-
Notifications
You must be signed in to change notification settings - Fork 449
/
Copy pathces.Rmd
483 lines (335 loc) · 13.4 KB
/
ces.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
# Consumer Expenditure Survey (CES) {-}
[![License: GPL v3](https://img.shields.io/badge/License-GPLv3-blue.svg)](https://www.gnu.org/licenses/gpl-3.0) <a href="https://github.com/asdfree/ces/actions"><img src="https://github.com/asdfree/ces/actions/workflows/r.yml/badge.svg" alt="Github Actions Badge"></a>
A household budget survey designed to guide major economic indicators like the Consumer Price Index.
* One table of survey responses per quarter with one row per sampled household (consumer unit). Additional tables containing one record per expenditure.
* A complex sample survey designed to generalize to the civilian non-institutional U.S. population.
* Released annually since 1996.
* Administered by the [Bureau of Labor Statistics](http://www.bls.gov/).
---
## Recommended Reading {-}
Four Example Strengths & Limitations:
✔️ [Detailed expenditure categories](https://www.bls.gov/cex/cecomparison.htm#cedc)
✔️ [Respondents diary spending for two consecutive 1-week periods](https://www.bls.gov/respondents/cex/)
❌ [Measures purchases but not consumption](https://www.bls.gov/opub/hom/cex/concepts.htm)
❌ [Consumer unit definition differs from households or families in other surveys](https://www.bls.gov/opub/mlr/2021/article/consumer-expenditure-survey-methods-symposium-and-microdata-users-workshop-2020.htm)
<br>
Three Example Findings:
1. [In 2022, one third of total nationwide expenditures were attributed to housing-related expenses](https://www.bls.gov/opub/reports/consumer-expenditures/2022/home.htm).
2. [Between 2015 and early 2022, male household heads consumed a greater proportion of resources (33%) compared to female household heads (28%), who, in turn, consume more than children (23%)](https://doi.org/10.1007/s11150-024-09739-0).
3. [In 2020, if income increased by $100, spending on all food and alcohol increased by $14 on average](http://dx.doi.org/10.22004/ag.econ.344014).
<br>
Two Methodology Documents:
> [Consumer Expenditure Surveys Public Use Microdata Getting Started Guide](https://www.bls.gov/cex/pumd-getting-started-guide.htm)
> [Wikipedia Entry](https://en.wikipedia.org/wiki/Consumer_Expenditure_Survey)
<br>
One Haiku:
```{r}
# price indices and
# you spent how much on beans, jack?
# pocketbook issues
```
---
## Download, Import, Preparation {-}
Download both the prior and current year of interview microdata:
```{r eval = FALSE , results = "hide" }
library(httr)
tf_prior_year <- tempfile()
this_url_prior_year <- "https://www.bls.gov/cex/pumd/data/stata/intrvw22.zip"
dl_prior_year <- GET( this_url_prior_year , user_agent( "[email protected]" ) )
writeBin( content( dl_prior_year ) , tf_prior_year )
unzipped_files_prior_year <- unzip( tf_prior_year , exdir = tempdir() )
tf_current_year <- tempfile()
this_url_current_year <- "https://www.bls.gov/cex/pumd/data/stata/intrvw23.zip"
dl_current_year <- GET( this_url_current_year , user_agent( "[email protected]" ) )
writeBin( content( dl_current_year ) , tf_current_year )
unzipped_files_current_year <- unzip( tf_current_year , exdir = tempdir() )
unzipped_files <- c( unzipped_files_current_year , unzipped_files_prior_year )
```
Import and stack all 2023 quarterly files plus 2024's first quarter:
```{r eval = FALSE , results = "hide" }
library(haven)
fmli_files <- grep( "fmli2[3-4]" , unzipped_files , value = TRUE )
fmli_tbls <- lapply( fmli_files , read_dta )
