forked from Strong-AI-Lab/A-Neural-Symbolic-Paradigm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
173 lines (154 loc) · 5.64 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
"""Data utils for logic-memnn."""
import json
import socket
import numpy as np
import keras.callbacks as C
from keras.utils import Sequence
from keras.preprocessing.sequence import pad_sequences
from data_gen import CHAR_IDX
import os
import random
class LogicSeq(Sequence):
"""Sequence generator for normal logic programs."""
def __init__(self, datasets, batch_size, train=True,
shuffle=True, pad=False, zeropad=True):
self.datasets = datasets or [[]]
# We distribute batch evenly so it must divide the batc size
#print('batch size is ',batch_size)
#print('the length of the dataset ', len(self.datasets))
assert batch_size % len(self.datasets) == 0, "Number of datasets must divide batch size."
self.batch_size = batch_size
self.train = train
self.shuffle = shuffle
self.pad = pad
self.zeropad = zeropad
seed_value = 0
os.environ['PYTHONHASHSEED'] = str(seed_value)
random.seed(seed_value)
np.random.seed(seed_value)
def __len__(self):
return int(np.ceil(sum(map(len, self.datasets))/ self.batch_size))
def on_epoch_end(self):
"""Shuffle data at the end of epoch."""
if self.shuffle:
for ds in self.datasets:
np.random.shuffle(ds)
def __getitem__(self, idx):
dpoints = list()
per_ds_bs = self.batch_size//len(self.datasets)
for ds in self.datasets:
dpoints.extend(ds[idx*per_ds_bs:(idx+1)*per_ds_bs])
# Create batch
ctxs, queries, targets = list(), list(), list()
for ctx, q, t in dpoints:
if self.shuffle:
np.random.shuffle(ctx)
rules = [r.replace(':-', '.').replace(';', '.').split('.')[:-1]
for r in ctx]
if self.pad:
rules.append(['()']) # Append blank rule
if self.zeropad:
rules.append(['']) # Append null sentinel
rules = [[[CHAR_IDX[c] for c in pred]
for pred in r]
for r in rules]
ctxs.append(rules)
queries.append([CHAR_IDX[c] for c in q[:-1]]) # Remove '.' at the end
targets.append(t)
vctxs = np.zeros((len(dpoints),
max([len(rs) for rs in ctxs]),
max([len(ps) for rs in ctxs for ps in rs]),
max([len(cs) for rs in ctxs for ps in rs for cs in ps])),
dtype='int')
# Contexts
for i in range(len(dpoints)):
# Rules in context (ie program)
for j in range(len(ctxs[i])):
# Predicates in rules
for k in range(len(ctxs[i][j])):
# Chars in predicates
for l in range(len(ctxs[i][j][k])):
vctxs[i, j, k, l] = ctxs[i][j][k][l]
xs = [vctxs, pad_sequences(queries, padding='post')]
if self.train:
return xs, np.array(targets)
return xs
@staticmethod
def parse_file(fname, shuffle=True):
"""Parse logic program data given fname."""
dpoints = list()
with open(fname) as f:
ctx, isnew_ctx = list(), False
for l in f.readlines():
l = l.strip()
if l and l[0] == '?':
_, q, t = l.split()
dpoints.append((ctx.copy(), q, int(t)))
isnew_ctx = True
else:
if isnew_ctx:
ctx = list()
isnew_ctx = False
ctx.append(l)
if shuffle:
np.random.shuffle(dpoints)
return dpoints
@classmethod
def from_file(cls, fname, batch_size, pad=False, verbose=True):
"""Load logic programs from given fname."""
dpoints = cls.parse_file(fname)
if verbose:
print("Example data points from:", fname)
print(dpoints[:4])
return cls([dpoints], batch_size, pad=pad)
@classmethod
def from_files(cls, fnames, batch_size, pad=False, verbose=True):
"""Load several logic program files return a singel sequence generator."""
datasets = [cls.parse_file(f) for f in fnames]
if verbose:
print("Loaded files:", fnames)
return cls(datasets, batch_size, pad=pad)
class ThresholdStop(C.Callback):
"""Stop when monitored value is greater than threshold."""
def __init__(self, monitor='val_acc', threshold=1):
super().__init__()
self.monitor = monitor
self.threshold = threshold
def on_epoch_end(self, epoch, logs=None):
current = logs.get(self.monitor)
if current >= self.threshold:
self.model.stop_training = True
class StatefulCheckpoint(C.ModelCheckpoint):
"""Save extra checkpoint data to resume training."""
def __init__(self, weight_file, state_file=None, **kwargs):
"""Save the state (epoch etc.) along side weights."""
super().__init__(weight_file, **kwargs)
self.state_f = state_file
self.hostname = socket.gethostname()
self.state = dict()
if self.state_f:
# Load the last state if any
try:
with open(self.state_f, 'r') as f:
self.state = json.load(f)
self.best = self.state['best']
except Exception as e: # pylint: disable=broad-except
print("Skipping last state:", e)
def on_train_begin(self, logs=None):
prefix = "Resuming" if self.state else "Starting"
print("{} training on {}".format(prefix, self.hostname))
def on_epoch_end(self, epoch, logs=None):
"""Saves training state as well as weights."""
super().on_epoch_end(epoch, logs)
if self.state_f:
state = {'epoch': epoch+1, 'best': self.best,
'hostname': self.hostname}
state.update(logs)
state.update(self.params)
with open(self.state_f, 'w') as f:
json.dump(state, f)
def get_last_epoch(self, initial_epoch=0):
"""Return last saved epoch if any, or return default argument."""
return self.state.get('epoch', initial_epoch)
def on_train_end(self, logs=None):
print("Training ending on {}".format(self.hostname))