-
Notifications
You must be signed in to change notification settings - Fork 449
/
sipp.Rmd
466 lines (335 loc) · 14.8 KB
/
sipp.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
# Survey of Income and Program Participation (SIPP) {-}
[![License: GPL v3](https://img.shields.io/badge/License-GPLv3-blue.svg)](https://www.gnu.org/licenses/gpl-3.0) <a href="https://github.com/asdfree/sipp/actions"><img src="https://github.com/asdfree/sipp/actions/workflows/r.yml/badge.svg" alt="Github Actions Badge"></a>
The primary longitudinal assessment of income fluctuation, labor force participation, social programs.
* Annual tables with one record per month per person per sampled household, time period weights.
* A complex sample generalizing to the U.S. civilian non-institutionalized across varying time periods.
* Multi-year panels since 1980s, its current and now permanent [four year rotation](https://www2.census.gov/programs-surveys/sipp/tech-documentation/methodology/2023_SIPP_Users_Guide_OCT24.pdf#page=15) beginning in 2018.
* Administered and financed by the [US Census Bureau](http://www.census.gov/).
---
## Recommended Reading {-}
Four Example Strengths & Limitations:
✔️ [Annual interviews capture changes precisely, with some questions about each month of the prior year](https://www.census.gov/programs-surveys/sipp/tech-documentation/questionnaires.html)
✔️ [Overlapping panel structure allows year-to-year comparisons](https://www2.census.gov/about/partners/cac/sac/meetings/2024-03/presentation-sipp-seamless.pdf)
❌ [Each income source topcoded for privacy, no individual amounts above a certain threshold revealed](https://ceprdata.s3.amazonaws.com/data/sipp/set_f_memo.pdf)
❌ [The 2017-2019 population experiencing a gap in coverage slightly lower than a health-focused survey](https://doi.org/10.1073/pnas.2222100120)
<br>
Three Example Findings:
1. [Among individuals that experienced at least two consecutive months of poverty during 2022, 57% experienced poverty during all twelve months of the year](https://www.census.gov/library/publications/2024/demo/p70br-196.html).
2. [Americans reporting a disability start date of 2020 were more likely to have stronger employment histories than those reporting disabilities that began pre-COVID](https://www.nber.org/programs-projects/projects-and-centers/retirement-and-disability-research-center/center-papers/nb23-03).
3. [Among 24-64 year old workers in 2018-2023 earning below the median income, those who had ever received unemployment insurance had median net liquid wealth 2.5x larger than those who had not](https://doi.org/10.26509/frbc-ec-202416).
<br>
Two Methodology Documents:
> [2023 Survey of Income and Program Participation Users' Guide](https://www2.census.gov/programs-surveys/sipp/tech-documentation/methodology/2023_SIPP_Users_Guide_OCT24.pdf)
> [2023 Data User Notes](https://www.census.gov/programs-surveys/sipp/tech-documentation/user-notes/2023-usernotes.html)
<br>
One Haiku:
```{r}
# federal programs
# poverty oversample
# monthly dynamics
```
---
## Download, Import, Preparation {-}
Determine which variables from the main table to import:
```{r eval = FALSE , results = "hide" }
variables_to_keep <-
c( 'ssuid' , 'pnum' , 'monthcode' , 'spanel' , 'swave' , 'erelrpe' ,
'tlivqtr' , 'wpfinwgt' , 'rmesr' , 'thcyincpov' , 'tfcyincpov' ,
'tehc_st' , 'rhicovann' , 'rfpov' , 'thnetworth' , 'tftotinc' )
```
Download and import the latest main file:
```{r eval = FALSE , results = "hide" }
library(httr)
library(data.table)
main_tf <- tempfile()
main_url <-
paste0(
"https://www2.census.gov/programs-surveys/sipp/" ,
"data/datasets/2023/pu2023_csv.zip"
)
GET( main_url , write_disk( main_tf ) , progress() )
