-
Notifications
You must be signed in to change notification settings - Fork 83
/
gpt2_model.py
425 lines (344 loc) · 14.2 KB
/
gpt2_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
import os
from tensorflow.python.framework import tensor_shape
from layers.attention_layer import *
from layers.embedding_layer import *
from layers.feed_forward import *
from layers.layer_norm import LayerNormalization
from utils.tf_utils import *
_ROOT = os.path.abspath(os.path.dirname(__file__))
LOG_DIR = _ROOT + "/log"
train_step_signature = [
tf.TensorSpec(shape=(None, None), dtype=tf.int32, name="Inputs"),
tf.TensorSpec(shape=(None, None), dtype=tf.int32, name="Targets")
]
class Gpt2(tf.keras.Model):
def __init__(self, num_layers,
d_model,
num_heads,
dff,
max_seq_len,
vocab_size,
optimizer="adam",
learning_rate=1e-3,
rev_embedding_projection=True,
grad_clip=False,
clip_value=1.0):
super(Gpt2, self).__init__()
self.rev_embedding_projection = rev_embedding_projection
self.num_layers = num_layers
self.num_heads = num_heads
self.dff = dff
self.max_seq_len = max_seq_len
self.vocab_size = vocab_size
self.d_model = d_model
self.learning_rate = learning_rate
self.optimizer_t = optimizer
self.mirrored_strategy = None
self.grad_clip = grad_clip
self.clip_value = clip_value
self.embedding = EmbeddingLayer(
self.vocab_size, self.d_model)
self.pos_embedding = PositionEmbeddingLayer(
self.max_seq_len, self.d_model)
self.decoder_layers = [DecoderLayer(self.d_model, self.num_heads, self.dff)
for _ in range(self.num_layers)]
self.layer_norm = LayerNormalization(self.d_model)
if not self.rev_embedding_projection:
self.output_layer = OutputLayer(self.vocab_size)
self.loss_object = tf.keras.losses.SparseCategoricalCrossentropy(
from_logits=True, reduction='none')
self.accuracy_object = tf.keras.metrics.SparseCategoricalAccuracy(
name='accuracy')
self.train_step_signature = [
tf.TensorSpec(shape=(None, None), dtype=tf.int32)]
def call(self, x, training=True, past=None):
x = tf.cast(x, tf.int32)
# self.batch_size, self.sequence = tf.shape(x)[0], tf.shape(x)[1]
if past is None:
pasts = [None] * self.num_layers
else:
pasts = past
assert len(pasts) == self.num_layers
att_mask = create_masks(x)
past_length = 1 if past is None else tf.shape(past)[-2]
with tf.name_scope("embeddings"):
embedded_x = self.embedding(x)
hidden_states = embedded_x + self.pos_embedding(x, start=past_length)
presents = []
for decoder_layer, past in zip(self.decoder_layers, pasts):
hidden_states, present = decoder_layer(hidden_states, training, att_mask, past=past)
presents.append(present)
hidden_states = self.layer_norm(hidden_states)
if self.rev_embedding_projection:
logits = self.embedding(hidden_states, mode="projection")
else:
logits = self.output_layer(hidden_states)
return logits, presents
@staticmethod
def get_padded_accuracy(labels, logits):
with tf.name_scope("padded_accuracy"):
weights = tf.cast(tf.not_equal(labels, 0), tf.float32)
outputs = tf.cast(tf.argmax(logits, axis=-1), tf.int32)
padded_labels = tf.cast(labels, tf.int32)
nonpad_seq = tf.math.count_nonzero(weights, dtype=tf.dtypes.float32, )
acc = tf.cast(tf.equal(outputs, padded_labels), tf.float32)
accuracy = tf.reduce_sum(tf.cast(acc * weights, tf.float32)) / nonpad_seq
return tf.cast(accuracy, tf.float32)
def create_optimizer(self):
optimizer = self.optimizer_t.lower()
with tf.name_scope("optimizer"):
if optimizer == "adam":
self.optimizer = tf.keras.optimizers.Adam(self.learning_rate, beta_1=0.9, beta_2=0.98,
epsilon=1e-9)
elif optimizer == "adadelta":
self.optimizer = tf.keras.optimizers.Adadelta(self.learning_rate)
elif optimizer == "rms":
self.optimizer = tf.keras.optimizers.RMSprop(self.learning_rate)
else:
self.optimizer = tf.keras.optimizers.SGD(self.learning_rate)
return self.optimizer
def get_loss(self, real, pred):
with tf.name_scope("loss_layer"):
mask = tf.math.logical_not(tf.math.equal(real, 0))
loss_ = self.loss_object(real, pred)
with tf.name_scope("loss_masking"):
mask = tf.cast(mask, dtype=loss_.dtype)
loss_ *= mask
loss_ = tf.reduce_sum(loss_, axis=1)
sequence_avg_loss = loss_ / tf.reduce_sum(mask, axis=1)
return sequence_avg_loss
@staticmethod
def get_perplexity(cross_entropy):
perplexity = tf.exp(cross_entropy)
return perplexity
def create_checkpoint_manager(self, checkpoint_path, max_to_keep=5, load_model=True):
with tf.name_scope('checkpoint_manager'):
ckpt = tf.train.Checkpoint(optimizer=self.optimizer, model=self)
self.ckpt_manager = tf.train.CheckpointManager(ckpt, checkpoint_path, max_to_keep=max_to_keep)
if load_model: # If want to load trained weights
ckpt.restore(self.ckpt_manager.latest_checkpoint)
print('Latest checkpoint restored...............')