fmli_dfs <- lapply( fmli_tbls , data.frame )
fmli_dfs <-
lapply(
fmli_dfs ,
function( w ){ names( w ) <- tolower( names( w ) ) ; w }
)
fmli_cols <- lapply( fmli_dfs , names )
intersecting_cols <- Reduce( intersect , fmli_cols )
fmli_dfs <- lapply( fmli_dfs , function( w ) w[ intersecting_cols ] )
ces_df <- do.call( rbind , fmli_dfs )
```
Scale the weight columns based on the number of months in 2023:
```{r eval = FALSE , results = "hide" }
ces_df[ , c( 'qintrvyr' , 'qintrvmo' ) ] <-
sapply( ces_df[ , c( 'qintrvyr' , 'qintrvmo' ) ] , as.numeric )
weight_columns <- grep( 'wt' , names( ces_df ) , value = TRUE )
ces_df <-
transform(
ces_df ,
mo_scope =
ifelse( qintrvyr %in% 2023 & qintrvmo %in% 1:3 , qintrvmo - 1 ,
ifelse( qintrvyr %in% 2024 , 4 - qintrvmo , 3 ) )
)
for ( this_column in weight_columns ){
ces_df[ is.na( ces_df[ , this_column ] ) , this_column ] <- 0
ces_df[ , paste0( 'popwt_' , this_column ) ] <-
( ces_df[ , this_column ] * ces_df[ , 'mo_scope' ] / 12 )
}
```
Combine previous quarter and current quarter variables into a single variable:
```{r eval = FALSE , results = "hide" }
expenditure_variables <-
gsub( "pq$" , "" , grep( "pq$" , names( ces_df ) , value = TRUE ) )
# confirm that for every variable ending in pq,
# there's the same variable ending in cq
stopifnot( all( paste0( expenditure_variables , 'cq' ) %in% names( ces_df ) ) )
# confirm none of the variables without the pq or cq suffix exist
if( any( expenditure_variables %in% names( ces_df ) ) ) stop( "variable conflict" )
for( this_column in expenditure_variables ){
ces_df[ , this_column ] <-
rowSums( ces_df[ , paste0( this_column , c( 'pq' , 'cq' ) ) ] , na.rm = TRUE )
# annualize the quarterly spending
ces_df[ , this_column ] <- 4 * ces_df[ , this_column ]
ces_df[ is.na( ces_df[ , this_column ] ) , this_column ] <- 0
}
```
Append any interview survey UCC found at https://www.bls.gov/cex/ce_source_integrate.xlsx:
```{r eval = FALSE , results = "hide" }
ucc_exp <- c( "450110" , "450210" )
mtbi_files <- grep( "mtbi2[3-4]" , unzipped_files , value = TRUE )
mtbi_tbls <- lapply( mtbi_files , read_dta )
mtbi_dfs <- lapply( mtbi_tbls , data.frame )
mtbi_dfs <-
lapply(
mtbi_dfs ,
function( w ){ names( w ) <- tolower( names( w ) ) ; w }
)
mtbi_dfs <- lapply( mtbi_dfs , function( w ) w[ c( 'newid' , 'cost' , 'ucc' , 'ref_yr' ) ] )
mtbi_df <- do.call( rbind , mtbi_dfs )
mtbi_df <- subset( mtbi_df , ( ref_yr %in% 2023 ) & ( ucc %in% ucc_exp ) )
mtbi_agg <- aggregate( cost ~ newid , data = mtbi_df , sum )
names( mtbi_agg ) <- c( 'newid' , 'new_car_truck_exp' )
before_nrow <- nrow( ces_df )
ces_df <-
merge(
ces_df ,
mtbi_agg ,
all.x = TRUE
)
stopifnot( nrow( ces_df ) == before_nrow )
ces_df[ is.na( ces_df[ , 'new_car_truck_exp' ] ) , 'new_car_truck_exp' ] <- 0
```
### Save Locally \ {-}
Save the object at any point:
```{r eval = FALSE , results = "hide" }
# ces_fn <- file.path( path.expand( "~" ) , "CES" , "this_file.rds" )
# saveRDS( ces_df , file = ces_fn , compress = FALSE )
```
Load the same object:
```{r eval = FALSE , results = "hide" }
# ces_df <- readRDS( ces_fn )
```
### Survey Design Definition {-}
Construct a multiply-imputed, complex sample survey design:
Separate the `ces_df` data.frame into five implicates, each differing from the others only in the multiply-imputed variables:
```{r eval = FALSE , results = "hide" }
library(survey)
library(mitools)
# create a vector containing all of the multiply-imputed variables
# (leaving the numbers off the end)
mi_vars <- gsub( "5$" , "" , grep( "[a-z]5$" , names( ces_df ) , value = TRUE ) )