main_csv <- unzip( main_tf , exdir = tempdir() )
sipp_main_dt <- fread( main_csv , sep = "|" , select = toupper( variables_to_keep ) )
sipp_main_df <- data.frame( sipp_main_dt )
names( sipp_main_df ) <- tolower( names( sipp_main_df ) )
```
Download and import the appropriate replicate weights file:
```{r eval = FALSE , results = "hide" }
rw_tf <- tempfile()
rw_url <-
paste0(
"https://www2.census.gov/programs-surveys/sipp/" ,
"data/datasets/2023/rw2023_csv.zip"
)
GET( rw_url , write_disk( rw_tf ) , progress() )
rw_csv <- unzip( rw_tf , exdir = tempdir() )
sipp_rw_dt <- fread( rw_csv , sep = "|" )
sipp_rw_df <- data.frame( sipp_rw_dt )
names( sipp_rw_df ) <- tolower( names( sipp_rw_df ) )
```
Limit both files to December records for a point-in-time estimate, then merge:
```{r eval = FALSE , results = "hide" }
sipp_df <-
merge(
sipp_main_df[ sipp_main_df[ , 'monthcode' ] %in% 12 , ] ,
sipp_rw_df[ sipp_rw_df[ , 'monthcode' ] %in% 12 , ] ,
by = c( 'ssuid' , 'pnum' , 'monthcode' , 'spanel' , 'swave' )
)
stopifnot( nrow( sipp_df ) == sum( sipp_rw_df[ , 'monthcode' ] %in% 12 ) )
```
### Save Locally \ {-}
Save the object at any point:
```{r eval = FALSE , results = "hide" }
# sipp_fn <- file.path( path.expand( "~" ) , "SIPP" , "this_file.rds" )
# saveRDS( sipp_df , file = sipp_fn , compress = FALSE )
```
Load the same object:
```{r eval = FALSE , results = "hide" }
# sipp_df <- readRDS( sipp_fn )
```
### Survey Design Definition {-}
Construct a complex sample survey design:
```{r eval = FALSE , results = "hide" }
library(survey)
sipp_design <-
svrepdesign(
data = sipp_df ,
weights = ~ wpfinwgt ,
repweights = "repwgt([1-9]+)" ,
type = "Fay" ,
rho = 0.5
)
```
### Variable Recoding {-}
Add new columns to the data set:
```{r eval = FALSE , results = "hide" }
rmesr_values <-
c(
"With a job entire month, worked all weeks",
"With a job all month, absent from work without pay 1+ weeks, absence not due to layoff",
"With a job all month, absent from work without pay 1+ weeks, absence due to layoff",
"With a job at least 1 but not all weeks, no time on layoff and no time looking for work",
"With a job at least 1 but not all weeks, some weeks on layoff or looking for work",
"No job all month, on layoff or looking for work all weeks",
"No job all month, at least one but not all weeks on layoff or looking for work",
"No job all month, no time on layoff and no time looking for work"
)
sipp_design <-
update(
sipp_design ,
one = 1 ,
employment_status = factor( rmesr , levels = 1:8 , labels = rmesr_values ) ,
household_below_poverty = as.numeric( thcyincpov < 1 ) ,
family_below_poverty = as.numeric( tfcyincpov < 1 ) ,
state_name =
factor(
as.numeric( tehc_st ) ,
levels =
c(1L, 2L, 4L, 5L, 6L, 8L, 9L, 10L,
11L, 12L, 13L, 15L, 16L, 17L, 18L,
19L, 20L, 21L, 22L, 23L, 24L, 25L,
26L, 27L, 28L, 29L, 30L, 31L, 32L,
33L, 34L, 35L, 36L, 37L, 38L, 39L,
40L, 41L, 42L, 44L, 45L, 46L, 47L,
48L, 49L, 50L, 51L, 53L, 54L, 55L,
56L, 60L, 61L) ,
labels =
c("Alabama", "Alaska", "Arizona", "Arkansas", "California",
"Colorado", "Connecticut", "Delaware", "District of Columbia",
"Florida", "Georgia", "Hawaii", "Idaho", "Illinois", "Indiana",
"Iowa", "Kansas", "Kentucky", "Louisiana", "Maine", "Maryland",
"Massachusetts", "Michigan", "Minnesota", "Mississippi", "Missouri",
"Montana", "Nebraska", "Nevada", "New Hampshire", "New Jersey",
"New Mexico", "New York", "North Carolina", "North Dakota", "Ohio",
"Oklahoma", "Oregon", "Pennsylvania", "Rhode Island", "South Carolina",
"South Dakota", "Tennessee", "Texas", "Utah", "Vermont", "Virginia",
"Washington", "West Virginia", "Wisconsin", "Wyoming", "Puerto Rico",
"Foreign Country")
)
)
```
---
