diff --git a/tests/data/test_convert_records_to_fo.py b/tests/data/test_convert_records_to_fo.py index 17b57b6a5..ef3458d49 100644 --- a/tests/data/test_convert_records_to_fo.py +++ b/tests/data/test_convert_records_to_fo.py @@ -2,7 +2,8 @@ from venv import create import pytest from PIL import Image -from fiftyone import list_datasets, load_dataset, Detection, Sample, Dataset +import pytest +fo = pytest.importorskip("fiftyone") #import list_datasets, load_dataset, Detection, Sample, Dataset from icevision import tfms from icevision import data @@ -26,8 +27,8 @@ def cleanup_fo_dataset(): dataset_test_names = ["_iv_test", "_iv_test_1"] yield for dataset_name in dataset_test_names: - if dataset_name in list_datasets(): - ds = load_dataset(dataset_name) + if dataset_name in fo.list_datasets(): + ds = fo.load_dataset(dataset_name) ds.delete() del ds @@ -40,7 +41,7 @@ def test_record_to_fo_detections(object_detection_record): ) for fo_bbox in detections: - assert isinstance(fo_bbox, Detection) + assert isinstance(fo_bbox, fo.Detection) def test_convert_record_to_fo_sample(object_detection_record): @@ -48,16 +49,16 @@ def test_convert_record_to_fo_sample(object_detection_record): test_sample = convert_record_to_fo_sample( object_detection_record, "test", None, False, None, lambda x: x ) - assert isinstance(test_sample, Sample) + assert isinstance(test_sample, fo.Sample) assert hasattr(test_sample, "test") assert len(test_sample["test"]) > 0 # Test add to existing sample and autosave - sample = Sample(object_detection_record.common.filepath) + sample = fo.Sample(object_detection_record.common.filepath) test_sample = convert_record_to_fo_sample( object_detection_record, "test", sample, False, None, lambda x: x ) - assert isinstance(test_sample, Sample) + assert isinstance(test_sample, fo.Sample) assert hasattr(test_sample, "test") assert len(test_sample["test"]) > 0 @@ -69,7 +70,7 @@ def test_convert_record_to_fo_sample(object_detection_record): object_detection_record, "test", None, False, test_tfms, None ) - assert isinstance(test_sample, Sample) + assert isinstance(test_sample, fo.Sample) assert hasattr(test_sample, "test") assert len(test_sample["test"]) > 0 @@ -89,7 +90,7 @@ def test_convert_prediction_to_fo_sample(object_detection_record): object_detection_record.original_img_size ) # Cleanup record, that has scope session - assert isinstance(test_sample, Sample) + assert isinstance(test_sample, fo.Sample) assert hasattr(test_sample, "ground_truth") assert len(test_sample["ground_truth"]) > 0 @@ -106,7 +107,7 @@ def test_create_fo_dataset(object_detection_record, cleanup_fo_dataset): ) # Test for record and with existing dataset - dataset = Dataset("_iv_test") + dataset = fo.Dataset("_iv_test") dataset = create_fo_dataset( [object_detection_prediction], dataset_name="_iv_test", exist_ok=True ) @@ -115,11 +116,11 @@ def test_create_fo_dataset(object_detection_record, cleanup_fo_dataset): object_detection_record.original_img_size ) # Cleanup record, that has scope session - assert isinstance(dataset, Dataset) + assert isinstance(dataset, fo.Dataset) assert len(list(dataset.iter_samples())) > 0 # Test for prediction and create new dataset dataset = create_fo_dataset([object_detection_record], "_iv_test_1") - assert isinstance(dataset, Dataset) + assert isinstance(dataset, fo.Dataset) assert len(list(dataset.iter_samples())) > 0