else:
print("Initializing model from scratch..........")
def load_model(self, filepath):
ckpt = tf.train.Checkpoint(model=self)
ckpt_manager = tf.train.CheckpointManager(ckpt, filepath)
ckpt.restore(ckpt_manager.latest_checkpoint)
print("Model Restored..........................")
def create_summary_writer(self, summary_path):
train_summary_path = summary_path + "/train"
test_summary_path = summary_path + "/test"
with tf.name_scope('summary'):
self.train_writer = tf.summary.create_file_writer(train_summary_path)
self.test_writer = tf.summary.create_file_writer(test_summary_path)
return self.train_writer, self.test_writer
def _train_step(self, inputs, targets):
with tf.GradientTape() as tape:
predictions, _ = self(inputs, training=True)
loss = tf.reduce_mean(self.get_loss(targets, predictions))
with tf.name_scope("gradients"):
gradients = tape.gradient(loss, self.trainable_variables)
if self.grad_clip:
gradients = [(tf.clip_by_value(grad, -self.clip_value, self.clip_value))
for grad in gradients]
self.optimizer.apply_gradients(zip(gradients, self.trainable_variables))
perplexity = self.get_perplexity(loss)
step = self.optimizer.iterations
return step, loss, perplexity
def _test_step(self, inputs, targets):
pred, _ = self(inputs, training=False)
loss = self.get_loss(targets, pred)
perplexity = self.get_perplexity(loss)
return loss, perplexity
@tf.function(input_signature=train_step_signature)
def train_step(self, inputs, targets):
return self._train_step(inputs, targets)
@tf.function(input_signature=train_step_signature)
def test_step(self, inputs, targets):
return self._test_step(inputs, targets)
def _distributed_train_step(self, inputs, targets):
def step_fn(inp, tar):
with tf.GradientTape() as tape:
logits, _ = self(inp, training=True)
cross_entropy = self.get_loss(tar, logits)
loss = tf.reduce_sum(cross_entropy) * (1.0 / self.global_batch_size) # Divided By Global Batch Size
with tf.name_scope("gradients"):
gradients = tape.gradient(loss, self.trainable_variables)
if self.grad_clip:
gradients = [(tf.clip_by_value(grad, -self.clip_value, self.clip_value))
for grad in gradients]
self.optimizer.apply_gradients(list(zip(gradients, self.trainable_variables)))
return cross_entropy
per_example_losses = self.mirrored_strategy.run(
step_fn, args=(inputs, targets))
mean_loss = self.mirrored_strategy.reduce(
tf.distribute.ReduceOp.MEAN, per_example_losses, axis=0)
# If you get error in distributed mode try using SUM instead of MEAN.
perplexity = self.get_perplexity(mean_loss)
step = self.optimizer.iterations
return step, mean_loss, perplexity
def _distributed_test_step(self, inputs, targets):
def step_fn(inp, tar):
logits, _ = self(inp, training=False)
cross_entropy = self.get_loss(tar, logits)
return cross_entropy
per_example_losses = self.mirrored_strategy.run(
step_fn, args=(inputs, targets))
mean_loss = self.mirrored_strategy.reduce(
tf.distribute.ReduceOp.MEAN, per_example_losses, axis=0)
# If you get error in distributed mode try using SUM instead of MEAN.
perplexity = self.get_perplexity(mean_loss)
return mean_loss, perplexity
@tf.function(experimental_relax_shapes=True)
def distributed_train_step(self, inputs, targets):
return self._distributed_train_step(inputs, targets)
@tf.function(experimental_relax_shapes=True)
def distributed_test_step(self, inputs, targets):
return self._distributed_test_step(inputs, targets)
def get_train_test_function(self, graph_mode=False):
if graph_mode:
print("Running in graph mode.............")
train_fuc = self.train_step
test_fuc = self.test_step
else:
print("Running in eager mode.............")
train_fuc = self._train_step
test_fuc = self._test_step
return train_fuc, test_fuc
def get_distributed_train_test_function(self, graph_mode=False):
if graph_mode:
print("Running in graph mode.............")
train_fuc = self.distributed_train_step
test_fuc = self.distributed_test_step
else:
print("Running in eager mode.............")