## Analysis Examples with the `survey` library \ {-}
### Unweighted Counts {-}
Count the unweighted number of records in the survey sample, overall and by groups:
```{r eval = FALSE , results = "hide" }
sum( weights( sipp_design , "sampling" ) != 0 )
svyby( ~ one , ~ state_name , sipp_design , unwtd.count )
```
### Weighted Counts {-}
Count the weighted size of the generalizable population, overall and by groups:
```{r eval = FALSE , results = "hide" }
svytotal( ~ one , sipp_design )
svyby( ~ one , ~ state_name , sipp_design , svytotal )
```
### Descriptive Statistics {-}
Calculate the mean (average) of a linear variable, overall and by groups:
```{r eval = FALSE , results = "hide" }
svymean( ~ tftotinc , sipp_design , na.rm = TRUE )
svyby( ~ tftotinc , ~ state_name , sipp_design , svymean , na.rm = TRUE )
```
Calculate the distribution of a categorical variable, overall and by groups:
```{r eval = FALSE , results = "hide" }
svymean( ~ employment_status , sipp_design , na.rm = TRUE )
svyby( ~ employment_status , ~ state_name , sipp_design , svymean , na.rm = TRUE )
```
Calculate the sum of a linear variable, overall and by groups:
```{r eval = FALSE , results = "hide" }
svytotal( ~ tftotinc , sipp_design , na.rm = TRUE )
svyby( ~ tftotinc , ~ state_name , sipp_design , svytotal , na.rm = TRUE )
```
Calculate the weighted sum of a categorical variable, overall and by groups:
```{r eval = FALSE , results = "hide" }
svytotal( ~ employment_status , sipp_design , na.rm = TRUE )
svyby( ~ employment_status , ~ state_name , sipp_design , svytotal , na.rm = TRUE )
```
Calculate the median (50th percentile) of a linear variable, overall and by groups:
```{r eval = FALSE , results = "hide" }
svyquantile( ~ tftotinc , sipp_design , 0.5 , na.rm = TRUE )
svyby(
~ tftotinc ,
~ state_name ,
sipp_design ,
svyquantile ,
0.5 ,
ci = TRUE , na.rm = TRUE
)
```
Estimate a ratio:
```{r eval = FALSE , results = "hide" }
svyratio(
numerator = ~ tftotinc ,
denominator = ~ rfpov ,
sipp_design ,
na.rm = TRUE
)
```
### Subsetting {-}
Restrict the survey design to individuals ever covered by health insurance during the year:
```{r eval = FALSE , results = "hide" }
sub_sipp_design <- subset( sipp_design , rhicovann == 1 )
```
Calculate the mean (average) of this subset:
```{r eval = FALSE , results = "hide" }
svymean( ~ tftotinc , sub_sipp_design , na.rm = TRUE )
```
### Measures of Uncertainty {-}
Extract the coefficient, standard error, confidence interval, and coefficient of variation from any descriptive statistics function result, overall and by groups:
```{r eval = FALSE , results = "hide" }
this_result <- svymean( ~ tftotinc , sipp_design , na.rm = TRUE )
coef( this_result )
SE( this_result )
confint( this_result )
cv( this_result )
grouped_result <-
svyby(
~ tftotinc ,
~ state_name ,
sipp_design ,
svymean ,
na.rm = TRUE
)
coef( grouped_result )
SE( grouped_result )
confint( grouped_result )
cv( grouped_result )
```
Calculate the degrees of freedom of any survey design object:
```{r eval = FALSE , results = "hide" }
degf( sipp_design )
```
Calculate the complex sample survey-adjusted variance of any statistic:
```{r eval = FALSE , results = "hide" }
svyvar( ~ tftotinc , sipp_design , na.rm = TRUE )
```
Include the complex sample design effect in the result for a specific statistic:
```{r eval = FALSE , results = "hide" }
# SRS without replacement
svymean( ~ tftotinc , sipp_design , na.rm = TRUE , deff = TRUE )
# SRS with replacement
svymean( ~ tftotinc , sipp_design , na.rm = TRUE , deff = "replace" )
```
Compute confidence intervals for proportions using methods that may be more accurate near 0 and 1. See `?svyciprop` for alternatives:
```{r eval = FALSE , results = "hide" }
svyciprop( ~ family_below_poverty , sipp_design ,
method = "likelihood" , na.rm = TRUE )