# loop through each of the five variables..
for ( i in 1:5 ){
# copy the 'ces_df' table over to a new temporary data frame 'x'
x <- ces_df
# loop through each of the multiply-imputed variables..
for ( j in mi_vars ){
# copy the contents of the current column (for example 'welfare1')
# over to a new column ending in 'mi' (for example 'welfaremi')
x[ , paste0( j , 'mi' ) ] <- x[ , paste0( j , i ) ]
# delete the all five of the imputed variable columns
x <- x[ , !( names( x ) %in% paste0( j , 1:5 ) ) ]
}
assign( paste0( 'imp' , i ) , x )
}
ces_design <-
svrepdesign(
weights = ~ finlwt21 ,
repweights = "^wtrep[0-9][0-9]$" ,
data = imputationList( list( imp1 , imp2 , imp3 , imp4 , imp5 ) ) ,
type = "BRR" ,
combined.weights = TRUE ,
mse = TRUE
)
```
### Variable Recoding {-}
Add new columns to the data set:
```{r eval = FALSE , results = "hide" }
ces_design <-
update(
ces_design ,
one = 1 ,
any_food_stamp = as.numeric( jfs_amtmi > 0 ) ,
bls_urbn = factor( bls_urbn , levels = 1:2 , labels = c( 'urban' , 'rural' ) ) ,
sex_ref = factor( sex_ref , levels = 1:2 , labels = c( 'male' , 'female' ) )
)
```
---
## Analysis Examples with the `survey` library \ {-}
### Unweighted Counts {-}
Count the unweighted number of records in the survey sample, overall and by groups:
```{r eval = FALSE , results = "hide" }
MIcombine( with( ces_design , svyby( ~ one , ~ one , unwtd.count ) ) )
MIcombine( with( ces_design , svyby( ~ one , ~ bls_urbn , unwtd.count ) ) )
```
### Weighted Counts {-}
Count the weighted size of the generalizable population, overall and by groups:
```{r eval = FALSE , results = "hide" }
MIcombine( with( ces_design , svytotal( ~ one ) ) )
MIcombine( with( ces_design ,
svyby( ~ one , ~ bls_urbn , svytotal )
) )
```
### Descriptive Statistics {-}
Calculate the mean (average) of a linear variable, overall and by groups:
```{r eval = FALSE , results = "hide" }
MIcombine( with( ces_design , svymean( ~ totexp ) ) )
MIcombine( with( ces_design ,
svyby( ~ totexp , ~ bls_urbn , svymean )
) )
```
Calculate the distribution of a categorical variable, overall and by groups:
```{r eval = FALSE , results = "hide" }
MIcombine( with( ces_design , svymean( ~ sex_ref ) ) )
MIcombine( with( ces_design ,
svyby( ~ sex_ref , ~ bls_urbn , svymean )
) )
```
Calculate the sum of a linear variable, overall and by groups:
```{r eval = FALSE , results = "hide" }
MIcombine( with( ces_design , svytotal( ~ totexp ) ) )
MIcombine( with( ces_design ,
svyby( ~ totexp , ~ bls_urbn , svytotal )
) )
```
Calculate the weighted sum of a categorical variable, overall and by groups:
```{r eval = FALSE , results = "hide" }
MIcombine( with( ces_design , svytotal( ~ sex_ref ) ) )
MIcombine( with( ces_design ,
svyby( ~ sex_ref , ~ bls_urbn , svytotal )
) )
```
Calculate the median (50th percentile) of a linear variable, overall and by groups:
```{r eval = FALSE , results = "hide" }
MIcombine( with( ces_design ,
svyquantile(
~ totexp ,
0.5 , se = TRUE
) ) )
MIcombine( with( ces_design ,
svyby(
~ totexp , ~ bls_urbn , svyquantile ,
0.5 , se = TRUE ,
ci = TRUE
) ) )
```
Estimate a ratio:
```{r eval = FALSE , results = "hide" }
MIcombine( with( ces_design ,
svyratio( numerator = ~ totexp , denominator = ~ fincbtxmi )
