0);
}
i = bestblock;
j = bestblock_prev;
int csize = bestblock_size;
__mem_blocks[i] = __BLOCK_MAKE(bsize,j,0,1);
int next = i+bsize;
if (csize>bsize && next<__MEM_BLOCKS)
{
__mem_blocks[next] = __BLOCK_MAKE(csize-bsize,i,1,1);
int nextnext = i+csize;
if (nextnext<__MEM_BLOCKS)
{
__BLOCK_SET_PREV(__mem_blocks[nextnext], next);
}
}
__mem_free -= bsize;
if (__largest_block==csize) // if we just allocated from one of the largest blocks
{
if ((csize-bsize)>(__mem_free/2))
__largest_block = (csize-bsize); // there can't be another largest block
else
__largest_update = 1;
}
return ((void*)(__MEM_START + (i*__BLOCK_SIZE)));
}
void vfree( void* ptr )
{
if (ptr==0) return;
int block = ((unsigned int)ptr - __MEM_START)/__BLOCK_SIZE;
if (block<0 || block>__MEM_BLOCKS)
{
#ifdef _DEBUG
printf("Block is out of range: %i (0x%x)\n", block, (int)ptr);
#endif
return;
}
int csize = __BLOCK_GET_SIZE(__mem_blocks[block]);
#ifdef _DEBUG
printf("freeing block %i (0x%x), size: %i\n", block, (int)ptr, csize);
#endif
if (__BLOCK_GET_FREEBLOCK(__mem_blocks[block])!=1 || csize==0)
{
#ifdef _DEBUG
printf("Block was not allocated!\n");
#endif
return;
}
// Mark block as free
__BLOCK_SET_FREE(__mem_blocks[block],1);
__mem_free += csize;
int next = block+csize;
// Merge with previous block if possible
int prev = __BLOCK_GET_PREV(__mem_blocks[block]);
if (prev<block)
{
if (__BLOCK_GET_FREEBLOCK(__mem_blocks[prev])==3)
{
__BLOCK_ADD_SIZE(__mem_blocks[prev], csize);
__BLOCK_SET_BLOCK(__mem_blocks[block],0); // mark current block as inter block
if (next<__MEM_BLOCKS)
__BLOCK_SET_PREV(__mem_blocks[next], prev);
block = prev;
}
}
// Merge with next block if possible
if (next<__MEM_BLOCKS)
{
if (__BLOCK_GET_FREEBLOCK(__mem_blocks[next])==3)
{
__BLOCK_ADD_SIZE(__mem_blocks[block], __BLOCK_GET_SIZE(__mem_blocks[next]));
__BLOCK_SET_BLOCK(__mem_blocks[next],0); // mark next block as inter block
int nextnext = next + __BLOCK_GET_SIZE(__mem_blocks[next]);
if (nextnext<__MEM_BLOCKS)
__BLOCK_SET_PREV(__mem_blocks[nextnext], block);
}
}
// Update if a new largest block emerged
if (__largest_block<__BLOCK_GET_SIZE(__mem_blocks[block]))
{
__largest_block = __BLOCK_GET_SIZE(__mem_blocks[block]);
__largest_update = 0; // No update necessary any more, because update only necessary when largest has shrinked at most
}
}
size_t vmemavail()
{
return __mem_free * __BLOCK_SIZE;
}
size_t vlargestblock()
{
if (__largest_update) __find_largest_block();
return __largest_block * __BLOCK_SIZE;
}