```
### Regression Models and Tests of Association {-}
Perform a design-based t-test:
```{r eval = FALSE , results = "hide" }
svyttest( tftotinc ~ family_below_poverty , sipp_design )
```
Perform a chi-squared test of association for survey data:
```{r eval = FALSE , results = "hide" }
svychisq(
~ family_below_poverty + employment_status ,
sipp_design
)
```
Perform a survey-weighted generalized linear model:
```{r eval = FALSE , results = "hide" }
glm_result <-
svyglm(
tftotinc ~ family_below_poverty + employment_status ,
sipp_design
)
summary( glm_result )
```
---
## Replication Example {-}
This example matches statistics and standard errors from the [Wealth and Asset Ownership for Households, by Type of Asset and Selected Characteristics: 2022](https://www2.census.gov/programs-surveys/demo/tables/wealth/2022/wealth-asset-ownership/wealth_tables_dy2022.xlsx):
Restrict the design to permanent residence-based householders to match the count in Table 4:
```{r eval = FALSE , results = "hide" }
sipp_household_design <- subset( sipp_design , erelrpe %in% 1:2 & tlivqtr %in% 1:2 )
stopifnot( round( coef( svytotal( ~ one , sipp_household_design ) ) / 1000 , -2 ) == 134100 )
```
Compute Household Net Worth distribution and standard errors across the Total row of Tables 4 and 4A:
```{r eval = FALSE , results = "hide" }
sipp_household_design <-
update(
sipp_household_design ,
thnetworth_category =
factor(
findInterval(
thnetworth ,
c( 1 , 5000 , 10000 , 25000 , 50000 , 100000 , 250000 , 500000 )
) ,
levels = 0:8 ,
labels = c( "Zero or Negative" , "$1 to $4,999" , "$5,000 to $9,999" ,
"$10,000 to $24,999" , "$25,000 to $49,999" , "$50,000 to $99,999" ,
"$100,000 to $249,999" , "$250,000 to $499,999" , "$500,000 or over" )
)
)
results <- svymean( ~ thnetworth_category , sipp_household_design )
stopifnot(
all.equal( as.numeric( round( coef( results ) * 100 , 1 ) ) ,
c( 11.1 , 6.8 , 3.5 , 5.7 , 5.6 , 7.8 , 15.9 , 14.4 , 29.2 ) )
)
stopifnot(
all.equal( as.numeric( round( SE( results ) * 100 , 1 ) ) ,
c( 0.3 , 0.2 , 0.2 , 0.2 , 0.2 , 0.2 , 0.3 , 0.3 , 0.3 ) )
)
```
---
## Poverty and Inequality Estimation with `convey` \ {-}
The R `convey` library estimates measures of income concentration, poverty, inequality, and wellbeing. [This textbook](https://guilhermejacob.github.io/context/) details the available features. As a starting point for SIPP users, this code calculates the gini coefficient on complex sample survey data:
```{r eval = FALSE , results = "hide" }
library(convey)
sipp_design <- convey_prep( sipp_design )
svygini( ~ tftotinc , sipp_design , na.rm = TRUE )
```
---
## Analysis Examples with `srvyr` \ {-}
The R `srvyr` library calculates summary statistics from survey data, such as the mean, total or quantile using [dplyr](https://github.com/tidyverse/dplyr/)-like syntax. [srvyr](https://github.com/gergness/srvyr) allows for the use of many verbs, such as `summarize`, `group_by`, and `mutate`, the convenience of pipe-able functions, the `tidyverse` style of non-standard evaluation and more consistent return types than the `survey` package. [This vignette](https://cran.r-project.org/web/packages/srvyr/vignettes/srvyr-vs-survey.html) details the available features. As a starting point for SIPP users, this code replicates previously-presented examples:
```{r eval = FALSE , results = "hide" }
library(srvyr)
sipp_srvyr_design <- as_survey( sipp_design )
```
Calculate the mean (average) of a linear variable, overall and by groups:
```{r eval = FALSE , results = "hide" }
sipp_srvyr_design %>%
summarize( mean = survey_mean( tftotinc , na.rm = TRUE ) )
sipp_srvyr_design %>%
group_by( state_name ) %>%
summarize( mean = survey_mean( tftotinc , na.rm = TRUE ) )
```