train_fuc = self._distributed_train_step
test_fuc = self._distributed_test_step
return train_fuc, test_fuc
def fit(self, train_dataset, graph_mode):
if self.mirrored_strategy is None:
train_dataset, test_dataset = train_dataset
train_func, test_func = self.get_train_test_function(graph_mode)
tf.summary.trace_on(graph=True, profiler=False)
for (_, (inputs, targets)) in enumerate(train_dataset):
step, loss, perplexity = train_func(inputs, targets)
if step % 100 == 0:
self.log_summary(self.train_writer,
step.numpy(),
loss.numpy(),
perplexity.numpy())
if step == 0:
with self.train_writer.as_default():
tf.summary.trace_export(
name="gpt-2",
step=0,
profiler_outdir=LOG_DIR)
if step % 500 == 0:
losses = []
perplexities = []
for (test_step, (test_inputs, test_targets)) in enumerate(test_dataset):
test_loss, test_perplexity = test_func(test_inputs, test_targets)
losses.append(test_loss)
perplexities.append(test_perplexity)
if test_step == 100:
break
test_loss = np.mean(np.array(losses))
test_perplexity = np.mean(np.array(perplexities))
self.log_summary(self.test_writer,
step.numpy(),
test_loss,
test_perplexity,
result_type="Test")
ckpt_save_path = self.ckpt_manager.save()
print('Saving checkpoint for step {} at {}'.format(step.numpy(),
ckpt_save_path))
else:
with self.mirrored_strategy.scope():
train_dataset, test_dataset = train_dataset
train_func, test_func = self.get_distributed_train_test_function(graph_mode)
tf.summary.trace_on(graph=True, profiler=False)
for (step, (inputs, targets)) in enumerate(train_dataset):
step, loss, perplexity = train_func(inputs, targets)
if step % 100 == 0:
self.log_summary(self.train_writer,
step,
loss,
perplexity)
if step == 0:
with self.train_writer.as_default():
tf.summary.trace_export(
name="gpt-2",
step=0,
profiler_outdir=LOG_DIR)
if step % 500 == 0:
losses = []
perplexities = []
for (test_step, (test_inputs, test_targets)) in enumerate(test_dataset):
test_loss, test_perplexity = test_func(test_inputs, test_targets)
losses.append(test_loss)
perplexities.append(test_perplexity)
if test_step == 100:
break
test_loss = np.mean(np.array(losses))
test_perplexity = np.mean(np.array(perplexities))
self.log_summary(self.test_writer,
step,
test_loss,
test_perplexity,
result_type="Test")
ckpt_save_path = self.ckpt_manager.save()
print('Saving checkpoint for step {} at {}'.format(step.numpy(),
ckpt_save_path))
@staticmethod
def log_summary(tf_writer, step, loss, perplexity, result_type="Train"):
print(result_type + ':- Step {}, Loss {:.4f}, Perplexity {:.4f}'.format(
step, loss, perplexity))
with tf_writer.as_default():
tf.summary.scalar("loss", loss, step=step)
tf.summary.scalar("perplexity", perplexity, step=step)
class OutputLayer(tf.keras.layers.Layer):
def __init__(self, output_dim, proj_weights=None, kernel_initializer=None):
super(OutputLayer, self).__init__()
self.proj_weights = proj_weights
self.output_dim = output_dim
self.layer_weights = None
self.kernel_initializer = kernel_initializer
def build(self, input_shape):
if self.proj_weights is None:
input_dim = tensor_shape.dimension_value(input_shape[-1])
self.layer_weights = self.add_weight(
'output_layer_weights',
shape=[input_dim, self.output_dim],
initializer=self.kernel_initializer,
trainable=True)
super(OutputLayer, self).build(input_shape)
def call(self, x):
batch, sequence, d_model = tf.shape(x)[0], tf.shape(x)[1], tf.shape(x)[-1]
h_flat = tf.reshape(x, [-1, d_model])
if self.proj_weights is None:
out = tf.matmul(h_flat, self.layer_weights)
else:
out = tf.matmul(h_flat, self.porj_weights, transpose_b=True)
out = tf.reshape(out, [batch, sequence, self.output_dim])
return out
class DecoderLayer(tf.keras.layers.Layer):
def __init__(self, d_model, num_heads, dff,
dr_rate=0.1):
super(DecoderLayer, self).__init__()
self.d_model = d_model
self.num_heads = num_heads
self.dff = dff
self.dr_rate = dr_rate
self.mha = MultiHeadAttention(self.d_model, self.num_heads)
self.feed_forward = FeedForward(self.d_model, self.dff, self.dr_rate)
self.layer_norm1 = LayerNormalization(self.d_model)
self.layer_norm2 = LayerNormalization(self.d_model)
def call(self, x, training, mask, past=None):
out, present = self.mha(self.layer_norm1(x), mask=mask, past_layer=past,
training=training) # (batch_size, input_seq_len, d_model)
with tf.name_scope("residual_conn"):
x = x + out
out = self.feed_forward(self.layer_norm2(x), training=training) # (batch_size, input_seq_len, d_model)
with tf.name_scope("residual_conn"):
x = x + out
return x, present