) )
```
### Subsetting {-}
Restrict the survey design to california residents:
```{r eval = FALSE , results = "hide" }
sub_ces_design <- subset( ces_design , state == '06' )
```
Calculate the mean (average) of this subset:
```{r eval = FALSE , results = "hide" }
MIcombine( with( sub_ces_design , svymean( ~ totexp ) ) )
```
### Measures of Uncertainty {-}
Extract the coefficient, standard error, confidence interval, and coefficient of variation from any descriptive statistics function result, overall and by groups:
```{r eval = FALSE , results = "hide" }
this_result <-
MIcombine( with( ces_design ,
svymean( ~ totexp )
) )
coef( this_result )
SE( this_result )
confint( this_result )
cv( this_result )
grouped_result <-
MIcombine( with( ces_design ,
svyby( ~ totexp , ~ bls_urbn , svymean )
) )
coef( grouped_result )
SE( grouped_result )
confint( grouped_result )
cv( grouped_result )
```
Calculate the degrees of freedom of any survey design object:
```{r eval = FALSE , results = "hide" }
degf( ces_design$designs[[1]] )
```
Calculate the complex sample survey-adjusted variance of any statistic:
```{r eval = FALSE , results = "hide" }
MIcombine( with( ces_design , svyvar( ~ totexp ) ) )
```
Include the complex sample design effect in the result for a specific statistic:
```{r eval = FALSE , results = "hide" }
# SRS without replacement
MIcombine( with( ces_design ,
svymean( ~ totexp , deff = TRUE )
) )
# SRS with replacement
MIcombine( with( ces_design ,
svymean( ~ totexp , deff = "replace" )
) )
```
Compute confidence intervals for proportions using methods that may be more accurate near 0 and 1. See `?svyciprop` for alternatives:
```{r eval = FALSE , results = "hide" }
# MIsvyciprop( ~ any_food_stamp , ces_design ,
# method = "likelihood" )
```
### Regression Models and Tests of Association {-}
Perform a design-based t-test:
```{r eval = FALSE , results = "hide" }
# MIsvyttest( totexp ~ any_food_stamp , ces_design )
```
Perform a chi-squared test of association for survey data:
```{r eval = FALSE , results = "hide" }
# MIsvychisq( ~ any_food_stamp + sex_ref , ces_design )
```
Perform a survey-weighted generalized linear model:
```{r eval = FALSE , results = "hide" }
glm_result <-
MIcombine( with( ces_design ,
svyglm( totexp ~ any_food_stamp + sex_ref )
) )
summary( glm_result )
```
---
## Replication Example {-}
This example matches the _number of consumer units_ and the _Cars and trucks, new_ rows of [Table R-1](https://www.bls.gov/cex/tables/calendar-year/mean/cu-all-detail-2023.xlsx):
```{r eval = FALSE , results = "hide" }
result <-
MIcombine( with( ces_design , svytotal( ~ as.numeric( popwt_finlwt21 / finlwt21 ) ) ) )
stopifnot( round( coef( result ) , -3 ) == 134556000 )
results <-
sapply(
weight_columns ,
function( this_column ){
sum( ces_df[ , 'new_car_truck_exp' ] * ces_df[ , this_column ] ) /
sum( ces_df[ , paste0( 'popwt_' , this_column ) ] )
}
)
stopifnot( round( results[1] , 2 ) == 2896.03 )
standard_error <- sqrt( ( 1 / 44 ) * sum( ( results[-1] - results[1] )^2 ) )
stopifnot( round( standard_error , 2 ) == 225.64 )
# note the minor differences
MIcombine( with( ces_design , svymean( ~ cartkn ) ) )
```