forked from gwang-kim/DiffusionCLIP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
predict.py
167 lines (151 loc) · 5.94 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# prepare the weights and face-alignment
# wget http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2
# bunzip2 shape_predictor_68_face_landmarks.dat.bz2
import os
import torch
import shutil
import tempfile
import argparse
import yaml
from PIL import Image
import warnings
warnings.filterwarnings(action="ignore")
from cog import BasePredictor, Path, Input
from diffusionclip import DiffusionCLIP
from main import dict2namespace
class Predictor(BasePredictor):
def setup(self):
self.configs = {
"ImageNet style transfer": "imagenet.yml",
"Human face manipulation": "celeba.yml",
"Dog face manipulation": "afhq.yml",
"Tennis ball manipulation": "imagenet.yml",
}
self.model_paths = {
"ImageNet style transfer": {
"Watercolor art": "imagenet_watercolor_t601.pth",
"Pointillism art": "imagenet_pointillism_t601.pth",
"Painting by Gogh": "imagenet_gogh_t601.pth",
"Cubism art": "imagenet_cubism_t601.pth",
},
"Human face manipulation": {
"Pixar": "human_pixar_t601.pth",
"Neanderthal": "human_neanderthal_t601.pth",
"Painting by Gogh": "human_gogh_t601.pth",
"Tanned": "human_tanned_t201.pth",
"Female → Male": "human_male_t401.pth",
"Sketch": "human_sketch_t601.pth",
"With makeup": "human_with_makeup_t301.pth",
"Without makeup": "human_without_makeup_t301.pth",
},
"Dog face manipulation": {
"Bear": "dog_bear_t500.pth",
"Hamster": "dog_hamster_t601.pth",
"Yorkshire Terrier": "dog_yorkshire_t601.pth",
"Nicolas Cage": "dog_nicolas_t601.pth",
"Zombie": "dog_zombie_t601.pth",
"Venom": "dog_venome_t601.pth",
"Painting by Gogh": "dog_gogh_t500.pth",
},
}
def predict(
self,
image: Path = Input(
description="Input image.",
),
manipulation: str = Input(
default="ImageNet style transfer",
choices=[
"ImageNet style transfer",
"Human face manipulation",
"Dog face manipulation",
],
description="Choose a manipulation type."
# " Human face manipulation expects aligned image, pre-process with
#"https://replicate.com/cjwbw/face-align-cog for images that are not aligned.",
),
edit_type: str = Input(
default="ImageNet Style Transfer - Watercolor art",
choices=[
"ImageNet style transfer - Watercolor art",
"ImageNet style transfer - Pointillism art",
"ImageNet style transfer - Painting by Gogh",
"ImageNet style transfer - Cubism art",
"Human face manipulation - Pixar",
"Human face manipulation - Neanderthal",
"Human face manipulation - Sketch",
"Human face manipulation - Painting by Gogh",
"Human face manipulation - Tanned",
"Human face manipulation - With makeup",
"Human face manipulation - Without makeup",
"Human face manipulation - Female → Male",
"Dog face manipulation - Bear",
"Dog face manipulation - Hamster",
"Dog face manipulation - Yorkshire Terrier",
"Dog face manipulation - Nicolas Cage",
"Dog face manipulation - Zombie",
"Dog face manipulation - Venom",
"Dog face manipulation - Painting by Gogh",
],
description="Choose corresponding edit type available for model chosen.",
),
degree_of_change: float = Input(
default=1.0,
ge=0.0,
le=1.0,
),
n_test_step: int = Input(
default=12,
ge=5,
le=100,
),
) -> Path:
# sanity check
assert edit_type.startswith(
manipulation
), f"Please choose the available edit types for {manipulation}."
edit_type = edit_type.split("- ")[-1]
model_path = os.path.join(
"checkpoint", self.model_paths[manipulation][edit_type]
)
t_0 = int(model_path.split("_t")[-1].replace(".pth", ""))
exp_dir = "temp_dir"
os.makedirs(exp_dir, exist_ok=True)
# Test arg, config
align_face = 1 if manipulation == "Human face manipulation" else 0
n_inv_step = 40
args_dic = {
"config": self.configs[manipulation],
"t_0": t_0,
"n_inv_step": int(n_inv_step),
"n_test_step": int(n_test_step),
"sample_type": "ddim",
"eta": 0.0,
"bs_test": 1,
"model_path": model_path,
"img_path": str(image),
"deterministic_inv": 1,
"hybrid_noise": 0,
"n_iter": 1,
"align_face": align_face,
"image_folder": exp_dir,
"model_ratio": degree_of_change,
"edit_attr": None,
"src_txts": None,
"trg_txts": None,
}
args = dict2namespace(args_dic)
with open(os.path.join("configs", args.config), "r") as f:
config_dic = yaml.safe_load(f)
config = dict2namespace(config_dic)
config.device = "cuda:0"
# Edit
runner = DiffusionCLIP(args, config)
runner.edit_one_image()
out_image = Image.open(
f"{exp_dir}/3_gen_t{t_0}_it0_ninv{n_inv_step}_ngen{n_test_step}_mrat{degree_of_change}_{model_path.split('/')[-1].replace('.pth', '')}.png"
)
out_path = Path(tempfile.mkdtemp()) / "output.png"
out_image.save(str(out_path))
shutil.rmtree(exp_dir)
return out_path